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Preface 

The importance of aspheres is growing up every day. it can be seen in different fields. 

from ophthalmology to astronomy. in the laboratory and in fiber optic communications. It 

is well known that the quality in optical manufacturing depends on the accuracy of the 

method used to test. The aim ofthis thesis is to test aspheric wavefronts in a simple way. 

It means without the intrinsic restrictions of introducing a linear carrier frequency ( e.g by 

tilting a reference surface) nor those when taking several frames (Phase Shifting 

Interferometry). The importance ofthe analysis ofinterferograms with the introduction of 

a 'reference carrier frequency will be explained here with sorne detail. 

In chapter one an introduction to the main techniques on single pattern analysis is 

made. A comparison between a single pattern analysis and multiple pattern analysis 

techniques is also done. 

It is well k:nown that an interferogram can be demodulated to find the wavefront 

shape if a linear carrier is introduced. In chapter two it is shown that the interferogram can 

also be demoduJated if it has many closed fringes or a circular carrier appear. The 

demodulation is made in the space domain, as opposed to demodulation in the Fourier space, 

but the low pass filter characteristics must be properly chosen. For academic purposes an 

holographic analogy of this demodulation process is al so presented, which shows that the 

common technique of multiplying by a sine and a cosine function is equivalent to 

holographically reconstructing with a flat tilted wavefront. Alternatively, a defocused 

(spherical) wavefront can be used as a reference to perform the reconstruction or 

demodulation of sorne closed fringe interferograms. In addition to this, an analysis of the 

Root Mean Square Error (RMS error) is presented and an algorithm to reduce this error in 

the phase demodulation process is proposed. It should be pointed out that when commercial 
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interferometers tests optical surfaces, they need no more than five fringes in order to have 

a quite good resolution. It means that if the measuring field has 256 pixels in both x and y 

directions, each fiinge covers more than 50 pixels. More over, Phase Shifting Interferometry 

require the existen ce of a small number of fringes over the field in order to ha ve a good set 

of acquisition frames. In the method proposed here it does not matter whether a large fringe 

frequency appears at the edges of an interferogram with aspherical aberration. 

Incidentally, computer generated aspherical compensators are superimposed on an 

interferometer wavefront or fringe pattem to obtain a null fringe pattern. This process has 

been understood and widely described in the literature. On the oÜter hand, when we 

superimpose an ideal fiinge pattem on top of the picture of an interferogram to be analyzed, 

we obtain a moiré pattem between the two images. These two apparently different 

procedures have much in common, but also sorne important differences to be described in 

chapter three. Furthermore a Ronchi ruling can be used to remove the linear frequency in 

the interferogram instead of an holographic process, this process is known as interferogram 

demodulation with a linear carrier. 



3 

Prefacio 

Hoy en día la importancia de las asferas crece rápidamente, esto se puede constatar 

en campos tan diferentes que van de la oftalmología a la astronomía, en el laboratorio o en 

las comunicaciones con fibra óptica. Por otro lado, se sabe que para poder obtener buenas 

calidades en un taller de fabricación óptica es necesario un muy buen método de prueba. El 

propósito de esta tesis es probar frentes de onda asféricos de una manera más sencilla, esto 

es, sin las restricciones intrínsecas de la frecuencia portadora lineal ni aquellas de la 

interferometría de desplazamiento de fase. La importancia del análisis de interferogramas con 

la introducción de una frecuencia portadora de referencia será explicada a detalle. 

El capitulo uno es dedicado a una introducción al estudio de las principales técnicas 

de análisis de interferogramas reportadas en las revistas científicas. Así mismo se hace una 

comparación entre las técnicas de análisis de patrones de franjas en base a una toma y a 

múltiples tomas. 

Por otro lado, es bien sabido que para recuperar la forma de un fren~e de onda, se 

debe introducir una portadora lineal en el interferograma. En esta tesis, se demuestra que si 

el interferograma carece de portadora lineal, pero tiene una portadora radial (franjas 

circulares) puede ser también demodulado. Esta demodulación se realiza en el dominio 

espacial, caso contrario a aquella en el dominio de las frecuencias (Fourier), sin embargo las 

características que debe llevar el filtro pasa bajas deben ser propiamente seleccionadas. Por 

razones académicas se presenta una analogía holográfica a este proceso de demodulación, 

la cual muestra que las técnicas comunes de demodulación, a partir de la multiplicación del 
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interferograma por una función seno y otra coseno, es equivalente a reconstruir un 

holograma con un frente plano inclinado. Una alternativa es utilizar un frente de onda 

esférico (desenfocado) como frente de reconstrucción (demodulación) para algunos 

interferograrnas de franjas cerradas. Para el método propuesto, es también presentado un 

análisis de error cuadrático medio y proponemos un algoritmo para reducir este error. 

Debemos señalar que cuando se realizan pruebas ópticas con interferómetros comerciales, 

se hace necesario tener un patrón de franjas no mayor de cinco franjas para todo el campo. 

Esto significa que si el campo es de 256 pixeles en cada eje, cada franja ocupa alrededor de 

50 pixeles. Por otro lado, la lnterferometría de Desplazamiento de Fase (análisis con 

múltiples patrones) requiere la existencia de no muchas franjas a fin de aumentar su 

precisión. En la técnica presentada en esta disertación, desearnos no exceder el limite de 

Nyquist, esto es, se pueden resolver interferograrnas con una gran cantidad de franjas. Así, 

al probar un frente de onda asférico, no importa mucho la gran frecuencia espacial en el 

borde del interferograma. 

Por otro Lado, un compensador asférico generado por computadora es superpuesto 

en el patrón de franjas de un interferómetro, a fin de generar un patrón de franjas nulo. Este 

proceso ya ha sido reportado ampliamente en la literatura. Mas aún, cuando se superpone 

un patrón de franjas ideal sobre el negativo de un interferograma, se obtiene un patrón de 

franjas de moiré de estas dos imagenes. Aparentemente, estos dos métodos son muy 

similares, sin embargo, tienen diferencias que son importantes y que serán descritas en este 

capítulo. 



Chapter 1 

General Review of Fringe Patterns Analysis Methods 
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1.1 INTRODUCTION 

There are several coherent optical interferometry techniques that encode phase 

information coming on from a distorted object, in the fonn of interference fiinges. A large 

number of techniques used to extract the phase information from these objects has been 

investigated and reported in the literature 1
•
2

• These techniques are known as fringe analysis 

methods and can be divided in the following manner: 

1.- Single fiinge pattem analysis 

a) Fringe sampling with global and local interpolation: Direct calculations, 

fringe tracking, global polynomial interpolation, local interpolation by 

segments. 

b) S pace heterodyne demodulation of fiinge pattem ( direct-measuring 

interferometry): Spatially phase-stepped, carrier frequency, spatial 

synchronous detection (direct interferometry), phase locked loop. 

e) Fourier analysis offiinge pattems: Fourier transform 

11. Multiple fiinge pattem analysis 

d) Phase-shifting methods (temporal domain): phase shifting, heterodyne, 

phase-lock. 

The advantages and disadvantages of single and multiple pattern analysis are: 

l . While in multiple pattem analysis methods a minimum of three interferogram 

frames are needed, in single pattem analysis methods only one is necessary. 

2. The multiple pattem methods require an accurately calibrated phase shifter device 

(i.e. a piezoelectric transducer, a rotating glass plate, a moving diffraction grating). 

In single pattern methods a really sophisticated mathematical analysis or 

computational processing is needed. 
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3. In multiple pattem methods three or more frames must be taken simultaneously 

in order to avoid the effect of vibrations. In single pattem methods there is no 

problem, since only one frame is taken. In addition to thls, in mechanics the study of 

transient deformations requires that the phase be extracted from a single 

interferogram. It is possible sorne times to ha ve an environment free of vibrations or 

turbulence (e.g. deflectometry) and multiple pattem methods are more accurate and 

have more precision. 

4. In multiple pattem methods the sign ofthe wavefront deformation is determined. 

In single pattern methods an aberration with a known sign should be introduced in 

order to determine the sign of the wavefront. 

1.1.1 Single Pattern Analysis 

This section includes severa! and interesting manners to retrieve the phase from an 

interferogram. 

The group of methods involving the fringe sampling with global and local 

interpolation, uses sophisticated numerical analysis to process the interferogram as an 

ordinary image. If we ha ve two interfering wavefronts, one of them plane and acting as a 

reference, the other one also plane but tilted and coming on as the object wavefront, we will 

have a system of straight, parallel and equidistant fringes. When the wavefront under test is 

not flat, the fringes do not appears straight but curved. These fringes are called equal­

thickness fringes because they represent the locus of the points with constant wavefront 

separation. In this manner, the deformations on the object may be estimated from a visual 

examination oftheir deviation from straightness in the interferogram. Sorne systems had been 

developed to perform semi-automatic analysis offixed interferograms3 and reviews oftheir 

implicit problems have been published 4·s. 

The fiinges can be located by manually marking its center (using a digitizing tablet) 

or automatically, making the mark directly o ver a frame fringe pattern, previously captured 
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using a digital frame grabber. After locating all the fiinge centers, fiinge order numbers must 

be assigned to each point. Then, either the interferogram fiinge centers can be characterized 

by direct analysis ofthe ordered fiinge center, or it can be used to generate a uniform grid 

of data representing a map ofthe wavefront optical path difference (OPD). 

In the first case the analysis results take the forro of wavefront statistics, such as 

peak-to-valley (PV) and root-mean-square (RMS) wavefront error. Reducing all measured 

wavefronts to a uniform data grid it is possible to graphically display the optical phase 

clifference as a phase map, and perform sorne analysis such as diffraction patterns. Because 

the fringe centers represents de phase map measurements at discrete points, the data 

interpolation between the fiinges will be required to produce the uniform grid. 

The two methods used more often to estímate the complete wavefront shape are 

global polynomial fitting and local interpolation using splines. In global interpolation, a single 

analytical two-dirnensional function is used to represent the wavefront for the whole 

interferogram. To perform a global interpolation the polynomials most frequently used are 

the Zernike polynornials 6
• 

The second and thlrd k.ind of methods that we will treat in subsections 1.2 and 1.3 

are al so called spatial carrier fiinge pattern analysis. Both of them use the holographic 

theory of phase modulation and demodulation, implement the entire demodulation procedure 

in a computer image processing and yield in a direct way the two-dimensional phase 

distribution wich modulated the spatial reference carrier. 

1.1.2 Multiple Pattern Analysis 

Finally, phase shifting Interferometry methods (PSI) are another group of fringe 

pattern analysis methods. PSI electronically records a series of interferograms while the 

reference phase of the interferometer is changed. The wavefront phase is modulated in the 

variations in the intensity pattern of the framed interferograms, and the phase is recovered 

by a point-by-point calculation. There is no need to locate the fiinge centers. Up to now 
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many relevant works have been published in this field 7
•
8
•
9
•
10 and have been extended to 

speckle pattern interferometry. In phase shift:ing interferometry the reference wavefront is 

moved along the direction of propagation, with respect to the object wavefront changing 

their phase difference. By measuring the irradiance change for different phase shifts, it is 

possible to determine the phase for the object wavefront, relative to the reference wavefront, 

for the measured point on the wavefront. All electric devices do not measure amplitude but 

irradiance and irradiance signal J(x.y) at the point (x.y) in the detector changes with the 

phase, as 

s(x, y , a) = a + b cos [<J>(x, y) + a] ( 1.1 ) 

where <J>(x,y) is the phase at the origin and a is a known phase shift with respect to the 

origin, a is the background intensity and b is the modulation amplitude of the fringes, directly 

proportional to the visibility. From equation 1.1 there are three unknowns and only one 

equation, then we need at least another two different frames with a shifted phase a to 

determine the complete wavefront shape. 

Incidentally, there are sorne analysis methods used in PSI techniques. Greivenkamp 
11 has developed a diagonalleast squares algorithm whereby the phase is extracted by means 

of equally and uniformly spaced sampling points, 

tan<J>(x,y) = (1.2) 

N { 2rcnl Esnco - -
n= l N 

Here, the minimum acceptable number of sampling points is N=3 . 
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As a generalization, the study of the synchronous detection from a F ourier point of 

view was later developed by Freischlad and Koliopoulos 12. They removed the restrictions 

of equally and uniformly spaced sampling points. Thus their theory shows that the phase <1> 

is in general given by, 

J s(x)g1(x)dx 

tanq>(XJ') = - ---- (1.3) 

- oo 

As long as four conditions to be described below are satisfied. Two general assumptions 

must be taken into account: 

l . The signal to be detected is periodic but not necessarily sinusoidal, it means that 

it may contain harmonics. 

2. The two general functions g1(x) and g2(x) are used in lieu ofthe sine and cosine 

functions. 

This method requires that 

l. The Fourier elements of the reference functions g1(x) and g (x) must have 

a zero DC term. Then its Fourier transforms G1(j) and Gz,(j) at zero frequency 

also must be equal to zero. 

2. All interference between undesired harmonics in the signal and in the reference 

functions must be avoided. 

3. The Fourier elements ofthe reference functions g1(x) and g2(x) at the frecuency 

fr must be orthogonal to each other. This means that the Fourier transforms G1(j) and 

G2(j) of these two reference functions at the frequeq.cy f must have a phase 

difference equal to ±n/2. 

4. The Fourier transforms G1(j) and G2(j) ofthese two reference functions, at the 
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frequency fr must have the same magnitude. 

Ifthe sampling functions g1(x) and g/...x) are discrete (discrete sampling instead of continous) 

and these four conditions are applied, the value ofthe phase <1> may be calculated by 

(1.4) 

where W¡n is the sampling weight for sampling point i and N is the number of sampling points 

with coorclinates x = xn. 

An altemative way to express the phase <1> is by saying that this is the phase of the 

complex function V( <1> ), 

N 

V(<l>) = E(W1n + iW2n} s(xn) 
n=l 

(1.5) 

This functjon V(<l>) is known as the characteristic polynomial, proposed by Surrel 13
• This 

polynomial may be used to derive all main properties of the algorithm, in a form closely 

associated with the Fourier theory for the Freischlad and Koliopoulos' case. After severa! 

manipulations this polynomial may be expresed as a function ofthe harmonics (z) as follows 

N 
P(z) = E{Wln + iW2n} ~lm6«}(n - l) 

nzl 
(1 .6) 

where an is the phase for the sampling point n, ll a is the phase interval separation between 

the sampling points and z is associated toa harmonic number m, by z = e1"'t.a. These values 

of z may be represented in a unit circle in the complex plane. Given a sampling algorithm, the 

value ofthe phase interval/la between sampling points is fixed, i.e. there is a point for each 

possible value ofthe harmonic number, including positive as well as negative numbers. Here 
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we refer the readers to the original article to see the characteristic diagram ofthe sampling 

algorithms and its properties. 

1.2 FREQUENCY DOMAIN 

As we have seen in the previous section, in multiple pattem analysis severa! frames 

ha ve to be measured. This requires the shifting of the phase by means ot: for example, a 

piezoelectric crystal. In frequency and spatial domain single pattem methods described in 

these two following sections, only a single frame is necessary to obtain the wavefront. 

1.2.1 The Method Proposed by Takeda et al 

In single pattem analysis it is possible to study the interferogram in the space domain 

14 (interferogram plane) or in the frequency domain 15 (Fourier plane). 

Consider a digitized fringe pattern where the intensity at each point in the image, 

s(x,y), is described by 

s(x, y) = a(x,y) + b(x,y) cos [<J>(x, y) + 21tfoX] 
(1.7) 

where <J>(x,y) is the phase ofthe object and a(x,y), b(x,y) and <J>(x,y) are assumed to vary 

slowly compared with a spatial carrier frequency, fo, introduced into the interferometer. 

Equation (1.7) can be rewritten as: 

s(x, y) = a(x,y) + c(x,y) e 12111~ + e •(x,y) e -tlTif~ (1.8) 

where 

c(x, y) = ±b(x,y) e icl>(x.y) (1.9) 

andan asterisk denotes a complex conjugate. Equation (1 .8) is then Fourier transformed with 
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respect to the x-axis by a fast Fourier transform (FFT) algorithrn, 

.. 
91sex, y)]= 9"[aex~)] + Jcex~) e'

2
1ifate-12

rcft dx 

.. (1.1 O) 

+ J e ·ex~) e -i2rcfate -t2rcft dx 

Thls gives: 

Slf. y) = Alf~) + Clf-/0~) + e ·e -J-fo~) (1.11) 

the capital letter denotes the Fourier transform and f is the spatial frequency in the x 

direction. Fig. 1.1ea) shows the intensity distribution of equation 1.7 and in Fig. l.l(b) is its 

Fourier spectral frequency in the x direction. A carrier frequency,/0 = 40 fringes/field efield 

= 256) is used. A filter Hex,y), is u sed to isolate one of the two sidebands or lobes, for 

example C(j-f(}ly) in Fig. l.l(b). After thls lobe is shifted by,j towards the origin on the 

frequency axis to obtain C(j,y) as is shown in Fig. l.l(c). Considering the filter applied to 

the shifted frequency spectrum, we can write: 

C(j, y) = H(j~) S(j+fo~) ( 1.12) 

The unwanted background intensity a(x,y) has been fiJtered out at this moment. The 

spectrum of equation et.12) is shifted back to the frequency plane origin, prior to perforrning 

an inverse transform eagain with the FFT). The result ofthe Fourier transform gives cex,y), 

eqn e l . 9), and the wavefront phase can be recovered from this using, 

"'e ) t - 1 Jm[c(x~)] 't' x~ = an 
Re[cex~)] 

(1.13) 

The arctan function calculates the arctangent over a full -1t to 1t range. The phase given by 

this equation is modulo 21t and is sometimes referred to as a wrapped phaselS. The 

unwrapped, or true, phase is obtained by removing the discontinuities that occur when the 

phase suddenly jumps from -1t to 1t. Whe the unwrapped phase is gotten, the analysis of 
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interferograms in the frequency domain is completed. Finally, ifthe Fourier spectra sideband 

(lobe) C(j-j0y) is not shifted in frequency to the origin then the inverse Fourier transform is 

given by c(x,y)e il'l/0", and the phase calculated from eqn (1.13) is <J>(x,y) + 2rt/c;x, it means 

that it still contains the carrier frequency. 

1.2.2 The Metbod Proposed by Kreis 

Kreis 16 proposed that the Fourier transform method could be used without a spatial 

carrier frequency. From Eqn (1 .7)/o = O and it can be rewritten as 

s(x, y) = a(x~) + c(x~) +e · ex~) ( 1.14) 

where c(x,y) is defined by eqn. (1.9). This procedure is illustrated in Fig. 1.2, for the same 

phase distribution as Fig. l. Next Eqn. (1.14) is Fourier transformed, whicb may be done 

one-dimensionally with respect to x, giving 

S(j, y) = A(/ .y) + C(j.y) + C •(j.y) (1.15) 

In general the Fourier spectra are not now separated, Fig. 1.2(b). A band-pass filter is 

applied in Fig. 1.2(c); notice that the filtered out Fourier spectrum does not need to be 

shifted and that blocking either positive or negative frequencies means that the calculated 

phase distribution can only increase or decrease in the x direction. Thus, a phase inversion 

takes place for non-monotonic phase distributions. Nevertheless, this ambiguity can be 

solved using two fringe patterns, recorded with a known phase displacement a between 

them, 

s1 (x, y, a) = a + b cos [ <J>(x, y )] 

s2(x, y, a) = a + b cos [<J>(x, y) + a] 
(1.16) 

where a < 1t rad. The phase calculated by eqn (1 .13) is multiplied by the calculated sign of 

a at each point to resol ve the direction of displacement. In spite of having not one but two 

fringe patterns, it is not necessary to know or to control the exact phase shift. However, only 

the sign of a is of interest. 
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1.3 SPACE DOMAIN 

Spatial domain single pattern analysis is considerably faster than frequency domain 

methods, and could enable phase to be calculated in real time on a modest personal 

computer. 

1.3.1 The Method Proposed by Womack 

The first work on space domain processing has been reported by using an analogue 

circuit by Ichioka and Inuiya 17
• Later WomaclC4 was concerned on the same topic. 

Assuming again eqn. (l . 7) and multiplying it by a frequency /0> 

s(x, y) = [a(x,y) + b(x,y) cos [<J>(x, y) + 27t/<f]] e 12111~ 
(1.17) 

this yields to the following expressions: 

and 

s(x, y) sin(27t/¡f) = a(x,y) sin(27t/¡f) + .!.b(x,y) sin[<J>(x, y) + 47t/<f] 
2 

.!.b(x,y) sin[ <J>(x, y)] (1.18a) 
2 

s(x, y) cos(27t/¡f) = a(x,y) sin(27t/¡f) + .!.b(x,y) cos[<J>(x, y) + 47t/¡f] 
2 

.!.b(x,y) cos[<J>(x, y)] (1.18b) 
2 
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or in an analogous manner 

z, = s(x, y) sin(2nfox) (1.19a) 

and 

Zc = s(x, y) cos(27ifcf) (1.19b) 

Figure 1.3(a) shows a fringe pattem identical to that in Fig. l.l(a) i.e. fo = 40 fringes/field 

(field = 256), giving a carrier wavelength of l 0 = field/fo = 6.4 pixels. Figure 1.3(b) shows 

the pattern correspondent to eqn (1.19b). To have an idea ofFourier plane behavior, the 

images in the frequency domain are shown. As we will notice from eqn (l . 18b) the only term 

centered about the frequency origin is the third. Thus this term can be isolated by the 

application ofa low-pass average filter (Fig. 1.3(c)) equal to the carrier-fringe wavelength, 

A o, 

h(x,y) = rect ( ;.) 

the response in the frequency domain is given by 

H(x,y) = sinc(nfl.0) 

Finally the phase can be calculated by: 

<!>(x,y) = tan-1 
[-

where an asterisk denotes convolution. 

h(x,y) * Z1 ] 

h(x,y) * Zc 

1.3.1 The Method Proposed Moore 

(1.20) 

(1.21) 

(1.22) 

Moore and Mendoza-Santoyo 11 were concemed on a space domain method without 
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carrier. Their work is related with that of Kreis 16 but the analysis is made in the 

interferogram plane. From eqn (l. 7) with.fo = O, 

and 

s(x, y) sin(21t/<f) = a(XJ') sin(21t/<f) + .!.b(xJ') sin[<J>(x, y) + 21tf<f] 
2 

.!.b(XJ') sin[ cj>(x, y) - 21tf<f] (1.23a) 
2 

s(x, y) cos(21t/<f) = a(xJI) cos(21t/<f) + .!.b(xJI) cos[<J>(x, y) + 21tf<f] 
2 

.!.b(xJI) cos[cj>(x, y) - 21tfox] (1.23b) 
2 

or equivalently 

Zs = s(x, y) sin(21t/<f) (1 .24a) 

and 

Zc = s(x, y) cos(21t/<f) . (1.24b) 

Figure 1.4(a) shows the intensity profile along the x direction ofthe phase distribution off 

= 6.4 fiinges/field. This is then multiplied by a linear carrier of cos(21t.fox), Fig. 1.4(b), where 

fo = 40 fr/fd (J. = fielc¡Vf = 6.4 pixels). Although the choose of carrier is completly 

arbitrarily. Then a low-pass filter is applied to the image to isolate the third term in eqn. 

1.23(b). Obviously the three tenns ofthe spectra are centered about the axis in the frequency 

domain. A low-pass filter ofsize A.0 is applied (Fig. 1.4(c)), and the phase calculated from: 
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<J>(x.,y) -2rt/¡JX = tan-1 
- ' 

[ 
h(x.,y) * Z l 
h(x.,y) * Zc 

(1.25) 

As we can notice the carrier frequency used in the demodulation process is still contained 

in the result Fig. 1.4(d), and should be substracted it out, Fig. 1.4(e). As in other techniques 

that use a single pattem without carrier, this one also has an indetermination on the sign of 

<J>. Thus the real sign of the phase must be determined from knowledge of object loading 

conditions. Moore 11 has shown that in order to ha ve a good accuracy by using this method, 

the reference linear carrier must closely match the frequency ofthe interferogram. 
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Figure Captions 

Figure 1.1.- Fourier transform method with fringe earrier, (a) <J>(x,y), (b) its Fourier 

transform, (e) <J>(x,y) + 2rt/~ (d) Fourier transform and filter, (e) shifted speetra, (f) 

unwrapped phase. 

Figure 1.2.- Fourier transform method without fringe carrier, (a) intensity distribution (x,y), 

(b) its Fourier transform, (e) filter speetra, (d) unwrapped phase. 

Figure 1.3.- Spatial Synehronous deteetion with fringe earrier, (a) intensity distribution 

Q>(x,y), (b) its Fourier transform, (e) Q>(x,y) + 2rtf~ (d) its Fourier transform, (e)intensity 

distribution multiplied by carrier frequeney, (f) its Fourier transform, (g) low-pass filter 

applied to (e), (h) Fourier transform, (i) unwrapped phase. 

Figure 1.4.- Spatial Synehronous deteetion without fringe carrier, (a) intensity distribution 

<J>(x,y), (b) its Fourier transform, (e) intensity distribution multiplied by earrier frequeney 

Q>(x,y) + 2rt/~ (d) its Fourier transform,(e) low-pass filter applied to (e), (f) Fourier 

transform, (g) unwrapped phase. 
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2.1 INTRODUCTION 

The introduction of a linear carrier in an interferogram in order to avoid el o sed loop 

fringes is well known. The phase determination, called here demodulation, of these carrier 

frequency interferograms has been performed by Womak 1 in the spatial domain. The 

interferogram demodulation to obtain the phase or wavefront shape was done multiplying 

the interferogram by two perfect interferograms with the same linear carrier but with the two 

systems of fringes orthogonal to each other, in the sense that the phase difference between 

these two interferograms is 90°. The second step is to low pass filter the results ofthese two 

multiplications. Finally, the tangent of the phase is the ratio of these two filtered images. 

Also, Takeda et a/ 2 proposed a Fourier Method to demodulate the interferogram 

with linear carrier, by perfornúng a Fourier Transfonn ofthe interferogram. Then the first 

order lobe in the Fourier phase is isolated from the rest. To complete the process the inverse 

Fourier transform is taken, obtaining the desired wavefront slope. 

We may ha vean interferogram of closed fringes in which to introduce the linear 

carrier is not practical for any reason, for example, because the mínimum needed carrier is 

of such a high spatial frequency that the Nyquist limit is exceeded in the recording device. 

This situation can arise when the wavefront under measurement is highly aspheric or 

aberrated. In this case the demodulation has to be performed without the linear carrier. lt is 

not always possible or convenient to introduce a linear carrier to fonn a system of open 

fringes. In this case the interferogram has to be demodulated with the presence of closed 

fringes. A Fourier method to demodulate in the interferogram has been proposed by Kreiss 
3
'
4
• Later, a method to demodulate in the interferogram plane that do not require any kind of 

carrier, was proposed by Moore and Mendoza-Santoyo s. Moreover Servín et al 6 introduced 

another way of demodulating closed fringes interference patterns by the use of a regularized 

phase tracking technique. The main disadvantages of this procedure is its sequential nature 

which may propagate a detection error found in a place of the interferogram throughout the 

whole fringe pattem. 
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Peng et al 7 who were concemed by circular carrier, used a spatial phase shlfting 

technique to demodulate the interferogram. However, to avoid closed fringes they also 

introduced an additionallinear carrier. 

The general problem of demodulating an interferogram with linear and circular carrier 

has been mathematically treated by Vlad and Malacara1
, and by Malacara et a/ 9

. 

Two methods to demodulate an interferogram with open or closed fringes, from a 

point of view of holography are described. This model gives us a good insight of these 

procedures and oftheir strong similarities. Sorne examples are presented. 

2.2 INTERFEROGRAMS WITH A RADIAL OR CffiCULAR CARRIER 

Closed system of fringes appear quite frequently when measuring mechanical 

components. The deformations in these cases may be as large that the introduction of a linear 

canier to open the fringes would produce extremely high spatial frequencies. In this case the 

fringes have to be demodulated containing closed fringes. 

A slightly different case arises when testing an spherical surface with nearly rotational 

symmetry. In this case a circular carrier, as pointed out by Vlad and Malacara 8 can be a 

proper solution. Then, a nearly centered system of rings appear. 

The mathematical produce to demodulate these fringe pattems can be carried out in 

several rnanners. However, a holographic model illustrate several interesting properties and 

possible sources of errors. The holographic analogy also provides useful insight into the 

nature of the demodulation process. 

A circular carrier, is introduced with a large defocusing, as shown in the computer 

simulated interferogram in Fig. 2.1 (a). Then, the irradiance function or signal s(x,y) in the 

interferogram produced by the interference between a reference spherical wavefront and the 

wavefront under test is: 



s(x, y) = a + b cos k [D(x 2 + y 2
) - <J>(x, y)] 

= a + b cos k[DS 2
- <J>(x, y)] 

= a + !?_ e +ik[DS
2

- ~<x. y)J 

2 

+ .É_ e - lk{DS2
- ~(x, y)) 

2 
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(2.1) 

where a is the background illurnination, b is the fringe contrast, k is the magnitud e of the 

wave vector, D is the defocusing coefficient, <P is the wavefront under test, and 

Sl=xl+y. 

The radial carrier spatial frequency f(x,y) is 

f (x, y) = 
2DS 

Á 
(2.2) 

For academic purposes a holographic analogy is used to interpret the interferogram 

as an en-axis or Gabor hologram. This hologram can be demodulated by illurninating it with 

a) a spherical reference wavefront or b) with a flat reference wavefront. This demodulation 

may be achieved only if the phase in the irradiance function increases or decreases in a 

monotonic manner from the center toward the edge of the pupil. Thus, if the defocusing terrn 

is positive, we require that 

or 

a [DS2 
- cp(x, y)] > 

0 as (2.3) 



D > 1 a <f>(x, y) 
2 S a S 
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(2.4) 

For all values of S inside the pupil. To say this in words, the carrier fringes should have a 

bandwidth adequate to contain the wavefront distortion. 

This condition assures us that there are not two fringes in the interferogram aperture 

with the same order of interference. In other words, no fringe crosses more than once any 

line traced from the center of the interferogram to its edge. 

In the vicinity ofthe center ofthe interferogram the circular carrier frequency is so 

small that the demodulated phase in this region is not fully reliable. This is a small 

disadvantage ofthis method. To reduce this problem, the circular carrier frequency should 

be as large as possible, provided the Nyquist limit is not exceeded. 

2.3 PHASE DEMODULATION OF CLOSED FRINGE PATTERNS 

The phase demodulation of the interferogram (hologram reconstruction) with a 

circular carrier can be performed using an en-axis spherical reference wavefront as well as 

with a tilted flat reference wavefront. Next, these two methods, although quite similar, have 

sorne important differences, as will be described. 

2.3.1 Phase Demodulation with a Radial Reference Carrier (Spherical 

Reference Wavefront) 

In this case we assume that the interferogram is formed by a perfect spherical 

wavefront and a nearly flat, aberrated wavefront. The demodulation can be performed using 

an en-axis spherical reference wavefront with almost the same curvature used to introduce 

the circular carrier as illustrated in Fig. 2.2. 

Then the amplitude r(x,y) ofthe non aberrated spherical reference wavefront may be 
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written as 

(2.5) 

Where the cwvature ofthis wavefront is close to that ofthe original spherical wavefront that 

produced the hologram (circular carrier). In other words, the value of the defocusing 

coefficient D, for the reference beam must be as close as possible to the value of the 

defocusing coefficient D for the spherical beam introducing the circular carrier. 

The product between the interferogram irradiance s(x, y) and the illuminating 

wavefront r(x, y) is 

i[k D S 2
] 

r(x, y) s(x, y) = a e ' 

b lk[(D + D,.)S2 - cj>(x, y)) 
+- e 

2 
+ !!_ e - ik((D - D ,.)S2 

- cj>(x, y)] 

2 

(2.6) 

The first term is the zero order beam corresponding to the illuminating spherical 

wavefront. Its spatial frequencyf,.(x,y) is zero at the center ofthe fringes and increases with 

the square of S toward the edge ofthe pupil, as. 

2 D S 
f,(x,y) = )., (2.7) 

The width ofthis zero order lobe in the Fourier space is W,SwJ). . The second tenn is the 

minus first order. It is the conjugate wavefront with opposite defonnations to those ofthe 
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wavefront under test. Its curvature is about twice the reference wavefront curvature and its 

spatial frequency / 1 (x,y) is 

2 (D + D ,) S _ .!_ a<t>(x, y) 
f _,(x,y) = A. A. a S (2.8) 

The bandwidth ofthis minus one order lobe is 2{D+D,)S_)A. ifthe wavefront aberrations 

are small compared with the defocus. The third tenn is the first order of diffraction and 

represents the reconstructed wavefront, with only a slight difference in curvature and its 

spatial frequency / . 1 (x,y) is 

1 a<t>(x, y) 
A. a S 

(2.9) 

The width ofthis plus one order lobe is very small if D-D, and the wavefront defonnations 

are small. The Fourier spectra of these three beams are concentric and overlap each other. 

However, the wavefront to be measured (order plus one) can be isolated with small 

contributions from the other two lobes rernaining, due to the different diameters of their 

spectra. Equation 6 can also be written 

s(x,y) r(x,y) = zc(x,y) + i z!.,x,y) 
(2.10) 

We see that the phase demodulation of an interferogram with a circular carrier can 

be performed by multiplying the signa! by these reference cosine and sine functions with a 

quadratic phase (defocus), clase to that used to introduce the circular carrier (D-D,). 

Using a two dimensional digitallow-pass filtering with narrow band, the contribution 

from the first two terms in Eq. 6 are almost eliminated, obtaining: 



- f ) . - f ) b - lk[(D - D,JS2 
- 4>(x, y)) 

ZC\X, y + 1 ZS\X, y = - e 
2 

= !!_ cos k[(D - D ,)S2 - cp(x, y)] 
2 

- i!!.. sin k[(D - D,)S2 - cp(x, y)] 
2 

Thus, the wavefront under reconstruction is given by 

k[(D - D,)S2 - cp(x, y)] = - tan-1 zf..x, y) 
Z~XJ') 
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(2.11) 

(2.12) 

As an example, a computer sirnulated interferogram with a circular carrier and its 

Fourier transform is in Fig. 2.1 (a) and (b) which has a resolution of 128 by 128 pixels with 

256 gray levels. The circular carrier of reconstruction and the demodulated phase map are 

in Fig. 2.3 (a) and (b) respectively. Its corresponding unwrapped wavefront is shown in Fig. 

2.3 (e). The circular carrier is large enough so that the plus one order isolation can be 

achieved with 40 passes with a 3x3 square low pass convolution filter. Ifthe circular carrier 

is low, the filter has to be relatively narrow band-width to isolate the central lobe in the 

Fourier spectrum as much as possible. 

The filtering process presented in this section eliminates only those zones in the 

undesired wavefronts (orders O and -1) that have a slope (spatial frequency in the Fourier 

plane) greater than the maximum slope in the wavefront under measurement (order +1). 

Thus, a small region with low spatial frequency near the center of the nearly circular fringes 

is less properly demodulated. This is not a serious problem, however in astronomical optics, 

where the central region is frequently not used. The 

diameter ofthis circular undermodulated zone is reduced (but in principie never completely 
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eliminated) if a higher frequency for the circular carrier is used. When a large number of 

convolutions iterations are performed (e.g. 400), with the same filter as in Fig. 2 .3, the 

filtering process approaches its ideal limit and the central error is practically removed. 

However, we must be careful not to over filter, because sorne spatial frequencies really 

present in the wavefront may also be removed. Another possible so urce of errors around the 

edge is due to imperfect filtering where the edge pixels do not have eight neighboring pixels, 

but this occurs only very close to the edge. 

This numerical simulation is presented in Fig. 2.4. 

2.3.2 Phase Demodulation with a Linear Reference Carrier (Tilted Plane 

Reference Wavefront) 

In this case we assume that the interferogram is formed by a perfectly flat wavefront 

and a defocused aberrated wavefront. With a different point ofview, the principie of this 

method was described by Moore and Mendoza-Santoyo2 which is basically a modification 

ofthat of.Kreis3.4 using the Fourier method. We will consider here a circular carrier, but we 

will see that the method is more general and also applies to interferograms containing closed 

fringes. 

To understand how the demodulation can be made with closed fringes, using tbe 

holographic model, let us consider tbe interference along one diameter in an interferogram 

witb a circular carrier. In Fig. 2.5(a) we bave a flat wavefront interfering witb a spherical 

wavefront. In Fig. 2.5(b) the spherical wavefront has been replaced by a discontinuous 

wavefront in which tbe sign of tbe left half has been reversed. Both pairs of wavefronts 

produce the same interferogram, with the same signal as in Fig. 5(c). 

In the first case the phase increases monotonically from the center to the edge. In the 

second case the phase increases monotonically from the left to the right. If we as sume that 

what we have is the second case, we can phase demodulate in the standard manner, 

multipliying by the reference sine and cosine functions and then low pass filtering these two 

functions. However, to obtain the correct result we must reverse the sign ofthe left half of 
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the demodulated wavefront. 

Using again the holographic analogy, Jet us consider an interferogram with a circular 

carrier, illurninated with a tilted plane wavefront as illustrated in Fig. 2.6. This illuminated 

tilted plane reference wavefront may be written as 

r(XJ') :: e 1 (2nf~> 
(2.13) 

= cos (21t/,.X) + i sin (21t/,.X) 

Where this reference (reconstructing) tilt has to be larger than ha1f the maximum tHt in the 

wavefront, along the x axis. Figure 2.6(a) shows the reconstruction with the rninimum 

reference frequency (tilt of reconstructing wavefront) and with a larger frequency in Fig. 

2.6(b). 

The product between the interferogram irradiance s(x,y) in Eq. 1 and the illurninating 

wavefront amplitude r(x,y) is 

s(x, y) r(x, y) = a e t(lnf~l 

b í(2nf~ + k(DS 2 - cj>(x.Y))) 
+ - e 

2 
b -1[ -2¡if~ .. k(DS2 - cj>(x.Y))] 

+-e 
2 

(2.14) 

The first term is the tilted flat wavefront (zero order). The second term is the 

conjugate wavefront and, the last term is the reconstructed wavefront to be measured. The 

wavefront to be measured and the conjugated wavefront differs only in the sign of the 

deformations with respect to the reference plane. 

The F ourier spectrum of expression 14 is illustrated in Fig. 2. 7. We see that these 

.J 
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three spots are concentric, but shifted laterally with respect to the axis. 

Ifwe use a rectangular low pass filter as shown in the right side ofFig. 2.7, we can 

see that we are isolating the reconstructed wavefront for the positive y half-plane and the 

conjugate wavefront for the negative y half-plane. The width ofthe filter in the y direction 

should be quite long. Thus, if a convolution mask is u sed to low pass filter, a Nxl elements 

mask is appropriate. The square convolution filter was convolved with the image so many 

times that the resulting filter has a gaussian shape. Because of this, the resulting estirnated 

phase has mínimum ringing. 

The conjugate wavefront is equal in magnitude to the reconstructed wavefront, only 

with the opposite sign. Thus, we obtain the wavefront under measurement by just changing 

the sign of the retrieved wavefront deformations for the negative half plane. It is easy to 

understand that there are singularities in the vicinity of the points where the slope of the 

fringes is zero. 

We can also write expression 14 as 

s(xJI) r(xJI) = zc(x,y) + i zs{x,y) 

= s(xJI) cos (2nf,x) + i s(x,y) sin (2nf,x) 
(2.15) 

Again, we see that the phase demodulation of an interferogram with a circular carrier 

can be done by multipliying the signa! by the cosine and sine functions with a reference 

frequency. This reference frequency has to be larger than half the maximum spatial frequency 

in the interferogram and the filter edge in the Fourier domain has to be sharp enough to 

reject the zero order as much as possible. 



zc(x,y) + Í zs(x,y) = ~ e -í(-2nf~ + k(DS2 - 4>(x,y))] = 

!!_ cos [ -2rtf,X + k(DS2 
- Q>(xJ'))] -

2 

i !!._ sin [ -2rt/~ + k(DS 2 - Q>(xJ'))] 
2 
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(2.16) 

Using a one dimensional digitallow-pass filtering along the direction where the 

carrier is introduced the first two terms in Eq. 14 are eliminated, obtaining: 

Thus, the retrieved phase is given by: 

2 - 1 zs(x, y) 
[ -2rtf,x + k(DS - Q>(x, y))] = - tan 

zc(xJ') (2.17) 

which, as we know, give us the wavefront to be measured by changing the sign of the phase 

for negative val u es of y . 

The example ofinterferogram with a circular carrier and its Fourier transform is again 

in Fig. 2.1. 

Fig. 2.8(a) shows the linear carrier used to demodulate the interferogram shown in 

Fig. 2.l(a). To perform the low pass filtering depicted in Fig. 2.7 we have convoluted 30 

times a 3x1 averaging filter. The detected phase map shown in Fig. 2.8(b) was obtained as 

the phase ofthis low pass filtered complex image. As we can see from Fig. 2.8(b) the sign 

of one side of the phase rnap is reversed. This constitutes the main drawback of this method. 

Nevertheless one may still use this method ifthe wrong phase sign is reversed. 
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2.4 THE METHOD PROPOSED BY GARCIA-MARQUEZ et al. A REVIEW 

Garcia-Márquez et al were concemed on a space domain method with a radial 

(square) carrier frequency instead the linear one. From eqn. (2.1) to eqn. {2.12) the method 

is mathematically explained. Now, the graphical method is exposed. 

As the circular carrier is large enough so that the plus one arder isolation can be 

achieved with n passes with a 3x3 square low-pass convolution filter. As result of this 

concurrent application, the filter has a gaussian shape, avoiding the introduction of spurious 

high frequencies. In Fig. 2.9 it is shown how a sincfx function narrows from a ringing 

behaviour to a sharp shape. 

2.5 ANAL YSIS OF ERROR AND ITS SOURCES 

Next, an analysis ofthe root means square (RMS) and maximum error is presented. 

2.5.1 RMS and Maximum Error with a Square Filters 

In arder to compute the RMS wrapped error the following equation11 is used 

[ 

N ]112 RMS = t;[C<D - D,)S2 
- 4>(x, y)] - 4>(xJI)] 

2
"' 

"' N- 1 

(2.18) 

where RMS.., represents the RMS wrapped error in the retrieved phase. Figure 2.11 shows 

this error when a 3x3 low-pass convolution filter is used with two different number of passes 

Where RMSw represents the RMS wrapped error in the retrieved phase. Figure 2.11 shows 
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this error when a 3x3 low-pass convolution filter is used with two different number of 

passes. This graphic of RMS error is only presented for illustrative purposes. Figure 2.12 

shows a graphic representing both error analysis and table 1 indicates the number of passes 

needed to get the lower either RMS or maximum error. 

Table 1.-Evolution of sorne errors as a function of 

the number of passes with a 3x3 low-pass filter. 

Number RMS with a, max. error, 

ofpasses 3x3 filter 3x3 filter 

1 1.2537 3.1408 

40 0.2441 2.9968 

80 0.1827 1.0639 

85 0.1824 1.0263 

95 0.1835 0.9665 

100 0.1848 0.9702 

400 0.3515 1.7267 

2.5.2 Recursive Method for Radial Reference Carrier Demodulation 

It is also possible to reduce the error by using a recursive method when demodulating 

the phase with a radial reference carrier. For the readers' convenience eqn. (2.1 O) may be 

written as follow 

Zc = b cos(DS2 +<J>) cos(D,S2
) • 

z, = b cos(DS2 +<P) sin(D ,S2) 
(2.19) 
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and 

qp = tan . 
~ _1 [h * z/._x, y)] 

h * zc;(x,y) 
(2.20) 

We will use the first estimation of the wavefront as a new reference according to 

(2.21) 

and the wrapped error between the first and the second iteration is given by 

[

h * Zs (x, y)] 
<Pe = tan-1 1 • 

h * zc (x,y) 
1 

(2.22) 

The newly estimated phase is then given by summing the error phase to the first estimation, 

(2.23) 

the same procedure may be used several times until the phase error becomes neglectible. 

(2.24) 

When using a circular canier demodulation, we have sorne problems in the detection 

ofthe true phase dueto the erroneous phase information in the center ofthe interferogram. 

But, when a large number of convolution iterations are made, this error is practically 

removed. This problem may be attenuated with a large number passes with the rectangular 
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convolution filter. 

On the other hand, if we want that this problem to be avoided, we can demodulate 

by introducing a reference linear carrier. Then, by doing the appropriate change on the sign 

in the recovered phase, this error in the center of the interferogram could be removed. In 

addition to this, we ha ve al so talk about the importance of using an appropriate Nx 1 

convolution mask to low pass filter, in order to obtain a good demodulation 



48 

2.6 REFERENCES 

[ 1] K. H. Womack, "Interferometric phase measurement using spatial synchronous 

detection," in Opt. Eng., 23, 391-395 (1984). 

[2] M. Takeda, H. Ina and S Kobayashi, "Fourier-transform method of fiinge-pattem 

analysis for computer-based topography and interferometry," J. Opt. Soc. Am, 72 156-160 

(1982). 

[3] T. Kreis., "Digital holographic interference-phase measurement using the Fourier 

transform method," J. Opt. Soc. Am. A., 3, 847-855 (1986). 

[4] T. Kreis., "Fourier transform evaluation of holographic interference patterns," Proc. 

SPIE., 814, 365-371 (1987). 

[5] A J. Moore and F. Mendoza-Santoyo, "Phase demodulation in the space domain without 

a fiinge carrier," Opt. and Lasers in Eng., 23, 319-330 (1995). 

[6] M Servín, J. L. Marroquín, and F. J. Cuevas, "Demodulation of a single interferogram 

by use of a two-dimensional regularized phase-tracking technique," Appl. Opt., 36, 4540-

4548 (1997). 

[7] X Peng, S.M. Zhou and Z. Gao, "An automatic demodulation technique for a non-linear 

carrier fiinge pattern," Optik, 100, 11-14 (1995). 

(8] V. l. Vlad and D. Malacara, "Direct spatial reconstruction of optical phase from phase­

modulated images," in Progress in Optics, Vol. x:xxrn, Ed. E. Wolf (North-HoUand, 

Amsterdam) 261-317 (1994). 

[9] D. Malacara, M. Servín and Z. Malacara, "Interferogram Analysis for Optical Testing," 

Marcel Dekker, New York (1998). 



49 

[10] García-Márquez, J., D. Malacara-Hemández and M. Servín, "Analysis ofinterferograms 

with a spatial radial carrier or closed fringes, and its holographic analogy," Appl. Opt., 37, 

(1998). 

[11] Taylor, J. R , "An Introduction to Error Analysis," University Science Books, Sausalito, 

CA, 97-101 (1982). 



50 

Figure Captions 

Figure 2.1.- a) Computer simulated inteñerogram with a circular carrier in a 128xl28 pixel's 

grid. b) spectrum. 

Figure 2.2.- Phase demodulation in an inteñerogram with a circular carrier using a spherical 

reference wavefront. 

Figure 2.3.- Results from demodulation of interferogram in Fig. 2.1 . using a 3x3 averaging 

filter with 40 passes. a) Circular carrier or defocused reconstructing wavefront, b) phase 

map, e) unwrapped phase. 

Figure 2.4.- Results from demodulation ofthe same interferogram as in Fig 2.3 but, using 

a 3x3 averaging filter with 400 passes. a) Circular carrier or defocused reconstructing 

wavefront,. b) phase map, e) unwrapped phase. 

Figure 2.5.- Interfering wavefront, a) a flat wavefront and apherical wavefront, b) a flat 

wavefront. and a discontinuous wavefront with two spherical portio os and e) signal for both 

cases. 

Figure 2.6.- Phase demodulation in an interferogram with a circular carrier using a tilted 

plane reference wavefront. a) Mínimum tilt, b) greater than minimum tilt. 

Figure 2.7.- Fourier spectrum produced by an interferogram with a circular carrier (Gabor 

hologram) when illuminated with a tilted flat reference wavefront. The sign of the phase is 
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reversed for negative val u es of y . 

Figure 2.8.- Demodulation ofinterferogram in Fig. 1 using a 3xl convolution filter with 30 

passes. a) Referenee reeonstrueting frequency and b) phase map. 

Figure 2.9.- Spatial Synehronous detection with fringe earrier, (a) intensity distribution 

Q>(x,y), (b) its Fourier transform, (e) radial earrier D!f (d) interferogram Q>(x,y) + D!f (e) 

intensity distribution multiplied by earrier frequeney, (f) its Fourier transform, (g) low-pass 

filter applied to (e), (h) unwrapped phase. 

Figure 2.10.- Behaviour ofa sincn x function, (a) n = 1, (b) n=3, (e) n=30. 

Figure 2.11.- RMS error (a) 40 passes, (b) 400 passes. 

Figure 2.12.- RMS and maximum error versus the number ofpasses. 



52 

(a) (b) 

Figure 2.1 
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(e) 

Figure 2.3 
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(e) 

Figure 2.4 
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(a) (b) 

Figure 2.8 
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Holographic and Moiré Aspherical Compensators 



70 

3.1 INTRODUCTION 

The aim ofthis chapter is to make an analysis ofprocesses reported as independent 

in the literature and to establish the relationship between them. 

Computer generated aspherical compensators can be superimposed on an aspheric 

wavefront in an interferometer to produce a null fringe pattem. This process has been widely 

described in the literature1.2. On the other hand, when we superimpose an ideal fiinge pattern 

on top of the picture of an interferogram to be analyzed, we obtain a moiré pattern between 

the two images. These two apparently different procedures have a lot in common, but also 

sorne important and properties that we will describe. 

An aspheric wavefront in a Mach-Zehnder, Fizeau or Twyman-Green interferometer 

produces non-straight fringes with variable fringe spacings as shown in Fig. 3.1(a). Ifthe 

asphericity is strong, and the tilt is large enough to avoid closed fringes, the minimum fringe 

spacing may become of the order or smaller than the pixel period in the detector. Then, the 

sampling theorem limit is exceeded and, the need for an aspheric compensator arises. A 

computer generated holographic compensator may be used to eliminate the undesired 

spherical aberration of an aspheric wavefront in order to perform a null test of an aspherical 

surface, as proposed by severa! authors, like MacGovern and Wyanf, Pastor4
, Wyant and 

Bennett5 and described in detail by Creath and Wyant1
•
2

. 

The hologram is nothing else but an interferogram made with a large amount of tilt 

(linear carrier), with a magnitude large enough to separate the diffracted compensated 

wavefront from the other orders of di.ffraction, as mentioned by Malacara and Malacara6
. 

The wavefront compensation with a hologram can be made in a convergent or a collimated 

light beam. An example of a computer generated hologram used to eliminate the spherical 

aberration is shown in Fig. 3.1(b). The tilt in this hologram is almost the same as that in the 

interferogram in Fig. 3.1(a). 
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3.2 THEORY 

In the holographic compensator the ideal perfect wavefront under test is represented 

by: 

W(x, y) = Aw e 1 4>(x, Y) (3.1) 

whereAwcan be considered a constant and <Pis the phase ofthe wavefront under test. This 

ideal wavefront under test interferes with a flat reference wavefront R(x, y) given by: 

R(x, y) = A R e 1 cu (3.2) 

where again, AR is a constant and a = (21t/Á)sin6 ande is the wavefront Inclination. Thus, 

the amplitude E(x, y) on the interference plane is 

E(x, y) = W(x, y) + R(x, y) (3.3) 

and, the irradiance on the hologram (inteñerogram) is 

J(x, y) = E(x, y) E •(x, y) 

= A 2 + A 2 + A A [ e 1 <4><x. y) - « x> + e -1 <4><x. Y> - « x>] 
W R W R 

(3.4) 

where the symbol * stands for the complex conjugate. If the reconstructing wavefront is 

H(x,y) given by 

H(x, y) = AH e IIIJ(x, Y) (3.5) 

Once more AH is a constant and lJI is the phase of the reconstructing wavefront Assuming a 

linear recording media, the transmission of the hologram may be considered to be directly 

proportional to the irradiance in Eq. 4. Thus, upon reconstruction we obtain 



G(x, y) = H(x, y) I(x, y) 

= ( A 2 + A 2 ) A e 1 "'<x. Y> 
W R H 

+ A A A [ e 1 l~<x, Y> ·"'<x. y) - u xJ] 
W R H 

+ A A A re -1 1<4><x. Y> -"'<x. y)- u xJ) 
W R Hr 
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(3.6) 

It must be pointed out that these are the only terms present if we assume a linear 

recording of the hologram, thus producing sinusoidal fringes. However, a computer 

generated hologram produces higher order terms not considered here. This is the well known 

basic hologram theory. Let us now consider three different possible reconstructing schemes. 

a) The first case ofinterest is when the illuminating (reconstructing) wavefront H(x, 

y) is identical to the flat reference wavefront, given by 

H(x, y) = R(x, y) (3.7) 

thus obtaining 

(3.8) 
+ A A 2 e 1 41<x. Y> + A A 2 e 1 1 - ~<x. Y> • 2 u xJ 

W R W R 

The first term represents the flat reference wavefront. The second term is the ideal 

reconstructed wavefront, which is to be compared with the wavefront under test. The third 

term is a beam conjugate to the first order wavefront reproduced in the -1 order of 

diffiaction. This beam has opposite deformations to those of the first order. Since as pointed 

out befare, the computer generated hologram is not formed by sinusoidal fringes, it has high 
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order diffracted beams. 

b) The second caseto consider in Fig. 3.2, is when the illuminating (reconstructing) 

wavefront H(x, y) is close in shape to the perfect wavefront W(x, y), but with a small 

difference in phase 6cp(x, y) due to imperfections, as follows 

H(x, y) = W(x, y) e 1 A4><x. Y> 
- A e 1 l4><x. Y> .. A4><x. y)J - w 

then, the wavefronts generated by the interferogram are 

+ A 2 A e 1 [2 + Gr. y) • *· y) - « x) 
W R 

+ A 2 A e1 [A+G"c. Y) • uJ 
W R 

(3.9) 

(3.10) 

The first term is the illuminating wavefront. The second term has an asphericity with 

twice the original magnitude, but with the small deformation of the reconstructing wavefront 

superimposed. The flat reference wavefront is reproduced only ifthis wavefront under test 

is perfect. Otherwise, any deviation from the ideal shape appears on the almost flat 

wavefront. 

e) A third case to consider (Fig.3.3) is when the hologram is illuminated with a 

wavefront H(x, y) with an asphericity with the opposite sign to the wavefront under test and 

the small deformation superimposed on it. Thus 

H(x, y) = w ·(x, y) e' [ A4>(x, y) .. 2 ex x) 

= A e 1 r- 4><x. Y> .. ll4><x. y) .. 2 ex xJ 
w 

(3.11) 



where * denotes the complex conjugate, obtaining the following diffracted beams 

G{x, y) = (A!+ A;) Aw e'(- 4>(x, y) + A4>(x.y) + 2 cxx) 

+ A 2 A e 1 (A4>(x. y) .. ex x) 
W R 

+ A 2 A e 1 [- 2 ~(x, y) + A4>(x, y) .. 3 ex x] 
W R 

where the first beam is the illuminating zero order. 
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(3.12) 

The second term is an almost flat wavefront The third term is a wavefront not shown 

in Fig. 3.4(a). The spectral bandwidths of these beams are directly proportional to the 

maximum wavefront slope on these wavefronts that, is directly proportional to the maximum 

interferogram spatial frequency when the tilt is removed. Thus, the bandwidths would 

increase with their asphericities. Of course, these relative irradiances depend on the fringe 

profiles. 

3.3 HOLOGRAPIDC AND MOmE COMPENSATORS 

The relation between holographic and moiré compensators has been described 

before6
. The compensating hologram can be used in three different manners, according to 

its location in the interferometer. These three manners, which are not the three configuration 

described in the preceding section, will be described using a Mach-Zehnder interferometer 

as an example. However, the same principies apply for Fizeau and Twyman-Green 

interferometers. 

3.3.1 Hologram Inside the Interferometer Cavity 

The compensating hologram may be placed in the path of the aberrated wavefront, 
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inside the interferometer cavity, without disturbing the reference wavefront R, as in Fig. 

3.2(a). Then, the interferogram to be analyzed is formed by the interference between the 

wavefront under test, after being compensated by the hologram W .. 1 and the reference 

wavefront R. A total of four wavefronts are produced, the two interfering wavefronts and 

two extra ones than can be easily low pass filtered, since they travel in different directions 

and hence different spatial frequencies. This filtering can be performed in the image space 

by means of common convolution filters using masks or in the Fourier space by means of 

properly located pinholes. 

The spectra of these wavefronts with their relative frequency separations are 

illustrated in Fig. 3 .2(b ) . The lo be of W0 should not overlap those of W +1 and R. Thus, the 

minimum linear carrier should be such that the lobes separation is larger than half the width 

ofW8. 

3.3.2 Hologram Outside tbe Interferometer Cavity 

Another possibility is to place the hologram outside the interferometer cavity, in the 

path ofboth the wavefront under test and the reference beam, as illustrated in Fig. 3.3(a). 

Then, both beams will pass through the hologram and reconstruct their own set of 

wavefronts. The interference now takes place between the zero arder (undiffracted) of the 

reference beam Ro and the wavefront under test, after being compensated by the hologram 

W .. 1. There are six wavefronts, the two interfering wavefronts and four more that should be 

filtered out. As in the preceding case, the low pass filtering can be performed in the image 

space as well as in the Fourier space. 

The spectra of these wavefronts with their relative frequency separations are 

illustrated in Fig. 3.3(b). The minimum linear carrier is the same as in the preceding case. 

3.3.3 Hologram in front of tbe Interferogram Picture 

Still another possibility is to take a picture of the interferogram with any two wave 

interferometer, introducing a linear carrier by tilting one of the two wavefronts, and then to 
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illuminate it with a collimated beam oflight as shown in Fig. 3.4{a). Then, the transparency 

of the interferogram acts a diffracting hologram, generating three wavefronts. One of the 

interfering wavefronts is the ideal aspheric wavefront produced by the non diffracted beam 

(zero order) in the interferogram, but diffracted by the compensating hologram. The other 

interfering wavefront is the wavefront to be measured, produced by diffraction on the 

interferogram {+ 1 order) but undiffracted by the compensating hologram (zero order). 

Besides these two interfering wavefronts, there are seven more, mak.ing a total of nine 

wavefronts. As before, the seven extra undesired wavefronts travel in different directions, 

thus, with different spatial frequencies. Therefore these wavefronts can also be eliminated 

by low pass filtering in the image space or in the Fourier space. The Fourier spectrum for this 

case is in Fig. 3.4(b). The minimum linear carrier is the same as in the other two cases. 

These method to compensate with a hologram has traditionally been considered as 

a moiré process between the actual interferogram and the ideal interferogram. lt is however 

quite interesting to see that it is really a compensating process with a hologram. 

3.4 DEMODULA TJNG AN INTERFEROGRAM WITH A LINEAR CARRIER 

When analyzing an interferogram to extract the wavefront shape, a phase shifting 

method is the ideal if an interpolation procedure is to be avoided. Otherwise, if the fringe 

positions are sampled, the relatively large spacing between the fringes make absolutely 

necessary a polynomial interpolation, with the well known limitations. 

Alternatively, a solution proposed by several researchers to avoid phase shifting, is 

the introduction of a large linear carrier (a large tilt). Womack7 proposed a method to 

demodulate the interferogram in the image space using a method similar to the demodulation 

procedures used in electronic communications, in order to obtain the phase information 

(wavefront deformations). On the other hand, Takeda et a[B proposed a method of 
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demodulation in the Fourier space. 

Both demodulations schemes are very powerful, with different advantages and 

disadventages. A basic requirement is that the linear carrier should be of a magnitud e large 

enough to avoid closed fiinges. This condition can be expressed by saying that the minimum 

linear carrier shouJd be such that the separation between lobes in the F ourier space is larger 

than half the width of the wide lobe. 

The main disadvantage of these methods is the large amount of mathematics and 

image digitization methods involved. Let us assume that the interferogram linear carrier has 

to be removed in arder to obtain a qualitative assessment of the wavefront. If the wavefront 

has not been frozen, that is the picture has not been taken, the tilt can very easily be removed 

in the interferometer by tilting one of the mirrors. However, if the picture is airead y taken, 

the only alternative to remove the linear carrier is by moiré with a linear ruling with the same 

frequency as the linear carrier. This last procedure is basically the same already described 

here. The only difference is tha1 the compensating hologram is now a linear ruling. Thus, we 

have nine diffracted wavefronts as in Fig. 3.4(a) with a spectrum for these wavefronts as in 

Fig. 3.5. 

It is interesting to see that the mínimum linear carrier to be able to filter the desired 

wavefronts is when the side lobes just touch the centrallobes. It is easy to see now that the 

minimurn linear carrier is that which gives a separation between the lobes equal to the width 

ofthe lobes. Thus, the minimum linear carrier in arder to use moiré visual demoduJation is 

twice the minimum linear carrier using Womack's or Takeda's demodulation methods. This 

is an unexpected result. 
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Figure Captions 

Figure 3.1.- An interferogram of an aspheric wavefront. a) with an aberrated aspherical 

wavefront and b) with an ideal aspherical wavefront. 

Figure 3.2.- (a) Optical configuration with the hologram inside the interferometer cavity, and 

(b) spectra of wavefronts. 

Figure 3.3.- (a) Optical configuration with hologram outside the interferometer cavity and 

(b) spectra of wavefronts. 

Figure 3.4.- (a) Optical configuration with the hologram in front ofthe interferogram picture 

and (b) spectra of wavefronts. 

Figure 3.5.- Spectrum when demodulating an interferogram with a linear spatial carrier using 

moiré with a linear ruling. 
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Conclusions 

We have described in this work a fringe analysis methods that enable us to test 

optical surfaces su eh as aspheres. In chapter one the different types of fiinge analysis when 

a carrier frequency (linear) is introduced are described with sorne detail. It is also mentioned 

the difference between the two main optical methods used in optical metrology the single 

pattem analysis and the multiple pattem analysis. 

It is shown in chapter two that when a radial carrier is encoded in a closed fiinge 

pattern, there, two possible ways to demodulate the interferogram are exposed. These are 

by means of either an on-axis spherical wavefront ora tilted plane reference respectively. 

The main advantage of using a spherical or radial carrier is that the closed fringe 

interferogram may be demodulated without the need of removing the spurious change of the 

sigo of the recovered wavefront. Note that when commercial interferometers test optical 

surfaces, tbey need no more than five fringes to have a quite good resolution. More over, 

Phase Shifting Interferometry requires the existence of low fringes over the field to ha ve a 

good set of acquisition frames. When using a radial carrier it does not matter whether a large 

fringe frequency appears in the edges of an interferogram with aspherical aberration. 

Nevertheless, sorne problems in the detection of the true phase, due to the incorrect phase 

information in the center ofthe interferogram, are present. Despite, when many convolution 

iterations are made, this error is practicaUy removed. This problem may be attenuated with 

severa! passes (85) with a 3x3 convolution filter or fewer passes (29) by means of a 5x5 

convolution filter. Besides this another recursive method to reduce the RMS error is 

proposed. Apart from anything else, the use of a spherical reference limits the kind of el o sed 

fringe pattem to those fonned by almost concentric closed fringes. 
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On the other hand the use of a tilted flat reference may be u sed to demodulate any 

kind of el o sed fringe pattem. When the wrong phase in the center of the interferogram 

appears as in radial demodulation, it is necessary a large time of computational work to sol ve 

the reconstruction. In linear carrier demodulation, the time is not the bigger problem, but the 

appropriate change on the sigo in the recovered phase. Besides this, we have discussed the 

importance ofusing an appropriate Nxl convolution mask to low pass-filter, in order to 

demodulate well. 

By the way, interferogram analysis with holographic compensators and with the 

moiré fringe pattems produced by comparison with a reference grating are essentially the 

same method, with sorne differences. It has been shown that, there are three possible ways 

of measuring an aspheric wavefront using hologram compensators, depending on the 

position ofthe holographic compensator. These methods are basically the same method, but 

ha ve sorne important practica! differences that can decide which method is best in a given 

case. 

The theoretical and conceptual differences between demodulating an interferogram 

with a linear carrier using digitalization and mathematical procedures and the analog moiré 

demodulation method had been pointed out. Of course, if the reconstruction of a closed 

wavefront should be made by using a radial reference wavefront, conditions on the Fourier 

plane changes. 
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Conclusiones 

Durante el tiempo que duró esta investigación, hemos encontrado un método que nos 

pennite probar superficies ópticas asféricas. En el introductorio capítulo uno, se mencionan 

con detalle los diferentes métodos de análisis de franjas con introducción de portadora lineal. 

También hacemos mención de las diferencias entre los dos principales métodos ópticos 

usados en metrología óptica~ el análisis de patrones sencillos y el análisis de patrones 

múltiples. 

En el capitulo dos demostramos que si se utiliza una portadora radial codificada en 

un patrón de franjas cerradas, podremos extraer la fase por cualesquiera de dos métodos 

propuestos. En uno utilizamos un frente de onda esférico en eje (muy similar a aquel 

codificado en el interferograma) mientras que en el otro se hace por medio de un frente de 

onda de referencia plano e inclinado. En el primer caso, encontramos algunas ventajas 

importantes. Primero, se recupera la fase del patrón de franjas cerradas sin la necesidad de 

remover el cambio de signo parásito, como se acontece en los métodos propuestos por Kreis 

y Moore. La siguiente ventaja es que no importa que en el borde halla una alta frecuencia 

espacial, ésto conlleva a que si el interferograma tiene una fuerte concentración de franjas 

puede ser demodulado. No pasa así en los interferómetros comerciales, donde el 

interferograma obtenido por dos superficies, la de referencia y la de prueba, debe tener no 

más de cinco franjas. Mas aún, la Interferometría de Desplazamiento de Fase tradicional 

requiere la existencia de relativamente pocas franjas. Considere que el dispositivo de 

desplazamiento necesita ser operado con un margen de movimiento bastante mayor que el 

límite de Nyquist (entre 10 y 20 franjas a lo mucho). Sin embargo, el método presenta 

algunos inconvenientes. La falta de información (carencia de franjas) en el centro del 
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interferograrna provoca una detección erronea de la fase. Este problema se puede resolver 

por un multiple paso (85) de un filtro de convolución de 3x3 o bién menos pasos (29) con 

un filtro de 5x5. Se propone como alternativa un método recursivo para minimizar tanto el 

número de pasos (mucho tiempo de trabajo computacional), como el error cuadrático medio. 

Otro de los inconvenientes es que el uso de la referencia esférica limita la prueba a patrones 

de franjas cerradas pseudoconcéntricas. 

Por otro lado, podemos hacer uso de una referencia plana e inclinada para demodular 

cualquier tipo de patrones de franjas cerradas. El inconveniente de este método, deja de ser 

la falta de información en el centro del patrón de franjas, el verdadero problema tiene su 

origen en el método mismo. Es decir, al igual que los métodos propuestos por Kreis y por 

Moore, la ambiguedad en el signo de la fase recuperada se hace presente. Por otro lado, 

debemos hacer resaltar que se debe utilizar una máscarilla de convolución rectangular Nxl 

para realizar el filtraje pasa bajas y demodular en forma conveniente. 

Finalmente, el capítulo tres se enfoca en el análisis de interferogramas con 

compensadores holográficos y con patrones de franjas de moiré, producidos por 

comparación con una rejilla de referencia. Tradicionalmente se ha pensado que es el mismo 

método, la realidad es que tiene algunas diferencias. Se ha mostrado que, existen tres 

posibles formas de medir un frente de onda asférico por medio de compensadores 

holográficos, dependiendo de la posición misma del compensador. Aunque los métodos de 

prueba son básicamente iguales, tienen algunas diferencias prácticas importantes que, 

dependiendo del caso, pueden hacemos decidir por el más conveniente. 

Por último, se han señalado las diferencias entre demodular un interferograma con 

una portadora lineal, por medio de una digitalización y un trabajo matemático y el análogo 

método de moiré. Por supuesto, las condiciones cambian si se elijen las técnicas de portadora 

circular. 
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