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Abstract

We implement a direct measurement of the spatial modes distribution generated
in a collinear type I spontaneous parametric down-conversion (SPDC) process using
a triggered ICCD camera. This type of experiments have been realized previously.
However such those cases the measurement was an indirect one, where both photons
were collected into one-pixel detectors. In this thesis, to the best or our knowledge,
it is the first time that a direct two dimensional measurement of the spatial modes
distribution is made. These are well described by Laguerre-Gaussian modes. In our
experiments we could observe up to mode l = ±10. By exploiting the capabilities
of an ICCD camera, it is possible to visualize the orbital angular momentum (OAM)
conservation of the unprocessed SPDC bi-photon state. This is performed by observing
the diffraction pattern by a triangular aperture. We show the results using this method
for modes l = ±1,±2. This conservation of OAM leads to entanglement in OAM, since
one photon carries the anti-correlated topological charge with respect to the other one.
Therefore, they are conditioned to the state of the other photon.
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Chapter 1

Introduction

1.1 Motivation

In 1992, L. Allen et. al. [1], showed that light beams with a helical phase-front carry
orbital angular momentum (OAM). Since then, this topic has become an active research
area given its broad field of application, such as optical trapping, imaging, optical com-
munications, etc [2]. Especially in optical communications [3], since orbital angular
momentum represent a basis of theoretically infinite dimension. This is a tremendous
advantage in comparison with other degrees of freedom, such as the polarization, which
is a binary basis.

Since a photon can carry well defined OAM, it has been studied and proposed for
the implementation of quantum key distribution (QKD) protocols. QKD is a tech-
nique that revolves around the Heinsenberg Principle in quantum mechanics, which
states that any measurement made on the system will modify the system. Such a
quantum behavior is useful in cryptography for the detection of an eavesdropper.

The first protocol, was proposed in 1984 by C. Bennet and G. Brassard [4], known
as the BB84 protocol, which uses photon polarization states. Recently it was published
the first satellite-relayed intercontinental quantum network using these states [5], con-
necting two parties separated 7600 km away from each other. Other protocols that
benefit from different features of the chosen quantum state, have also been proposed
and explored. But nevertheless, having a higher dimensional state that can increase
the information transmission rate per photon is highly desired.

QKD protocols for higher dimensional states using OAM have have attracted sig-
nificant attention [6]. Using the entanglement of photons for QKD, the security of the
message can be increased even more against eavesdropping, using Bell tests as an indi-
cator [7]. More exotic states have been developed using a hybrid entanglement between
polarization and OAM [8]. More recently investigated, the entanglement of complex
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1. INTRODUCTION

structured photons, that are the superposition of states with different OAM modes and
polarizations [9]. These have been also implemented in both, controlled environment
inside the laboratory [10] and outside the laboratory in a real life environment [11] [12]
to study the effect of a turbulent atmosphere on the photon state.

This thesis lays the foundation of all mentioned above. It is a qualitative study
of a fundamental process that is very interesting and important to investigate given
its potential applications. We study and implement a source that intrinsically gener-
ates pairs of entangled photons in OAM, via spontaneous parametric down conversion
(SPDC), specifically for type-I in collinear configuration. We will prove that the OAM
in such process is conserved, by doing a direct measurement of the photonic state. Al-
though this experiment has been done a couple of times earlier [10][13], performing a
indirect measurement collecting both photons with one-pixel detectors, this is the first
time, to the best of our knowledge, that a two-dimensional detector (ICCD camera)
is used[14]. This makes possible the observation of the spatial distribution and the
topological charge of the photons.

1.2 Objectives

The main objective of this thesis is to study the spatial correlations between the pair
of photons generated via type-I SPDC, that rule the conservation in orbital angular
momentum. To this end, we will implement a setup that will let us observe the spatial
modes carrying OAM in this non-linear optical phenomenon, and be able to measure the
topological charge of such modes. Finally, we will observe and analyze the mechanism
of orbital angular momentum conservation which leads to the generation of entangled
pairs of photons in such degree of freedom.

With these in mind, we will develop and learn the necessary techniques to gener-
ate pair of photons entangled in orbital angular momentum, and move forward to its
possible applications in the field of quantum communications.

1.3 Thesis Structure

The content of this thesis is divided into 3 chapters. The first one corresponds to the
theoretical background needed to study the phenomenon: classical light carrying OAM
and its detection, nonlinear optical phenomena, geometrical and quantum description
of SPDC, and finally conservation of OAM in type-I SPDC. The second chapter will
show the optical set-ups to carry out the experiment. Finally, in the last one, we will
present and analyze the results, and describe the future research work.
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1.3 Thesis Structure

Since we are interested in the propagation of these OAM modes in free space for
optical communications, in the appendix it is described the methodology that we will
follow in our future research work considering a turbulent atmosphere, although so far
it’s been done only for classical scalar and vectorial vortex beams.
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Chapter 2

Theory

In this chapter we will briefly describe the theoretical background needed to understand
the subject of the thesis.

2.1 Wave Equation

All the description of Classical Electrodynamics is enclosed in Maxwell’s equations,
which are given below for the case of no free charges and currents:

~∇× Ẽ = − ∂

∂t
(µH̃), (2.1)

~∇× H̃ =
∂

∂t
(εẼ), (2.2)

~∇ · εẼ = 0, (2.3)

~∇ · µH̃ = 0. (2.4)

From these equations, we can derive the expression that tells us how electromagnetic
radiation propagates in space, that turns out to be in the form of a wave [15]:

∇2Ẽ− µε ∂
2

∂t2
Ẽ = 0. (2.5)

All the information of the medium of propagation is given by the permittivity, ε, and
the permeability, µ, since they are related to the electric and magnetic susceptibilities
of the medium, χe and χm, through:

ε = ε0εr = ε0(1 + χe),

µ = µ0µr = µ0(1 + χm),
(2.6)
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2. THEORY

where εr and µr are the relative permittivity and permeability, respectively. The sus-
ceptibilities are parameters that can be spatial and frequency dependent and express
how the medium is going to respond to the electromagnetic field, and this interaction
is in the form of a induced Polarization, P̃, or Magnetization, M̃ and are given by:

P̃ = ε0χeẼ, (2.7)

M̃ = χmM̃. (2.8)

Another useful relation is the one between the susceptibility and the refractive
index. From Eq. (2.5) we can see that 1

εµ is the velocity of the light in the medium,

u2, and we know that 1
ε0µ0

is the speed of light in the vacuum, c, so for a paramagnetic
medium (µr = 1) the refractive index n is:

n =
√
εr =

√
1 + χe. (2.9)

2.1.1 Scalar Helmoltz Equation and Paraxial Approximation

Assuming a field that is polarized in one component Ẽ = Eiêi, writing it as a multi-
plication of its spatial and temporal parts, Ei = T (t)ξ(r) and plugging it in Eq.(2.5) is
straight forward to show that the temporal dependence of the electric field is:

T (t) = eiωt, (2.10)

while the spatial dependence part, ξ(r), is the solution of the time independent wave
equation, also called the scalar Helmholtz equation:

∇2ξ(r) + k2ξ(r) = 0, (2.11)

where k is the wave number defined as k = nω/c, and also is the magnitude of the
propagation vector ~k(kx, ky, kz) of the wave.

Now, applying the paraxial approximation, that is, assuming that the propagation
of the wave is predominantly along the optical axis (chosen to be the z-axis), we can
write ξ as:

ξ(r) = u(r)e−ikz. (2.12)

Substituting this in Eq. (2.11) and applying the Slowly Varying Envelope Approx-
imation (SVEA) in the z direction, which is:∣∣∣∂2u

∂z2

∣∣∣� k
∣∣∣∂u
∂z

∣∣∣, (2.13)
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2.1 Wave Equation

Eq. (2.11) becomes:

∇t
2u(r) + 2ik

∂u(r)

∂z
= 0. (2.14)

2.1.2 Families of Solutions of the Paraxial Helmholtz Equation

The Helmholtz equation in the paraxial regime can be solved exactly depending on
the physical symmetry. For rectangular symmetry, we can separate the two transversal
components x and y as:

uHGnl (x, y, z) = uHGn (x, z)uHGm (y, z), (2.15)

and obtain a solution for each one that is the product of a Gaussian with a Hermite
polynomial, and it is called a Hermite-Gauss (HG) beam:

uHGn (x, z) =

√
1/(2nn!)(2/π)1/4√

w(z)
e
ik x2z

2(z2
R

+z2) e
− x2

w2(z) e−i(n+ 1
2

)ψg(z)Hn

(√2x

w(z)

)
, (2.16)

where n is the hermite polynomial order, w(z) is the beam waist. ZR is the Rayleigh
length and (n+ 1

2)ψg(z) is the Gouy phase. The latter expression is given by:

Ψg(z) = tan−1 z

zR
. (2.17)

In the first row of Fig. 2.1 HG modes are simulated for different values of n and m.
Here the number of lobes in the x-direction is given by (m + 1) and similarly for the
y-direction, the modes have (m+ 1) lobes.

Now, for cylindrical symmetry, the solution is given as a multiplication of a Gaussian
with a generalized Laguerre polynomial. This is known as a Laguerre-Gauss (LG) beam
and it is described by the following equation [15]:

uLGlp (ρ, φ, z) =
CLGlp√
w(z)

( ρ√2

w(z)

)|l|
e
− ρ2

w2(z)L|l|p
( 2ρ2

w2(z)

)
e
−ik ρ2z

2(z2
R

+z2) e−i(2p+|l|+1)ψg(z)eilφ.

(2.18)
Here, l and p are the azimuthal and radial indexes, (2p+ |l|+ 1)ψg(z) is the Gouy

phase for this case and CLGlp is the normalization constant equal to CLGmp =
√

2|m|+1p!
π(p+|m|)! .

The second row of Fig. 2.1 show LG modes for different values of p and l. From these
modes we can see that the number of rings is p+ 1 and that the radius increases mono-
tonically with |l|.
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2. THEORY

 HG1,0  HG1,3  HG1,1  HG0,1 

 LG1,0  LG10,0  LG2,2  LG1,4 

Figure 2.1: First row displays HG modes for different values of n and m. Second row
displays LG modes for different values of l and p.

Laguerre-Gaussian modes form a complete set of orthonormal modes in the az-
imuthal index l when integrated over φ, and also in the radial indexes when integrated
over ρ, that is:

∫ 2π

0
dφ

∫ ∞
0

ρdρ[uLGlp (ρ, φ, z)][uLGl′p′(ρ, φ, z)]
∗ = δpp′δll′ . (2.19)

Hermite-Gaussian modes are also orthonormal in m and n, when integrated over x
and y, respectively. As both of these modes form bases, one can write an arbitrary EM
field as a super position of HG or LG modes.

2.1.3 Light Beams Carrying Orbital Angular Momentum

The Orbital Angular Momentum of a wave is associated with a spiral wave front, where
the number of intertwined twists l, in a distance λ is the quantity of OAM carried by
the beam. This is also called topological charge. Figures 2.2 (a-b) show spiral wave
fronts for different values of l. Here the sign of the topological charge defines the rota-
tion direction of the wave front.

We note from Eq. (2.18) that LG beams have well defined OAM by looking at the
phase dependence eilφ. Photons belonging to such beams are said to have l~ units of
OAM.

Beams with OAM are characterized by a ring-shape transversal intensity with zero
intensity along the optical axis (see Fig. 2.2(c)), which is the reason they are also

10



2.1 Wave Equation

   l=0 

   l=1 

   l=2 

   l=-2 

    (a)     (b) 
    (c) 

Figure 2.2: (a) Two-dimensional phase-front, that corresponds to a phase from 0(dark
part) to 2π (bright part), (b) three-dimensional wavefront and (c) transversal intensity
amplitude of beams carrying OAM.

referred as a kind of Cylindrical Vortex beams. This arises from the phase singularity,
since the electric field needs to be continuous, it is modulated to reach zero at the center.

To transfer OAM it is necessary to project the phase eilφ onto the wave. This can
be done easily by using a Spatial Light Modulator (SLM). A SLM is a small screen
divided in pixels, where each pixel is an independent birefringent liquid crystal that by
applying a certain voltage V , the orientation of the optical axis of the liquid crystal is
rotated and, in this way, the refractive index for the extraordinary polarization changes.
Thus, the desired phase modulation can be done from point to point (pixel to pixel).
A schematic is shown in Fig. 2.3.

2.1.4 OAM Direct Measurement from the Diffraction Pattern by a

Triangular Aperture

From the ring-shape intensity profile of the beam carrying OAM, we do not get much
information related to the topological charge, except for the radius of the ring, which

11



2. THEORY

Figure 2.3: Schematic of a SLM, showing a different rotation of the optical axis in each
pixel, thus, a different phase modulation per pixel.

l=1 

l=-1 l=-2 l=-3 l=-4 

l=2 l=3 l=3 a) 

b) 

Figure 2.4: (a)Beam with ring-shaped transversal intensity profile with arbitrary topo-
logical charge. (b)Binary amplitude mask with shape of an equilateral triangle applied to
the same beam. The following figures show the diffraction pattern of (b) in the far-field
with OAM from l = ±1 to l = ±4.

increases as |l| increases, but this is not useful if we do not have any information of the
beam prior to measure it. Also there is no distinction between l and the anti-correlated
charge −l.

The OAM is encoded in the phase, meaning that we need to resort to interferometric
or other methods, than can be more bulky and tedious. An easier way to observe the
topological charge directly is by looking at the diffraction pattern formed in the far
field by a triangular aperture [16]. When a beam with ring-shaped intensity profile
passes through an aperture of this kind, the Fraunhofer diffraction pattern is conformed
by circular spots arranged in a triangular manner as shown in Fig. 2.4, where the
topological charge can be directly observed being l = N − 1, where N is the number
of spots per side. This triangular shaped agglomeration of circular spots is rotated ±π

6
with respect to the triangular aperture, and the sign of the rotation gives away the sign
of the OAM.
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2.2 Non-Linear Optics

2.2 Non-Linear Optics

In section 2.1 we discussed about the response of the medium to the interaction with
an external electric field, given by:

P̃(t) = ε0χẼ(t). (2.20)

This induced polarization is linear with the incident electric field. However can be
generalized by expanding it in a power series to consider non-linear dependencies with
the E field:

P̃(t) = ε0
[
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + ...

]
. (2.21)

Here, χ(1) is called the linear susceptibility, χ(2) and χ(3) are the non-linear sus-
ceptibilities of second and third order, respectively. We can define the second order
non-linear polarization as:

P̃(t)(2) = ε0χ
(2)Ẽ2(t) (2.22)

Non-linear processes are highly inefficient, χ(2) being of the order 10−12. Therefore
an intense electric field is needed to observe non-linear optical phenomena and they
are only present in non-centrosymmetric media, where, the electronic potential is not
symmetric [17].

There are different second order nonlinear processes that are described below. Let
us assume that the incident electric field as a sum of different frequencies, which can
be expressed as:

Ẽ = êi

N∑
n=1

(Ene
−iωt + E∗ne

iωt). (2.23)

Substituting this field in Eq. 2.22 we note that the polarization terms oscillate
ω = ±(ωn ± ωm). Depending on the sign we choose different second-nonlinear pro-
cesses are defined.

For the case n = m we obtain second harmonic generation (SHG) if we choose the
positive sign, where a field with an oscillation frequency ω = 2ωn is created. While
if we choose the negative sign, we obtain optical rectification OR, with frequency ω = 0.

Similarly, for the case n 6= m we obtain sum frequency generation (SFG) by choos-
ing the positive sign, ω = ±(ωn + ωm), and difference frequency generation (DFG), by
choosing the negative sign, ω = ±(ωn − ωm).

13



2. THEORY

All these processes in theory can take place but the amplitude of generation of each
is weighted by a function Φ(L∆k), where L is the crystal length and:

∆k = k(ωn ± ωm)− k(ωn)∓ k(ωm) for ωn ≥ ωm. (2.24)

The term Φ(L∆k), is called phase matching function because has its maximum
value when ∆k = 0, and decreases rapidly as |L∆k| increases. Since all these different
processes have different k(ωn±ωm), it is not likely than more of one take place efficiently.

2.2.1 Spontaneous Parametric Down-Conversion

Spontaneous parametric down conversion (SPDC) is another second order non-linear
process than can be seen as the reverse of the SFG, where a photon of frequency ωp is
down converted into two photons of frequency ωs and ωi, where the subscripts p, s and
i denote pump, signal and idler photons respectively.

This process obeys the same principles of the former non-linear processes discussed
in the last subsection, namely, the energy and linear momentum conservation, or phase
matching (Fig. 2.5.a):

ωp = ωs + ωi, (2.25)

~kp = ~ks + ~ki, (2.26)

Also, a big difference between this process and the other mentioned above, is that
SPDC is not restricted to a combination of the incident frequencies, since one photon
from the pump beam can be down-converted into any pair of photons that meets the
conservation requirements, the photonic variables (kn,ωi, kn,ωi) are continuous. An-
other difference is that SPDC, as stated in its name, is a spontaneous process since no
other field stimulates the transition, except the vacuum fluctuations.

In this section we will only consider the case of type-I SPDC, where the pump
photon is ê-polarized and the signal and idler photons are ô-polarized (e→ o+ o) in a
birefringent negative uniaxial crystal.

Fig. 2.6 (a) shows the geometrical description of SPDC [18], where we depict the
pump wave vector ~kp,the extraordinary ê, ordinary ô and the optical (OA) axes of the

crystal, the latter lying on the ~kp− ê plane forming an angle θp with ~kp. Since the pump
has extraordinary polarization, the magnitude of its wave vector is also θp dependent
(kp(θp)) through the following relation [17]:

1

n2
p

=
cos2 θp
n2
o

+
sin2 θp
n2
e

. (2.27)

14



2.2 Non-Linear Optics

ωp 

ωs 

ωi 

ks 

ks 

kp 

kp 

ki 

ki 

φs 

φs 

φi 

φi 

 a)  b) 

 c) 

Figure 2.5: (a)Annihilation of a photon of frequency ωp and creation of two photons
of frequencies ωs and ωi showing energy conservation, (b) linear momentum conservation
of the degenerate photons and (c) linear momentum conservation of the non-degenerate
photons. Here φs and φi are the angle of propagation of the signal and idler photons

The idler and single photons are o-polarized, thus that the magnitude of their wave
vectors are φ independent, where φ is the angle between the projection of ks (red out-
lined arrow) with the ê-axis. Since this is not a restriction, cones are formed around
kp as shown in Fig. 2.6(b). The correlated pair of photons can be found by tracing
an imaginary line from one extreme of the cone of the idler photon to the opposite
extreme of the cone of the signal photon passing through the center as we can see in
Fig. 2.6(c), where the three different matching figures represent sections of the rings
that are correlated.

From Eq. (2.26) we can separate the longitudinal and transverse phase matching
conditions, given respectively by the following set of equations [18]:

kp(θp) = ks cosφs + ki cosφi, (2.28)

ks sinφs = −ki sinφi. (2.29)

The emission angles(φei,φes) from the crystal for the idler and signal photons are
given by the Snell equation:

sinφei = ni sinφi, (2.30)

sinφes = ns sinφs. (2.31)
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φ 

φs 

φi 

ks 

kp 

ê 

ô 

ki 

ϴi 

ϴs 

OA 

  b) 
  a) 

  c) 

Figure 2.6: (a) Geometrical description of SPDC, (b) generation of concentric cones of
different frequency ω and (c) the matching figures represent the sections of the rings that
are correlated.

Using equations (2.28-2.31) and the Sellmeier equations to calculate np(λp), ns(λs)
and ni(λi), we can determine the emission angle for the idler and signal photons and
we can control it by changing the orientation of the optical axis (θp). When we collapse
it (φes ≈ 0,φei ≈ 0) it is said to be Type-I collinear SPDC.

2.2.2 Quantum Description of SPDC

All the information of a quantum system is given by the wave function ψ, which is
solution to the Schrödinger equation:

i~
∂ψ(r, t)

∂t
= Ĥψ(r, t). (2.32)

Here, Ĥ is the Hamiltonian of the system, which has all the information about the
interaction the of EM field with the matter. It can be written as:

Ĥ = Ĥ0 + ĤI , (2.33)

where Ĥ0 is the Hamiltonian for the free atoms of the crystal and ĤI describes the
interaction of the crystal with the EM field, and it is given by [19]:

ĤI = −
∫
dV P̂ Êp, (2.34)

with P̂ being the polarization given in Eq. (2.20), and Êp the electric field pumping
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2.2 Non-Linear Optics

the crystal. Since we are dealing with a second-order non-linear process we can keep
only the second-order term from the Taylor series in Eq. (2.21), specially for the case
±(ωp − ωs − ωi) = 0, thus:

P̂ Êp = ε0χ
(2)Êi

∗
Ês
∗
Êp + C.C. (2.35)

Now, using the quantization of the electromagnetic field we can write the electric
field operator in terms of the creation and annihilation operators[20]:

Ên(rn, t) = ien
(~ωm

2ε0v

)1/2 ∫
dkn

[
âne

(ikn·r−ωnt) − ân†e−(ikn·r−ωnt)]. (2.36)

= Ên
(+)

+ Ên
(−)

The two-photon state of the system, in first order perturbation theory , is given by
[21]: ∣∣ψ〉 = − 1

i~

∫
dtĤI

∣∣1〉
p

∣∣0〉
s

∣∣0〉
i
, (2.37)

and writing it as a function of the electric field operators Ên
(±)

, we have:

∣∣ψ〉 = −ε0χ
(2)

i~

∫
dt

∫
dV Êp

(+)
Ês

(−)
Êi

(−)∣∣1〉
p

∣∣0〉
s

∣∣0〉
i
+H.C, (2.38)

where H.C stands for hermitian conjugated. Here an approximation is made, taking
into account the low efficiency of the SPDC (χ(2) ≈10−12 [17]), we approximate the
pump field Ep in its classical form [22]:

Ep(r, t) = U(r)ei(kpz−ωpt). (2.39)

Here, U(r) is the complex amplitude of the family solution to the paraxial Helmholtz
equation. From Eqs. ((2.37)-(2.39)) the two-photon state is:∣∣ψ〉 = − 1

i~

∫
dki

∫
dksΦ(ki, ωi,ks, ωi)âsâi

∣∣0〉
s

∣∣0〉
i
, (2.40)

where,

Φ(ki, ωi,ks, ωi) ∝
∫
dt

∫
dωpα(ωp)e

i(−ωp+ωi+ωp)t

∫
dV U(r)ei(kp−k

z
s−kzi )z−i(qi+qs)·ρ̂.

(2.41)
Here we have separated the wave vector, and position vector in their longitudinal

and transversal parts kn = kznẑ + qn and r = zẑ + ρ̂ and α(ωp) being the temporal
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2. THEORY

broadband of the source. The function Φ(ki, ωi,ks, ωi) is called the joint spectral am-
plitude (JSA). The JSA term that works as weight function of the generation of the
different pairs of photons in terms of their photonic parameters (ωn, kn). It has all
the information about the spatial, temporal, spatial-temporal correlations between the
generated pair of photons. The modulus squared of Φ(·) describes the spatial intensity
distribution in momentum space of the SPDC. This is called Angular Spectrum (AS),
when we are looking at the arrival of the individual photons which forms a incoherent
superposition, and Conditional Angular Spectrum (CAS), when we look at the arrival
of one photon conditioned to the partner’s arrival, which is a coherent.

Another aspect to consider when calculating the JSA, is the spatial walk-off, which
comes from the fact that the pump beam is propagating in a birefringent medium, and
the energy flow, which is the Poynting vector ~S, and the wavevector of the pump kp
deviate from each other. The angle between ~S and kp, ρo, is defined as [23]:

ρo = − 1

n(θp)

∂n(θp)

∂θp
, (2.42)

where θp is the angle between the optical axis and the polarization of the pump.

Assuming an incident a monochromatic elliptical Gaussian beam (α(ωp)=δ(ωp −
ωp0)) :

U(r) =
1√
qx(z)

1√
qy(z)

e
−x2

W0xqx(z) e
−y2

W0y qy(z) eikpz (2.43)

where qn(z) is the complex beam parameter defined as:

qn(z) = 1− 2iz/(kpW
2
0n), (2.44)

and no negligible walk-off on the y − z plane, a crystal of length L, and that the x
and y dimensions of the crystal are much larger than z, the integrals take the limits
−∞ < x <∞, −∞ < y <∞, −L

2 < z < L
2 . The JSA for such system configuration is

[23]:

Φ(ki, ωi,ks, ωi) = LπWoxWoye
− 1

4
[(Woxqx⊥)2+(Woy qy⊥)2]sinc

(L∆Keff

2

)
, (2.45)

where,
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2.2 Non-Linear Optics

∆Keff = q⊥y tan ρ0 −∆Kz, (2.46)

∆Kz = kzp − kzi − kzs ,

kzp = kp −
|q⊥|
2kp

,

q⊥ = q⊥x x̂+ q⊥y ŷ = (qxi + qxs )x̂+ (qyi + qys )ŷ = qi + qs.

2.2.3 Conservation of OAM in Type-I Collinear SPDC

We can usually express the JSA in a longitudinal part and a transversal part, the former
is in the shape of a sinc function and the latter happens to have the distribution of
the pump beam in momentum space E(qi,qs), and it is a function of q⊥, as we can see
from Eq. (2.45):

Φ(qi,qs) = E(qi,qs)sinc
(L∆kz

2

)
. (2.47)

Regarding the sinc(·) function in the JSA, it depends on |q⊥| through kzp. This can
be expanded as:

|q⊥|2 = |qi + qs|2 = q2
i + q2

s + 2qiqs cos(φi − φs). (2.48)

Thus, performing Fourier analysis on Sinc(·), we can express it as[24]:

sinc(
L∆Kz

2
) =

∞∑
m=−∞

Fm(qi, qs)e
−im(φi−φs). (2.49)

Now, assuming an incident pump beam carrying a topological charge lp, in trans-
verse momentum space, the distribution can be written as:

E(qi, qs) = F (q⊥)eilpφ, (2.50)

where φ = tan− 1(
q⊥y
q⊥x

). Using the relation Aeiφ = Ax + iAy and last line in Eq. (2.46)

we can rewrite Eq. 2.50 as:

E(qi, qs) = F (q⊥)[qie
iφi + qse

iφs ]lp . (2.51)

Finally, applying the binomial theorem:

(x+ y)n =

n∑
k=0

(
n
k

)
xkyn−k, (2.52)
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then multiplying by Eq. (2.49), and grouping all the terms independent of φi,s, we get
[24]:

Φ(qi,qs) =

lp∑
l=0

∞∑
m=−∞

F lme
i{[lp−(l+m)]φi+(l+m)φs} (2.53)

=
∞∑

l=−∞
Fle

i{(lp−l)φi+lφs}. (2.54)

From this expression we can see that the OAM from the pump is completely trans-
ferred to the pair of photon since the idler is generated with topological charge li = lp−l
and signal with ls = l. One can write a selection rule for OAM transfer which is:

lp = li + ls. (2.55)

Eq. (2.55) holds when considering all the photons in the SPDC cone, but when
only sections of the cones are considered, the selection rule does not necessarily hold.
Reference [22] studies the case for different SPDC configurations, and shows how the
smaller the pump waist and the larger the emission angle, and a no negligible walk-
off, are detrimental factors in the selection rule fulfillment. Since we are working in
collinear configurations, we take the selection rule as valid.

2.2.4 OAM Entanglement in Type-I Collinear SPDC

We can write our two photon state in any basis, and since we are interested in the OAM
degree of freedom, we use a complete basis whose states are eigenstates of the OAM
operator. As we discussed in section 2.1.2, LG modes gather these two requirements.

We can start by writing the individual state of each photon as a superposition of
these modes:

∣∣1〉
i

∣∣1〉
s

= (

∞∑
l=−∞,p=0

Clp
∣∣Sppl 〉i)( ∞∑

l′=−∞,p′=0

Cl′p′
∣∣Spp′l′ 〉s). (2.56)

Since we are only interested in the topological charge l of the photon, we can re-write
the state as:
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∣∣1〉
i

∣∣1〉
s

=
( ∞∑
l=−∞

Cl
∣∣l〉

i

)( ∞∑
l′=−∞

C ′l
∣∣l′〉

s

)
=

∞∑
l,l′=−∞

ClC
′
l

∣∣l〉
i

∣∣l′〉
s
.

(2.57)

Here,
∣∣l〉 is the superposition of all the modes with same topological charge but

different value of radial index p, which are called spiral harmonic modes:

Cl
∣∣l〉 =

( ∞∑
p=0

Clp
∣∣Sppl 〉). (2.58)

The OAM selection rule (Eq. (2.55)) imposes a constriction in the system, making
zero the coefficients ClpCl′p′ = 0 when l′ 6= lp − l.

∣∣ψ〉
SPDC

=
∞∑
l=0

(
Cl,lp−l

∣∣l〉∣∣lp − l〉+ Clp−l,l
∣∣lp − l〉∣∣l〉). (2.59)

The pair of photons generated are said to be entangled because the state (Eq.
(2.59)) cannot be factorized as the multiplication of the individual photon states, since
it would require to have non-vanishing coefficients ClC

′
l 6= 0.
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Chapter 3

Experimental Characterization and

Realization

In this chapter, the individual modules that consist the experiment are presented:
SLM’s gamma curve characterization, phase-mask generation for OAM transfer, gener-
ation of beams carrying OAM and direct measurement of the topological charge, type-I
collinear SPDC source implementation. Finally, putting everything together, the setup
used for observation of Spatial Modes carrying OAM in The Type I collinear SPDC,
and the measurement of their topological charge.

3.1 SLM’s Gamma Curve Characterization

The SLM used in these experiments is a HOLOEYE Pluto with a display of 1920×1800
pixels and a pixel pitch of 8µm. It reads what is on the green channel of the computer’s
screen that is connected to it. The value of the phase is related to the value of the gray
level read by the SLM. However, this is not linear and we need to characterize it.

The method we used [25] to calibrate the SLM, is to observe the output state of
polarization (SOP) of the system in Fig. 3.1. This system is conformed by a quarter
wave plate (QWP) with its fast axis at 45◦ with the horizontal, and a SLM placed
parallel to the QWP with its extraordinary axis parallel to the horizontal.

A beam passing through this system impinging at normal incidence is going to see
a QWP at 45◦, a phase modulation(δ(x, y)) in the horizontal polarization component
proportional to the ne(V )− no, a reflection from the SLM, and finally, the same QWP
but this time at 135◦. Applying the Jones Matrix formalism, this system is described
by:
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3. EXPERIMENTAL CHARACTERIZATION AND REALIZATION

SLM 

GB QWP 

LP 

PM 

φ 

Figure 3.1: Setup for the SLM’s Gamma curve characterization. (Powermeter picture
taken from [26])

M = R(−3π/4)JQWPR(−3π/4)

(
−1 0
0 1

)
JslmR(π/4)JQWPR(−π/4). (3.1)

Performing this matrix multiplication we end up with [25]:

M = eiδ(x,y)/2

(
− sin δ(x,y)

2 − cos δ(x,y)
2

cos δ(x,y)
2 − sin δ(x,y)

2

)
. (3.2)

This matrix has the form of a rotation matrix by an amount of π
2 + δ(x,y)

2 with
respect to the horizontal. We extract the phase value by measuring the polarization
angle φ.

This characterization procedure is done, as in Fig. 3.1, for a wavelength λ = 808nm.
The incidence angle on the SLM is small so that we can apply the above description.
The polarization rotation is found using a power-meter and a linear polarizer, that
is rotated θ radians, until we find a minimum intensity, which happens when θ =
π
2 + δ(x,y)

2 − π/2. Thus, the phase is:

δ(x, y) = 2θ. (3.3)

The value of the phase is found for different values of Gray level set in the SLM,
until completing a period (0 to 2π) as shown in Fig. 3.2.

3.2 Phase Masks Generation for OAM Transfer

To transfer OAM to a beam it is necessary to multiply by a spiral phase eilφ, φ being
the azimuthal angle given by:
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Figure 3.2: Phase vs. Grey Scale value. The squares are the experimental data and the
green dashed line is the interpolation.

φ(x, y) = atan(y/x) (3.4)

Each value of φ(x, y) is substituted by the respective value of the gray scale found in
the previous section and the image is generated in the green channel, since it is the one
the SLM will read. In Fig. 3.3 are shown the phase-masks for the cases l = ±1,±2,±5
and ±10.

l=1 

l=-1 l=-2 

l=2 l=5 

l=-5 

l=10 

l=-10 

Figure 3.3: Phase masks used for the transfer of topological charge l.
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3. EXPERIMENTAL CHARACTERIZATION AND REALIZATION

3.3 Generation of Beams Carrying OAM and Observation

of the Topological Charge

Figure 3.4(a) shows the optical array for the generation of beams with OAM, where a
Gaussian beam of λ = 808 nm, is impinging on and reflected from the center of the
SLM where the dislocation of the phase mask lφ is programmed, and then it goes to
a CCD camera placed in the far-field. Here a picture of the spatial distribution of the
diffracted beam is taken.

          SLM                                                             TA            Lf                               CCD 

            a) 

            b) 

Figure 3.4: (a)Setup for the generation of beams carrying OAM. (b)Setup for the obser-
vation of the topological charge.

The setup to directly observe the topological charge is shown in Figure 3.4(b), where,
the beam generated previously passes through a triangular aperture (TA) of 500µm side
length. At the TA’s plane the size of the beam’s central ring is approximately the same
as the aperture side length. Then the Fourier transform of the aperture’s plane is
performed using a 100 mm focal distance lens Lf , and recorded with a CCD camera at
the Fourier plane of the lens.

3.4 Type-I Collinear SPDC

The setup for the implementation of the type-I collinear SPDC is depicted in Fig.
3.5(a) where the pump laser beam of wavelength λp = 405.2 nm, is collected by a single
mode fiber (SMF) that assures a collimated Gaussian mode with an average power of
50 mW. The polarization is controlled with a half wave plate (HWP) so it is along
the extraordinary axis of the crystal (vertical to the optical table), then the beam is
focused inside the BBO crystal by a 1000 mm focal distance lense Lf with a beam waist
w0 = 310 µm. A high-pass filter and a bandpass filter of ∆λ = 10 nm around 808 nm
are used to cut off the pump laser wavelength and select the degenerate pair of photons.
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SMF 

                 HWP   L1  BBO BPF    L2                 L3   BS 

SLM   L4                     L5     IP            L6              L7            SMF     APD 

   OD                 IP      L8             ICCD        

NIM 

PB 

a) b) 

Figure 3.5: (a)Collinear type-I SPDC source. (b)Setup for the OAM mode filter and
spatial distribution observation (ICCD picture taken from [27] and APD picture from
[28]).

In this part we use a type-I BBO crystal of dimensions 8 × 8 × 2mm3, cut so its
optical axis is θp = 29.2◦ with the surface, and for a pump with of wavelength λp = 405.2
nm, the emission angle for the degenerate photons (φei = φei) is 3◦. As described in
section 2.2.2 we can calculate the right angle θp to achieve collinear propagation for the
degenerated photons. Doing this, the phase matching angle ends up being θp = 28.8◦,
which it is quite close, and collinear emission is achieved by tilting the crystal a little.

3.5 Observation of the Spatial Modes Carrying OAM in

Collinear SPDC

As we described previously, SPDC can we written as a superposition of Laguerre-Gauss
modes and the pair of photons not only obey energy and linear momentum conservation
but also, orbital angular momentum conservation. To observe these modes indepen-
dently, we need first to filter out the other modes that do not interest us.

Using a beam splitter, the pair of photons (l and −l) are separated, one going to a
mode discriminator or mode filter (upper branch of Fig. 3.5(b)), and the anti-correlated
photon, to the image propagation system where the spatial mode of the photons is go-
ing to be observed (lower branch of Fig. 3.5(b)).

In the mode filter, first we image the crystal plane onto the SLM with a 4f system,
where a spiral phase of topological charge l is set, projecting the photons with topolog-
ical charge −l into Gaussian modes. Then the SLM plane is re-imaged using a system
of 2 telescopes and then coupled into a SMF, filtering out the rest of the higher order
modes. The SMF is then connected to an APD where the arrivals of the photons with
initial topological charge −l are going to be detected.
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-1.5ns -1 ns -0.5 ns  0 ns  0.5 ns  1.5 ns 

Figure 3.6: Coincidences matching the electronic and optical delay.

In the image propagation system, we propagate the crystal image and send it to
an optical delay that is a system composed by 11 telescopes with overall magnification
of Mod = 1.5, with the purpose to compensate for the electronic delay caused by the
APD, NIM, etc. until the dashed line in the setup, representing the image plane (IP)
of the crystal plane. Then the Fourier transform is performed with a 100 mm focal
distance lense L8, and then goes to an intensified CCD camera, which is triggered by
the arrivals of the anti-correlated photon from the mode filter, and in this way the
spatial distribution of the mode l is observed.

The Nuclear instrumentation module (NIM) is used as a pulse discriminator and to
control the time window to trigger the ICCD camera. It also works as an adjustable
electronic delay up to 32 ns in increments of 0.5 ns, feature used for fine delay matching.
Fig. 3.6 shows the images in coincidences for the mode l = 0 as a function of the delay
time, referenced (td = 0 ns) to the image with highest intensity. The asymmetrical
behavior comes from the NIM, since it attenuates the pulse when the delay time set is
over 6 ns and that is why it is only used for fine delay matching. For the rest of the
electronic delay we use cable. The time window to detect coincidences was set on 12 ns.

The considerations taken in the selection of the lenses for the telescopes are: more
efficient phase modulation by the SLM and number of modes coupled into the SMF.

As we can see from Fig. 3.3, for a high value of l the phase modulation is very
fast, especially in the center region and the SLM resolution is limited by its pixel size.
For very fast modulation the mean phase in the center can be taken constant and no
modulation, thus, no OAM is transfered in the center. For that reason, to improve the
efficiency of OAM transfer to the mode, we need to increment the beam size. The focal
distances are f2 = 75 mm and f3 = 250 mm are used, getting a beam diameter of 2.2
mm.

The next couple of telescopes are chosen to maximize the number of counts detected
in the APD and the number of modes we could observe on the ICCD, which was found
for a configuration using lenses of focal distances f4 = 300 mm, f5 = 60 mm, f6 = 1000
mm and f7 = 8 mm. Obtaining 4300 counts per second and up to the mode l = ±10.
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Type-I Collinear SPDC

IP              L8               TA                  L9      L10            ICCD        

Figure 3.7: Setup for the observation of the OAM of the photons, where the IP symbolizes
the image plane in the lower branch of figure 3.5.

3.6 Observation of the Topological Charge Carried by the

Photons Produced via Type-I Collinear SPDC

To observe the topological charge we use the same method explained in section 2.1.4
and the setup is shown in Fig. 3.7, where the image plane (IP) of the crystal, where
the SPDC is generated, is Fourier transformed and imaged on the triangular aperture
(TA) by L8. As the alignment of the conditional angular spectrum passing through the
TA is difficult, a unit magnification telescope (L9, L10) is used to map the TA plane
on the ICCD camera,and a high precision motor (tenths of microns step size) is used
to displace the TA until it is centered on the mode singularity as in Fig. 2.4(b). When
this is achieved, L10 is taken out and the ICCD is moved to the front at the Fourier
plane of L9 (f9 = 100 mm), to observe the diffraction pattern.

This was done for topological charges (l) from ±1 to ±2. The focal distance f±l8

of L8 was different for different values of l to fit better the size of the mode to the TA
which has 500 µm side length.

f±1
8 = 250mm,

f±2
8 = 150mm.
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Chapter 4

Results and analysis

4.1 Generation of Beams Carrying OAM and Observation

of Topological Charge

As we mentioned before Laguerre-Gauss modes are also eigenstates of the OAM op-
erator since they have well defined OAM. Thus by adding a spiral phase lφ to the
wavefront and letting it diffract it is expected to end up with a good approximation of
a LG mode. More precisely, a superposition of all the LG modes with the same value
l, expressed as:

LGl =

∞∑
p=0

CpLGp. (4.1)

Using the experimental setup described in section 3.3, different spatial modes were
generated by transferring OAM up to l = ±10. These spatial modes are shown in Fig.
4.1.

Now, a comparison is made between these modes and the LG modes choosing the
first mode for p = 0 using Eq. (2.18). In Figure 4.2 a set of plots show the cross-section
along the x axis (blue line) and along the y axis (green line) of the spatial modes in
4.1 (up to the mode l = 6), are drawn and then compared to the cross section of the
simulated LGl0 mode (red line), setting a beam waste of w0 = 537µm, and the radial
index p = 0.

From this, we can see that the central ring radii and the singularity dimensions
match. Even though we only used LGl0 modes,we already get a good approximation,
and summing over more values of p we can get a better fit to the generated spatial
mode. Also we can have the appearance of higher order spiral harmonics, since the
spiral phase is not completely linear, due to imperfect calibration and limited SLM
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l=±1 

l=±6 

l=±2 

l=±7 

l=±3 

l=±8 

l=±4 

l=±9 

l=±5 

l=±10 

Figure 4.1: Spatial modes carrying OAM generated by adding a spiral phase lφ, for
different values of l.
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Figure 4.2: Comparison of the cross-section in x (blue line) and y (green line) direction
of the spatial modes in 4.1 with a LGlp mode, for p = 0 and l ≤ 6.

resolution.

A bit more complicated holographic patterns are highly used because, in addition
to transfer OAM, they can give the desired field amplitude distribution. Since, in this
experiment we are only concerned in the value of OAM ~l carried by the photons, we
make use of the spiral phase-masks generated in the last section.

To prove that the OAM transfer was successful, the method explained in section 3.3
was applied for the same spatial modes generated above, and the results are displayed
in Fig. 4.3. In (a) it is done for l = ±1,±2,±3 and in (b) for l = ±7,±8,±9. The first
column for both cases shows the spatial mode illuminating the triangular aperture, the
second and third columns show the diffraction pattern in the far field for the topological
charge indicated in the left superior corner. From this, it is noticeable that the spot
visibility increases when the size of the central ring illuminates just the edges of the
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corners. It can be observed that the rule l = (N − 1), N being the number of spots per
side, is consistent with the results and also that the ±30◦ rotation tells apart the sign
of l, for a counter clockwise rotation corresponds to l > 0 and a clockwise rotation to
l < 0.

l=1 

l=2 

l=3 

l=-1 

l=-2 

l=-3 

l=7 

l=8 

l=9 

l=-7 

l=-8 

l=-9 

a) b) 

Figure 4.3: Diffraction pattern in the far field of LGl,0 mode by a triangular aperture
with topological charges (a) l = ±1,±2,±3 and (b) l = ±7,±8,±9.

4.2 Spatial Modes Carrying OAM in Type-I Collinear

SPDC

Figure 4.4 shows the spatial modes in the far field of the signal photons when the idler
photon state li = −l is selected, in terms on the size of the modes and coincidences per
minute. This is done using the setup explained in section 3.5.

As expected from the selection rule of OAM transfer in type-I collinear SPDC, the
spatial mode for li = 0 is a single spot with a Gaussian intensity profile. For |li| > 0 spa-
tial modes with ring shaped intensity profile are obtained, where a monotonic growth of
the ring radius with |li| is observed. This is a property that the spatial modes carrying
OAM have.

Spatial modes that have well defined OAM are well represented by LG modes, as
we could see in section 4.1. Since we have assumed that LG modes form a complete
basis, and that we can discomposed a paraxial field in a superposition of such modes,
then we should be able to recover the total conditional angular spectrum of the SPDC.
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The last picture in Fig. 4.4 is the superposition of the first 21 modes from li = −10 to
li = 10. It matches with the Fourier transform of the transversal profile of the pump,
which is also a Gaussian mode.

In this section the background noise was taken out by averaging the number of
coincidences in the pixels far away from the spatial mode and then subtracted it from
all the image and setting the negative values equal to zero.

4.3 Direct Observation of the Topological Carried by Spa-

tial Modes in Type-I Collinear SPDC

The spatial modes in Fig. 4.4 are conformed by the signal photons who are correlated
with their respective idler photon which carry topological charge li, but they do not
say much about the topological charge of the signal photon (apart from the ring ra-
dius size). Following the method explained in section 3.6, selecting the state of the
idler photon to be li = ±1,±2, we measure the topological charge of the signal pho-
ton ls, and the results are displayed in Fig. 4.5, where the diffraction patterns of the
spatial modes are observed. By counting the number of lobes it is evident that |li| = |ls|.

Comparing these results with those obtained for the classical LGl,0 modes, where
a counter clockwise rotation correspond to a positive topological charge l > 0, and
clockwise rotation for l < 0, it is found that by selecting the mode li = l, the signal
photon carries ls = −l. It is proved that the signal photon carries the anti-correlated
topological charge of the idler photon, and the selection rule (Eq. (2.55)) holds.

The diffraction pattern for higher values of |l|, was not very well observed probably
from the flickering defect of the SLM. This is due to voltage fluctuations in the device
and it was directly observed in intensity fluctuations of Fig. 4.1 and Fig. 4.3. Since
we are using much larger exposure times this defect affects more the measurement.
Nevertheless, the results for |l| = 1, 2, are well defined and can be extended to higher
modes.

4.4 Re-construction of the Entangled Quantum State

As the ICCD records the number of coincidences per pixel, we do not only get in-
formation of the mode intensity profile, but also the total number of coincidences by
summing over all the pixels, which is a measurement of the probability amplitude coef-
ficients |C±l,∓l|2, given in Eq. (2.59). This allows us to do a quantum tomography and
to reconstruct the state. In figure 4.6, the total number of coincidences per minute is
shown as a function of l, where it is evident that the probability amplitude decreases
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Figure 4.4: Spatial modes of the signal photons when selecting the idler photon in the
state li = −l. On the lower right corner the phase mask of spiral phase lφ is shown. The
last picture represents the superposition of all the first 21 modes (|li| ≤ 10).

the higher order the mode is.

The photons have the same probability of being generated with topological charge
l and −l,and this means that |Cl,−l|2 =|C−l,l|2 as we discussed in section 2.2.3. In our
results, these coefficient decrease monotonically with l and it is centered at li = 0 as
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Figure 4.5: First column: Spatial distribution of the photons. Second column: Spatial
modes passing through the triangular aperture. Third and Fourth columns: Diffraction
pattern of the spatial modes of the photons with topological charge l.

expected. They are shown in Fig. 4.6. Although these coefficients have small dis-
crepancies between each-other, might be due to the coupling in the single mode fibers,
since during the experiment realization, it was observed that by changing the phase
mask of l for −l an adjustment of the singularity position is needed, meaning that the
propagation of these two modes were slightly different. It is known [29] that by using
a pump beam with topological charge lp the behavior would be the same but shifted lp
units.
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Figure 4.6: Coincidences per minute when selecting idler photon in the state li.
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Chapter 5

Conclusion and future research work

We implemented a source of pairs of photons that carry Orbital Angular Momentum,
and we directly observed and proved that the topological charges which the pair of
photons are generated with, meet a selection rule, that states a full transfer of OAM
from the pump photon to the idler and signal photons. We can say that, since the state
of one photon depends on the state of the other, they are entangled in OAM.

A measurement of the off diagonal probability amplitude coefficients
∣∣li〉〈ls∣∣, and

the displacement of the diagonal elements for different values of the pump beam’s topo-
logical charge lp, are left to be done.

One motivation for this project was the use of entangled states in OAM for quantum
communications. With our experiment, we now have the tools and techniques to move
forward in our research. We now know, how to select the state that we want the other
party to measure. Our detection scheme, even though the state measured is obvious to
the eye, it is not the appropriate for fast post-processing of the information, besides, it
blocks most of the photons, thus requires a long exposure time. Future lines of research
include the study of how entangled the system is, and how this entanglement is affected
under propagation in a real environment,such is the case for a turbulent atmosphere
[10]. Finally, we also wish to perform the same analysis made in this thesis for the
propagation of entangled complex structured photons. These are the analogous of the
vector vortex beams, that are generated through the superposition of different spatial
modes with orthogonal polarization [11]. In appendix A we show the methodology for
the experimental implementation of propagation of scalar and vectorial vortex beams
in a turbulent atmosphere.
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Appendix A

Propagation Through Atmospheric

Turbulence

This appendix shows the methodology to simulate a turbulent atmosphere using multi
phase-screen approximation. Then we report the results of the propagation in a turbu-
lent atmosphere of a scalar and a radially polarized beams with an amplitude distribu-
tion of a Laguerre-Gauss beam p = 0 and l = 1, calculating the scintillation index as
a function of the propagation distance and a comparison with a fundamental Gaussian
beam is made.

A.1 Turbulent Atmosphere Simulation Using Multi Phase-

screen Approximation

The atmospheric turbulence, due to temperature fluctuations, the refractive index fluc-
tuates randomly from its mean value nair.

n(r) = nair + δn(r), (A.1)

where
〈
δn(r)

〉
= 0. Assuming a beam propagating in z−direction through such a

medium, it will experience a phase variation from point to point as shown in figure
A.1.a and it is given by:

θ(r) = k0

∫ ∆z

0
δn(r)dz. (A.2)

Considering the turbulence to be a locally homogeneous and isotropic, the covari-
ance function of δn(r), only depends on the magnitude r = |r1 − r2|, rather than the
specific coordinates r1 and r2:
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A. PROPAGATION THROUGH ATMOSPHERIC TURBULENCE

ϴ(r2) 

ϴ(r1) 

Δz 

 

a) 

c) 

b) 

Figure A.1: (a)Beam propagating through a turbulent atmosphere, where the phase from
two points after propagation are compared. (b)Phase gained over a propagation distance
∆z. (c)Phase-screen approximation.

Bn(r) =
〈
δn(r1)δn(r2)

〉
=
〈
δn(0)δn(r)

〉
. (A.3)

From Eq. (A.2) and Eq. (A.3), the covariance function for the phase is given by:

Bθ(r) =
〈
Θ(r1)Θ(r2)

〉
= k2

0

∫ ∫ ∆z

0

〈
δn(0)δn(r)

〉
dz1dz2. (A.4)

Now, the three-dimensional Fourier transform of the covariance function is defined
as the Power Spectrum.

Bn(r) =
1

(2π)3

∫ ∫ ∫ ∞
−∞

Φnke
−ik·rd3r. (A.5)

Some models are already established, and particularly for our calculations the Von-
Karman Power Spectrum of the refractive index was used, which is:

Φn(κ) = 0.033C2
ne
−(

κl0
5.92

)2 [κ2 + (
2π

L0
)2]−

11
6 . (A.6)

Here, C2
n is called refractive index structre constant, which is an indicative of how

strong the fluctuations in the refractive index are and for C2
n > 10−12m−2/3 is said to

be a strong turbulence and for C2
n < 10−14m−2/3 is said to be a weak turbulence. It is

a parameter dependent on the height but it can be taken to be constant in horizontal
propagation. L0 represents the outer scale, that is the biggest eddie size possible in the
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A.2 Angular Spectrum Method

turbulence that breaks up into smaller eddies, which then break up into even smaller
eddies until reaching a size l0, called the inner scale, from here they will dissipate
through molecular diffusion. This range where the eddies break up from L0 to l0 is
known as the inertial range where Kolmogorov Theory is valid. Von Karman spectrum
is a modification of the Kolmorov spectrum, when considering the effects from scales
outside the inertial range.

Since the fluctuation of the refractive index is small compared with the mean value
nair >> δn(r), it allows us to simplify the physics, by assuming ∆z >> 1 in order
to obtain a significant perturbation, we can approximate all the phase gained over a
distance ∆z as a phase-screen as shown in figure A.1(c). Using this approximation
and Eqs. (A.3)-(A.6), an expression for the screen-phase can be derived (and shown in
figure A.1(b)) [10][30]:

θ1(R) + iθ2(R) =
√

2π
k0

∆K
∆

1
2
z F
−1

{
P̃(K)Φ

1
2
n

}
. (A.7)

Here, R = xx̂ + yŷ, and the spatial frequency vector K = Kxx̂ + Kyŷ. P̃(K) is a
random complex spectral distribution and k0 is the wave number of the beam.

A.2 Angular Spectrum Method

For the beam propagation the angular spectrum method is used, which considers de
beam as a infinite superposition of planes waves [31]:

U(x, y, z) =

∫ ∫ ∞
−∞

A
(α
λ
,
β

λ
, z
)
exp
[
j2π
(α
λ
x+

β

λ
y
)]
, (A.8)

where α and β are the direction cosines of the plane waves. Plugging A(·) into the
Helmholtz equation can be shown that it admits the solution:

A
(α
λ
,
β

λ
, z
)

= A
(α
λ
,
β

λ
, 0
)
ej

2π
λ

√
1−α2−β2

. (A.9)

From Eq. (A.8) we can see that A(·) is related to U(·) through the Fourier transform,
thus:

A(x, y, 0) =

∫ ∫ ∞
−∞

U
(α
λ
,
β

λ
, 0
)
exp
[
− j2π

(α
λ
x+

β

λ
y
)]
. (A.10)

This way, if we know U(x, y, 0), we can calculate U(x, y, z) by applying eqs. A.8-
A.10.
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A.3 Cylindrical Vector Beams

Vector Beams (VB) are the solution of the vector electromagnetic wave equation where
the polarization distribution of the transverse profile of the beam varies from point to
point on the wave-front. Cylindrical Vector Beams (CVB) are the family of VB with
axial symmetry. Most known CVB’s are the Radial and Azimuthal polarization. The
relevancy of these two types of beams, specially the former, is mainly due to their fo-
cusing properties and their application in high resolution microscopy, 3D focus shaping,
particle Trapping , lithography, etc.

The superposition of orthogonal cylindrical scalar beams can produce the CVB
beams with interesting polarization distributions. Using two arbitrary LG modes
one with right circular polarization (RCP) and the other with left circular polariza-
tion(LCP), and a phase delay φ0 with respect to each other, we can write this super-
position as:

~E(~r) = E|l|p e
i(lφ+φ0/2)(x̂+ iŷ) + E

|l′|
p′ e

il′(φ−φ0/2)(x̂− iŷ). (A.11)

Here,E
|l|
p eilφ = LGlp. For the case l′ = −l,

~E(~r) = 2 · E|l|p (cos(lφ+ φ0/2)x̂− sin(lφ+ φ0/2)ŷ). (A.12)

From (A.12) we can see that the OAM is no longer encoded in the phase since there
is no helical phase anymore, but instead, it is encoded in the polarization distribution.
Figure A.2 show the polarization patterns for different values of l, l′ and φ0. The first
image is know as Poincaré Beam, since contains all the degrees of polarizations. From
the second and third image we see that from the superposition of l = 1 and l′ = −1,
we obtain radial and azimuthal polarization choosing φ0 to be 0 and π respectively.

A.4 Numerical Method

To create the single phase screen, we assumed a beam wavelength λ = 2 µm, an outer
scale L0 = 3 m, the inner scale l0 = 10 mm, we considered C2

n = 10−12m−2/3 for strong
turbulence and C2

n = 10−14m−2/3 for weak turbulence. The random complex spectral
field P̃(K), is generated through filtering Gaussian noise using MATLAB, creating an
array of 512× 512 elements A+ iB.

The phase-screen is multiplied to the field and then propagated using the angular
spectrum method, then repeated in intervals of ∆z = 100 m as shown in fig. A.3.

The study of beam propagation through a turbulent atmosphere was done for 3
different kind of beams: a Scalar Vortex Beam (SVB), chosen to be a LG with topo-
logical charge l = 1 and radial index p = 0, a Vector Vortex beam (VVB) radially
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l1=-1, l2=1, φ0=0 l1=-1, l2=1, φ0=π 

l1=-2, l2=2, φ0=π 

l1=0, l2=-1, φ0=π 

l1=-2, l2=3, φ0=0 

Figure A.2: Cylindrical vector beams for different values of l, l′ and φ. First:Poincare
beam. Second: Radially polarized beam. Third: Azimuthally polarized beam.

Δz 

Figure A.3: Multi phase-screen approximation.
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polarized and the same transverse intensity profile than the SVB, and finally a funda-
mental Gaussian beam.

The beams were generated using the equation:

El(r) =
(√2r

w0

)l
Lpl e

(−r2/w2
0+ilφ). (A.13)

Here, Lpl is the associated Laguerre polynomial, wo is the beam waist. With
l = 0, p = 0 we obtain the Gaussian beam (GB), choosing l = 1, p = 0 we get the
SVB and finally, the radially polarized VVB was manage through (E−l + El)/2.

Three aspects of the beams were studied: The average intensity profile, the scintil-
lation index and finally, the polarization evolution of the VVB.

A.5 Results and Analysis

A.5.1 Average Intensity Profile

Here we observe the intensity profile of the respective beam after propagating a dis-
tance Z through the atmosphere. Since the turbulence is a random process, the beam
intensity profile is never the same for different realizations of the propagation, and for
this reason, the average over an ensemble of 500 realizations was taken.

Figures. A.4-A.6 show the results for the GB, SVB and VVB respectively. For
the case of GB, as expected the beam spreads out much faster in a strong turbulence
a deformation from the Gaussian shape of the intensity starts to become visible from
Z = 100 m, while in the weak turbulence regime it does not seem to expand much as it
propagates and the deformation from the Gaussian profile is barely visible at Z = 2000
m.

The SVB and the VVB intensity profiles behaves the same way, they spread out un-
til the singularity is lost which happens in somewhere between Z = 600 m and Z = 700
m for both in strong turbulence. After this, it continues expanding as a Gaussian
beam. In weak turbulence at Z = 2000 m the singularity still persists with a visibility
V = 0.52.

For the case of GB, as expected, the beam spreads out much faster in a strong
turbulence a deformation from the Gaussian shape of the intensity starts to become
visible from Z = 100 m, while in the weak turbulence regime it does not seem to expand
much as it propagates and the deformation from the Gaussian profile is barely visible
at Z = 2000 m.
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Figure A.4: Average intensity profile of a fundamental Gaussian beam after a propagation
Z in atmospheric turbulence.
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Figure A.5: Average intensity profile of a scalar vortex beam, LG0
1, after a propagation

Z in atmospheric turbulence.
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Figure A.6: Average intensity profile of a radially polarized vector vortex beam, after a
propagation Z in atmospheric turbulence.
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Figure A.7: Scintillation index as a function of the propagation distance for (a) Strong
turbulence C2

n = 10−12m−2/3 and (b) strong turbulence

The SVB and the VVB intensity profiles behaves the same way, they spread out
until the singularity is lost which happens in somewhere between Z = 600 m and
Z = 700 m for both in strong turbulence. After this, it continues expanding as a
Gaussian beam. In weak turbulence at Z = 2000 m the singularity still persists with a
visibility V = 0.52.

A.5.2 Scintillation Index

Another useful parameter in the study of light propagation through a turbulence
medium, is the scintillation index (SI), which is defined as the variance of the intensity
of the beam,which is related to the distortion of the phase.The SI is given by:

σI =

〈
I2
〉〈
I
〉2〈

I
〉2 (A.14)

Same as before, the ensemble average was taken over 500 realizations. To give a
good comparison an annular width of (1 ± 5%)w(z) around the beam waist w(z) was
taken into account for the calculation of SI to ensure there are sufficient number of
data. Figure A.7(a) shows the result for the 3 beams in a weak turbulence , and figure
A.7(b) shows it for a strong turbulence.

From these results we see that the intensity fluctuation a lower for the VVB even
specially in the strong turbulence regime, suggesting to be more robust against turbu-
lence than the SVB, even though they have almost the same intensity profile.

A.5.3 Polarization Evolution of the VVB

In this part we observe the polarization evolution of the VVB by looking at the stokes
parameters S1 and S3, and the degree of polarization (DOP). Here the points where
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the normalized intensity S0 ≥ 10−5 were taken into account. We also display the polar-
ization distribution (PD), where the green straight lines represents linear polarization
and red and and blue ellipses represent right and left elliptical polarization, respectively.

The expressions for DOP , S1 and S3 are:

S0 = |Ex|2 + |Ey|2, (A.15)

S1 =
|Ex|2 − |Ey|2

S0
, (A.16)

S2 =
2|Ex||Ey|cosδ

S0
, (A.17)

S3 =
2|Ex||Ey|sinδ

S0
, (A.18)

where δ is the phase between the Ex and Ey. From figure A.8 observe a singularity in
DOP and S1 at the center at any distance Z, and that they both are decreasing from
the center to the edges as the beam propagates. Also, S3 develops random values from
point to point, same for S1 at the center.

This tells us that the beam is depolarizing. Figure A.9 shows a section of the po-
larization distribution at Z = 1500 m, where it is noticeable an unpolarized region that
belongs to the center of the beam (lower right corner), but as we moving away from it
we see that it gets more polarized.

Figure A.10 shows the same parameter at Z = 2000 m for strong (first row) and
weak (second row) turbulence, where we still find partially polarized light, although
this corresponds to a zone of low intensity.

A.6 Conclusion

From the results, it is apparent that vector vortex beams are more robust against
turbulence than the scalar vortex beams, for a couple of things. Apart from having a
lower intensity fluctuation, the VVB presents a vectorial vortex in the polarization at
Z = 2000 m, even though they both lose the singularity in the intensity at around Z =
700m. Also, in optical communication using Orbital Angular Momentum as a degree
of freedom for information codification, since OAM is coded in the phase of the beam,
it is highly susceptible to atmospheric turbulence. As we mentioned before in section
A.3, using VVB’s, one can code the OAM information in the polarization distribution
of the beam which has more robustness against turbulence, and the information of the
topological charges of the beams composing the VVB can be extracted easily.
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Figure A.8: First column shows the degree of polarization, the second column the S1, the
third column shows S3 and finally the fourth column depicts the polarization distribution
at different propagation distances.
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A.6 Conclusion

Figure A.9: Zoom in of the polarization distribution at Z = 1500 m, showing the unpo-
larized region and the partially polarized region.
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Figure A.10: Comparison of DOP, S1, S2 and PD in both regimes, strong (first row) and
weak (second row) at Z = 2000 m.
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Truncated Optical Lattice Associated with a Triangular Aperture Using Light’s
Orbital Angular Momentum. Phys. Rev. Lett. 105, 053904 (2010). 12

[17] R. W. Boyd. Nonlinear Optics Third Edition. Academic Press, Chicago, 2008. 13,
14, 17

[18] Peter E. Powers and Joseph W. Haus. Fundamentls of Non-Linear Optics 2nd
Edition. CRC Press, Boca Raton, FL, 2017. 14, 15

[19] D. N. Klyshko. Scattering of light in a medium with nonlinear polarizabilty. Zh.
Eksp. Teor. Fiz. 55 1006-1013 (1968) . 16

[20] C. C. Gerry and P. L. Knigth. Introductory Quantum Optics. Cambridge University
Press, New York, 2005. 17

[21] J. J. Sakurai. Modern Quantum Mechanics. Addison Wesley Publishing, USA,
1994. 17

[22] Clara Ines Osorio Tamayo. Spatial Characterization of Two-Photon States. PhD
thesis, ICFO, Barcelona, 2009. 17, 20

[23] Hector Cruz Ramı́rez. Acondicionamiento del enredamiento espacial en parejas de
fotones producidas por conversion parametrica descendente. PhD thesis, UNAM,
Mexico. 18

54



BIBLIOGRAPHY

[24] Clara Osorio, G Molina-Terriza, and Juan P Torres. Orbital angular momentum
correlations of entangled paired photons. Pure Appl. Opt. 11, 094013 (2009) . 19,
20

[25] Wei Han, Yanfang Yang, Wen Cheng, , and Qiwen Zhan. Vectorial optical field
generator for the creation of arbitrarily complex fields. Opt. Express 21, 20692-
20706 (2013). 23, 24

[26] thorlabs.us. 24

[27] directindustry.es. 27

[28] digikey.com. 27

[29] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger. Entanglement of the orbital angular
momentum states of photons. Nature 412, 313-316 (2001). 36

[30] Wen Cheng, Joseph W. Haus, and Qiwen Zhan. Propagation of vector vortex beams
through a turbulent atmosphere. Opt. Express 17, 17835 (2009). 41

[31] Joshep W. Goodman. Introduction to Fourier Optics. Roberts and Company
Publishers (2007). 41

55


	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Structure

	2 Theory
	2.1 Wave Equation
	2.1.1 Scalar Helmoltz Equation and Paraxial Approximation
	2.1.2 Families of Solutions of the Paraxial Helmholtz Equation
	2.1.3 Light Beams Carrying Orbital Angular Momentum
	2.1.4 OAM Direct Measurement from the Diffraction Pattern by a Triangular Aperture 

	2.2 Non-Linear Optics
	2.2.1 Spontaneous Parametric Down-Conversion
	2.2.2 Quantum Description of SPDC 
	2.2.3 Conservation of OAM in Type-I Collinear SPDC
	2.2.4 OAM Entanglement in Type-I Collinear SPDC


	3 Experimental Characterization and Realization
	3.1 SLM's Gamma Curve Characterization
	3.2 Phase Masks Generation for OAM Transfer
	3.3 Generation of Beams Carrying OAM and Observation of the Topological Charge
	3.4 Type-I Collinear SPDC
	3.5 Observation of the Spatial Modes Carrying OAM in Collinear SPDC
	3.6 Observation of the Topological Charge Carried by the Photons Produced via Type-I Collinear SPDC 

	4 Results and analysis
	4.1 Generation of Beams Carrying OAM and Observation of Topological Charge
	4.2 Spatial Modes Carrying OAM in Type-I Collinear SPDC
	4.3 Direct Observation of the Topological Carried by Spatial Modes in Type-I Collinear SPDC
	4.4 Re-construction of the Entangled Quantum State

	5 Conclusion and future research work
	A Propagation Through Atmospheric Turbulence
	A.1 Turbulent Atmosphere Simulation Using Multi Phase-screen Approximation
	A.2 Angular Spectrum Method
	A.3 Cylindrical Vector Beams
	A.4 Numerical Method
	A.5 Results and Analysis
	A.5.1 Average Intensity Profile
	A.5.2 Scintillation Index
	A.5.3 Polarization Evolution of the VVB

	A.6 Conclusion

	Bibliography

