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Abstract

This work presents a Research and Development thesis of a functional Unmanned Aerial

Vehicle (UAV), integrating optical flow algorithms and navigation based on object detection

using Computer-Vision Features Classifiers and Robotics.

This work presents two main problems to solve. In one of them, a position estimation

system for Unmanned Aerial Vehicles consisting of hardware and software is presented. It

is based on low-cost devices(GPS, commercial autopilot sensors and optical flow algorithm)

implemented in an on-board microcomputer. Comparative tests were conducted using the

proposed approach and the conventional one, where only fusion of GPS and inertial sensors

are used. Experiments were conducted using a Quad-rotor in two flying modes: hovering

and trajectory tracking in outdoor environments. Results demonstrate the effectiveness of

the proposed approach in comparison with the conventional approaches presented in the vast

majority of commercial drones.
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Furthermore, the second problem addresses object detection and tracking based on Com-

puter Vision techniques, in essence, a training technique known as Haar Feature-based cas-

cade classifier, image processing is made on-board with a high processor single-board com-

puter. Based on the detected object and its position, the UAV must track it to ensure to be

positioned in a center position with respect to the object and in a safe distance to it. The

object in question is a human face and the experiments were conducted in a two-steps de-

tection, searching first for the upper-body and then for the face in that specific zone to be

consequently followed by the UAV.
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Justification

Nowadays, unmanned aerial vehicles (UAVs aka drones) are widely required for multiple ap-

plications with the aim of finding solutions to the market problems. This is due to the fact of

the high capacity of navigation and access to remote places where land vehicles or even hu-

man beings can not access. In addition, the different components that can be added to UAVs

to solve different types of problems makes them increasingly essential for several problem’s

solutions in areas such as security, agriculture, research, industry among others. The use of

sensors and cameras together with artificial intelligence nowadays is fundamental for UAV

perception of environment. In order to accomplish some of the aforementioned tasks, UAVs

must detect and usually track objects presented in the environment.

In this thesis it is investigated the problem of object detection and tracking with an UAV

using vision systems. Particularly human beings are detected by the drone. This project is

the first in the are of robotic vision developed at the Perception and Robotics LAB at CIO.

Terrestrial vision is going to be implemented instead of aerial vision, mainly because the

firsts tests on the object recognition and tracking will be performed, and depending of the

performance, the aerial tests would be implemented.
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On the other hand, the position estimation is crucial for the majority of outdoor applica-

tions for an UAV. The addition of a camera-based system endowed with optical flow algorithm

is an easy-to-implement solution to improve the position estimation taking into account that

the UAV already has a conventional low-cost GPS and inertial sensors, making this project

remain low-cost.

v



Publications

Conference papers

• L. Arreola, A. Montes de Oca, A. Flores, J. Sanchez and G. Flores. ”Improvement in

the UAV position estimation with low-cost GPS and vision-based system: Application

to a quad-rotor UAV.” International Conference on Unmanned Aircraft Systems 2018

(PUBLISHED).

• A. Montes de Oca, L. Arreola, A. Flores, J. Sanchez and G. Flores.”Low-cost multi-

spectral imagery system for crop monitoring.” International Conference on Unmanned

Aircraft Systems 2018 (PUBLISHED).

• L. Arreola, G. Gudiño, A. Montes de Oca, and G. Flores.”Object recognition and

tracking using Haar-like Features Cascade Classifiers: Application to a quad-rotor

UAV.” Winter Conference on Applications in Computer Vision 2019 (UNDER RE-

VIEW).

vi



Contents

Agradecimientos i

Abstract iii

Justification v

Publications vi

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 State of the art at CIO . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Stabilization improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

vii



1.3 Object tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Outline of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theory Fundamentals 10

2.1 Quad-rotor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Newton equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Optical Flow Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Gunnar-Farneback . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Haar Feature-based Cascade Classifiers . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Integral image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Classifier training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Cascade Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Methods 34

3.1 UAV Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Stabilization Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 PX4Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Object Tracking Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 NVIDIA Jetson TX2 . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Haar cascades Training . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 Dronekit-Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Results 47

4.1 Stabilization Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



4.1.1 Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Trajectory tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Object tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Object detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 UAV Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusions and Future Work 66

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Bibliography 69

A Main code - Object detection and tracking. 79

B Functions - Object detection, tracking and Dronekit communication. 81

ix



List of Figures

2.1 Quad-rotor Inertial and Body frame. . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Euler angles for angular position in the inertial frame. . . . . . . . . . . . . . 12

2.3 Different patterns considered as Haar features. . . . . . . . . . . . . . . . . . 29

2.4 Schematic description of a detection cascade. . . . . . . . . . . . . . . . . . 32

3.1 The quad-rotor unmanned aerial vehicles used in this project. 3.1a shows the

UAV with a camera at the bottom connected to a microcomputer to compute

optical flow algorithm on-board. 3.1b shows the UAV with an On-Board

computer and a monocular camera to perform the image processing. . . . . . 35

3.2 PX4Flow Camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 A sequence of ordered optical flow images taken from the drone. It can be

observed in green the estimated velocity vectors. . . . . . . . . . . . . . . . 39

3.4 Test Flow chart describing the execution of the experiments. . . . . . . . . . 40

3.5 Jetson TX2 developer kit. On-board computer. . . . . . . . . . . . . . . . . . 41

x



3.6 Example of positive set of images and negative set of images. In the positive

set of images is shown a bounding box surrounding the object in question

within the image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 NED axes with respect to the body current frame. . . . . . . . . . . . . . . . 46

4.1 Loiter stability comparison. Above: Loiter mode without using DOF algo-

rithm, only GPS and INS information is fused in the Kalman Filter. Below:

Loiter mode using DOF algorithm and GPS-INS information. Both of them

have the same axis limits (1.25m) to appreciate the differences. . . . . . . . . 49

4.2 Google Earth view of the desired path. Such path consists of four waypoints

located in a soccer field. The quadrotor UAV must take-off automatically

from a given waypoint (home position). The first waypoint is in the center

of the field and the UAV must go to that waypoint after takeoff. Second

waypoint is in the bottom of the image. After reach this waypoint, the UAV

turns 180 degrees and return again to the home position for landing. . . . . . 50

4.3 Angle displacement in roll (φ ), pitch (θ ) and yaw (ψ) during the trajectory

tracking without OF implementation. . . . . . . . . . . . . . . . . . . . . . 51

4.4 Angle displacement in roll (φ ), pitch (θ ) and yaw (ψ) during the trajectory

tracking with the OF implementation. . . . . . . . . . . . . . . . . . . . . 52

4.5 Graphs in the x− y plane showing the UAV position performance during the

trajectory tracking. Above, only GPS-INS information used in EKF; below,

EKF with optical flow implementation. . . . . . . . . . . . . . . . . . . . . . 53

4.6 Velocities in the UAV north and east direction during trajectory tracking

without using OF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Velocities in the UAV north and east direction during the during the trajectory

tracking using optical flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xi



4.8 Three-dimensional view of the desired path and actual path performed by the

UAV during the trajectory tracking without OF algorithm. . . . . . . . . . . 55

4.9 Three-dimensional view of the desired path and actual path performed by the

UAV during the trajectory tracking with OF algorithm. . . . . . . . . . . . . 56

4.10 Chart describing the general flow of the object detection and tracking algorithm. 57

4.11 Upper body detection using Haar-cascade training. . . . . . . . . . . . . . . 58

4.12 Face detection using Haar-Cascade training. . . . . . . . . . . . . . . . . . . 59

4.13 Combination of upper body and face detection using Haar-cascade training. . 59

4.14 Roll and thrust movements depending of the zone of the image where the

center of the object is detected. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.15 Part 1 of a sequence of ordered object tracking images taken from the drone

perspective and from an external video recording the full process respectively.

The images of each row corresponds to the same moment showing both views. 63

4.16 Part 2 of a sequence of ordered object tracking images taken from the drone

perspective and from an external video recording the full process respectively.

The images of each row corresponds to the same moment showing both views. 64

4.17 Part 3 of a sequence of ordered object tracking images taken from the drone

perspective and from an external video recording the full process respectively.

The images of each row corresponds to the same moment showing both views. 65

xii



List of Tables

3.1 Quadrotor UAV parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 PX4Flow Camera Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 38

xiii



CHAPTER 1

Introduction

One of the problems to solve in this work is the intention to improve the position estimation

of an UAV using just low-cost devices and a standard GPS, this will be accomplished by

adding an optical flow sensor to fusion with the INS sensors and GPS. The first section of

this chapter focus on the background information about this topic.

Moreover, a Haar-like features classifier is implemented to detect and subsequently track

an object with the UAV. The second section of this chapter summarizes the background and

importance of the classifiers and other techniques based on vision-based systems to object

detection.

In essence, this chapter focus on giving the background information about these two main

topics. This information relies in the importance of these topics and the existing methods, in
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order to approach the objectives of this work of a proper way.

1.1 Background

At the Center for Research in Optics (CIO) is developed basic and applied research in the

optics and photonics fields. Computer vision is one of the most important research topics in-

vestigated at CIO. Current research areas of vision systems, such as digital image processing,

optical metrology, 3D recondtruction, among others are actually investigated at CIO. On the

other hand, the field of robotics has had an increasing demand in research and industry last

years. For that, in the last two years CIo’s research on that topic is growing do to the great

demand.

This project is based on these two fields: vision and robotics. It consists of the devel-

opment of a functional prototype of an UAV with a vision system, capable of detecting an

object of interest, to subsequently generate navigation commands, in such a way that the UAV

is able to follow that object.

1.1.1 State of the art at CIO

Researchers from CIO have investigated several subjects related with the present project.

Next I mention a few of them.

In 2007, H. Sossa-Azuela, F. Cuevas, et al. designed an application for classifying ob-

jects using morphological applications using 3-D Cartesian Geometric Moment Computation.

Three-dimensional Cartesian moments are considered as an important feature in applications

for recognition and shape description of objects. The authors present a novel proposal where,
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instead of using triple summations, given that the object is taken into account as a voxelized

image, they first decompose the region into a set of cubes, and then add the moments of each

cube of the partition. Once the partition has been obtained, the calculation of the moments is

faster than that provided by previous methods [1].

In 2009, J. Apolinar Muñoz presented an automatic technique for the 3-D vision of the

foot sole. The foot sole is scanned by a laser trough a glass window. The behaviour of

the laser line gives the information about the contouring of the foot. The 3-D modelling is

reached by performing an approximation network. The line shift is generated by the surface

variation and the camera position, defining the structure of the network. The approach of

this vision system is to fit the shoe sold mold to the foot sole via contour curves. The results

are finally evaluated by a root mean square of error by the use of references from a contact

method [2].

In 2013, Shuting Zou, G. Flores, et al. proposed a vision-based estimation for micro aerial

vehicle (MAV) in unknown urban environments. The MAV used required to navigate from

an initial outdoor position to a final position inside the building. The authors proposed two

vision-based approaches using the information provided by the on-board vision system. An

stereo camera system is implemented to identify in a effective way the target and estimate

the distance to it. Besides, a RGB-D camera is used to capture point cloud [3]. The same

group of authors present a continuation of this project in 2015. To identify the window, a fea-

ture base cascade classifier is implemented, due that it provides a fast and robust method to

identify the window. The information provided by the GPS and the MAV’s inertial sensors is

used to develop a safe path-planning. The stereo-vision system estimates the relative position

with respect to the MAV [4].
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In May 2016, J. Martinez-Carranza, L. Valentin, et al. presented an obstacle detection

during autonomous flight of an UAV using monocular SLAM. This monocular SLAM sys-

tem is implemented to estimate the position of the UAV and to build a 3D map that represents

the environment observed trough the camera on-board. Non other depth sensor or inertial

sensor was used in this work. One of the main advantages of this proposal with respect to

others, is that the localization and mapping does not depend of the GPS signal or of an exter-

nal localization system, depending just of the image processing from the camera [5].

In September 2016, Israel Becerra, L. Valentin, et al. investigated the problem of con-

firming the identity of a candidate object with a mobile robot that was equipped with a vision

system. This is a novel method into mix localization of the robot relative to the candidate

object and confirm that is the desired object, drastically reducing false positives [6].

1.2 Stabilization improvement

In many outdoor Unmanned Aerial Vehicles (UAV aka drones) applications such as: in-

spection & monitoring, mapping, precision agriculture and civil engineering, just to mention

a few, the precision in the drone position estimation is crucial. Hence commercial drones

use to use high-precision Global Positioning System (GPS) or even Real-Time Kinematic

(RTK) devices [7], [8]. The first half of this work presents an easy-to-implement application

proposed as a low-cost option to the commercial technology available in the market. Such

implementation is based on the combination of two popular technologies: conventional low-

cost GPS and a vision-based system endowed with optical flow algorithm. On one hand,

GPS provides to the drone the capability to follow an specific trajectory in global coordi-

nates, however low-cost GPS have intrinsic sources that induce errors in the UAV position,

this results in an insufficient accuracy for several of the aforementioned applications. On
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the other hand, optical flow devices provide information about UAV relative position w.r.t. a

fixed reference frame. However, optical flow devices by itself are unable to provide global

coordinates, which are necessary in the vast majority of outdoor applications, for instance in

3D reconstruction, mapping and object tracking.

The vast majority of the works available in the literature shows recent developments in the

position estimation in denied GPS environments [9], [10], [11], [12]. A comparative study of

optical flow and a combination of measurements from GPS-INS sensors through UAV flight

tests is presented in [13], where inaccuracies in the optical flow are evident compared with

the position provided by the GPS. The group of the authors of the last paper continues their

research in [14], where they present an Unscented Information Filter for estimating the ve-

hicle speed of GPS-denied navigation. In that work the authors use GPS measurements as

reference values for the fusion algorithm using INS and optical flow information. In [15] a

nonlinear observer for UAV velocity based on INS and optical flow data were implemented.

The results do not show visible improvements in the accuracy of UAV position estimation

w.r.t classical filter approaches. One of the most recent works presented at [16], proposes

a fusion of the PX4Flow sensor [17] and INS system; the authors show some results with

considerable error in position estimation (around 5 meters) from the desired trajectory, which

is insufficient for various applications. Nowadays the use of RTK or PPK (Post-Processing

Kinematic) systems for global navigation satellite systems (GNSS) are the most accurate for

outdoor applications, this is due to the accuracy they own, which ranges between 20mm and

50mm [18], [19]. Although these technologies are one of the best options in the market for

UAV position estimation in outdoor environments, they can be very expensive due to the

amount of equipment needed compared to low-cost commercial drones. In the first half of

this work, several outdoor experiments were conducted in the task of trajectory tracking and

hovering at a given outdoor environment. Such experiments are compared with the classical
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approach where only GPS and inertial navigation sensors (INS) information are used to es-

timate the current UAV position. Such experiments show that the accuracy of the proposed

system improves considerably UAV position estimation, and hence the accuracy in tracking

a given trajectory. This works continues a research presented in [20], where a GPS/INS/Op-

tical flow data fusion for position and velocity estimation is presented. In such a work the

algorithm presents a considerable error in the estimation, also it has not been compared with

any well-known approach.

The contribution of this work w.r.t to the existing literature is: a) the implementation of

our approach in a Quad-rotor UAV; b) improvement in the optical flow algorithm; and c)

enhancement of the data fusion algorithm. The presented results are compared with the data

obtained by the classical Kalman Filter, which uses only GPS and INS information. This is

provided by the PX4 firmware for Quad-rotors, a firmware very popular nowadays. Also, ex-

periments were conducted in hovering and in trajectory tracking, in both cases the results are

highly satisfactory in comparison with classical approaches presented in the literature. The

obtained results demonstrate a considerable efficiency w.r.t. standard GPS and INS systems;

such approaches usually have position errors around 2.5m [21], which results in an insuffi-

cient accuracy for certain applications. Therefore this approach results in a viable alternative

for limited budget.

1.3 Object tracking

In the recent demands of the UAVs market, the military and industry stand out from the rest,

among the most requested applications are the aerial photography, environment monitoring,

farming, structure inspection and so forth. [22], [23], [24]. A vision-based system is one of
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the favorites solutions to these demands, due to its passive and low-cost characteristics. The

second half of this work presents an easy-to-implement application to this topic, implement-

ing an on-board computer and a monocular camera. The entire system consists in detecting

an object by capture a frame from the camera and then the on-board computer processes the

image trying to detect the object using Haar-like feature-based classifier. Due to the fact that

the Haar classifiers are considered as weak classifiers [25], a cascade training is implemented

to perform a more robust detection. Once the object is detected, the on-board computer de-

termines the position of the object w.r.t the UAV, so it sends the corresponding information

to the flight controller to ensure the correct tracking. For this problem, tracking refers to the

capability that the systems has to detect a desired object and follow it with the information

given by the frame, and refresh this information when a new frame is being analyzed. It is as-

sumed that the object may be present different characteristics but, in general, all the possible

objects has the same features, this is way a simple image processing algorithm is not useful

for this work, therefore a Features Classifier is implemented.

There are several works that have explored object detection and tracking using UAVs.

In [26], the object detection and tracking by the UAV is performed with a video previously

recorded. This was one of the first stages of object tracking related to a UAV. Since then, re-

searchers all around the world have explored this problem, this time during the navigation of

the UAV [27], [28]. Multiple navigation strategies have been developed based on vision, for

instance road following, power lines inspection, and navigation in orchards [29], [30], [31].

For this work the general strategy consists in tracking the object with the information of the

continuous frames that are acquired by the camera. Each and every one of the frames is com-

pared with the cascade training of the features classifiers to detect the desired object. The

track consists of navigating the UAV in such a way that it is centered with respect to the ob-

ject, and at a safe distance from it. This principle of functioning is the same that, for example,
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those who vision-based systems use to try to accomplish an autonomous landing based in a

pre-established landmark that indicates the position where the UAV must land [32], [33].

The experiments that were conducted in this section of the work consists in the detection

and tracking of a human face. At the beginning, slow velocities for the UAV movement were

implemented to observe the time of reaction of the UAV once the object was detected and

the on-board computer sent the navigation commands. The results from these experiments

are highly satisfactory. The UAV had a reaction time of approximately 0.2 seconds after the

centroid of the object and the subsequent commands of navigation were sent. The detection

process consist in searching an upper body(from the shoulders to the head), and inside the

sub-image of a ”detected upper body” the human face is now searched. This seemed to be

a right decision mainly because no matter how well the training process is performed, there

is always the possibility of detecting false objects, therefore searching an object inside of

another makes the system more robust.

1.4 Outline of dissertation

Two main problems are addressed in this work. First, this work presents the behavior of an

UAV Quad-rotor when an optical flow sensor is implemented, measuring and comparing its

performance with the behavior of the UAV when only GPS + INS sensors are used. And

second, object tracking based on computer vision is presented. In the following chapters, the

work will be explained in detail.

The second chapter describes the theory fundamentals settled for the mathematical model

of the Quad-rotor, the Extended Kalman filter algorithm, the Optical flow algorithms, and the
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Haar Feature-based Cascade Classifier.

The methods used for this work are explained in Chapter 3. This chapter explains in detail

both the hardware and software description.

In Chapter 4, the results obtained given the setup explained in Chapter 3 are shown. The

chapter is mainly divided in the results of the optical flow implementation and the object de-

tection and tracking performance.

Finally, Chapter 5 discusses the Conclusions and the Future Work related to this work.
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CHAPTER 2

Theory Fundamentals

The Unmanned Aerial Vehicles (UAV), specifically Quad-rotors, are controlled using elec-

tronics control systems and sensors. They consist in several components. A frame, Electronic

Speed Controllers (ESCs), motors, propellers, battery, control board and Inertial Measure-

ment Unit (IMU) are considered essentials. IMU is used to get the actual information of

attitude of the Quad-rotor consisting of a 3-axis accelerometer and gyroscope. The com-

bination of IMU, a magnetometer and an on-board processing system is known as Attitude

Heading Reference System (AHRS) [34]. The GPS module get the absolute position of the

Quad-rotor. Other components as pressure, ultrasonic and infrared sensors are used to deter-

mine the absolute altitude. The information of all of these sensors are normally combined in

a Kalman Filter.
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2.1 Quad-rotor Model

Figure 2.1: Quad-rotor Inertial and Body frame.

Taking in consideration that the Quad-rotor is a rigid body, their dynamics can be ex-

plained using Newton-Euler equations. Each propeller rotates at an angular velocity ωi pro-

ducing a corresponding force fi directed upwards and a counteracting torque τi directing at

the opposite direction to the direction of rotation. The propellers with the angular speed ω2

and ω4 spin clockwise and the other two propellers spin counter-clockwise. This can be ap-

preciated in Fig. 2.1, [35]. The four rotors generate their corresponding angular velocity,

torque and force. The position and orientation is reached by variating the thrust of an spe-

cific rotor. For example, decreasing the thrust of the propellers 3 and 4 with respect to the

propellers 1 and 2, will result in a roll to the left movement, and decreasing the thrust of

the propellers 1 and four with respect to the propellers 2 and 3, will result in a pitch-forward
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movement. For a clockwise yaw movement, the propellers 1 and 3 must reduce its thrust with

respect to the propellers 2 and 4.

2.1.1 Euler equations

Euler angles represent a sequence of three elemental rotations as shown in Fig. 2.2. Since

any orientation can be achieved by composing three elemental rotations. These rotations start

Figure 2.2: Euler angles for angular position in the inertial frame.

from a known standard orientation. This configuration is described by the following rota-

tion matrices as in [36]. Therefore, the inertial position coordinates and the body reference

coordinates are related by the rotation matrix obtained from computing

R(φ ,θ ,ψ) = R(φ)R(θ)R(ψ) (2.1)

where Rψ , Rθ and Rφ are defined as the three rotational matrices of each fixed axis

Rx,φ =


1 0 0

0 Cφ −Sφ

0 Sφ Cφ

Ry,θ =


Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ

Rz,ψ =


Cψ −Sψ 0

Sψ Cψ 0

0 0 1

 . (2.2)
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The rotation matrix from the body frame EB to the fixed frame EI is an orthogonal 3x3

matrix given by Eq. (2.3), where Cangle and Sangle corresponds to cos(angle) and sin(angle)

respectively [35], [37], [38]. The rotation matrix is now defined as

R =


CθCψ Cθ Sψ −Sθ

Sφ SθCψ −Cφ Sψ Sφ Sθ Sψ +CφCψ SφCθ

Cφ SθCψ +Sφ Sψ Cφ Sθ Sψ −SφCψ CφCθ

 . (2.3)

The rotation matrix R is an orthogonal matrix, therefore R−1=RT , which is the rotational

matrix that represents the inertial frame to the body frame. The first group of kinematic

equations need to express translational velocity in terms of velocity components in the body

frame. The UAV position vector p has its components px, py, and pz located in the frame EI .

The vector η is defined as

η =


u

v

w


and describes the angular velocities of the Quad-rotor in the body frame. To relate these two

groups of variables, a time differentiation and a rotational transformation need to be applied

as shown below

d
dt


px

py

pz

= R(φ ,θ ,ψ)


u

v

w

= R(φ ,θ ,ψ)−1


u

v

w

 . (2.4)

Due to the time derivative of position in the inertial frame EI , a rotation R needs to be used

in Eq. (2.4) in order to obtain velocity components with respect to the inertial frame EI ,

therefore the inverse of the Eq. (2.3) must be replaced. Substituting these matrix, the time
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derivate of the position vector is expressed as in [39] as
ṗx

ṗy

ṗz

=


CθCψ SφSθCψ−CφSψ CφSθCψ +SφSψ

CθSψ SφSθSψ +CφCψ CφSθSψ−SφCψ

−Sθ SφCθ CφCθ




u

v

w

 . (2.5)

Another relationship that need to be defined is the one between the angular positions: ψ ,

θ , and φ ; and the angular rates: p, q, and r. The time derivatives of angular positions are

not equal to the angular rates because these two groups of variables are expressed in different

coordinate frames. The Euler angles are defined subsequently along three different coordinate

frames while the angular rates are defined in the body frame [39]. To obtain the equation that

relates Euler angles and angular rates, angular rates need to be expressed as
p

q

r

=


φ̇

0

0

+R(φ)


0

θ̇

0

+R(φ)R(θ)


0

0

ψ̇

 . (2.6)

Roll angle is already defined in body frame so it does not need a rotation. Pitch and Yaw

angles need an appropriate rotation so they can be defined in the body frame, therefore R(φ),

and R(θ) need to be substituted to obtain a simplified expression as follows


p

q

r

=


1 0 −sinθ

0 cosφ sinφ cosθ

0 −sinφ cosφ cosθ




φ̇

θ̇

ψ̇

 . (2.7)

Multiplying both sides in Eq. (2.7) by the inverse matrix and rearranging the equation, expres-

sions for the derivatives of the angular positions can be found in terms of angular positions
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and angular rates in the next equation
φ̇

θ̇

ψ̇

=


1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ secθ cosφ secθ




p

q

r

 . (2.8)

From Eqs. (2.8) and (2.5), the kinematic equations of the Quadrotor are [36].

φ̇ = p+q(Sφ Tθ )+ r(Cφ Tθ )

θ̇ = q(Cφ )− r(Sφ )

ψ̇ = q(Sφ/Cθ )+ r(Cφ/Cθ )

ṗx = u(CψCθ )+ v(CψSθ Sφ −Cφ Sψ)+w(CψCφ Sθ +SψSφ )

ṗy = u(Cθ Sψ)+ v(CψCφ +SψSθ Sφ )+w(Cφ SψSθ −CψSφ )

ṗz =−u(Sθ )+ v(Cθ Sφ )+w(CθCφ )

(2.9)

The kinematic part of the modelling describes the motion of the Quad-rotor without consid-

ering the forces affecting it. In the next subsection, the dynamics equations are presented.

2.1.2 Newton equations

The rotational motion equation of the UAV can be obtained using Newton’s second law. It

begins by obtaining the time derivative of angular momentum as expressed next

~̇H = ~M (2.10)

where ~M is the total external moment acting on the center of mass and ~H is the angular

momentum. Typically, the angular momentum vector ~H is defined as the cross-product of the
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position vector~r and the momentum vector ~p as

~H =~r×~p. (2.11)

Moment ~H can be expressed as its vector form as

~H =


Hx

Hy

Hz

=


ypz− zpy

ypx− zpz

ypy− zpx

 . (2.12)

The expression for angular momentum that describes the rate of change with respect of time

of a rigid body about its center of mass is given by

~̇H = ∑
i
~ri×mi~̇ri (2.13)

where ri is the position vector of a particle mi. In this case, the position of all the particles are

fixed in the body, therefore the velocity of each particle is defined by

~̇ri = ~ω×~ri. (2.14)

As it is already known, ~ω is the body angular velocity. In this case, the body is the quad-

rotor. Hence it is assumed that it has a continuous mass distribution, the particle mass can be

represented by its density times an elemental volume ρdV . Now, the expressions of velocity

and elemental volumes can be substituted, thus the summation expression in (2.13) can be

replaced by an integral as follows

~H =
∫

v
ρ~r× (~ω×~r)dV (2.15)
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defining~r as its vector form as

~r = xî+ y ĵ+ zk̂. (2.16)

On the other hand, the vector cross product can be defined as

~r× (~ω×~r) = [(y2+ z2)p−xyq−xzr]î+[(x2+ z2)q−yxp−yzr] ĵ+[(x2+y2)r− zxp− zyq]k̂.

(2.17)

Using the previous equations, we can define the moments of inertia as

Ixx =
∫

v
ρ(y2 + z2)dv

Iyy =
∫

v
ρ(x2 + z2)dv

Izz =
∫

v
ρ(x2 + y2)dv

Ixy = Iyx =
∫

v
ρ(xy)dv

Ixz = Izx =
∫

v
ρ(xz)dv

Iyz = Izy =
∫

v
ρ(yz)dv

. (2.18)

It is assumed that the four arms of the quad-rotor are symmetric and they are aligned with the

x and y axes. This results in a diagonal inertia matrix, which is a diagonal matrix I where Ixx

and Iyy are equal. 
Ixx 0 0

0 Iyy 0

0 0 Izz

 . (2.19)
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This leads to determine the equations of the particles mi of the system, which are defined

by [36] as follows

mx = ṗIx−qrIy +qrIz

my = q̇Iy + prIx− prIz

mz = ṙIz− pqIx + pqIy

. (2.20)

From Newton’s second law, we have

~F = m~̇v (2.21)

where ~F is defined as the total external force acting on the quad-rotor, ~v is the absolute

velocity of the center of mass and m is the mass of the quad-rotor [40]. The vector ~Fcan be

expressed in terms of the x, y and z components as

~F = Fx î+Fy ĵ+Fzẑ. (2.22a)

Velocity vector is defined as

~v = uî+ v ĵ+wk̂. (2.22b)

The quad-rotor is rotating with angular velocity, therefore the absolute acceleration can be

expressed as

~̇v = ~̇vb +~ω×~v (2.23)

where ~̇vr is the acceleration seen from the body axis. This term and the angular velocity can

also be described in terms of a vector form as

~̇vb = u̇î+ v̇ ĵ+ ẇk̂

~ω = pî+q ĵ+ rk̂
. (2.24)
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Expanding the cross product in Eq. (2.23), the equation results in

~ω×~v = î(wq− vr)− ĵ(wp−ur)+ k(vp−uq). (2.25)

Considering force components in Eq. (2.22a) with gravitational force terms, the three force

components can be written as follows

F =


Fx−applied−mgsin(θ)

Fy−applied +mgcos(φ)

Fz−applied +mgcos(θ)cos(φ)

 . (2.26)

Also we can express each term of the Eq. (2.22a) using the Eq. (2.25) in the Eq. (2.21) as

follows
Fx = m(u̇+wq− vr)

Fy = m(v̇+wp−ur)

Fz = m(ẇ+ vp−uq)

. (2.27)

Eqs. (2.27) and (2.9) are the equations that define the mathematical model of the Quad-
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rotor in the body frame, these equations are put together next:

φ̇ = p+q(Sφ Tθ )+ r(Cφ Tθ )

θ̇ = q(Cφ )− r(Sφ )

ψ̇ = q(Sφ/Cθ )+ r(Cφ/Cθ )

Ṗx = u(CψCθ )+ v(CψSθ Sφ −Cφ Sψ)+w(CψCφ Sθ +SψSφ ) (2.28a)

Ṗy = u(Cθ Sψ)+ v(CψCφ +SψSθ Sφ )+w(Cφ SψSθ −CψSφ )

Ṗz =−u(Sθ )+ v(Cθ Sφ )+w(CθCφ )

Fx = m(u̇+wq− vr)

Fy = m(v̇+wp−ur) (2.28b)

Fz = m(ẇ+ vp−uq)

where 2.28a represents the kinematic equations and 2.28b represent the dynamic equations

of the Quad-rotor.

2.2 Kalman Filter

The Kalman Filter is the most famous method for prediction in systems with random noise.

Is an algorithm that uses a series of measurements observed over time, containing noise and

other inaccuracies. The resulting of the Kalman Filter produces more accurate estimations

than those based on a single measurement alone, by estimating a joint probability distribution

over the variables for each time-step. The key idea behind Kalman Filter is presented in two

steps: Prediction and Update. The first step consists in the prediction of the state variables

of the system based on the inputs and previous values of system states. In the second step,

the prediction is improved using the data of external measurements [41]. Because it is not
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always possible to measure each control variable, the Kalman Filter provides an estimate of

the lost information of measurements and indirect noises. That leads to the most common

applications of the Kalman Filter, such as the control of complex dynamic systems, like

spacecrafts, manufacturing processes, ships and aircrafts. The Kalman Filter can be applied

as a tool for almost exclusively for two purposes: Estimation and performance analysis of

estimators.

1. Estimation: The Kalman Filter allow us to estimate the state of the dynamic systems

that tends to have sort of random behaviors, using statistical information.

2. Performance analysis: The objective of the performance analysis of the estimation

systems is to know how to determine the best use of the sensors types given as a set of

the design criteria. These criteria are based on estimation accuracy and the cost of the

system.

The Kalman Filter is based on the probability distribution of its estimation errors. It uses

a parametric characterization in determining the most optimal filtering gains. This proba-

bility distribution is used in seeing the performance evaluation as a function of the design

parameters of a system, these parameters could be:

• The type of sensors that will be used.

• All the locations and orientations of the sensors with respect to the estimated system.

• The known noise of the sensors.

• The methods used to pre-filtering the sensor’s noise by smoothing.

• The data sampling rates for all the sensors that will be used.

• How improved is the model simplification to reduce the implementation requirements.
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The Kalman filter is basically a set of mathematical equations with the purpose of getting

an optimal estimator of predictor-corrector that minimizes the estimated errors covariance

when the conditions are made. The standard Kalman filter process start by fitting the UAV

dynamics on the Kalman Filter equations

xk = Axk−1 +Buk +ωk

yk =Cxk +υk

(2.29)

where xk is the state vector containing the terms of interest for the system at time k. uk is

the vector containing any control inputs. A is the state transition matrix which applies the

effect of each system state parameter at time k− 1 on the system state at time k. B is the

control input matrix which applies the effect of each control input parameter in the vector uk

on the state vector. yk is the vector of measurements and Ck is the transformation matrix that

maps the state vector parameters into the measurement domain. ωk and υk are process and

measurement noises respectively. Due that the measurement is noisy, and therefore it does

not reflect the true output, the input can be run through the knowing UAV model to make

another estimation [42].

x̂k = Ax̂k−1 +Buk

ŷk =Cx̂k

. (2.30)

This estimation will also not be perfect, because a mathematical model is just an approxima-

tion of the real system. This is where the Kalman Filter acts, combining the two pieces of

information (the measurement and the prediction) to find the optimal estimate output in the

presence of process and measurement noises [43]. Computationally, this combination relates

to the next equation

x̂k = Ax̂k−1 +Buk +Kk(yk−C(Ax̂k−1 +Buk)). (2.31)
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The first part of Eq. (2.31) predicts the current state by using the previous time-step state

estimation and the current input. This is called the predicted state estimate or a priori esti-

mate, since it is calculated before the current measurement is taken, and can be called as x̂−k .

Rewriting Eq. (2.31), the equations results like

x̂ = x̂−k +Kk(yk−Cx̂−k ). (2.32)

The second part of Eq. (2.32) uses the measurement incorporated into the prediction to update

the a priori estimate. This result is called A posteriori estimate. Therefore, the equations

needed for the Kalman Filter are divided in two, the prediction equations:

x̂−k = Ax̂k−1 +Buk

P−k = APk−1AT +Q
(2.33)

and the update equations:

K−k =
P−k CT

CP−k CT +R

x̂−k = x̂−k +Kk(yk−Cx̂−k )

Pk = (I−KkC)P−k

. (2.34)

These two group of equations define the two-steps process of the Kalman Filter. In Eq. (2.33),

the system model is required to calculate the a priori state estimate and the error covariance

P(the variance of the a priori state estimate). The second step of the algorithm, shown in Eq.

(2.34), uses the a priori state estimates calculated in Eq. (2.33) and updates them to find the

a posteriori estimates and the error covariance. The Kalman gain Kk is calculated such that

minimizes the a posteriori error covariance Pk. In other words, the Kalman gain determines

how important are the measurement ant the a priori estimate contributes to the calculation of
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x̂k. If the measurement noise is small, then this is trusted more than the a priori estimations

to the calculation and vice versa. Once the update equations are calculated, the a posteriori

estimates are used to predict the new a priori estimates in the next time-step, repeating itself

as a loop. The algorithm does not need all the past information, just the information of the

estimated state and error covariance of the previous time-step and the measurement of the

current time-step [43], [42], [44].

2.2.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is the nonlinear version of the Kalman Filter, since the

most realistic problems in robotics involves nonlinear functions. This work has implemented

EKF for position estimation; taking into account the data obtained from an optical flow al-

gorithm to improve UAV position accuracy. In order to implement the EKF, a mathematical

model that represents the quadrotor nonlinear dynamics is needed [45]. Remembering the

classic Kalman Filter linear model presented in Eq. (2.29), the nonlinear representation of

the Kalman Filter aka EKF is

xk = f (xk−1,uk)+wk

yk = g(xk)+ vk

(2.35)

where f and g are nonlinear states and output functions respectively. EKF is conformed by

subsequent linearizion of model (2.35) around the equilibrium point of the system, resulting

in a sequence of models similar to (2.29). EKF linearizes the non-linear function around the

mean of the current state estimate [46]. At each time step, the linearizion is performed locally

and the resulting Jacobian matrices are then used in the predictions and updates states of the

EKF algorithm. Therefore, given the system presented in Eq. (2.35), the Jacobian are defined

24



as follows:

F =
∂ f
∂x

| x̂k−1,uk

G =
∂g
∂x

| x̂k

. (2.36)

Finally, the linearized system resulting from this process becomes [47]:

∆xk ≈ F∆xk−1 +ωk

∆yk ≈ G∆xk +υk

. (2.37)

2.3 Optical Flow Algorithm

The Optical Flow (OF) is the pattern of apparent motion of an object between two consecutive

frames. This motion can be caused by the movement of the object or the camera trough time.

Mathematically, the optical flow consists in a 2D vector field. This 2D motion results from

the projection of moving 3D objects in the image plane. Each vector contains the data that

shows the movement of the detected objects from one frame to the next one, as shown in Fig.

3.3. The Optical flow algorithm is based on two main assumptions given next:

Assumption 1. The pixel intensity of a detected object does not present significative changes

between consecutive frames.

Assumption 2. Pixels near to the detected object have similar motions.

The 2D motion equations establishes that I(x,y, t) is the center voxel (a pixel in three

dimension) on an m× n neighborhood, then it moves by ∆x and ∆y in a determined time ∆t
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to (x+∆x,y+∆y, t +∆t), therefore the next equation is assumed [48].

I(x,y, t) = I(x+∆x,y+∆y, t +∆t). (2.38)

Since the displacements are differential, and therefore they are very small, the Taylor ap-

proach is used around I(x,y, t) to simplify the Eq. (2.38) as follows

I(x+∆x,y+∆y, t +∆t) = I(x,y, t)+
∆I
∆x

∆x+
∆I
∆y

∆y+
∆I
∆t

∆t +H.O.T.

where H.O.T. means higher-order terms, thus they can be despised. Considering Assump-

tions 1 and 2, from Eq. (2.39) is obtained

∆I
∆x

vx +
∆I
∆y

vy +
∆I
∆t

= 0 (2.39)

where vx =
∆x
∆t and vy =

∆y
∆t are the optical flow, or in other words, the (vx,vy) are the com-

ponents of the image velocity, and the ∆I
∆x ,

∆I
∆y ,

∆I
∆t are the image intensity derivatives of (x,y, t)

aka Ix, Iy and Iz [49]. Clearly (vx,vy) are unknown and the Eq. (2.39) cannot be solved with

two unknown variables, for that it is used the so-called Gunnar-Farneback algorithm.

2.3.1 Gunnar-Farneback

The Gunnar-Farneback algorithm [50] is designed to produce optical flow results. It consists

in two-frame motion estimation algorithm. This method approximate each neighborhood of

both frames by quadratic polynomials. From observing how an exact polynomial transforms

under translation, a method to estimate displacement fields from the polynomial expansion

coefficients is derived to lead an algorithm. The polynomial expansion idea is to approximate

the neighborhood of some pixel with a polynomial. The method works only with quadratic
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polynomials, giving the local signal model, expressed in a local coordinate system

f1(x)≈ xT A1x+bT
1 x+ c1 (2.40)

where A is a symmetric matrix, b a vector and c a scalar. The coefficients are estimated from a

weighted least squares fit to the signal values in the neighborhood. This can be implemented

of a more efficient way than common computational process by a hierarchical scheme of

separable convolutions [51].

From Eq. (2.40) can be constructed a new signal f2 by a global displacement d,

f2(x) = f1(x−d) = (x−d)T A1(x−d)+bT
1 (x−d)+ c1

= xT A1x+(b1−2A1d)T x+dT A1d−bT
1 d + c1

= xT A2x+bT
2 x+ c2.

(2.41)

Equating the coefficients in the quadratic polynomial yields

A2 = A1, (2.42a)

b2 = b1−2A1d, (2.42b)

c2 = dT A1d−bT
1 d + c1, (2.42c)

the translation d can be solved from Eq. (2.42b)

d =−1
2

A−1
1 (b2−b1). (2.43)

The assumptions that an entire signal being a simple polynomial and a global translation that

relates two signals is quite unrealistic. To solve this, Eq. (2.40) needs to be replaced with
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local polynomial approximations. The first step is doing a polynomial expansion of both

images, therefore the expansion coefficients are A1(x), b1(x) and c1(x) for the first image and

A2(x), b2(x) and c2(x) for the second image. According to Eq. (2.42a), A1 = A2 should be

true ideally, but in practice is neccesary do the approximation

A(x) =
A1(x)+A2(x)

2
(2.44)

and

∆b(x) =−1
2
(b2(x)−b1(x)) (2.45)

to obtain the primary constraint

A(x)d(x) = ∆b(x) (2.46)

where d(x) indicates that the global displacement in Eq. (2.41) is also replaced with a spa-

tially varying displacement field [50].

2.4 Haar Feature-based Cascade Classifiers

Haar feature-based cascade classifiers is an effective object detection method. It is a machine

learning-like based approach where a cascade function is trained from positive and negative

images. Then, it is used to detect objects in other images. Initially, the algorithm needs a

big number of ”positive” images (images with the object to detect) and ”negative” images

(images without the object to detect). Due that in recent years face detection has been widely

studied for applications like face recognition or human-computer interaction, it can be found

several techniques especially made for this task, the decision in this work to detect faces is

because of this [52], [53]. Then, the algorithm extracts features from the images to use it later
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to detect the object in other images. For this, Haar features is implemented, these features

is shown in Fig. 2.3 [54]. Each Haar feature is a single value obtained by subtracting sum

of pixels under the white rectangle from sum of pixels under the black rectangle. The Haar

features are computed considering the region that represents the pattern, and computes the

difference between the white pixels and the black pixels in that region. As shown in Fig.

2.3, there are different patterns to build Haar features, although only a few examples of all

the patterns are shown. The process is made at multiple scales to make the system scale

invariant. The multiple scales term refers to just scale the image down to compute the same

features again, and in this way make the features robust against size variations of a given

object [55], [56].

Figure 2.3: Different patterns considered as Haar features.

2.4.1 Integral image

The object detection procedure classifies images based on the value of features instead of

working directly with pixels. This is mainly because a feature-based system operates faster

than a pixel-based system. The system uses three kind of features shown in Fig. 2.3. The
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value of a two-rectangle feature is the difference between the sum of the pixels within two

regular regions (Edge features). The regions must have the same size and shape and be

adjacent whether horizontally or vertically. A three-rectangle feature calculates the sum

within two rectangles subtracted from the sum in a rectangle in the center (Line feature).

And finally a Four-rectangle feature computes the difference between two pairs of rectangles

diagonally positioned. Given a base resolution of the detector as 24x24, this results in a large

number of rectangle features, over 180,000. In order to compute this features rapidly, it is

used a technique called integral image. The integral image at a location x,y contains the sum

of the pixels left and above of x,y, given by:

ii(x,y) = ∑
x′≤x,y′≤y

i(x′,y′)

where ii(x,y) is the integral image at location x,y and i(x′,y′) is the original image at location

x,y. The integral image can be computed following the next pair of recurrences:

s(x,y) = s(x,y−1)+ i(x,y)

ii(x,y) = ii(x−1,y)+ s(x,y)
(2.47)

where s(x,y) is the cumulative sum of a row, therefore s(x,-1) = 0 and ii(-1,y) = 0. Using the

integral image allows to sum any rectangle and compute it in four array references. Following

the same logic, and taking in consideration that the rectangles are adjacent, a two-rectangle

feature(edge feature) can be computed in six array references, eight array references are

needed for a three-rectangle features(Line feature) and nine for a four-rectangle feature [57].
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2.4.2 Classifier training

To learn a classifier, the majority of machine learning approaches need a feature set and a

training set of positive and negative images. The Haar Feature-based is based on adaptive

boosting, both to select the features and train the classifier [58]. Due to the fact that Adap-

tive booster by itself is used to boost the classification of a weak learning algorithm, and

considering that the feature results in over 180,000 rectangles, computing the complete set is

expensive in terms of computation, therefore it is necessary to combine the exact features to

form an effective classifier. To achieve this goal, the weak learning algorithm is designed to

select the single rectangle feature which best separates the positive samples from the nega-

tive samples. For all features, the weak learner determines the optimal threshold classification

function, in a way that the minimum number of examples are misclassified. Therefore, the

weak classifier h j(x) consists of a feature f j, a threshold θ j and a parity p j that determines

the direction of the inequality sign:

h j(x) =

1, if p j f j(x)< p jθ j

0, otherwise

where x is the 24x24 pixel sub-window of the image. The summary of the boosting process

can be seen at [59].

2.4.3 Cascade Classifier

The cascade classifier is an algorithm that achieves an improve detection performance while

reducing the computation time. This implementation is necessary to perform a more robust

detection, taking in consideration that all the classifiers are considered as weak classifiers.

The overall form of a cascade classifier is that of a degeneration tree. A positive result from
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one first classifier leads to a evaluation of a second classifier that has been adjusted to achieve

high detection rates. If the second classifier gives a positive result, it triggers a third classifier,

and so on. In any stage, if a negative result outcomes, this result in an immediately rejection

of the sub-window. This is shown in a graphic way in Fig. 2.4. Each stage of the cascade is

Figure 2.4: Schematic description of a detection cascade.

constructed by training classifiers using Adaptive boost, adjusting the threshold to minimize

false negatives. The structure of the cascade is such as in any single image a majority of sub-

windows are negative. This implies that the cascade attempts to reject as many negatives as

possible in the earliest stages. This can be seen as a decision tree, where subsequent classifiers

are trained using the ”experience” gained in the previous stages, so the further stages face a

more difficult task in comparison to the first stages. In most cases, classifiers with more

features will achieve higher detection rates and lower false positive rates, but this would

require more time to compute. Instead, each stage of the cascade reduce the false positives

rate and decreases the detection rate. A target is selected for the minimum reduction in false

positives and the maximum decrease in detection. Each stage increase in complexity adding

features until the target detection and false positives rates are met. The stages are added until
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the overall target for false positive and detection rate is met [59].
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CHAPTER 3

Methods

This chapter describes the hardware and software of the systems that made up the two config-

urations used in the experiments. The first configuration is used to solve the Stability problem

and the second configuration is used to execute the object tracking experiments. The same

UAV is used for both configurations, just adding some other components that are necessary

to the respectively experiments. Having said this, the first section of this chapter describes

the UAV specifications and the subsequents sections explaining the software and hardware

for the two configurations.
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(a) UAV configuration for the first set of experi-
ments.

(b) UAV configuration for the second set of experi-
ments.

Figure 3.1: The quad-rotor unmanned aerial vehicles used in this project. 3.1a shows the UAV
with a camera at the bottom connected to a microcomputer to compute optical flow algorithm
on-board. 3.1b shows the UAV with an On-Board computer and a monocular camera to
perform the image processing.

3.1 UAV Configurations

The quad-rotors used in this project is shown at Fig. 3.1. For both configurations, this

drone is equipped with a flight controller, a GPS, a camera rig, four ESCs, a set of four

motors and their corresponding propellers, telemetry kit and a voltage regulator and for the

first configuration, a Li-ion battery. The quad-rotor specifications are listed in Table 3.1.

For the second configuration(Fig.3.1b), the battery is replaced by a Li-Po battery 6s 10A to

compensate the extra weight that the computer and its protection add to the total weight of

the UAV.

For both configurations, the state vector required by the EKF are:

• Quaternions: (q0,q1,q2,q3).

• Velocity (North, East, Down).
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UAV design
Parameter Value
Span 70 [cm]
Height 26 [cm]
Weight ≈ 2 [kg]
Propulsion Brushless motor 330 [kv]

Propeller 17x5.5 [in]
Max. Load ≈ 3.5 [kg]
Battery type 1 Li-Ion 6s

Capacity 9500 [mAh]
Battery type 2 Li-Po 6s

Capacity 10000 [mAh]
Flight controller Pixhack v3
Firmware ArduCopter 3.5.5
Estimated flight time 15 [min]

Table 3.1: Quadrotor UAV parameters.

• Position (North, East, Down).

• Delta Angle bias (x,y,z).

• Delta Velocity bias.

• Wind Vector (North, East).

• Earth Magnetic Field Vector (North, East, Down).

• Body Magnetic Field Vector (x,y,z).

And the output vector consists in:

• Roll angle φ .

• Pitch angle θ .

• Yaw angle ψ .
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• Velocities in North, Down and East, (VN ,VD,VE).

• Positions IN North, Down and East relative to UAV takeoff position (PN ,PD,PE).

• (x,y,z) gyro biases, (Gx,Gy,Gz).

3.2 Stabilization Configuration

3.2.1 PX4Flow

PX4Flow is an optical flow smart camera. It has a native resolution of 752x480 pixels and

computes optical flow on a 4x binned and cropped area at 400 Hz, giving it a very high light

sensitivity. It works well in indoor and low outdoor light conditions applications without the

need of an external LED for illumination. Being open-source, it can be easily modified or

reprogrammed to adapt to another computer vision tasks [60]. The PX4Flow is shown in

Fig. 3.2 and the camera specifications are listed in table 3.2 [61]. Some experiments were

Figure 3.2: PX4Flow Camera.

conducted to show the effectiveness of this optical flow algorithm using a PX4Flow Optical
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PX4Flow Specs
Parameter Value
Processor 168 MHz Cortex M4F CPU (128 + 64 KB RAM)
Image sensor 752x480 MT9V034
Lens 16 mm M12(IR block filter)
Size 45.5 mm x 35mm
Power consumption 115mA / 5V
Gyroscope 16-bit 2000deg/s 780Hz
Sonar HRLV-EZ4

Table 3.2: PX4Flow Camera Specifications.

Flow Camera Board [17]. A sequence of four pictures are depicted in Fig. 3.3 showing the

vectors indicating the OF direction. The complete video of this experiment can be seen at

https://youtu.be/_0NjOPtnJsU

3.2.1.1 Angular rate compensation and distance scaling

The On-board gyroscope values in the PX4Flow are stored into the main memory of the

micro-controller and deliver the angular rotation rates of the camera. These data can be used

for rotation compensation as the rotational parts of the motion field can be calculated using

angular rates and focal length of the lens. In this way, the translational flow can be calculated

even when the camera is rotating. When the ultrasonic sensor is attached, the optical flow

values is scaled to its metric value assuming that the camera looks at a planar surface with

the distance measured by the ultrasonic sensor. The details in this process is explained in [17].
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(a) (b)

(c) (d)

Figure 3.3: A sequence of ordered optical flow images taken from the drone. It can be
observed in green the estimated velocity vectors.

3.3 Object Tracking Configuration

The Fig. 3.4 is a flow chart that describes the process of the object detection and tracking

using the UAV. The program is designed in such a way that the object tracking ends when the

battery of the UAV reaches a minimum established or if the user decides to finish it remotely.

A frame is analyzed to try to detect the object that was previously trained by the Haar features

cascade classifier. If the object is found, a bounding box surrounds the object and calculates

the centroid. Then the navigation commands are performed to navigate the UAV in a certain

way to achieve that the center of the image coincide with the centroid of the object. The
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width of the bounding box determines if besides of the roll and thrust movement are required

or not, the UAV needs to make a pitch-forward to get closer to the object. If no object is

detected, the UAV remains in its position in hovering mode. Once an action is performed, the

program waits to the next frame and repeats the loop. Once the program ends, for any of the

two reasons mentioned above, the UAV enters in ”Failsafe” mode, which causes it to position

itself at five meters high w.r.t takeoff and once there, return to the point where it landed, to

finally decrease the thrust and lands. All this process performed while Failsafe is known as

Return to launch aka RTL. Appendix A shows the main python code used for this project, the

functions used in the main code are explained in the subsequent content of this work.

Figure 3.4: Test Flow chart describing the execution of the experiments.
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3.3.1 NVIDIA Jetson TX2

For the object tracking experiment, few changes to the hardware are necessary. A Jetson TX2

developer kit computer is added (See Fig. 3.5). In this computer is stored the information

about the training of the object to be detected. In addition, this computer perform all the

process from obtaining the frames of the camera to detect the object according to the training

and once located, to send the corresponding commands to the flight controller to navigate the

UAV to track the object. The specifications of this On-board computer can be seen at [62].

The configuration of the UAV used for this experiments is shown in Fig. 3.1b.

Figure 3.5: Jetson TX2 developer kit. On-board computer.
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(a) Positive Images (b) Negative Images

Figure 3.6: Example of positive set of images and negative set of images. In the positive set
of images is shown a bounding box surrounding the object in question within the image.

3.3.2 Haar cascades Training

For an own cascade classifier training, two types of images are needed: Negative and Positive.

These sets must contain a big amount of images, to ensure the training to work in a better

way. The recommended number of images is thousand images for the positive set and five

hundred images for the negative set [63], [64]. An example of positives and negatives set of

images is shown in Fig. 3.6

3.3.2.1 Negative samples

Negative samples are the set of images where the object can not be found, in other words,

that contains everything the user do not want to detect. The set of negative images are taken

from arbitrary images and must be prepared manually from the user and are enumerated in

an special file. An example of negatives samples is shown at Fig. 3.6b. This is a text file

where every line contains the image filename(including the directory if the images are not in
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the same location as the text file) of the negative sample images. The images in this set can

be of different sizes, but each image should be at least equal or larger that the desired training

windows size. The set of negative window samples will be used to tell the features classifier

what not to look for, when trying to find the object of interest.

3.3.2.2 Positive samples

Exist two possible ways to generate the positive samples. One of them is making use of an

opencv function call $opencv createssamples [65]. This method boost the process to define

what the model should look like generating ”artificial” images with the desired object. In

this project the second method was performed tough. Like the negative samples, the user

prepare manually the set of images. To ensure a robust model, the samples should cover

a wide range of varieties that can occur within the object class. In the case of faces, the

samples must consider different gender, emotions, races and even beard styles. An example

of positive samples is shown at Fig. 3.6a For the upper body, the samples must consider

different positions, haircuts styles and sizes. Inside the directory where the images are going

to be located, a .dat file needs to be included. Each line of this file corresponds to an image.

The first element of the line is the name of the image, followed by the number of objects

within the image, followed by numbers indicating the coordinates of the object(s) bounding

rectangle(s)(x, y, width, height) [66].

3.3.2.3 Training Haar cascade

Once the two sets of images are ready, the Haar cascade training is ready to be perform.

Using OpenCV, the command to run is opencv traincascade, that looks like:

$ opencv traincascade -data data -vec positives.vec -bg bg.txt -numPos 1800 -numNeg

900 -numStages 10 -w 20 -h 20
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Where -data refers to the direction where the trained classifier should be stored; -vec refers

to the vec-file with positive samples; -bg refers to the background description file. This

is the file direction containing the negative sample images; -numPos refers to the number

of positive samples used in the training for every stage; -numNeg refers to the number of

negative samples used in training for every stage; -numStages refers to the number of cascade

stages to be trained. The more stages are selected, the training will be more robust but taking

a longest time to compute; and finally -w and -h refers to the width and height of the training

samples(in pixels) [67]. The output files is going to depend of the number of stages that the

user selected. In the example, the directory data contains eleven .xml cascade training files,

one per stage and the final.xml file that represents the whole cascade training.

3.3.3 Dronekit-Python

Dronekit-Python is a tool that runs on the On-board computer that allows users to create a

communication between UAV’s On-board computers and the ArduPilot flight controller using

a low latency link. The On-board processing enhance the autopilot significantly, improving

the behavior of the vehicle and performing tasks that are computationally intensive or time-

sensitive, such as Computer Vision and path planning [68].

The main use of Dronekit-Python in this project consists in arming the data package that

contains the information about the velocity and direction that the UAV needs to perform given

the information of the object tracking. These data packages connect with the flight controller

using MAVLink, a protocol for communicating for small unmanned vehicles [69], [70].

The function Send NED Velocity is the function that uses Dronekit libraries to connect with

the ArduPilot flight controller. The function is defined as:

1 d e f Send NED Veloc i ty ( v e l o c i t y x , v e l o c i t y y , v e l o c i t y z , d u r a t i o n , v e h i c l e ) :

2 msg = v e h i c l e . m e s s a g e f a c t o r y . s e t p o s i t i o n t a r g e t l o c a l n e d e n c o d e (

3 0 , # t i m e b o o t m s ( n o t used )
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4 0 , 0 , # t a r g e t system , t a r g e t component

5 m a v u t i l . mavl ink . MAV FRAME BODY OFFSET NED, #

6 0 b0000111111000111 , # type mask

7 0 , 0 , 0 , # x , y , z p o s i t i o n s ( n o t used )

8 v e l o c i t y x , v e l o c i t y y , v e l o c i t y z , # m/ s

9 0 , 0 , 0 , # x , y , z a c c e l e r a t i o n

10 0 , 0 )

11 v e h i c l e . s e n d m a v l i n k ( msg )

12 # t ime . s l e e p ( 0 . 2 5 )

The function asks for five parameters, being the fourth parameter useless for this application.

The necessary parameters are velocity x, velocity y, velocity z and vehicle. The first three

parameters represent the velocities in NED(North-East-Down) directions, being in this case

the Pitch-forward, Roll to the right and a negative thrust. The reasons for these directions is

that the directions are with respect to the body frame. It is necessary to specify the frame on

which the NED positions are going to be calculated. MAV FRAME BODY OFFSET NED

is the line that allow the NED positions being relative to the current body frame heading, like

is shown in Fig. 3.7. Thanks to this parameter it can be specified the position in x meters

north, y meters east and (-) z meters of the current UAV position. Velocity directions are in

the North, East, Down (NED) frame [71].
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Figure 3.7: NED axes with respect to the body current frame.
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CHAPTER 4

Results

This chapter shows the performed experiments and the results obtained from the methods

shown in Chapter 3. One section of this chapter is about the results and discussion of the

Stabilization Improvement, emphasizing the comparisons between the results data of the ex-

periments using Optical flow with the results without using Optical flow. The other section

of the chapter is about the results and discussion of the Object Tracking experiment, empha-

sizing the efficiency in the object detection and the movements of the UAV to track the object.

4.1 Stabilization Improvement

This section of the experiments are presented in two steps:

1. Hovering flight. The first part of the experiment consists of making flight tests in hov-
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ering mode.

2. Trajectory tracking flight. In this experiment the UAV must follow a predefined path

given as way-points.

In the next subsections we explain the obtained results of both aforementioned cases.

4.1.1 Hovering

The first experiment consists on flying the UAV in the flight mode called hovering, aka loiter.

When this flight mode is activated, the UAV should keep flying in the actual position in which

it is initially located. For comparison purposes, this mode is tested in the quadrotor platform

shown at Fig. 3.1a, considering only GPS and INS data fusion by using the well-known Ar-

ducopter firmware, which uses a Kalman Filter to estimate the quadrotor states; then other

test considering the addition of the PX4Flow. A video of the obtained results can be seen at

https://youtu.be/FTjoCMh64NQ

The video consists in two clips with the UAV flying in hover mode. The first clip does not

use the OF implementation, while the second clip does use it. Fig. 4.1 shows the perfor-

mance of the flying test. In the first experiment, the flight was performed without the use of

the OF algorithm, in order to visualize the normal behavior of this flight mode. Regarding

the second experiment, it is performed with the optical flow implementation. It can be ap-

preciate smoother movements without considerable variations, therefore the position error is

minimized due the optical flow measurements.
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Figure 4.1: Loiter stability comparison. Above: Loiter mode without using DOF algorithm,
only GPS and INS information is fused in the Kalman Filter. Below: Loiter mode using
DOF algorithm and GPS-INS information. Both of them have the same axis limits (1.25m)
to appreciate the differences.
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Figure 4.2: Google Earth view of the desired path. Such path consists of four waypoints
located in a soccer field. The quadrotor UAV must take-off automatically from a given way-
point (home position). The first waypoint is in the center of the field and the UAV must go to
that waypoint after takeoff. Second waypoint is in the bottom of the image. After reach this
waypoint, the UAV turns 180 degrees and return again to the home position for landing.

4.1.2 Trajectory tracking

Now, a given trajectory must be followed by the Quad-rotor, in order to observe the perfor-

mance of the fusion of OF algorithm together with GPS and INS devices. The trajectory is

conformed by a line. Two waypoints are chosen to form the line; also two waypoints indi-

cate take-off and landing position as is shown in Fig. 4.2. To replicate the common way to

execute this flight path, first, such flight path was performed by the quadrotor without using

OF algorithm. Some variations in height occurred during the flight path execution, this is due

that only GPS and barometer information are fused to estimate drone’s altitude. The flight

path without optical flow was expected to have en error around 2.5 meters, this value is very

close to the edge of the GPS error indicated by the manufacturer. The roll (φ ) and pitch (θ )

were in constant variations, showing inability to maintain a fixed course. Then, the same

trajectory was performed but this time with the influence of optical flow data into the EKF.
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In this test it can be observed that the movements are smoother w.r.t. the common approach.

Also, the UAV position is smooth with minimal variations, demonstrating an improvement

in the trajectory tracking. This performances are shown in Figs. 4.3 and 4.4, respectively.

Further, a pair of videos showing the execution of the path can be seen at:

https://youtu.be/jiyyPWVV3nE (Experiment with no OF implementation.)

https://youtu.be/rzISpDJs4t8 (Experiment with OF implementation.)
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Figure 4.3: Angle displacement in roll (φ ), pitch (θ ) and yaw (ψ) during the trajectory track-
ing without OF implementation.

More interesting are the results in position estimation using dense optical flow algorithm.

A graph in 2D is depicted at Fig. 4.5 which shows the performance of the proposed approach.

In the performance without OF algorithm it can be appreciate a couple of details:
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Figure 4.4: Angle displacement in roll (φ ), pitch (θ ) and yaw (ψ) during the trajectory track-
ing with the OF implementation.

• The drone take the turn of 180 degrees beyond the reference trajectory with an approx-

imate difference of 1m in the x axis.

• In the second part of the trajectory, there is a maximum error (difference between ref-

erence and actual trajectory) of approximate 2.5m in the y axis.

In the performance with OF algorithm it can be observed that

• The UAV position in the turn of 180 degrees is in the same position as the reference

trajectory.

• The maximum error noted is in the y axis during the first part of the path, that error is

approximately equal to 1.5m.
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Figure 4.5: Graphs in the x− y plane showing the UAV position performance during the
trajectory tracking. Above, only GPS-INS information used in EKF; below, EKF with optical
flow implementation.

In Figs. 4.6 and 4.7, the velocities in the north and east directions are shown. Such figures

correspond to the cases with and without the use of the OF algorithm. Since the UAV desired

trajectory is given as a complete straight line from home position to a predefined point, and

then return to the home position, it is expected that in Fig. 4.6 and Fig. 4.7 presents a sinu-

soidal behavior. Fig. 4.6 tries to emulate this behavior, but not as good as Fig. 4.7 where OF

is implemented.

Figs. 4.8 and 4.9 shows the three-dimensional view of the paths performed by the UAV.

In both cases, using and not using OF algorithm, there was some height variations, this is

53



t[s]
0 10 20 30 40 50

Ve
l.

no
rth

[m
/s]

-2

-1

0

1

t[s]
0 10 20 30 40 50

Ve
l.

ea
st

[m
/s]

-1

0

1

Figure 4.6: Velocities in the UAV north and east direction during trajectory tracking without
using OF.
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Figure 4.7: Velocities in the UAV north and east direction during the during the trajectory
tracking using optical flow.

due to the fact that only information of GPS and barometer is used to estimate Quad-rotor

altitude. As one can see from aforementioned figures, the improvement in the execution of
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the route when the optical flow is implemented is considerable smoother and more precise

than the classical approach.
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Figure 4.8: Three-dimensional view of the desired path and actual path performed by the
UAV during the trajectory tracking without OF algorithm.
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Figure 4.9: Three-dimensional view of the desired path and actual path performed by the
UAV during the trajectory tracking with OF algorithm.

4.2 Object tracking

Once the stability problem is solved, the object tracking problem must be addressed. The

flowchart that describes the steps for the experiments in the rest of this chapter is shown at

Fig. 4.10.

4.2.1 Object detection

The object selected for the detection in this section is a human face, due to the number of

specific parts of a face that can be chosen for the training in order to make the recognition

more robust. In this case, the process to detect a face consists in two separate trainings.
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Figure 4.10: Chart describing the general flow of the object detection and tracking algorithm.

1. Upper body detection: The Haar Feature Classifier algorithm is trained to detect the

upper body of a human being. A rectangle is drawn covering the full area of the image

where the upper body is detected, as is shown in Fig. 4.11. This training is not enough,

because no matter how well the process of training is performed, the object detection

sometimes may lead to detect false objects.

2. Complete face detection: Now, the Haar Feature Classifier algorithm is trained to

detect a complete face. In this way, the detection goes from something general to a
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Figure 4.11: Upper body detection using Haar-cascade training.

more specific object. Like the previous case, rectangles are drawn around the detected

object, as is shown in Fig. 4.12

3. Combining both trainings: Like it was previously stated, no matter how good the

training is, it is always a percentage of probability that a false object would be detected.

To minimize this probability, the face detection training is made only inside a loop

where the upper body detection is performing, like is shown at Fig. 4.13. This is done

to ensure no faces will be detected outside an upper body and also the fact that is less

probably that in a false upper body detection also false faces would be detected.
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Figure 4.12: Face detection using Haar-Cascade training.

Figure 4.13: Combination of upper body and face detection using Haar-cascade training.
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4.2.2 UAV Navigation

The next part of the experiment consists in identify the pixel where the centroid of the object

is located from the image obtained. The way to calculate the centroid is very simple. Once

the number of pixels of the width and height of the bounding box are obtained, the two values

are divided by two. The resulting values are summed with each value of the coordinate from

the top-left corner of the bounding box respectively. In this way, the two values obtained

represent the coordinate of the centroid from the detected object. When the centroid is not

in the center of the image, we can classify the position by three zones, and depending of the

zone, will be the movement that the UAV needs to make, these can also be classified in three

types, as is shown in Fig. 4.14. The velocity and direction of the UAV to move to the desired

pixel is assigned depending of the position of the centroid, for example

1 e l i f x<290 and y<210:

2 i f x<145 and y<105:

3 p r i n t ( ” I z q u i e r d a r a p i d o A r r i b a r a p i d o ” )

4 Send NED Veloc i ty (0 ,− r o l l f ,− t h f , 1 , v e h i c l e )

5 e l i f x<145 and y>105:

6 p r i n t ( ” I z q u i e r d a r a p i d o A r r i b a l e n t o ” )

7 Send NED Veloc i ty (0 ,− r o l l f ,− t h s , 1 , v e h i c l e )

8 e l i f x>145 and y<105:

9 p r i n t ( ” I z q u i e r d a l e n t o A r r i b a r a p i d o ” )

10 Send NED Veloc i ty (0 ,− r o l l s ,− t h f , 1 , v e h i c l e )

11 e l i f x>145 and y>105:

12 p r i n t ( ” I z q u i e r d a l e n t o A r r i b a l e n t o ” )

13 Send NED Veloc i ty (0 ,− r o l l s ,− t h s , 1 , v e h i c l e )

If in this portion of the code, the first condition is satisfied, means that the centroid of the

object detected is located at top-left of the image, then another condition needs to be satisfied

to determine if the distance of the object to the center of the image is near or far. This leads
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to four possible cases represented in four if-elif conditions in where the object could be (The

first and third conditions are represented in Fig. 4.14b and the second and fourth conditions

are represented in Fig. 4.14c), this determines if the (in this case) negative thrust movement

needs to be in a fast or slow velocity and if a fast or slow negative roll is required. The vari-

able roll f and roll s defines a fast and slow velocity in roll angle respectively, while th f and

th s are variables to define a fast and slow velocity in thrust respectively. A similar block of

code is used for each and every one of the cases shown in Fig. 4.14.

Figs. 4.15, 4.16 and 4.17 shows two sequences of images representing the object recog-

nition and tracking performed by the UAV. The full video of the external view and the drone

cam view, can be found following the next link:

https://youtu.be/DKqalep2rMM

As it was stated in subsection 4.2.1, the video generated during the flight shows that the

program analyzes about four frames per second, having a reaction time between the object

detection and the UAV movement of about 0.2 seconds. It also can be observed that bounding

boxes appear in places where the algorithm detects false upper bodies, but in none of these

cases a face where found, only appearing inside the real upper-body detection.
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(a) Movements in simple direction. Soft green means slow
movement, while hard green means fast movement.

(b) Movements in two directions at same speed. Orange
means slow movement, while red means fast movement.

(c) Movements in two directions at different speed. Soft blue
means fast roll movement and slow thrust movement. Hard
blue means fast thrust movement and slow roll movement.

Figure 4.14: Roll and thrust movements depending of the zone of the image where the center
of the object is detected.
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(a) Drone cam view 1 (b) External view 1

(c) Drone cam view 2 (d) External view 2

Figure 4.15: Part 1 of a sequence of ordered object tracking images taken from the drone
perspective and from an external video recording the full process respectively. The images of
each row corresponds to the same moment showing both views.
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(a) Drone cam view 3 (b) External view 3

(c) Drone cam view 4 (d) External view 4

Figure 4.16: Part 2 of a sequence of ordered object tracking images taken from the drone
perspective and from an external video recording the full process respectively. The images of
each row corresponds to the same moment showing both views.
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(a) Drone cam view 5 (b) External view 5

(c) Drone cam view 6 (d) External view 1

Figure 4.17: Part 3 of a sequence of ordered object tracking images taken from the drone
perspective and from an external video recording the full process respectively. The images of
each row corresponds to the same moment showing both views.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

The implementation of a vision-based system to the INS-Sensors result in a plausible im-

provement in the UAV position estimation. The conducted experiments demonstrates its

effectiveness. Since the quadrotor UAV is a underactuated system, the movements in roll

and pitch were smoother when the optical flow is implemented. The yaw movements are

very similar in both approaches, as one can see at Figs. 4.3 and 4.4, since it is only used

to initiate the return trajectory. Two flight modes have been tested: hovering aka loiter and

trajectory tracking. In both cases the drone presented minimal error with the use of the OF

algorithm compared to the conventional EKF approaches where no optical flow algorithm is

implemented. As a consequence the Quad-rotor flies in a more stable way in x− y position.

However, the experiments can be improved in a way that the altitude remain constant.
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The object detection using Haar Feature-based Cascade Classifiers method seems to work

admissible. To ensure that the training of the object to be detected is reliable, the process must

be meticulous and follow all the steps correctly. For example, at least 500 images with object

and 250 images without object are required to guarantee a good training. If possible, the

number of positive images should as big as possible or identify in the best way their location

of the object within the image. It is also advisable to include in the positive images objects

that are similar to those of our interest, and again delimit exclusively where the object is

located, to give our training a greater capacity to discern. Including objects that are similar

to those of our interest in the negative images is also a good idea. The decision to perform

a two-steps detection, one being the upper body and another the face, demonstrates to work

better taking in consideration that just the upper body detection tends to detect in a wrong

way, but the possibility to detect false faces in a false upper body decreases exponentially. In

fact, during the experiments never was the case where a complete object(Upper body + face)

was detected wrongly.

5.2 Future Work

Future works involving the OF implementation include: a) improving the UAV altitude es-

timation adding lidar or vision-based altitude systems; b) testing the proposed approach in

fixed-wing aircraft; and c) compare the results in an specific application, for instance: ortho-

mosaics generations and NDVI indexes for precision agriculture.

With respect to the object detection and tracking, future work include: a) Train the al-

gorithms to detect the Helipad sign, in order to develop a project of safe landing once the
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camera detects the desired object.; b) Use different methods to object detection. Methods

like neuronal networks or tensor-flow should be addressed to make a comparison about their

performance. Particularly, tensor flow can be implemented taking advantage of GPU fea-

tures, therefore the Jetson TX2 would be better exploited; c) The capability of the UAV to

perform yaw movements in case the object makes a rotation on its own axis. The most ef-

fective method could be detect when the two points that form the horizontal top line of the

bounding box are not in the same row of the image or in a certain hysteresis, indicating that

the object is rotated with respect to the camera and therefore, with respect to the Quad-rotor

heading; and d) Replicate the full process with the UAV looking for the object from an aerial

view.
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APPENDIX A

Main code - Object detection and tracking.

1 from d r o n e k i t i m p o r t connec t , VehicleMode

2 from GuideCommands i m p o r t Take Off , Yaw Motion , movement , f a c e d e t e c t i o n

3 i m p o r t t ime

4 i m p o r t cv2

5 i m p o r t s y s

6 s y s . p a t h . append ( ’ / u s r / l o c a l / l i b / py thon2 . 7 / d i s t−p a c k a g e s ’ )

7 u p p e r b o d y c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r ( ’HS . xml ’ )

8 f a c e c a s c a d e = cv2 . C a s c a d e C l a s s i f i e r ( ’ h a a r c a s c a d e f r o n t a l f a c e d e f a u l t . xml

’ )

9 # S t a r t c o n n e c t i o n

10 p r i n t ” S t a r t i n g c o n n e c t i o n . . . ”

11 c o n n e c t i o n s t r i n g =” / dev / ttyUSB0 ”

12 p r i n t ( ” C o n n e c t i n g t o v e h i c l e on : %s ” % ( c o n n e c t i o n s t r i n g , ) )

13 v e h i c l e = c o n n e c t ( c o n n e c t i o n s t r i n g , w a i t r e a d y =True )
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14 cap = cv2 . VideoCap tu re ( 0 )

15 r e t , f rame = cap . r e a d ( )

16 v e h i c l e . mode = VehicleMode ( ”GUIDED” )

17 p r i n t ” Guided ”

18 x , y ,w = f a c e d e t e c t i o n ( frame , u p p e r b o d y c a s c a d e , f a c e c a s c a d e )

19 w h i l e True :

20 movement ( x , y , w, v e h i c l e )

21 r e t , f rame = cap . r e a d ( )

22 x , y ,w = f a c e d e t e c t i o n ( frame , u p p e r b o d y c a s c a d e , f a c e c a s c a d e )

23 t ime . s l e e p ( 0 . 2 )

24 i f cv2 . wai tKey ( 1 ) == 2 7 :

25 b r e a k

26 cap . r e l e a s e ( )

27 cv2 . des t royAl lWindows

28 p r i n t ” C l o s i n g c o n n e c t i o n . . . ”

29 v e h i c l e . c l o s e ( )

30 p r i n t ( ”Done” )
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APPENDIX B

Functions - Object detection, tracking and Dronekit

communication.

1 from pymavl ink i m p o r t m a v u t i l

2 from d r o n e k i t i m p o r t connec t , VehicleMode , L o c a t i o n G l o b a l R e l a t i v e

3 i m p o r t math

4 i m p o r t t ime

5 i m p o r t cv2

6 i m p o r t numpy

7

8 # F u n c t i o n t o send NED v e l o c i t y v e c t o r t o v e h i c l e

9 d e f Send NED Veloc i ty ( v e l o c i t y x , v e l o c i t y y , v e l o c i t y z , d u r a t i o n , v e h i c l e ) :

10 msg = v e h i c l e . m e s s a g e f a c t o r y . s e t p o s i t i o n t a r g e t l o c a l n e d e n c o d e (

11 0 , # t i m e b o o t m s ( n o t used )

12 0 , 0 , # t a r g e t system , t a r g e t component

13 m a v u t i l . mavl ink . MAV FRAME BODY OFFSET NED, #

14 0 b0000111111000111 , # type mask

15 0 , 0 , 0 , # x , y , z p o s i t i o n s ( n o t used )

16 v e l o c i t y x , v e l o c i t y y , v e l o c i t y z , # m/ s

17 0 , 0 , 0 , # x , y , z a c c e l e r a t i o n

18 0 , 0 )

19 v e h i c l e . s e n d m a v l i n k ( msg )

20 # t ime . s l e e p ( 0 . 2 5 )
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21

22 d e f movement ( x , y , w, v e h i c l e ) :

23 r o l l f =0 .3

24 r o l l s =0 .2

25 t h f =0 .25

26 t h s =0 .175

27 p i t c h =0 .2

28 i f w>90:

29 i f x<290 and y>210 and y<270:

30 i f x<145:

31 p r i n t ( ” I z q u i e r d a Rapido ” )

32 Send NED Veloc i ty (0 ,− r o l l f , 0 , 1 , v e h i c l e )

33 e l s e :

34 p r i n t ( ” I z q u i e r d a l e n t o ” )

35 Send NED Veloc i ty (0 ,− r o l l s , 0 , 1 , v e h i c l e )

36 e l i f x>350 and y>210 and y<270:

37 i f x<495:

38 p r i n t ( ” Derecha l e n t o ” )

39 Send NED Veloc i ty ( 0 , r o l l s , 0 , 1 , v e h i c l e )

40 e l s e :

41 p r i n t ( ” Derecha r a p i d o ” )

42 Send NED Veloc i ty ( 0 , r o l l f , 0 , 1 , v e h i c l e )

43 e l i f y<210 and x>290 and x<350:

44 i f y>105:

45 p r i n t ( ” A r r i b a l e n t o ” )

46 Send NED Veloc i ty (0 ,0 ,− t h s , 1 , v e h i c l e )

47 e l s e :

48 p r i n t ( ” A r r i b a r a p i d o ” )

49 Send NED Veloc i ty (0 ,0 ,− t h f , 1 , v e h i c l e )

50 e l i f y>270 and x>290 and x<350:

51 i f y<375:
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52 p r i n t ( ” Abajo l e n t o ” )

53 Send NED Veloc i ty ( 0 , 0 , t h s , 1 , v e h i c l e )

54 e l s e :

55 p r i n t ( ” Abajo r a p i d o ” )

56 Send NED Veloc i ty ( 0 , 0 , t h f , 1 , v e h i c l e )

1 d e f f a c e d e t e c t i o n ( frame , u p p e r b o d y c a s c a d e , f a c e c a s c a d e ) :

2 posx = 320

3 posy = 240

4 ew = 91

5 g ray = cv2 . c v t C o l o r ( frame , cv2 .COLOR BGR2GRAY)

6 body = u p p e r b o d y c a s c a d e . d e t e c t M u l t i S c a l e ( gray , 1 . 3 , 2 )

7 f o r ( x , y , w, h ) i n body :

8 cv2 . r e c t a n g l e ( frame , ( x , y ) , ( x+w, y+h ) , ( 2 5 5 , 0 , 0 ) , 2 )

9 r o i g r a y = gray [ y : y+h , x : x+w]

10 r o i c o l o r = f rame [ y : y+h , x : x+w]

11 f a c e = f a c e c a s c a d e . d e t e c t M u l t i S c a l e ( r o i g r a y )

12 f o r ( ex , ey , ew , eh ) i n f a c e :

13 cv2 . r e c t a n g l e ( r o i c o l o r , ( ex , ey ) , ( ex+ew , ey+eh ) , ( 0 , 2 5 5 , 0 ) , 2 )

14 posx = round ( ( ew / 2 ) +ex+x )

15 posy = round ( ( eh / 2 ) +ey+y )

16 # cv2 . imshow ( ’ img ’ , f rame )

17 r e t u r n posx , posy , ew
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