

Análisis numérico de un sensor de índice de refracción de fibra óptica

basado en la resonancia de plasmón superficial

J.S. Velázquez-González¹, M. del C. Alonso-Murias¹, O. Rodríguez-Quiroz¹, C.E. Domínguez-Flores¹, y D. Monzón-Hernández¹

¹Centro de Investigaciones en Óptica A.C., León, Guanajuato, MÉXICO, <u>www.cio.mx/</u>

Resumen

En este trabajo se muestra el análisis numérico de un sensor de índice de refracción basado en la resonancia de plasmón superficial (SPR) en una estructura hetero-núcleo de fibra óptica (MMF-SMF-MMF). Se utilizó el modelo multicapa y a través de los resultados obtenidos se establecieron los parámetros óptimos para su fabricación física.

- Introducción

2.- Análisis numérico: Obtención parámetros óptimos

Fig. 1. Conceptos teóricos: a) Plasmón y b) Plasmon superficial (PS) [1].

Fig. 2. Excitación del PS: a) Prisma, b) Rejilla y c) Fibra óptica [1]

Fig. 3. Estructura hetero-núcleo de fibra óptica (MMF-SMF-MMF) [2].

Fig. 5. Tendencia a) Ancho espectral, b) Desplazamiento de la longitud de onda de resonancia y c) Potencia de transmisión.

3.- Análisis numérico: Resultados sensor RI SPR FO

Fig. 4. Modelo multicapa para calcular la potencia transmitida normalizada [3].

Matriz de transferencia
$$M = \prod_{k=2}^{N-1} M_k = \begin{bmatrix} \cos \beta_k & \frac{-i \sin \beta_k}{q_k} \\ -i q_k \sin \beta_k & \cos \beta_k \end{bmatrix}$$

Constantes de propagación

$$\beta_k = \frac{2\pi d_k}{\lambda} (\varepsilon_k - n_1^2 \operatorname{sen}^2 \theta_1)^{\frac{1}{2}}$$
$$q_k = \frac{(\varepsilon_k - n_1^2 \operatorname{sen}^2 \theta_1)^{\frac{1}{2}}}{\varepsilon_k}$$

Intensidad del $R_{p} = \left| \frac{(M_{11} + M_{12}q_{N})q_{1} - (M_{21} + M_{22}q_{N})}{(M_{11} + M_{12}q_{N})q_{1} + (M_{21} + M_{22}q_{N})} \right|^{2}$

Potencia transmitida normalizada

Fig. 6. Espectro de transmisión normalizado y curva de caracterización para los sensores de índice de refracción basados en la SPR en la estructura MMF-SMF-MMF con una sección de detección de: a) 1mm, b) 5mm y c) 10 mm, recubiertos con una película de oro de 30 nm..

[1] Gupta, B. D., Srivastava, S. K. & Verma, R. Fiber Optic Sensors Based on Plasmonics. (WSP Co 2015). Referencias: [2] Watanabe, K., Matsubara, S. & Kubota, Y. A Hetero-Core Fiber Sensor Using OTDR. Transactions of the Society of Instrument and Control Engineers 35, 32-37 [3] F. Abelès, "Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés," Ann. Phys., vol. 12, no. 5, pp. 596–640, 1950

Conclusiones

En este trabajo se mostró el análisis numérico de un sensor de índice de refracción basado en la resonancia de plasmón superficial en una estructura hetero-núcleo de fibra óptica. El modelo multicapa utilizado nos ofrece una aproximación del comportamiento y la sensibilidad del sensor propuesto, los cuales están en función del tipo de fibra óptica, la longitud de la sección de detección, el espesor de la película metálica y el medio circundante a la sección de detección.

Agradecimientos

Los autores estamos agradecidos con:

Mayor información: jsvelazquezg@cio.mx, monsealo@cio.mx, osvaldorq@cio.mx, carmendmz@cio.mx y dmonzon@cio.mx