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Preface

There has been a significant progress during the last years toward the development of a

new class of sensors that use fiber optics. These sensors are capable to detect acoustic fields,

lineal and rotational acceleration, electric and magnetic fields, and many other physical

parameters. In general, the sensor modulates some feature of the luminous wave in an optic fiber

as the intensity or the phase. The modulation of the phase usually becomes modulation of

intensity before it is carried out the detection. This can be achieved by means of an optic

interferometer or with the use of electro-optic materials. The resulting signals (intensity or phase)

can be measured far from places outside of the sensor (a mechanism of the type transducer-

modulator-demodulator) by means of a system of signal transmission for fiber optic. The optic

signal can be in an analogical or discrete way and the system can operate with or without the

optic-to-electric signal conversion or electric-to-optics. Even for the simplest case, in the one that

a visual field or an image will be transmitted in a fiber cable, the own fiber can work as a sensor

and should be considered all the aspects to achieve the conduction of the luminous wave through

the fiber. 

The content of the present dissertation is a contribution to these multiple applications that

has the fiber optics in the land of the science. In particular, the study concentrates on the use of

the optic fiber as a guide of luminous wave besides an electro-optic crystal, both in an

arrangement for the voltage measurement. Voltage sensors based on optical fiber have been study

object in the recent years and along which the authors have used diverse technical and elements

in order to achieving a high sensitivity in the measurement and a high stability again the

variations of temperature mainly.

This dissertation introduces the basic concepts of the fundamental configuration proposed

for the used voltage sensor. Shows the theory that sustains each one of the carried out

experiments. Also, provides and discusses the experimental results obtained, all this with the

purpose and the effort of throwing a new light in the applicable measurement techniques to the

industry where the environmental conditions are usually a hard test for the devices and where the

security for people should be primordial.
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Chapter One:

Introduction

§1.1 Background

A sensor system or simply sensor is usually made up of a transducer device, a

communication channel and a subsystem for generating and/or detecting, treating processing

and conditioning the signal, all of these being either integrated or not integrated.  If luminous

radiation is used in any of the subsystems the photonic system is understood to be an Optical

Sensor (OS) [1]. In general, an OS is a photonic system in which the measured object

magnitude or input signal (Vi) introduces modifications or modulations in some of the

characteristics of light in an optical system. After being detected, processed and conditioned,

the system will deliver an output signal (V0), usually in the electric domain, which will be a

valid reproduction of the object variable. The transmitted or reflected light can be modulated

by the modulating signal in its amplitude, phase, frequency or polarization characteristics. In

accordance with this concept, if any of the processes or parts use fiber-optic technology, then

we have a fiber optic sensor (FOS) that is a subdivision of OS. It is well known that the

propagation modes of the light in fibers possess polarization properties and these properties

can be influenced by external conditions. Therefore, it might thus be possible to use fibers as

indicators of those external conditions, that is, to use them as measurement sensor [2].

Development of FOS began in earnest in 1977 even though some isolated

demonstrations preceded this date [3]. Ever since, a great quantity of ideas has been proposed

and several techniques have been discovered for different measurements and applications.

FOS technology has matured to the point in which the impact of this technology is now

evident. FOS offers several advantages in those that are included: immunity to the

electromagnetic interference, lightweight, small size, high sensibility, and large bandwidth.

They have the versatility of being configured in arbitrary shapes and they offer a common
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technological base in the devices to sensing different physical perturbations (acoustic,

magnetic, temperature, rotation, voltage, current, etc.) [4]. FOS can be built to be used in high

voltage, high temperature, corrosive and other environmental conditions, besides the inherent

compatibility with technology of remote sensing. The progress is demonstrating that these

advantages have been substantial in the last years that it was considered the use of the fiber

optics for applications in the industry of the electricity supply where we would have many

advantages over traditional techniques [5,6].

For example, the traditional techniques used for voltage measurement in the industry

have begun to be substituted by FOS for measurement of electric and magnetic fields and

electrical current, because of their inherently dielectric nature. They provide galvanic isolation

of the sensor head from ground potential, are less sensitive to electromagnetic interference,

generally are of small size, and provide superior safety. Nearly all electric and magnetic field

sensors based upon fiber optics are hybrid devices; that is, the fiber is attached to some other

material and is used to monitor any changes in that material with electric and magnetic fields.

This is required for electric fields since the intrinsic inversion symmetry of the glass matrix of

the optical fiber precludes a Pockels effect; it is required for magnetic fields because the

Verdet constant of telecommunication optical fiber is very small [7,8].

§1.2 Justification

There are three fundamental mechanisms for the measurement of electric fields:

electrostatic induction, electrostatic forces and electrophysical phenomena.

Electrostatic induction mechanism has been the traditional method for the

measurement of high voltage in the industry since years [9]. Using the electrostatic induction

mechanism is possible to measure high voltage up to about 200 kV and several forms of

voltmeters have been devised. These voltmeters are easy to manage and can be connected

directly across the test circuit to take the measure. The Abraham voltmeter is the most
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commonly used electrostatic meter in high voltage testing equipment and for industrial

applications [9].

The principle of the electrostatic induction is very known and we can summarize as

follows: When two parallel conducting plates (with cross section area A and spacing x) are

charged (q) and have a potential difference V, then the energy stored W is given by:
2

2
1 CVW =  and the change FdxdCVdW == 2

2
1 .

Therefore, the force can be given in terms of the capacitance change as:

dx
dCVF 2

2
1

=                                                       (1.1)

For uniform field, the capacitance 
x

AC ε
=  where ε is the relative permittivity of the

medium. Finally,

2

2

2
1

x
VAF ε−=                                                     (1.2)

It is thus seen that the force of attraction is proportional to the square of the potential

difference applied, so that the meter reads the square value (or can be marked to read the rms

value).

Electrostatic voltmeters of the attracted disc type may be connected across the high

voltage circuit directly without the use of any potential divider or other reduction method and

can be used to measure both a.c. and d.c. voltages .

Nevertheless, owing to the difficulty of the designing electrostatic voltmeters for the

measurement of extra high voltages which will be free from errors due to corona effects,

within the instrument, and to the external electrostatic fields, a number of special methods

have been devised for the same purpose.

Other mechanisms for high voltage measurement based on the electrostatic induction

are by using transformers and potential dividers [9]. The spark over of the sphere gaps and

other type of gaps are also used, especially in the calibration of meters in high voltage

measurements.
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However, as we can deduce, the main disadvantage of the methods based on

electrostatic induction is, in general, the disturbance over the field to be measured. All of them

rely on the accurate measurement of the current resulting from the time variation of the

charges induced on a metallic body immersed in the field. Therefore, this mechanism is not

suitable for use with fiber optics.

The second mechanism mentioned before as electrostatic forces consists in the

measurement of high voltage using a variable gap in a Fabry-Perot micro cavity [10,11].

Electric fields can be measured due the attractive and the repulsive forces over a movable

mirror attached to a diaphragm plate of the Fabry–Perot cavity. These forces produce a relative

variation of the reflectivity (or transmissivity) due the displacement of the diaphragm and this

force is proportional to the electric field to be measured. We can summarize the electrostatic

force mechanism as follows: Whenever a conductor is placed into an electric field, the free

electrons in the material rearrange themselves in such a way as to render its interior field-free.

This electron arrangement gives place to an induced charge on the surface of the conductor.

However, the net charge in the body remains zero. The Coulombic attraction between the

induced surface charge and the external electric field E0, develops an electrostatic force

density Fs which acts normal to the surface of the conductor, for otherwise the charges would

move along the surface contradicting the assumption of an equipotential surface. The

magnitude of Fs is given by [12]:

20

2 surfaces EF ε
=                                                    (1.3)

where Esurface is the intensity of the field right at the surface of the conductor and ε0 is the

permittivity in vacuum. The magnitude and distribution of Esurface is the result of the

superposition of the applied field E0 plus the field resulting from the induced charges Ei.

Hence, the magnitude of Esurface is a function of position and strongly dependent on the

geometry of the conductive body.

By combining the concept of a Faraday cage with an optical interferometer it is

possible to measure the low pressure due Fs. Since the transmissivity (or reflectivity) of a

Fabry-Perot cavity is extremely sensitive to changes in the length of the cavity which in this
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case is caused by a differential pressure acting upon a movable mirror arrangement at one end

of the cavity.

The reflectance of a Fabry-Perot will be a function of spacing, index of refraction,

mirror reflectivities and wavelength. Assuming that the mirrors are lossless, the reflected

intensity is given as follows [13]:

( ) 





+−









=

λ
π

λ
π

hRRRR

hRR

I
I r

2sin41

2sin4

2
21

2

21

2
21

0

                               (1.4)

with h = h0 + δ h; where R1 and R2 are the mirror relectivities, h is the variable gap, h0 is the

height of the unperturbed cavity and δ h is the deflection of the membrane that supports the

mirror.

Nevertheless, in spite of this mechanism can be implemented using fiber optics, this

method is sophisticate in the design and in the construction because the devices require a

sensor element that uses the small and thin plate supported by a corrugated membrane with

special characteristics.

Finally, methods based on electrophysical phenomena are today more investigate and

there is a lot of literature reliable. It is standing that for electrophysical phenomena, the

changes of the physical and geometrical properties of a material due the electric field applied

[14]. This phenomena is used for the measurement of voltage either in a spectroscopic way

using the high Rydberg states [15] or by means the use of FOS taking the properties of the

materials and passing light throw them. Using FOS for example, the fiber sometimes is used to

sense dimensional changes of a piezoelectric material [16-32] or an electrostrictive material

[33-37] in the presence of electromagnetic fields. Depending on the level of sensitivity

required, the readout can be either by simple intensity measurement or by interferometric

techniques [38,39]. Photoelectroluminescent phenomenon of some semiconductors is also take

with fiber optics to carry out electric field measurements [40,41]. Using small bulk materials

with electro-optic Pockels effect properties as LiNbO3 [42-51], Bi4Ge3O12 [52-56], Bi12GeO20

(BGO) [57,58], Bi12SiO20 (BSO) [59-62] and Bi12TiO20 (BTO) [63-67] or materials with
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electro-optic Kerr effect properties [68,69], the light can be coupled with the fiber and

modulated.

The conditions of designing a sensor involve among other factors, the easiness in the

construction, the portability, the sensitivity and the independence with the variations of the

environmental conditions [1]. Among the different techniques based on the electrophysical

phenomena for the voltage measurement, the one that fulfils the approach of the construction

easiness and portability are the sensors based on the electro-optic technique.

However, there are two obstacles that prevent the application of these sensors in

industry. First, their sensitivity is somewhat low, and second the temperature stability of the

entire sensor does not meet industrial requirements. In general, attention is paid to the

temperature stability of crystal parameters [62, 70-76].

We have proposed to investigate the use of the BTO photorefractive crystal as electro-

optic component in a voltage sensor due to the advantages that offers over other crystals used

for the same purpose. The BTO photorefractive crystal has higher stability to the variations of

the environmental temperature (compared with the LiNbO3), has lower optical activity

(compared with the BSO and BGO) and has higher electro-optic coefficient (compared with

Bi4G3O12) [77].

Therefore, the present dissertation is enclosed to demonstrate the use of the BTO

crystal in an electro-optic voltage sensor for industrial applications, within several

configurations, as well as in demonstrating the advantages that presents as much in sensitivity

as in stability.

§1.3 Contributions

In the present dissertation, the theory of the electric field sensors based on the

electrophysical phenomena as electro-optic effect is presented. Applications of BTO

photorefractive crystal as electro-optic element are investigated in great detail and new

configurations for voltage sensor are examined.
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To demonstrate the feasibility for industrial applications of the remote voltage sensor

based on a BTO crystal, the experiments were made and the results were registered and

published in the following works:

1) Role of Photoconductivity for operation of fiber optic electric field sensors: theory

and experiments. Here, the authors demonstrate theoretical and experimentally that

the presence of the photoconductivity in a voltage sensor based on a BTO electro-optic

crystal defines a non-uniform sensitivity region that must be to take into account for

future designs of sensors based on photorefractive crystals type.

2) Fiber optic optically controlled voltage sensor. Here, the authors show the theory

and the experiments for a new voltage sensor configuration that has optically

controlled sensitivity.

3) Fiber optic voltage and temperature sensor. Here, the authors propose a

configuration based on electro-optic modulator with a BTO crystal for voltage and

temperature and it is demonstrated experimentally.

4) An electro-optic fiber sensor with double pass configuration for measuring high

AC voltage. Here, the authors demonstrate the industrial application of a new

configuration for an electro-optic fiber sensor for measuring two different waveforms

of high AC voltage.

§1.4 Contents by chapter

Configurations of voltage sensor based on Bi12TiO20 crystal for industrial applications

will be presented. In Chapter Two, fiber optic voltage sensor basis such as crystal optics, index

ellipsoid, Jones matrix formalism and the amplitude modulation are considered.
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In Chapter Three, the theory of electro-optic voltage sensors are presented. Materials

for electro-optic voltage sensors and considerations such as the crystal dimensions and the

photoconductivity effect for operation of fiber optic electric field sensors based on

photorefractive crystals are considered. Moreover, several configurations reported up to now

are described.

Chapter Four is devoted to a new configuration proposed for optically controlled

voltage sensor. Where the control of the sensitivity made of the interaction of two widely

separated wavelengths is demonstrated.

In Chapter Five, a fiber optic configuration for voltage and temperature measurements

is proved by means of theory and experiments.

In Chapter Six, we show a new configuration for high AC voltage measurements for

two available waveforms: continuos electric wave form and transient electric wave form.

Finally in Chapter Seven, general conclusions and ideas for further work are given.
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Chapter Two:

Basis of fiber optic voltage sensors

§2.1 Introduction

A sensor system based on optical fiber and an electro-optic crystal can be treated as the

application of a modulator of luminous intensity that uses the optical fiber as a guide of light

and a crystal as an element that possesses an electrophysical property (either Pockels effect or

Kerr effect). It is known that the electromagnetic characteristics and behavior of light that is

propagating along the optical fiber are governed by Maxwell’s equations.

Bulk and waveguide optical devices used as modulators, deflectors switches, sensors,

etc., are constructed using isotropic, uniaxial or biaxial media. In active devices, isotropic and

uniaxial media generally become biaxial via electro-optic effect and thus have three distinct

principal indices of refraction (nx, ny, and nz), the new principal dielectric axes may have some

arbitrary orientation relative to the device reference coordinate system. Arbitrary orientations

of the axes also occur in passive devices that have light propagating in a direction other than

along a principal axis or in a principal plane of the crystal. Therefore, in designing and

analyzing devices, it is necessary to understand the directional optical properties (polarization

orientations, ray directions, phase velocity indices, ray velocity indices, etc.) of crystals and

the effect of birefringence level on these properties.

The present chapter explains the fundamental concepts related to the electric field

sensors based on the electro-optic effect. Related to these concepts we have the crystal optics,

in which we will study the index ellipsoid as application to the analysis of the light

propagation in crystals media. Together with the Jones matrix formalism and the amplitude

modulation, we will extend our study in the following Chapter to electric field sensors, the

materials used for it and the different configurations.
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§2.2 Crystal optics and the index ellipsoid

A crystal is a three-dimensional periodic arrangement of atoms, molecules or ions. A

characteristic property of the crystal structure is its periodicity and a degree of symmetry. For

each atom the number of neighbors and their exact orientations are well defined, otherwise the

periodicity will be lost. If the molecules are organized in space according to regular periodic

patterns and are oriented in the same direction, the medium is in general anisotropic [1].

   For any anisotropic (optically inactive) crystal class there are two allowed orthogonal

linearly polarized waves propagating with different phase velocities for a given wave vector k.

Biaxial crystals represent the general case of anisotropy. Generally, the allowed waves exhibit

extraordinary-like behavior, that is, the wave vector k and Poynting vector S directions differ.

In addition, the phase velocity, polarization orientation and Poynting vector of each wave

change distinctly with wave vector direction and the two waves have different directional

characteristics. For each allowed wave, the electric field E is not parallel to the displacement

vector D (which defines polarization orientation) and therefore the ray (Poynting) vector S is

not parallel to the wave vector k. Figure 2.1 depicts the geometrical relationship of these

vectors for two extraordinary-like waves, also showing that D is perpendicular to k and that E

is perpendicular to S. Only for propagation in the (x,y) and (y,z) principal planes of a biaxial

crystal will one of the waves exhibit ordinary-like behavior, that is, its optical properties are

independent of direction within these planes. As shown in Figure 2.1 the angle α between D

and E is the same as the angle between k and S, but for a given k, α1 ≠ α2. Furthermore, for

each wave D⊥k⊥H and E⊥S⊥H (where ⊥ reads perpendicular), forming orthogonal sets of

vectors. The vectors D, E, K and S are coplanar for each wave [2]. An important conclusion is

that, in general, the energy in an anisotropic crystal does not propagate parallel to the wave

normal direction, except when propagation is along a principal axis. Also, for any direction of

phase propagation there are two phase velocities, corresponding to two allowed

monochromatic plane waves with differing directions of linear polarization (D).
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Figure 2.1 The geometric relationships of the electric quantities D and E and the magnetic quantities B and

H to the wave vector k and the ray vector S are shown for the two allowed extraordinary-like waves propagating

in an anisotropic medium [3].

 The propagation characteristics of the two allowed orthogonal waves are directly

related to the fact that the optical properties of an anisotropic material depend on direction.

These properties are represented by the constitutive relation D=ε E, where ε  is the relative

permittivity tensor of the medium and E is the corresponding optical electric field vector. For

a homogeneous, nonmagnetic, loss less, optically inactive and non-conducting medium, the

relative permittivity tensor has only real components. Moreover, the relative permittivity

tensor and its inverse ε -1=1/ε0 ( )2/1 n , where n is the refractive index, are symmetric for all

crystal classes and for any orientation of the dielectric axes [3-5]. On the other hand, the

relative permittivity tensor is useful in the study of the directional optical properties of crystals

with the wavevector surface. The unit vectors zyx ˆ,ˆ,ˆ  identify the principal dielectric axes of

the crystal. The principal relative permittivities εx, εy, and εz correspond to the permittivities

for polarization oriented along x̂ , ŷ  and ẑ , respectively. A device reference coordinate

system with axes rx̂ , rŷ and rẑ that can have any arbitrary orientation with respect to x̂ , ŷ

and ẑ is defined for displaying the resulting optical properties.
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 The permittivity tensor ε  is represented by a matrix that is real, nonsingular, positive

definite and symmetric. Therefore, all three eigenvalues (principal relative permittivities εx, εy,

and εz) are positive, all three eigenvectors (principal axes zyx ˆ,ˆ,ˆ ) are real and orthogonal and

the determinant of ε  is strictly positive. Therefore, the matrix representation of the

permittivity tensor can be diagonalized, and in principal coordinates, the constitutive equation

has the form:
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where reduced subscript for the permittivity tensor notation is used. The principal

permittivities lie on the diagonal of ε  and the principal refractive indices are xxn ε= ,

yyn ε=  and zzn ε= . The symmetry of ε  guarantees that its diagonal form exists as in

Equation 2.1, given a correct choice of three perpendicular principal axes oriented in a specific

manner with respect to the crystallographic axes.

   Therefore, the index ellipsoid is a construct with geometric characteristics representing

the phase velocities and the vibration directions of D of the two allowed plane waves

corresponding to a given optical wave-normal direction k in a crystal. The material properties

(principal permittivities or refractive indices) of the crystal at optical frequencies must be

known to develop this construct. This index ellipsoid can represent a quadratic surface of the

stored electric energy density ωe of a dielectric [5].

ωe = 2
1 E⋅D = 2

1 ∑∑
i j jEijiE ε = 2

1 ε0 ET ε E     i,j = x,y,z                 (2.2)

or

       ωe = 2
1 ε0 (E2

xεx + E2
yεy + E2

zεz)                                    (2.3)
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in principal coordinates. Here T indicates transpose. The stored energy density is positive for

any value of electric field and thus it has positive eigenvalues (permittivities). Therefore, the

quadratic surface is always given by an ellipsoid [3, 6].

With the Equation (2.1), Equation (2.3) assumes the form:
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By substituting x = 
02 εω e

xD
 and  nx

2 = εx, and similarly for y and z, the ellipsoid is

expressed in Cartesian principal coordinates as:

2

2

xn
x  +  2

2

yn
y  + 2

2

zn
z  = 1                                               (2.5)

   Equation (2.5) is the general index ellipsoid for an optically biaxial crystal. If nx = ny,

the surface becomes an ellipsoid of revolution, representing a uniaxial crystal. In this crystal,

one of the two allowed eigenpolarizations will always be an ordinary wave with its Poynting

vector parallel to the wave vector and E parallel to D for any direction of propagation. An

isotropic crystal (nx = ny = nz) is represented by a sphere with the principal axes having equal

length. Any wave propagating in this crystal will exhibit ordinary characteristics. The index

ellipsoid for each of these three optical symmetries is shown in Figure 2.2.
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                Isotropic                             Uniaxial       Biaxial
            z'            z              z’           z z’           z

y’                y’   y’

  y    y      y

          x            x             x       Optic axis
  x’    x’  Optic axis     x’     Optic axis

Figure 2.2 The index ellipsoid for the three crystal symmetries are shown in nonprincipal coordinates (x’,

y’, z’) relative to the principal coordinates (x, y, z). For isotropic crystals, the surface is a sphere. For uniaxial

crystals, it is an ellipsoid of revolution. For biaxial crystals it is a general ellipsoid [7].

   For a general direction of propagation, the section of the ellipsoid through the origin

perpendicular to this direction is an ellipse, as shown in Figure 2.3a. The major and minor

axes of the ellipse represent the orthogonal vibration directions of D (eigenpolarizations) for

that particular direction of propagation. The lengths of these axes correspond to the principal

refractive indices and therefore give the respective phase velocities of the allowed

polarizations. They are therefore, referred to as the fast and the slow axes. Figure 2.3b

illustrates the field relationships with respect to the index ellipsoid. The line in the (k,Di) plane

(i=1 or 2) that is tangent to the ellipsoid at Di is parallel to the ray vector Si. The line length

denoted by sn i gives the ray velocity as sv i = C/ sn i  for Si. The same relationships hold for

vibration, D1 or D2.

   In the general ellipsoid for a biaxial crystal there are two cross sections passing through

the center that are a circle. The normals to these cross sections are called the optic axes

(denoted in Figure 2.2 in a non-principal coordinate system), and they are coplanar and

symmetric about the z principal axis in the x,z plane. The angle ϑ  of an optic axis with respect

to the z-axis in the x, z plane is
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The phase velocities for D1 and D2 are equal for these two directions: v1 = v2 = c/ny. In

an ellipsoid of revolution for a uniaxial crystal there is one circular cross section perpendicular

to the z principal axis. Therefore, the z-axis is the optic axis, and o0=ϑ  in this case.

Several surfaces exist which may be used to represent the various optical properties of

crystals. For example, in many cases the index ellipsoid, shown in Figure 2.3, is useful for

device analysis [7]. Given a direction of phase propagation k, the two-phase velocity indices

of refraction (n1 and n2), the corresponding eigenpolarizations (D1, D2), ray velocity indices

(nS1, nS2) and ray directions (S1, S2) are readily determined from the index ellipsoid. The three

distinct principal indices of refraction for natural biaxial crystals are ordered in magnitudes as

nz > ny > nx, and they identify the three semiaxis lengths (principal axes) of the biaxial

ellipsoid. For propagation directions not coinciding with these axes, the phase velocity index

for one wave (n1) will always lie between nx and ny and for the other wave (n2) between ny and

nz. These intermediate indices are the lengths of the semiaxis of the cross-sectional ellipse

perpendicular to k.

Figure 2.3 (a) The index ellipsoid cross section that is normal to the wave vector k has the shape of an

ellipse. The major and minor axes of this ellipse represent the directions of the allowed polarizations D1 and D2 ;

(b) for each eigenpolarization (1 or 2) the vectors D, E, S and k are coplanar [7].

   

The two sheeted wave-vector surface, on the other hand, is useful for examining, in

wave-vector space, the directional characteristics of light propagating in crystals [3-5]. The

sheets of the surface depict the dispersive nature of the phase velocity indices for the two
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allowed linearly orthogonally polarized waves as the direction of propagation changes. For

isotropic crystals, the wave-vector surface is a sphere, since both indices are the same and are

independent of direction. For uniaxial crystals, the sheets consist of two quadratic surfaces, a

sphere and an ellipsoid of revolution, one inside the other and intersecting at two points along

the optic axis; one index is constant with direction (sphere) and the other has directional

dependence (ellipsoid of revolution). For biaxial crystals, however, the wave-vector surface is

more complicated; each sheet is a higher-order surface, one inside the other and intersecting at

only four points that lie in the (x, z) principal plane. These points identify the orientations of

the two optic axes in the (x, z) principal plane, which is referred as the optic plane.

§2.3 The electro-optic effect in cubic crystals

   The electro-optic effect is the change in the refractive index resulting from the

application of a dc or low-frequency electric field. A field applied to an anisotropic electro-

optic material modifies its refractive indices and thereby its effect on polarized light.

   The dependence of the refractive index on the applied electric field takes one of two

forms:

 The refractive index changes in proportion to the applied electric field, in which

case the effect is known as the linear electro-optic effect or the Pockels effect.

 The refractive index changes in proportion to the square of the applied electric

field, in which case the effect is known as the quadratic electro-optic effect or the

Kerr effect.

   The basic idea behind electro-optic devices is to alter the optical properties of a

material with an applied voltage in a controlled way. The changes in the optical properties,

particularly the permittivity tensor, translate into a modification of some parameters of a light
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wave carrier, such as phase, amplitude, frequency, polarization or position, as it propagates

through the device.

   At an atomic level, an electric field applied to certain crystals causes a redistribution of

bond charges and possibly a slight deformation of the crystal lattice [5]. In general, these

alterations are not isotropic; that is, the changes vary with the direction in the crystal.

Therefore, the inverse dielectric constant (impermeability) tensor changes accordingly.

Crystals lacking a center of symmetry are noncentrosymmetric and exhibit a linear (Pockels)

electro-optic effect. The changes in the impermeability tensor elements are linear in the

applied electric field. On the other hand, all crystals exhibit a quadratic (Kerr) electro-optic

effect. The changes in the impermeability tensor elements are quadratic in the applied field.

When the linear effect is present, it generally dominates over the quadratic effect.

   The linear electro-optic effect is represented by a third rank tensor rijk. The

permutation symmetry of this tensor is rijk = rjik, i, j, k = 1,2,3. Therefore the tensor can be

represented by a 6×3 matrix; i.e., rijk⇒rij, i=1,...,6 and j=1,2,3. Generally, the rij coefficients

have very little dispersion in the optical transparent region of a crystal. The quadratic electro-

optic effect is represented by a fourth rank tensor sijkl. The permutation symmetry of this

tensor is sijkl = sjikl = sijlk,  i, j, k, l = 1,2,3. The tensor can be represented by a 6×6 matrix; i.e.,

sijkl⇒skl,  k, l = 1,...,6.

2.3.1 The linear electro-optic effect or Pockels effect

   An electric field applied in a general direction to a non-centrosymmetric crystal

produces a linear change in the constants (1/n2)i due to the linear electro-optic effect according

to

∆(1/n2)i = ∑
j

jij Er       i= 1,...6 ; j=x,y,z = 1, 2, 3                       (2.7)
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where rij is the ijth element of the linear electro-optic tensor in contracted notation. In matrix

form Equation (2.7) is
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Ex, Ey, and Ez are the components of the applied electric field in principal coordinates. The

magnitude of ∆(1/n2)i is typically on the order of less than 10-5. Therefore, these changes are

mathematically referred to as perturbations. The new impermeability tensor ´/1 2n  in the

presence of an applied electric field is no longer diagonal in the reference principal dielectric

axes system. It is given by
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        (2.9)

However, the field-induced perturbations are symmetric, so the symmetry of the tensor

is not disturbed. The new index ellipsoid is now represented by

(1/n2)’1 x2 + (1/n2)’2 y2 + (1/n2)’3 z2 + 2(1/n2)’4 y z +

2(1/n2)’5 x z + 2(1/n2)’6 x y = 1                 (2.10)

or equivalently, XT '/1 2n X = 1, where X = [x y z]T [6, 8]. The presence of cross terms

indicates that the ellipsoid is rotated and the lengths of the principal dielectric axes are

changed. Determining the new orientation and shape of the ellipsoid requires that '/1 2n  be
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diagonalized, thus determining its eigenvalues and eigenvectors. The perturbed ellipsoid will

then be represented by a square sum:
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The eigenvalues of '/1 2n  are 1/n2
x’, 1/n2

y’, 1/n2
z’. The corresponding eigenvectors are

x’=[xx’ yx’ zx’]T, y’=[xy’ yy’ zy’]T and z’=[xz’ yz’ zz’]T, respectively.

2.3.2 The quadratic electro-optic effect or Kerr effect

   An electric field applied in a general direction to any crystal, centrosymmetric or

noncentrosymmetric, produces a quadratic change in the constants (1/n2)i due to the quadratic

electro-optic effect according to
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Ex, Ey, and Ez are the components of the applied electric field in principal coordinates. The

perturbed impermeability tensor and the new index ellipsoid have the same form as Equations

(2.9) and (2.10).
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2.3.3 Mathematical approaches

A number of formalisms are suggested in the literature to address the specific problem

of finding the new set of principal dielectric axes relative to the zero-field principal dielectric

axes. Most approaches, nevertheless, do not provide a consistent means of labeling the new

axes. Also, some methods are highly susceptible to numerical instabilities when dealing with

very small off-diagonal elements as in the case of the linear electrooptic effect.

The usual approach is to obtain the eigenvalues λ of the impermeability tensor by

solving the cubic secular equation, |[1/n2] − λ[I]| = 0, where |*| denotes determinant and [I] is

the identity matrix. These solutions are then substituted one at time into the eigenvalues

equation to determine the corresponding eigenvectors [9]. This method has the disadvantages

of being numerically unstable and arbitrary in determining the eigenvectors.

A second approach is the method of successive approximations that is based on the

radius-normal property of an ellipse [9]. This iterative process produces radials vectors that

eventually converge to the major axis of the ellipse corresponding to greatest value. Some

difficulties with this method include the following: (1) the inverse of the impermeability

matrix must be found to determine the smallest principal value; (2) each eigenvector must be

accurately determined before calculating the next one; (3) the third eigenvector is found by the

cross product of the two eigenvectors. Thus the orthogonality property of eigenvectors is the

basis of this method and hence, this property cannot be used as a check on the principal axes

obtained.

A third approach, the Richardson purification process for eigenvectors, has the

advantage of calculating the eigenvectors independently of one another, so the orthogonality

property can be used as a check. However, there must be some prior knowledge of the

eigenvalues in order to use this method, since it uses approximations of these values to find

the corresponding eigenvectors.

A fourth approach, the method of Lagrange multipliers, has been suggested as a

method for finding the allowed vibration directions D for a given direction of phase

propagation [3]. The procedure utilizes the following facts: (1) D ⋅ k = 0, (2) ωe = ½ E ⋅ D and

(3) the principal axes of an ellipse are the shortest an the longest radial distances, the extreme
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of r2 = x2 + y2 + z2 are found subject to these conditions. This formalism requires the solution

of a secular equation, therefore, has the limitations noted previously.

A fifth approach is a geometric method using the Mohr circle. It was used originally in

the analysis of stress and strain tensors. This method has also been suggested for general

second-rank tensors describing the physical properties of crystals [9]. The zero-field principal

dielectric axes of the tensor are transformed to another set of axes (closer to the principal

dielectric axes) by a simple rotation about one of the zero-field axes. The principal values are

found by the use of a circle construction in the rotation plane. These values are extracted from

points on the circle. In practice this method is used primarily to develop the approximate

formulas for relating the components in the zero-field frame of reference to those in the

transformed axes and to determine how rapidly a specific element of a tensor changes as a

function of rotation angle. However, this method is difficult to apply to tensors with repeated

principal values or with small off-diagonal elements.

In contrast to these methods, has been proposed an attractive approach for

diagonalizing a symmetric matrix for the purpose of determining its eigenvalues and

eigenvectors [10, 11]. This method is suggested in the literature for electrooptic effect

calculations but is introduced only for very simple cases [12]. A symmetric matrix [A] can be

reduced to a diagonal form by the transformation [a][A][a]T = [λ], where [λ]  is a 3 × 3

diagonal matrix and [a] is the transformation matrix. Since the eigenvalues of [A] are

preserved under similarity transformation, they lie on the diagonal of [λ]. This approach is

always possible for symmetric matrices regardless of the multiplicity of the eigenvalues. The

transformation matrix [a] is real and orthogonal ([a]T = [a]-1) and, therefore, non-singular.

Thus the columns of [a]T (or rows of [a]) are independent, and they represent the right

eigenvectors (or left eigenvectors for [a]) of the corresponding eigenvalues of the matrix. The

ordering of the eigenvalues and corresponding eigenvectors is apparent if the transformation is

expressed as an eigenvalues equation, [A][a]T = [a]T[λ]. The first column of [a]T corresponds

to the eigenvector whose eigenvalues is the firth diagonal element of [λ] and similarly for the

other two columns. In the event of repeated eigenvalues, the associated eigenvectors are

arbitrary and span a characteristic plane, yet a set of orthogonal eigenvectors is obtained.
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The problem of determining the new principal axes and the indices of refraction of the

index ellipsoid in the presence of an external electric field is analogous to the problem of

finding the transformation matrix [a] that will diagonalize the perturbed impermeability

tensor. The lengths of the semiaxes are the reciprocals of the square roots of the eigenvalues of

'/1 2n . Generally, this matrix reduction requires a sequence of similarity transformations.

Since similarity is a transitive property, several transformation matrices can be multiplied to

generate the desired cumulative matrix [7].

There are a number of numerical techniques that perform the similarity transformation

for the eigensystem problem of symmetric matrices, including the Givens rotation method,

Householder’s method, QR algorithm and Jacobi method. The first three approaches have the

advantages of speed and accuracy of determining the eigenvalues, but they are tedious and

sometimes unreliable in the calculation of accurate eigenvectors, especially for repeated or

nearly equal eigenvalues. Small perturbations in the elements of [1/n2] necessarily give rise to

small perturbations in the eigenvalues and nearly equal eigenvalues may lead to the inaccurate

determination of the associated eigenvectors

The Jacobi method is a form of similarity transformation that has been shown to

provide both accurate eigenvalues and orthogonal eigenvectors. On the other hand, the Jacobi

method is the only approach of the four that can provide both accurate eigenvalues and

orthogonal eigenvectors and furthermore, it is the simplest to execute. Moreover, it produces

reliable results for matrices with very small off-diagonal elements [10].

§2.4 Jones Matrix formalism

In an electro-optic modulator, a beam of polarized light is propagated through a

succession of optical devices, each of that produces a specific change in the state of

polarization that can be easily modeled with the aid of the Jones calculus.

The Jones calculus was invented in 1941 by Robert Clark Jones and is a powerful

method in which the state of polarization of the input luminous wave is represented by a two-
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component vector while each optical element is represented by a 2 × 2 matrix. The overall

matrix for the whole system is obtained by multiplying all the matrices, and the state of

polarization of the transmitted light is computed by multiplying the vector representing the

input beam by the overall matrix [13].

The Jones vector representation of a light beam contains information not only the state

of polarization but also the intensity of light. Its electric vector can be written as Jones vector:
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                                                        (2.13)

And the intensity is given by:

I = E ж ⋅ E = | Ex | 2 + | Ey | 2                                          (2.14)

where the symbol (ж) signifies the Hermitian conjugate. The Jones vector of the emerging

beam after it passes through all the optical elements is written as:
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In many cases, we need to determine the transmission function of the optical system.

For this case, the ratio of the output intensity to the input intensity in an optical system is

defined as the transmission function (or simply transmission) and it is given by:
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An electro-optic crystal, which forms the voltage sensitive element in a Pockels’ cell,

can be approximate to an elliptic retarder (with an optical activity ρ) and a voltage induced

linear birefringence Γ. Its Jones Matrix is given by [14]:

M (Γ,ρ)
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where:

( )22 2ρΓδ +=      is the elliptical birefringence

ρ is the optical activity

Γ is the induced linear birefringence

To describe the complete Pockels cell we need the Jones matrices of the remaining

optical components. They are given as follows:

1) Quarter wave plate with linear birefringence Γ:   Q(Γ )
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3) Input polarization at azimuth η : J(η) 
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The coordinate system of the matrices M and Q is aligned with the eigenaxes of their

birefringence. To allow an arbitrary orientation a coordinate transformation using a rotational

matrix R is necessary, where the orientation of the crystal is γ and the one of the wave plate is

ϕ:
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4) Rotational matrix at any angle ψ : R(ψ) 

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Therefore, to obtain the intensity of the output beam in a Pockels cell, we have to

multiply the matrices above exposed as shows:

I0 = |A(θ ) R(γ) M(Γ,ρ) R(−γ) R(ϕ) Q(Γ) R(−ϕ) J(η) |2                    (2.18)

§2.5 Amplitude Modulation

An electro-optic modulator can be classified as one of two types, longitudinal or

transverse, depending how the voltage is applied relative to the direction of light propagation

in the device. A bulk modulator consists of an electro-optic crystal sandwiched between a pair

of electrodes and, therefore, can be modeled as a capacitor. In general, the input and output

faces are parallel for the beam to undergo a uniform phase shift over the beam cross section

[5].

In the longitudinal configuration, the voltage is applied parallel to the wave vector

direction as shown in Figure 2.4a [1, 5, 15 and 16]. The electrodes must be transparent to the

light by the choice of material used either for them (metal-oxide coatings of SnO, InO or CdO)

or by leaving a small aperture at their center at each end of the electro-optic crystal [1 and 15].

The ratio of the crystal length L to the electrode separation b is defined as the aspect ratio. For

this configuration L=b and therefore the aspect ratio is always unity. The magnitude of the

applied electric field inside the crystal is E=V/L. The induced phase shift is proportional to V

and the wavelength λ of the light but not the physical dimensions of the device. Therefore for

longitudinal modulators, changing the aspect ratio cannot reduce the required magnitude of the

applied electric field for a desired degree of modulation. Moreover, the degree of modulation
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increases with wavelength. However, these modulators can have a large acceptance area and

are useful if the light beam has a large cross-sectional area.

   In the transverse configuration, the voltage is applied perpendicular to the direction of

light propagation as shown in Figure 2.4b [1, 5, 15 and 16]. The electrodes do not obstruct the

light as it passes through the crystal. For this case, the aspect ratio can be very large. The

magnitude of the applied electric field is E=V/d (where the electrode separation b is equal to

d), and d can be reduced to increase E for a given applied voltage, thereby increasing the

aspect ratio L/b. The induced phase shift is inversely proportional to the aspect ratio; therefore,

the voltage necessary to achieve a desired degree of modulation can be greatly reduced.

Furthermore, the interaction length can be long for a given field strength. Nevertheless, the

transverse dimension d is limited by the increase in capacitance, which affects the modulation

bandwidth or the speed of the device and by diffraction for a given length L, since a beam with

finite cross section diverges as it propagates [5, 15].

Figure 2.4 (a) A longitudinal electro-optic modulator has the voltage applied parallel to the direction of

light propagation and the length L is equal to the electrodes’ separation b; (b) a transverse modulator has the

voltage applied perpendicular to the direction of light propagation and the width d is equal to the electrodes’

separation b [5].

   The modulation of amplitude can be implemented using an electro-optic bulk

modulator with polarizers and passive birefringent elements. Three assumptions are made:
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1) The modulating field is uniform throughout the length of the crystal; the change in

index or birefringence is uniform unless otherwise stated.

2) The modulation voltage is dc or very low frequency (ωm<< 2π/τ); the light

experiences the same induced ∆n during its transit time τ through the crystal of

length L, and the capacitance is negligible.

3) Light propagation is taken to be along a principal axis, before and after the voltage

is applied; therefore, the equations are presented in terms of the optical electric

field E, rather than the displacement vector D, which is common practice in various

optical references. For other general configurations the equations should be

expressed in terms of the eigenpolarizations D1 and D2. However, the electric field

will determine the direction of energy flow.

   An example of a longitudinal device is shown in Figure 2.5. In general, an applied

voltage V will rotate the principal axes in the crystal cross-section. For amplitude modulation,

Figure 2.5 indicates a polarizer along x with an input optical electric field Eo(t)= Ei cos ω t.

For intensity (optical energy) modulation of a light wave, some possibilities include

using:

 A dynamic retarder configuration with a crossed polarizer at the output

 A dynamic retarder configuration with a parallel polarizer at the output

 A phase modulator configuration in a branch of a Mach-Zehnder interferometer

 A dynamic retarder with push-pull electrodes.

   The intensity modulator parameter of interest is the transmission T=I0/Ii, as we

mentioned before, is the ratio of output to input intensity.

   As the two polarizations propagate at different speeds through the crystal, a phase

difference (relative phase) or retardation Γ evolves between them as a function of length:

iyyxxyxyx ELnrnrLnnLnn ΓΓ
λ
π

λ
π

λ
πΓ −=−−−=−= 0

33
'' )()(2)(2        (2.19)



35

where Γ0 is the natural phase retardation in the absence of an applied voltage and Γi is the

induced retardation linearly related to V.

For a longitudinal modulator, the applied electric field is E = V/L, and the induced

retardation is:

( )Vnrnr xxyyi
33 −






=

λ
πΓ                                              (2.20)

which is independent of L and linearly related to V.

For a transverse modulator E = V/d and the induced retardation is:
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   The optical fields at the output can be expressed in terms of Γ:

Ex’ = cos ωt

Ey’ = cos (ωt - Γ)

   Therefore, the desired output polarization is obtained by applying the appropriate

voltage magnitude. The eigenpolarizations Ex’ and Ey’ are in phase at z = 0. They have the

same frequency but different wavelengths. Light from one polarization gradually couples into

the other. In the absence of natural birefringence, nx - ny = 0, the voltage that would produce a

retardation of Γ = Γi = π, such that a vertical polarization input becomes a horizontal

polarization output, is known as the half – wave voltage Vπ and it is given by:



36

                             33
yyxx nrnr

V
−

=
λ

π         for longitudinal modulator

                         (2.22)

                            







−
=

L
d

nrnr
V

yyxx
33

λ
π  for transversal modulator

  The total retardation in terms of Vπ  (assuming no birefringence) is
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   To cancel the effect of natural birefringence, the phase retardation Γ0 can be made a

multiple of 2π by slightly polishing the crystal to adjust the length or by applying a bias

voltage. If birefringence is present, an effective Vπ can be calculated that would give a total

retardation of  Γ = π.

   An intensity modulator constructed using a dynamic retarder with crossed polarizers is

shown in Figure 2.5.
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Figure 2.5   A longitudinal intensity modulator is shown using crossed polarizers with the input polarization

along the x principal axis [5].
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The transmission for this modulator is
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using (2.14). For linear modulation, where the output is a replica of the modulating voltage

signal, a fixed bias of Γ0 = π / 2 must be introduced either by placing an additional phase

retarder, a λ / 4 wave plate (Fig 2.5), at the output of the electro-optic crystal or by applying an

additional dc voltage of Vπ / 2 (Fig. 2.6). This bias produces a transmission of T=0.5 in the

absence of modulating voltage. If the crystal cross section has natural birefringence, then a

variable compensator (Babinet-Soleil) or a voltage less than Vπ / 2 must be used to tune the

birefringence to give a fixed retardation of π/2.

   For a sinusoidal modulation voltage V=Vmsin ϖm t, the retardation at the output of the

crystal, including the bias, is

tmmi ωΓπΓΓΓ sin
20 +=+=                                     (2.25)

where Γm = π Vm / Vπ is the amplitude modulation index or depth-of-amplitude modulation

Figure 2.6   A λ/4 wave plate is used as a bias to produce linear modulation [5].
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The transmission becomes
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   If the modulation voltage is small (Vm<< 1), then the modulation depth is small (Γm <<

1) and

[ ]tVT mm ωΓ sin1
2
1)( +=                                         (2.27)

   Therefore, the transmission or output intensity is nearly related to the modulating

voltage. If the signal is large, then the output intensity becomes distorted, and higher-order

odd harmonics appear [5].

   The dynamic retarder with parallel polarizers has a transmission of [5]:
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   For small modulation, T(V) = (1/2)[1-Γm sin ωm t], and again, the output is a replica of

the modulating voltage.

   Similarly, the output of a Mach-Zehnder interferometer is given by

[ ] 





=+=+=

2
coscos

2
1 02

0210
ΓΓ iii IIIIII                               (2.29)

where Γ0 is the relative phase shift between the two branches. An intensity modulator is

produced by placing a phase modulator in one branch [1] as shown in Figure 2.7.
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Figure 2.7 An intensity modulator is shown implementing a Mach-Zehnder interferometer configuration

with a phase modulator in one branch [1].

The total retardation is Γ = Γ0 + Γi , as before. The transmission is







==

2
cos20 Γ

iI
IT                                               (2.30)

   The push-pull modulator is based on the Mach-Zehnder interferometer. In this case, a

phase modulator is placed in each branch with opposite polarity voltages applied to the arms;

the phase modulators are driven 1800 out of phase. This configuration requires lower drive

voltages and provides a shorter transit time for the light for a defined degree of modulation

[17, 18].
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Chapter Three:

Optical Voltage Sensors

§3.1 Introduction

The measurement of DC and extra low frequency (up to 60 Hz) electric fields is

essential within the process industry, to assess the health hazard and electromagnetic

compatibility of electronic devices. The conventional measurement systems used at present are

based on active, metallic and bulky probes which disturb the measured field [1]. In addition,

interpretation of the results using the traditional techniques is often complex.

The optical measurement of electrical voltage is more advantageous than other

methods from the viewpoints of safety and influence on measured objects. One such method is

to use an electro-optic crystal that exhibits the Pockels effect. We have seen in the previous

section that an electro-optic crystal has induced birefringence with magnitude proportional to

the applied electric field. This effect is used to measure electric fields in terms of the optical

power and there are two varieties of these measurements: the longitudinal type and the

transversal type. In the longitudinal type, the propagation directions of the ray and the electric

field in the crystal are the same; in the transversal type, they are orthogonal.

Pockels electro-optic effect application to sensing electric field was demonstrated long

time ago [2]. From then on, other authors have proposed several configurations for electric

field sensor based on the Pockels effect. The electric field optical probe utilizing linear electro-

optic effect can be manufactured in such a way that it is all dielectric, passive and immune to

electromagnetic interference. It also enables direct measurement of the electric field intensity.

In this Section, we will demonstrate that the sensor sensitivity to electric fields is one

of the most important characteristics and can be influenced by geometry and the

photoconductivity of the crystal.
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At extra low frequencies the conductivity of the materials must be considered as it can

quench the electro-optic effect and thus cause malfunction of the sensor. Also, we will extend

our study to the voltage sensors based on the electrophysical phenomena reported up to now in

the literature, considering properties such as the temperature dependence and the response

against the voltage presence.

       

§3.2 Materials for electro-optic voltage sensors

Many types of materials have been proposed for voltage sensors. However, our

discussion is restricted here to those materials with electro-optic properties that have been

reported in sensors of bulky type. Finally, we will make a comparative study among these

sensors concerning in their dimensions.

3.2.1 Pockels effect materials for voltage sensors

Cubic crystals are the most appropriate for sensors applications. They do not possess

natural birefringence and pyroelectricity. Crystals, which are birefringent and pyroelectric,

may exhibit temperature instabilities and are highly sensitive to the optical alignment. Among

the cubic crystals, only those with 23 and 34 m crystallographic point group symmetry exhibit

linear electro-optic effect.

The matrix of electro-optic coefficients for these crystals are given by
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for both  crystal groups.

   Using matrix (3.1) and Equation (2.10), the index ellipsoid in the presence of the

electric field is [3]

( ) 12 412

222

=+++
++

zyx xyEzxEyzEr
n

zyx                               (3.2)

In the cubic crystal system, the crystallographic point group 34 m is the only point

group with a Pockels effect that does not have inherent optical activity. Crystals in this group

are GaAs, CdTe, ZnS, ZnSe, GaP and Bi4Ge3O12 [3-5]. Bismuth germanate’s most common

use is as scintillation material.

In the 34 m point group the crystal orientation that gives the largest induced linear

retardance is obtained when the electric field is normal to the (110) crystal plane and the

optical path is normal to the ( 101 ) plane (Figure 3.1) [3].

Figure 3.1 Orientation that gives the largest induced linear retardance for 34 m point group.
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The other optical paths through the crystal, normal to the (110) and (001) planes will

remain isotropic in the electric field [3]. The axes of the induced birefringence in the crystal

will be 45º to the normal of the (110) plane [3]. The magnitude of the induced linear

birefringence Γ is:

Vrn
d
l

41
3
0

2
λ
πΓ =                                                  (3.3)

where λ is the optical wavelength in air, l is the length of the optical path through the crystal, d

is the distance between electrodes, V is the applied voltage, n0 is the refractive index and r41 is

the electro-optic coefficient [3].

The value of the product n0
3 r41 for Bi4Ge3O12 has only small wavelength dependence

and is approximately 8.8 pm/V [4]. The r41 coefficient is linear up to a field of at least 20

kV/cm [4]. The normalized temperature dependence of n0
3 r41 is (1.54 ± 0.16) × 10-4 / oC [4].

The voltage necessary for 0.174 rad of retardance, is about 600 V for a Bi4Ge3O12 crystal 5 × 5

× 20 mm and λ = 780 nm.

Another point group in the cubic crystal system used for voltage and electric field

sensing is the 23 point group. The 23 point group has no inherent linear birefringence, but

does have optical activity [3]. Useful crystals in this group are Bi12GeO20 (BGO), Bi12SiO20

(BSO) and Bi12TiO20 [3]. The temperature dependence of the optical activity can be used to

compensate for the temperature dependence of the Pockels effect in the crystal [6].

Equation (3.3) also applies to the 23 point group for transverse orientations. For BSO

at 780 nm the product n0
3r41 is about 82 pm/V and the optical activity ρ/l is about 200

mrad/mm [6,7]. The normalized temperature dependence of n0
3r41 in BSO is about –3.19 × 10-

4 / oC. The normalized temperature dependence of the optical activity is about –2.33 × 10-4 / oC

[6,7].

For BTO at 780 nm the product n0
3r41 is about 87 pm/V and the optical activity ρ/l is

about 30 mrad/mm [8, 9]. The temperature dependence of these coefficients has not been

reported.
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Lithium niobate LiNbO3 is a material used extensively in integrated-optic electro-optic

modulators, usually in a Mach-Zehnder interferometer configuration. Waveguides can be

made in LiNbO3 by in-diffusing titanium at temperatures above 1000 oC [10]. LiNbO3 is in the

trigonal system, 3 m point group, which has natural linear birefringence [3]. Typically in

LiNbO3 voltage sensors the crystal is cut so that the optical path is on the z-axis and the

electric field is parallel to the y-axis. This is done so the optical path is not affected by

LiNbO3’s natural birefringence; however, the crystal must be cut precisely so that no linear

birefringence accumulates along the optical path. The voltage-induced retardance is

Vrn
d
l

22
3
0

2
λ
πΓ =                                                  (3.4)

with n0
3r22 is about 38 pm/V, with a normalized temperature dependence of about 1.3 × 10-5 /

oC [10]

3.2.2 Kerr effect materials for voltage sensors

The electro-optic Kerr effect is an electric field-induced linear birefringence that

occurs in all materials. The electric field alters the polarizability of the material, creating a

linear birefringence proportional to the field squared.

The electro-optic Kerr effect has been used for many years to measure high voltages

and electric fields [11-13]. Most applications are with liquids that have a large temperature

dependence, due to the nonlinear polarizability of the molecules in the liquid or glass and

require the proximity of electrodes [11]. In fibers, the electro-optic Kerr effect has been used

for voltage sensing and modulating the polarization state [14, 15]. Nevertheless, because of the

temperature dependence of the electro-optic Kerr effect in fibers and the difficulty of making a

stable sensor with low stress sensitivity its use have been discouraged [15]. The retardance due

to the electro-optic Kerr effect has the functional form:
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 22 EL KβπΓ =                                                   (3.5)

where βK is the electro-optic Kerr constant and E is the electric field strength . For silica βK is

equal to 5.3 (± 0.2) × 10-16 m/V at 23 oC [15]. The temperature dependence of βK for silica, is

5.6 (± 0.2) × 10-3 / oC [15].

§3.3 Crystal dimensions and photoconductivity considerations

for operation of bulky-type voltage sensors

A schematic diagram of the electric field sensor based on the electro-optic effect is

shown in Figure 3.2. Light from a monochromatic source (a laser diode for example) is

polarized using a polarizer. Then it is launched into the electro-optic crystal in such a way that

it excites two propagation modes. The two eigenmodes are linearly polarized waves with the

plane of polarization perpendicular to each other. They propagate with different phase

velocities depending on the electric field intensity. Thus the polarization of the light emerging

from the crystal is changed proportionally to the applied electric field. This change is then

converted by the polarizing beamsplitter into a change in the light intensity and detected by

two photodetectors. The quarter-wave plate inserted between the polarizer and the crystal

produces an additional phase shift between the eigenmodes, so the sensor works well within

the linear region of its transfer characteristic.

With the assumption that the optical components are ideal and the crystal does not

exhibit natural birefringence (there is no phase shift between the eigenwaves without electric

field). Then, light intensities I1 and I2 at the photodetectors are [16]

( )( )Γsin101 += II                                               (3.6)
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( )( )Γsin101 −= II                                               (3.7)

where I0 is the light intensity at the photodetectors without the measured electric field and Γ is

the relative phase retardation induced by the electric field.

Figure 3.2 A schematic diagram of the electric field sensor based on linear electro-optic (Pockel’s) effect

and polarimetric optical scheme.

The phase shift Γ is directly proportional to the measured electric field and for

transversal and longitudinal modulation, can be expressed as

LErn m41
32

λ
πΓ =                                               (3.8)

where λ is the wavelength of the light, n the refractive index, r41 the electro-optic coefficient,

L is the length of the crystal transversed by the light and Em is the macroscopic electric field

intensity inside the crystal. In contrast to electro-optic modulators the internal electric field is

no longer uniform as the crystal is exposed to an electric field without electrodes.

For small Γ, which is usually the case, the output can be considered as a linear function

of the intensity of the electric field E. It is apparent that the sensor can be operational with

only one of the outputs. In practice, however, both outputs are used to increase sensor

sensitivity and to reduce the laser power fluctuation noise employing a suitable detection

scheme (e.g. (I1−I2) / (I1+I2)).
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Before comparing numerical values of the material’s constants more used for voltage

sensors, it is useful to express applied electric field E in terms of a field Em that would exist in

the absence of the sensor crystal or does exist at a considerable distance from the crystal.

Because the fields induced in a cylindrical or rectangular crystal have complicated spatial

variations, we can make the simplifying approximation that the crystal shape resembles an

ellipsoid of revolution about the optical propagation direction which we have chosen parallel

to z and make use of the depolarization factors that have been calculated for ellipsoids from

static electric and magnetic field theory [16, 17]. From such an approximate calculation we

can obtain for the field components along the ith semimajor ellipsoid axis:

1
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                                             (3.9)

where Eio  is the ith external field component, and εri is the relative permittivity for the internal

field component Ei,

The depolarization factors for ellipsoids of revolution about the i = z axis are [16, 17]:
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where a is the length/width ratio as shown in Figure 3.3.
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Figure 3.3 Shapes of the electro-optic crystals.

3.3.1 Dimensions considerations

The effect of the crystal shape on the sensor sensitivity is demonstrated in Figure 3.4.

Two crystal shapes for both perpendicular and longitudinal electro-optic effects are examined.

The shape 1 of Figure 3.3, where two dimensions denoted with width are the same, was

substituted by an ellipsoid of revolution with its major axis along the direction of E1 and major

to minor axes ratio equal to length/width ratio. The quantity 1/(1+εriDi-Di), expressing the

attenuation of the external field, is calculated for different ratios for the crystals Bi4Ge3O12,

BGO, BSO and BTO and plotted in Figure 3.4. Also, the figure 3.4 shows that for a

longitudinal modulator, Bi4Ge3O12 has the slope of K value bigger than the other crystals

compared. The graph shows that in a prolonged crystal (length/width > 1) the transverse field

(E2, E3) is attenuated more than the longitudinal field (E1). For example with the length width

ratio of 2.5, the attenuation of the transverse field is more than a twice higher compared to the

attenuation of the longitudinal field. Thus when designing the sensor using the longitudinal

effect, crystal shape should be similar to shape 1 with the length width ratio as high as possible

to maximize sensor sensitivity. Nevertheless, the shape 1 is not the best choice for the

transverse electro-optic effect. One can argue that the same attenuation of the transverse

external field can be achieved with the ratio less than 1.
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                                 Bi4Ge3O12                                                        Bi12GeO20

                                   Bi12SiO20                                                          Bi12TiO20

Figure 3.4 Graphic of the quantity 1/(1+εriDi – Di) vs. length-width ratio for the values of Bi4Ge3O12,

BGO, BSO and BTO crystals; The curved graph is for D1 = D2 transversal effect, and the linear graph is for D3

longitudinal effect, using shape 1.

To get the same sensitivity as in the case of longitudinal effect (the same attenuation

for the same length) crystal width must be larger compared with the crystal length. Therefore,

for the transverse effect it is suggested to use the shape 2. Figure 3.4 shows that in this case

the external transverse field E3 is attenuated more than in the case of the longitudinal effect in

shape 1, but less than in the case of the transverse effect in shape 1. Hence for measurement of
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one component of the electric field the dimension of the crystal along the measured field

should be much higher than the dimension perpendicular to it for the same optical path.    

The figure of merit n3r41/λ, which has been used for optical modulators is plotted to

compare several crystals used for electro-optic voltage sensors in Figure 3.5. Nevertheless,

this figure of merit is not appropriate for electro-optic sensors, as it does not take into account

the electric field attenuation discussed previously.

Figure 3.5 Quantity n3 r41 as a figure of merit for cubic crystals [2-5 , 8, 16, 18-26]

Therefore, the figure of merit more appropriate for electro-optic sensors is [16]:
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   This figure was calculated using available crystal data for Bi4Ge3O12, BGO, BSO and

BTO, simplifying crystal shape as an ellipsoid. The values of K shown in Figure 3.6 were

calculated for the longitudinal effect in shape 1 and for aspect ratio a = 0.4.

 

Figure 3.6 Figure of merit K calculated for crystals with shape of index of revolution, aspect ratio equal to

0.4 and in longitudinal electro-optic effect considered [4, 5, 8, 23-27].

   Apart from the electro-optic effect that plays an important part in designing a sensor,

the conductivity of the crystal becomes a dominant feature at DC and very low frequencies.

After being exposed to a DC electric field, free charges in the crystal drift to the opposite sides

where they accumulate and create a field of their own. This field acts against the external

electric field and the electric field inside the crystal decreases with a rate depending on the

crystal conductivity. Thus, when a step function external field is applied, it produces a

transient internal field in the crystal, which can be described by

τ/1)( −= eEtE mom                                             (3.12)
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where Em0 is the internal macroscopic field in the crystal immediately after switching on the

external, τ is the charge relaxation time given by [28]

σ
εετ r0=                                                           (3.13)

   Here σ is the specific conductivity of the crystal, ε0 and ε r are the permitivity of

vacuum and relative permitivity of the crystal respectively.

The relaxation time constant τ can be used to estimate the effect of crystal conductivity

on an electro-optic sensor at DC and low frequency. Application of the Laplace transformation

on a system characterized by the time constant τ gives a limit frequency of f3dB = 1/(2πτ), at

which the sensor response is decreased by 3 dB. Table 3.1 and Table 3.2 shows the limit

frequency and some characteristics of the crystals considered here.

3.3.2 Photoconductivity considerations

In general, conductivity of the crystal comprises of two parts: the intrinsic conductivity

and the photoconductivity. Therefore, another potential source of free charge inside the crystal

is the photoconductivity effect. To create a pair of charge carriers (hole and electron), the

electron in the valence band has to be excited into the conduction band. In the case of

photoconductivity, the excitation energy is supplied by a flux of photons with energy hν,

where ν is the frequency of light and h is Planck's constant. When considering crystals without

impurities, the band gap of the material is of primary interest. It determines the absorption

edge, which can be defined as the largest wavelength at which the absorption and thus the

charge carrier generation occurs. This wavelength is shown as the critical wavelength in Table

3.1. To avoid the generation of free charge carriers and deterioration of the sensor frequency

response, the laser source wavelength should be chosen well above its critical value.
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Bi4Ge3O12 Bi12GeO20 Bi12SiO20 Bi12TiO20

Point Group m34 23 23 23

Lattice constant [Å] 10.527 10.145 10.103 10.177

Band gap [eV] - 3.25 3.25 3.25

E O coefficient r41

[m/V]
1.09 × 10-12 3.4 × 10-12 5 × 10-12 5.61 × 10-12

Transparency Range

[µm]
0.3 – 6 0.4 – 7 0.4 – 6 0.5 – 6

Transmittance [633 nm] - 67% 69% -

633 2.0975 2.55 2.54 2.5678

850 2.066 2.46 2.283 2.513
Refractive

Index [nm]
1000 2.058 - - 2.485

Relative Permitivity  (εr) 16.3 40 56 -

Resistivity [Ω⋅m] 2.5 × 1010 5 × 1015 5 × 1015 -

Conductivity σ [S/m] 10-13 10-9 2 × 10-12 -

f3dB [Hz] 10-4 0.56 6 × 10-4 7.65 × 10-7

Relaxation time τ [s] 1380 0.28 248 207975

Critical wavelength λ

[nm]
- 394 394 394

Half Wave V 633 nm

[kV]
33.26 - 3.85 3.3

Density [g/cm3] 7.13 9.22 9.20 9.07

Piezoelectric d14 [C/N] 0.0376 C/m2 3.44 × 1011 4.01 × 1011 3.72 × 1011

Table [3.1]   Properties of some crystals using for electric field sensor.
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Bi12GeO20 Bi12SiO20 Bi12TiO20

500 nm 41.5 42 12

600 nm 24 25 7.3

633 nm 21 22 6.3

870 nm - 10.5 2.8

Optical

activity

[deg/mm]

1000 nm - 7.5 2.0

Table [3.2] Optical activity of typical crystals used for electric field sensors

3.3.2.1 Space charge generation

The extensive literature is dedicated to investigation of sensors based on Bi12TiO20,

Bi12GeO20, Bi4Ge3O12 and Bi12TiO20 crystals [9, 26, 29, 30]. It is necessary to note that all

these electro-optical crystals are well know as photosensitive materials applicable in dynamic

holography and spatial modulators of light [31]. These applications are determined by the

strong photosensitivity of the crystals, which is, in turn, the consequence of high

photoconductivity. Authors of the majority of papers devoted to fiber sensors do not take into

account the crystals’ photoconductivity. This effect can impact the space charge of a crystal

and therefore change its charge relaxation constant. It is supposed usually that if the

wavelength exceeds the critical one determined by the forbidden band of a crystal, then the

influence of the photoconductivity might be negligible. However, it is not the case. We have

observed experimentally that characteristics of the sensor after electro-optic crystals vary

across the light beam, as a result of the photoinduced effects in the near-infrared range[32].

Multiple traps and some of the observed effects due to the trapping mechanism in

photorefractive oxide crystals Bi12MO20 (where M can be either Si, Ge or Ti) reveals that the

charge transport processes could not be explained by the effective-mass approximation to the



56

       

Einternal

Eexternal

+
+
+
+
+
+

−
−
−
−
−

+
+
+
+
+
+

−
−
−
−
−

Crystal

Transparent electrodes

nearly free electron in the conduction band model. However, this can be explained better by

the two-center model [33].

Considering a typical configuration of an optical voltage sensor (as shown in Figure

3.2). Transparent electrodes are deposited on both working surfaces of the crystal in

longitudinal modulation. Usually, the electrodes are made from In2O3 being the blocking ones.

Therefore, electrodes do not inject electrons into the crystal.

The exposition of a crystal to light is virtually infinite during the sensor operation,

resulting in appearance of photoinduced space charge in the illuminated part of the crystal.

The distribution of the photoinduced part of space charge is non-uniform, corresponding to the

light intensity pattern, as shows in Figure 3.7. When voltage is applied to the crystal

electrodes, free charge carriers (electrons) in the crystal drift in direction opposite to the

applied electric field. Such a drift leads to a space charge separation that screens the externally

applied field, providing an external electric field. This field Eint and the total electric field

inside the crystal decreases at the rate dependent on the crystal conductivity. The

compensating electric field amplitude inside the crystal is determined by the concentration of

free charge carriers, which is in turn, defined by the spatial distribution of the light beam.

Therefore, this field has a non-uniform spatial distribution owing to photoconductivity of the

crystal, leading to various modulation depths in different points throughout the light beam

cross-section.

Figure 3.7. The light intensity and compensating field Eint distribution in the crystal.
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3.3.2.2 Theory of the role of the photoconductive effect for

operation of electro-optic voltage sensor 

Let us consider the propagation of a symmetrical Gaussian beam through a crystal with

the intensity being written as:








 −
= 2

2

0
2exp)(
w

rIrI                                           (3.14)

where r is the transverse coordinate and w is the Gaussian beam’s spot size.

Assuming the density of the photoinduced charge being proportional to the light

intensity of the compensating field being, in turn, proportional to this charge value, the

internal amplitude is defined as:
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where E0 is the internal field amplitude at the axis of the beam. Thus, the amplitude of the total

electric field inside the crystal is given as follows:
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w

rEEE exttotal                               (3.16)

According to (3.16), the total electric field varies across the crystal.

It should be noted that, as a rule, there is a spatial filtration of the light beam in a real

sensor’s head. This fact is the consequence of the divergence of the beam propagating

and of the mismatch of the emitting and receiving apertures of the device. Therefore, the

intensity of light passing through the sensor’s head is given as [3]:
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where S is the spatial filtration function, A is the factor accounting for a sensor’s parameters.

In particular, if a pinhole is used as a spatial filter with a transfer characteristic given by the

Dirak’s δ-function, Equation 3.17 is simplified resulting in:
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The amplitude of the sensor’s signal and its modulation depth are both plotted in

Figure 3.8. As it follows from Figure 3.8, various points of the illuminated part of the crystal

are characterized by the different modulation depth of the signal.

By the virtue of the fact that the sensor’s signal is a product of the beam intensity and

the modulation depth (which partially compensate each other, see curves a and c in Figure

3.8), the overall signal of the sensor is virtually constant in the central part of the beam,

decreasing only to its edges (Figure 3.8 curve b).

Figure 3.8. Spatial distribution in a cross section of the light beam of: (a) optical intensity,  (b) sensor’s

signal and  (c) modulation depth.
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The result of the experimental studies demonstrated that the photoinduced space charge

plays a significant role in optical voltage sensing, even when using an IR optical source. The

crystals utilized in the sensors are never ideally pure, therefore the forbidden zone is usually

filled by donor’s levels. It makes possible the step-by-step absorption of IR radiation,

wavelength of which essentially exceeds the critical one. Thus, the arising of the space charge

could be, most probably, as a result of the step-by step absorption.

As far as impurities are believed to be the main reason for the photoinduced charge

occurrence, the effects considered have to be depending strongly upon the purity of the crystal.

Hence to reduce the influence of the photoinduced space charge on the sensor´s parameters,

one needs to use extremely pure or specially doped crystals (e. g. doping with Ca, Al, Ga, Fe

and Cr reduces the absorption and doping with Al and Fe reduces the photorefractive

sensitivity [33].

The significant influence of the beam spatial function upon the light modulation depth

has been testified experimentally [32]. An account of this point is crucially important for

temperature stabilizing the voltage sensors’ parameters. Usually, to avoid the influence of

power fluctuations of the light source, the output signal of an optical voltage sensor is

presented in terms of the AC/DC ratio, i. e. as the modulation depth [6,34,35]. In addition, the

sensor’s signal immunity to the temperature fluctuations is achieved by the combining of

signals of two orthogonal polarizations in accordance with a certain algorithm [6,34]. In this

case, one takes an assumption that the changes in the modulation depth versus temperature

occur due to essentially internal reasons, i. e., birefringence phenomena in the phase plate used

and/or the crystal, etc. Al, these features can be taken into account by developing a

corresponding mathematical model of a sensor and an algorithm of the signal processing [34].

However, if the spatial filtration function of a beam S varies with temperature (owing to a

particular sensitive element design), the modulation depth will vary as well (Equation 3.17). It

can easy happen, for example, if some misalignment of the emitting and receiving apertures of

ball lenses or Selfoc lenses takes place [32,34], resulted from the temperature changes.

Besides of this, the density of the photoinduced space charge itself significantly

depends on temperature (as far as the recombination rate of an electron-hole pair is a function

of temperature). Thus the modulation depth can vary, even though the changes in the spatial
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filtration conditions do not occur, simply because of the changes in the internal compensating

field amplitude, which is temperature dependent.

Has been found experimentally, that the modulation depth of the sensor is determined

by the light intensity. At high optical powers (up to 100 mW), the variations of the modulation

depth are saturated with the changes to be described by the exponential law (Figure 3.9). At

low optical powers (0.5 − 3 mW), that is usually the case in the optical voltage sensors, the

modulation depth varies much more rapidly. Hence, the widespread point of view, that the

modulation depth does not depend on optical power, is not valid for photorefractive electro-

optic crystals. It can be seen from Figure 3.9 that the modulation depth depends upon the

probing beam power under the exponential law, with the characteristics constants being

determined by the specific spatial filtration conditions. To remove this undesirable effect, one

has the two principle opportunities. The first one is the use of weak opticals powers as well as

far IR sources, which makes insufficient the space charge influence on a sensor’s operation,

since the modulation depth is independent of a probing point in the beam’s cross-section. The

second one is the use of high power optical sources (i. e. Exploiting the saturation part of

curves in Figure 3.9), since in the last case the changes in the source’s intensity do not lead to

significant changes in the modulation depth of the sensor. This approach allows also

enhancing the signal-to-noise ratio.

Figure 3.9. Light modulation depth as a function of optical power for central (squares) and edge (circles)

pinhole position. Solid lines represent exponential approximation under the law m = 8.4 + 20.5 exp(-P/22)[%]

(central point) and m = 18.86 + 16.89 exp (-P/21.73)[%] (edge point) as well [32].
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The simple theoretical model proposed by Filippov et al. adequately describes the role

of the photoconductive effect in a voltage sensor based on sillenite crystals. This model shows

that the presence of the photoinduced space charge in the crystal makes the signal modulation

depth to be dependent on a position across the optical beam and on the signal intensity.

§3.4  Polarimetric voltage sensors

Polarimetric voltage sensors either in bulk material, waveguides or fiber have a simple

basic construction as seen in Figure 3.2. The input polarization state is oriented 45º to the

Pockels induced birefringence. A quarter-waveplate biases the output so that the response is in

the linear portion of the squared sinusoid function. Either an analyzer or polarizing beam

splitter, oriented crossed to the input polarizer, is used to convert the change in polarization

state into change in intensity. With a polarizing beam splitter, difference-over-sum signal

processing can be carried out to reduce common-mode noise.

The response of a sensor in this arrangement is

( )( )VAVR Γsin1()( ±= ±±                                           (3.14)

where A± is the optical transmittance of the sensor and Γ (V) is the Pockels’ retardance

described in Equation 3.3 or Equation 3.4. The “±” refers to the orientation of the output

polariser beam splitter. Equation 3.4 is the ideal response; if the crystal has some static

retardance that is at 45º with respect to the Pockels’ retardance, then the response can be

expressed as:

 





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±= ±± φ

φΓΓ
2

2sin)(1),( VAVR s                                    (3.15)
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where Γs is the static retardance and φ = ( ) 2/122 )(
2
1 Vs ΓΓ +  [8, 29]. Equation 3.15 applies to a

BGO sensor configured as shown in Figure 3.2. The static retardance, the quarter-wave plate,

and the temperature dependence of the Pockels effect all contribute to the instability of the

sensor. In materials with optical activity, such as BTO, there will be added temperature-

dependent terms. In some cases the optical activity can be used to compensate for the

temperature dependence of the Pockels effect.

3.4.1  Bismuth germanate sensors

Bi4Ge3O12 material is used for those applications of electro-optic effect, such as

voltage and electric field sensors, in which precision (reproducibility or stability) is more

important than sensitivity [26, 36-41].  It is a cubic crystal that does not exhibit natural linear

birefringence, which is a major cause of instability in many electro-optic devices. Neither does

exhibit circular birefringence (optical activity), which quenches the electro-optic effect and

reduces its stability. Bismuth germanate is transparent from approximately 350 nm to 4 µm,

which suggests that its optical properties in the 800-1500 nm spectral region (where most

sensors operate) should be relatively stable with temperature.

A useful configuration is where the crystal is cut for longitudinal operation, with the

electric field and optical beam propagation parallel, with the electrodes placed on the ends of

the crystal. This design works well for high voltage applications, at 200 kV and up [26, 36-

41]. The required cut of the crystal is different described in section 3.2.1; the electric field and

optical are normal to the (001) crystal plane. The other crystal plane (100) remains isotropic.

The longitudinal operation removes the dependence on crystal size from the Pockels

retardance so that

Vrn 41
3
0

2
λ
πΓ =                                                 (3.16)
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where n0 is the crystal’s index of refraction, and r41 is the electro-optic coefficient [3, 4].

Because the dependence on l / d is removed, the sensitivity to the voltage is usually a factor of

four to 10 smaller, but the design allows the sensor to be implemented in gas insulated high

voltage switchgear (GIS) environments where small crystal sizes and breakdown would be a

concern.

With the basic optical design and material selected, we can estimate the temperature

dependence of a voltage sensor with a processed response function:
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where V = V0 sin (ω t ) and dcSacSacSacS VRVRVRVR ),(),(),(),( ΓΓΓΓ ∆ ×−= −+  is the dc

part of the 2.36 and ω is the angular frequency of the applied voltage. The normalized

temperature dependence, using Equation 3.15 and Equation 3.3 or Equation 3.17 is: [36]

( )
dT
d

XVX
dT

rdn
rndT

VdR
VR

S
S

dcacS

dcacS

Γ
ΓΓ

Γ
Γ

∆

∆

++= 241
3
0

41
3
0

/

/

)(11),(
),(

1        (3.18)

where X is

24
1

2
2cot

φφ
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−=X                                                (3.19)

When Γ(V0) = 0 and ΓS is greater than 1 o but less than 80 o, X has a value of about −

1/3. The first term in Equation 2.48 is the index and electro-optic coefficients’s contribution to

the normalized temperature dependence of the voltage sensor. The quantity 
dT

rdn
n

41
3
0

3
0

1  has

been measured and is (1.54 ± 0.16) × 10-4 / oC for Bismuth Germanate [36]. The temperature

dependence of ΓS can be positive or negative of the order of 103 / oC to 10-2 / oC [40]. If
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dT
d S

S

Γ
Γ
1 is positive, temperature compensation can occur, since X is negative for crystals that

are useful. In practice the size and sign of the temperature dependence of ΓS are difficult to

predict. A practical way to minimize the sensor’s temperature dependence is to reduce ΓS

[40]. Equation 2.48 includes only the material-related sources of temperature dependence.

Opto-mechanical instabilities can add to temperature dependence as well.

3.4.2 Bismuth Sillenite Sensors

Another popular material used in voltage sensing is BSO [29,34,41-43]. As mentioned

earlier (see section §3.3) BSO is similar to Bi4Ge3O12 except BSO has optical activity. A

voltage sensor using BSO can be modeled in a form similar to that of a polarimetric current

sensor with linear birefringence, except that now the rotation is due to optical activity ρ and

not current or the Faraday rotation ρF. The difference-over-sum response of a BSO voltage

sensor, assuming ΓS < ρ, is

( ) ( )( )ργγ
ρ

Γ
Σ∆ 22cos2cos)(/ −−= SVR                                    (3.20)

where γ  is the angle between the polarizer and the crystal birefringence ΓS axis and R∆/Σ (V) is

the ratio between the difference (I1 − I2) and the sum (I1 + I2) of the intensities in the

photodetectors, processing the output signals in the polarimetric optical scheme shown in

Figure 3.2 [6]. Normally the sensor would have γ = 45º so that R∆/Σ (V) = ΓS sin (2ρ)/ρ .

The temperature dependence of this sensor can be modeled as:
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From Equation (3.21), it can be seen that the temperature dependence of the Pockel’s

term can be compensated by the temperature dependence of the optical activity by selecting

the proper angle γ and the crystal length. Adjusting γ allows some range in the selection of the

crystal [6].

In some cases the angle can not be easily adjusted because this procedure would add

too much cost to the sensor. For the situation where γ = 45º, the temperature dependence of the

sensor is:
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Now the proper length is needed to compensate for the temperature dependence of the

Pockels effect [38]. For the temperature dependence of the output to be near zero we find that

the crystal length should be approximately 4 mm, using the values given for the normalized

temperature dependence of ΓS and ρ, and the optical activity per unit length shown in Table

3.2 [6,38]. In some cases a 4 mm long crystal has a low voltage sensitivity. Another approach

is to use the dc component of Equation 3.20 to compensate for the change in the ac response

[34]. Recently a third approach was demonstrated that uses two detection arrangements to

separate the temperature and voltage effects from the output of a voltage sensor [44].

Similar analysis is applicable to BGO and BTO crystals, considering the adequate

optical activity for each case.

 3.4.3 Integrated-optic sensors

Integrated-optic polarimetric voltage sensors (IOPV) typically use Y-cut LiNbO3

crystals with titanium in-diffused waveguides [10, 45-51]. As mentioned earlier in sub-Section

2.6.1.1 if the crystal is cut properly, the Y-optical path will have no linear birefringence;

however, because of the waveguide birefringence there is a static retardance in these devices.
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The transverse electric (TE) and transverse magnetic (TM) modes have different propagation

constants or indices of refraction. Typically the LiNbO3 crystal is cut so that ΓTE−TM  = π / 2 +

2 mπ, where m is an integer.

Waveguides cut in this fashion will acts as a multiple-order quarter-waveplate that

biases the operation of the sensor into the linear portion of the transfer function. This requires

cutting the waveguide to the proper length l with an uncertainty of about 100 µm for most

titanium in-diffused waveguides [10,49]. The better waveguide will be with the lower ΓTE−TM .

IOPV sensors launch linearly polarized light from a polarizing prism or polarization

maintaining fiber into the waveguide at 45º to the TE and TM modes. The output polarizer can

be fiber based on the chip or remotely located with PM fiber. Figure 3.10 shows a diagram of

the sensor [10, 45-51]. Sensors built in this way have the potential for mass production and

low cost, and are currently being produced.

Figure 3.10. Schematic of a LiNbO3 integrated-optic voltage sensor.

The temperature dependence of the sensors is potentially small because of the low

temperature dependence of the Pockels effect in LiNbO3. The normalized temperature

dependence of the waveguide birefringence is about 2.5 × 10-4 /oC and dominates the

temperature dependence of the response for an IOPV sensor [49]. If the waveguide is prepared

well, the temperature dependence of a LiNbO3 waveguide sensor can be less than that of a

voltage sensor using BGO.
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3.4.4 Optical fiber sensor

There are two effects that allow an optical fiber to measure an electric field or voltage.

One is to artificially create linear electro-optic coefficient in the fiber by poling and the other

is the electro-optic Kerr effect.

Optical fiber and glass waveguides can be poled to increase the linear electro-optic

coefficient to levels as high as ∼ 6 pm /V, but ∼ 3 pm /V is more typical [52-54]. Poling a fiber

involves a process where an extremely high electric field is placed on the glass fiber while the

temperature is raised to nearly 300 oC, then reduced. This introduces a permanent electric

polarization within the fiber. These poled fibers have high sensitivity, but the poling effect

degrades with the time and temperature [52]. If high temperatures are required, > 100 oC, the

poling effect quickly decays [52]. So far no practical utility applications have been found for

these fibers. If a method for stabilizing the poling process is found then sensors using poled

fibers may be commercialized.

A fiber voltage sensor can be also be made using the electro-optic Kerr effect.

However, a long length, ∼ 10 m, of fiber must be placed in an extremely high electric field, E0

> 1 MV/m. Also, the electro-optic Kerr effect has a large temperature dependence [15]. For

these reasons practical voltage sensors using the electro-optic Kerr effect have not been

pursued.

§3.5 Interferometric voltage sensors

As mentioned earlier there are several interferometric voltage sensors designs [55−64].

Interferometric voltage sensors can be constructed in a Mach-Zehnder interferometer (MZI)

arrangement shown in Figure 3.11 where one arm of the interferometer is sensitive to an

electric field or voltage. Many electro-optic modulators use this format in LiNbO3

waveguides. The response of the MZI is:
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where AMZ is the transmittance, BMZ is a parameter that includes manufacturing imperfections,

and φB is the intrinsic phase bias between the two interferometer paths [55].

Voltage sensors constructed in a LiNbO3 waveguide have one of the arms of the

interferometer shielded from the electric field, with or without electrodes, or have a domain

inversion so that the electro-optic effect produces the opposite phase shift [56]. MZI sensors

are not stable with temperature, having a large change in the φB bias with temperature of the

order of 1º / ºC [52]. For this reason there are few practical applications of these sensors.

Figure 3.11. Schematic of a Mach-Zehnder interferometric voltage sensor.

Another type of interferometric voltage sensors uses a dual-mode white-light fiber

interferometer [53,54]. A fiber operating at a wavelength such that two modes are supported,

the LP01 and the LP11 modes, is wrapped on a quartz disk or rod [57-62]. A voltage is placed

on the rod to change the diameter and stretch the dual mode fiber. The interferometer is

formed by each of the two fiber modes accumulating different amounts of phase along the

length of the fiber. The quartz expands with voltage and the two modes of the fiber experience

different amounts of phase shift. A second dual mode interferometer with piezoelectric

modulators is used to homodyne phase track the first interferometer [57].

The second interferometer compensates for temperature drift in the sensor, which is

independent of temperature between − 10 to 45 ºC [57]. This quartz rod sensor has been used

in 400 kV GIS applications [58].
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§3.6 Conclusions and remarks

For voltage sensors based on the electro-optic effect, we know that the most

appropriate materials are the crystals of the group 23 and 34 m. We have made a comparative

study from which we can emphasize the advantages that offers the crystal Bi12TiO20 of the

crystallographic point 23 over the other crystals. This crystal, in particular shows a high

sensitivity for different wavelength (in the near infrared). For measurements of periodic

signals of voltage, it is required that the signal possesses a wavelength above the critical

wavelength for the crystal.

Making use of the depolarization factors for ellipsoids in general, we have

demonstrated that the dimensions of the crystal should be taken into account for the design

and construction of voltage sensors based on the Pockels effect. Of this study, we conclude

that the glass BTO conserves the advantages when the longitude of the crystal does not

surpass certain value of approximately 4 mm. For crystals with more longitude, the attenuation

in the sensitivity is considerable.

Taking into account the role of the photoconductivity effect in the sensitivity of the

sensor, it is known that the presence of the photoinduced space charge in a crystal, produces

that the modulation depth of the signal be dependent of the position across the optical beam

and on the signal intensity, whenever a near infrared source is used. The parameters of the

sensor are also affected due to the photoinduced space charge. To reduce this effect, the use of

optical sources of high power (more than 10 mW) or doped crystals with extremely low

photoconductivity is proposed.

Characteristics, advantages and disadvantages of the several configurations for voltage

sensors based on the electro-optic effect reported up to now in the literature, has been

established.
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Chapter Four:

Fiber optic optically controlled voltage

sensor

§4.1 Introduction

Fiber-optics voltage sensors based on cubic crystals are currently widely used owing to

a set of advantages the absence of conducting elements, small dimensions, and immunity to

electrical interference. Their additional advantage is the possibility to create local nets

allowing voltage control in locations at large distances.

Meanwhile, all the voltage sensors described to date in literature have a considerable

disadvantage: Their sensitivity is constant being determined by the type of an electro-optical

crystal and phase plate orientation used [1-4]. Nevertheless, in some applications, it is required

to change the sensitivity of a primary transformer in order to vary the range of measurements,

which is not possible to approach with the existing devices [4-6].

 Recently, a fiber optical voltage sensor with variable optical sensitivity has been

proposed [7]. The sensor operates at two widely separated wavelengths, one of which is

correspond to a control signal. In this part we described in detail operation of this sensor.

Modulation depth of the sensor is calculated as a function of the probe-to-control laser power

ratio, orientation angle and thickness of a phase plate. The theoretical model is proved

experimentally.
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§4.2 General principles of the sensor operation

4.2.1 The sensor’s architecture

The sensor’s architecture is sketched in figure 4.1. Two laser beams at widely

separated wavelengths, of 633 and 976nm, are mixed by a multiplexer in a single-mode optical

fiber. The output radiation from the multiplexer is collimated by a Selfoc lens and the resultant

one is launched into a sensitive element composed of a polarizer, a Bi12TiO20 crystal, a phase

plate and an analyzer. The Bi12TiO20 (5 x 5 x 2 mm3) crystal is cut in such a way that the light

propagates in it normally to the [1 0 0] crystallographic plane. Transparent electrodes are

deposited on the crystal facets. The longitudinal scheme of the electro-optical modulation is

used in the sensor. The radiation transmitted by the sensing element is then focused by another

Selfoc lens into a receiving fiber and is detected by a photodiode. Physically, the device is a

composition of two sensors operating at the different wavelengths, whose signals are added (or

subtracted) at the photodetector. It is essential that the measuring photodiode is simultaneously

sensitive to radiation at the mentioned wavelengths, 633 and 976 nm.

Figure 4.1 Sensor’s architecture.
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4.2.2 The sensor’s transfer function

Exploiting the Jones matrix formalism, the transmittivity of the device T at one of the

wavelengths can be written as [8]:

( ) ( ) 





 −

⋅⋅
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where P is the analyzer matrix, R(...) is the rotation matrix, W is the matrix of the phase  plate

and V is the matrix of the electro-optical crystal subjected to voltage  bias (ψ is the angle of

the eigenaxes of the phase plate with respect to the  reference system).

Assuming the polarizer orientation to be parallel to the axis X of the reference system,

and multiplying Equation (4.1) by the vector 







0
1

, one can get the probe radiation intensity, I,

at the photodiode as:
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where δ = πn3r41U/λ is the phase shift between the fast and slow waves in the crystal, n is the

refractive index of the crystal, ∆ = 2π∆nL/λ and ∆n are, respectively, the phase shift and

birefringence of the phase plate (L is the phase plate thickness λ is the wavelength of the probe

radiation and U is the applied voltage. Assuming a sinusoidal voltage with amplitude U at

circular frequency ω one can write the expressions for the photodetector’s current

corresponding to the direct and first-harmonic components as follows:
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If the two spectral components (the control and the probe ones) are measured by the

photodiode, the above formulas are generalized to give:
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where η1 and η2 are the quantum efficiencies of the photodetector at the wavelengths λ1 and

λ2, respectively, and P1 and P2  are the optical powers of the signals at these wavelengths.

To avoid the influence of the intensity fluctuations on the sensor’s operation, one usually uses

the modulation depth m as the measured parameter of a sensing device. In the case of two

spectral components in the detected signal, this parameter is written as:
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The modulation depth m is a fractional linear function of the powers P1 and P2 (see

Equation 4.7). In a single wavelength sensor, the sensitivity does not depend on optical power.

In contrary, in the two-wavelength sensor the sensitivity is a function of optical power. Figure

4.2 shows the dependence of the normalized modulation depth on the probe-control power

ratio. Varying the power of one of the laser sources, one can change the modulation depth of

the useful signal, i.e. the sensor’s sensitivity.

Figure 4.2 Normalized modulation depth as a function of probe-to-control laser ratio. The

thickness of phase plate L = 160 µm, ψ = 45o

The properly chosen operating wavelengths as well as the phase plate parameters

permit an increase or decrease in sensitivity of the sensor by varying the power of the control

signal. In particular, under the condition:

AP1 = − BP2                                                      (4.8)
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The sensor’s modulation depth is equal to zero (see Figure 4.2). This occurs when the

signals at the probe and control wavelengths are counterphase.

4.2.3 The phase plate parameters

As it is seen from the above analysis, the orientation thickness of the phase plate

determines the sensor operation features. Thus, the proper choice of these parameters provides

a sensor’s operation with increased or decreased sensitivity. Consider this problem in detail.

4.2.3.1 Orientation of the phase plate

Suppose that modulation is weak (i.e.,J1(δ1)≈δ1,J1(δ2) ≈ δ2 and J0(δ1)≈1, J0(δ2)≈1). In

this case, Equation 4.7 is transformed to the following one:
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The results of calculations of the normalized modulation depth m/πn3 r41 U as a

function of the polarization azimuth ψ for the varying probe-to-control power ratio are shown

in Figure 4.3. These data are not surprising: To achieve the maximum modulation depth of the

output signal one needs to excite equally the fast and slow waves in the phase plate, providing

the azimuth of the input polarization to make the angle of 45° with the phase plate axes.
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Figure 4.3 Normalized modulation depth as a function of phase plate orientation for different probe-to-

control laser ratio: (1) η1P1 = 0.5, η2P2 = 0.5; (2) η1P1 = 0.4, η2P2 = 0.6; (3) η1P1 = 0.3, η2P2 = 0.7.

4.2.3.2. Thickness of the plate

The phase plate thickness is chosen to satisfy some important requirements. First of all,

the plate should be as close as possible to a quarter wave plate for the both wavelengths. In

addition, in order to decrease the sensor’s sensitivity, one needs to full the condition (4.8) (i.e.,

to compensate the signals corresponding to the probe and control radiation). As it is clearly

seen from Equation (4.9), such compensation is possible, if the product sin ∆1 × sin ∆2 is

negative. Figure 5.4 gives an illustration how to choose properly thickness of a mica phase

plate. One can conclude from Figure 4.4 that for some range of thickness (from 130 to 200

µm.), the product sin ∆1 sin ∆2 is negative. The phase shift between the fast and slow waves

in the plate for radiation at the wavelengths of 633 and 976 nm is also shown in Figure 4.4.



83

Figure  4.4 Phase shift between slow and fast waves in the phase plate as a function of thickness

The phase plate thickness corresponding to the phase shift of 3π=2 at the wavelength

of 976 nm. is about 152.5 µm, whereas that of 5π=2 at the wavelength 633 nm is about 164.8

µm. Basing on these calculations, we used in the experiments (see below) a 160-µm thick

mica phase plate. Note that once the probe-to-control power ratio is fixed, one may approach

the signals' compensation by the proper changing of the phase plate thickness. Figure 4.5 gives

the theoretical dependence of the normalized modulation depth versus the phase plate

thickness. The change in sign of the curve corresponds to the change in the signal phase by π.
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Figure 4.5 Normalized modulation depth as a function of the phase plate thickness.

§4.3 Experimental details

We used in experiments a semiconductor laser (976 nm, of variable output power) as a

source of control radiation and a He-Ne laser (633 nm, output power of 55 mW) as a probe

one. We studied the modulation depth of the measured signal as a function of the phase plate

thickness and power of the control laser.

The first dependence is shown in Figure 4.6. We initially checked the control laser

power to find the point of the sensor signals compensation. In these conditions, we were able

to vary thickness of the phase plate simply by its tilt with respect to the light beam axis. As it

is seen from Figs. 4.5 and 4.6, the theoretical and experimental results are in good qualitative

agreement; some deviations could be explained by slight modification of the polarization

eigenwaves exiting the biaxial crystal of mica (the phase plate) due to its tilt.
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Figure 4.6 Experimental dependence of normalized modulation depth versus phase plate thickness

The dependence of the modulation depth on the power of the control radiation is shown

in Figure 4.7. The whole compensation of the useful signal (where sensitivity of the sensor is

null) corresponds to 7 µW of the input power. The negative values of the sensitivity in Figure

4.7 reflect the change in the signal phase by π. The experimental data in Figure 4.7 are fitted

by a theoretical curve calculated with the use of formula (4.7). One can conclude that there is

excellent agreement between the experiment and the theory developed in Section §4.2.

Therefore, varying the power of the controlling beam, one can change the sensitivity of

the proposed sensor over wide ranges. The switching response time is determined by inertia of

the control laser only.
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Figure 4.7 The sensitivity of the sensor as a function of the control laser optical power. The solid line

approximates the sensitivity under the law m = (17.56 − 2.84 P976nm) / (1802.6 + 268.14 P976nm)% per 1 VRMS

§4.4 Conclusions and remarks

We have presented in detail a fiber-optic voltage sensor operating at the two widely

separated wavelengths λ = 633 nm (probe radiation) and λ = 976 nm (control signal) with

optically con trolled sensitivity. Modulation depth of the sensor has been calculated as a

function of the probe-to-control laser power ratio, orientation angle, and thickness of the phase

plate. We have shown that for the maximum modulation depth both waves must be polarised

at the angle of π = 4 with respect to the axes of the phase plate. The sensor’s sensitivity

depends drastically on the phase shifts ∆1,2 introduced by the phase plate for the probe and

control wave, respectively. To increase the sensor sensitivity the product sin ∆1 sin ∆2 must be

positive, while its negative values correspond to the sensitivity decrease. Unlike a single

wavelength sensor where the modulation depth does not depend on optical power, the two-
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wavelength sensor allows to vary this parameter under the wave power control. We have

demonstrated experimentally continuous change of the sensitivity from 0.01% to 0.008% per

Vrms varying the control power from 0 to 55 µW (the negative values of sensitivity

correspond to the change of p in phase of electric signal). The experimental data obtained are

in agreement with the developed theoretical model. The main advantage of the device

implemented is a possibility to tune rapidly the sensor's operating range using a weak control

optical signal. We believe that the suggested sensor might be an elementary chain of

distributed telemetry systems exploiting the fiber-optics architecture.
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Chapter Five:

Fiber optic voltage and temperature

sensor

§5.1 Introduction

The modern fiber-optic sensors show a tendency to include additional channels for

controlling variations of ambient parameters such as temperature and pressure, which often

affect an accuracy of measurements. The optical fiber sensors, which can simultaneously

measure temperature and mechanical stress [1–3], electrical current and voltage [4] have been

reported. Rose and Day [5] have proposed to combine in one package simultaneously two

sensors, with the purpose to use the data of the temperature sensor for correcting the signal of

the voltage sensor. The plate of crystal quartz with temperature-dependent birefringence was

used as a sensing head of the temperature sensor. It should be noted that all fiber-optic sensors

of an electrical voltage include a crystal phase plate [6], which usually is the main reason of

sensor’s temperature instability [7].

In this chapter we propose a new configuration of the fiber optic voltage sensor based

on the Bi12TiO20 crystal, which allows simultaneous measurement of both voltage and

temperature. In contrast to previously reported sensor where a separate temperature sensor was

added to the scheme, we use the quarter wave plate of the voltage sensor as a temperature

sensitive element. In this case, the phase plate simultaneously provides two functions: serves

as a phase shifting element in the voltage sensor and as a sensitive element of the temperature

sensor. This permits to decrease the size of the sensing head and to avoid and additional

temperature sensor.
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§5.2 Basic principle of the sensor

The optical scheme of the sensor shown in Figure 5.1, in general is similar to that

described earlier in Ref. 8, we used a thick (1.932 mm.) phase retarding plate, made of

crystalline quartz (earlier we had used a thin mica-made plate). An additional WDM has been

included in the scheme to separate output signals at two wavelengths. The Bi12TiO20 crystal

and the phase plate were placed on a thermoelectric element to vary temperature of the

sensor’s head. After wavelength demultiplexing in a WDM, the signals at two wavelengths,

being separated into two channels, are detected by photoreceivers. The two output signals

from the photoreceivers are sent directly to an electronic processing unit. It should be noted

that two output signals from the photoreceivers are proportional to the voltage applied to the

crystal and depend on temperature of the sensor.

Figure 5.1 Schematic diagram of the sensor.

Let consider the operation of this sensor. Neglecting optical activity of a Bi12TiO20

crystal, it is easy to show that the current through the photoreceiver load corresponding to the

power at wavelength λ1 is given by [9]:
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where P1 is the optical power at λ1; n1 is the refractive index of the crystal at λ1; ∆n1 is the

difference between the refractive indices of the fast and slow axes at λ1; (r41)1 is the

electrooptic constant at λ1; L is the phase plate thickness; and U is the voltage applied to the

crystal.

Assuming that the voltage applied to the crystal varies harmonically with amplitude U0

and frequency Ω, and introduces small phase variations (« π), we can expand the Equation 5.1

into Fourier series. Then, the amplitudes of the first harmonic and of the direct component of a

current I are described as:
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Modulation depth of an optical signal, which is usually measured as a sensor’s signal

[10], can be written as:
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Using an approximation J0(x) ≈ 1 and J1(x) ≈ x for x << 1 , the expression (5.4) can be

rewritten as
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The expression (5.5) is also valid for the second wavelength. We will analyze the ratio

of the modulation depth at two wavelengths which is given by
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As follows from Eq. (5.6), the ratio m1/m2 does not depend on voltage applied to the

sensor, but depends on temperature. The temperature-dependent variations of the phase shift

between fast and slow waves in the phase plate are given by [11]
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Assuming (∂L/∂T) = 13.37⋅10-6 C-1, ∆n633 = 0.00906, ∆n976 =0.0088, (∂∆n1,2/∂T) = -

1.04⋅10-6 C-1[11], we have calculated the ratio of the modulation depths as a function of

temperature (Figure 5.2). In this model, we neglected the temperature sensitivity of a

Bi12TiO20 crystal, because the optical activity of Bi12TiO20 is insignificant (1.5° mm-1) and

rather stable (-2⋅10-4 K-1) [10], and the temperature sensitivity of the electro-optical constant

r41(2⋅10-4 K-1) is rather low [10].

As follows from Figure 5.2, the temperature dependence of the modulation depths ratio

is uniquely determined, monotonous, weakly non-linear, providing a suitable gauging curve

for the temperature sensor. Calculating temperature from this curve and taking into account

Equation 5.5, one can easily determine a correct value of the applied voltage using the

following equation:
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Figure 5.2 Modulation depth’s ratio as a function of temperature. The thickness of the quartz phase plate is 1.932

mm.

The advantage of such a voltage sensor besides of compactness and multifunctionality

is the high temperature stability. The reason is that the measured data correspond to the real

temperature of the voltage sensor.

§5.3 Experimental details

The temperature dependence of the modulation depth was investigated experimentally

for both channels. Figure 5.3 shows the results of the experiment. As follows from the

experimental data, the modulation depth dependence on temperature has a ctang-like shape for

both wavelengths that well agree with the theoretical model (see Eq. 5.5). The transition

through the zero value corresponds to the change of π radian in the phase of a sensor’s signal.
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Figure 5.3 Experimental dependence of the modulation depth versus temperature for λ = 633 nm and λ

= 976 nm

The temperature dependence of the ratio of modulation depths for two wavelengths is

shown in Figure 5.4. As is seen, experimental results are in agreement with the theoretical

model. A difference between theoretical and experimental curves (experiment-linear

dependence, theoretical model-non linear function) could be explained by the simplifications

accepted in the theoretical model. In particular, the contribution of the first harmonic is only

taken into account in the Equation 5.4. The temperature dependence of the electrooptic

coefficient may also change the theoretical curve.
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Figure 5.4 Modulation depth’s ratio as a function of temperature. Experimental results.

 We have estimated an accuracy of temperature measurements in the range of 10 °C –

70 °C. Since the sensor’s temperature is calculated from the measured ratio of modulation

depths, the error of measurements of four voltages U633/DC, U633/AC, U976/DC, U976AC, was 10-4

will determine the total error of measurement. In its turn, the accuracy of voltage

measurements is determined by the noise of optical sources and photoreceivers. The relative

error of the voltage measurements U633/DC, U633/AC, U976/DC, U976AC was 10-4 in our

experiments. The relative error of the temperature measurement was calculated to be 10-3. As a

result, the absolute error of temperature measurement is approximately 0.3 °C (within 10 °C –

70 °C). The absolute error of the voltage measurement was 1 Vrms (within 20 – 1000 Vrms),

providing the accuracy of the voltage measurements of about 0.1 % within the temperature

range of 10 °C – 70 °C.

The sensitivity of the voltage sensor was measured to be 0.008 % per 1 Vrms at 20 °C.

This is a little less, than the sensitivities reported before in the literature [5,10,12]. It could be

explained by the fact, that the phase plate is not precisely a quarter wave for both wavelengths.
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The thickness of the phase plate was chosen to supply a sufficient accuracy of the temperature

sensor. The amplitude characteristic of the voltage sensor is linear up to 1000 Vrms. Minimally

detecting voltage is 20 Vrms with the resolution about 1 Vrms.

§5.4 Conclusions and remarks

The Bi12TiO20-based fiber-optic sensor of an electrical voltage and temperature has

been demonstrated experimentally. We have proposed to use a thick phase plate of the voltage

sensor as a temperature sensitive element. Such a scheme of the sensor allows us, first, to

solve a problem of temperature stability of the voltage sensor; second, to decrease the size of

the sensing head; and third, to avoid an additional temperature sensor. The sensor has a linear

temperature characteristic within the range of 10 °C – 70 °C, providing the accuracy of

temperature measurements of 0.3 °C. As a voltage sensor, this device has a linear amplitude

characteristic up to 1000 Vrms and the excellent temperature stability of 0.1% within the

temperature range of 10 °C – 70 °C.
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Chapter Six:

Electro-optic fiber optic sensor for high

a.c. voltage measurements

§6.1 Introduction

Traditional techniques for high voltage measurements include electrostatic voltmeters,

sphere gaps, transformer and potential divider methods. Electrostatic voltmeters have the

inconvenient of the difficult to design because they will be free from errors due to corona

effects, within the instrument and to the external electrostatic fields. On the other hand, sphere

gaps are reliable only for calibration purposes because they need a high accuracy in the gap

distance between spheres used and are not suitable for routine measurements. Finally,

transformer and potential divider methods are rough and with low accuracy due the

undesirable currents [1].

Fiber optic electric field sensors based on electro-optic modulators are attractive for

high voltage measurement applications because they offer great advantages with respect of

traditional techniques [2,3]. The absence of any conducting element let us obtain advantages

like electrical isolation for example, and immunity to electromagnetic interference and

electrical and thermal noise.

Pockels electro-optic effect application to sensing electric field was demonstrated long

time ago [4].  The first voltage sensor using fiber-optic technology was proposed many years

ago [5-12]. Since then, other authors have been proposed several configurations for electric

field sensor based on the longitudinal Pockels effect but they do not offer good sensitivity

without the use of an additional temperature control channel (0.039% per 1 Vrms and 0.051%

per 1 Vrms [8,12]). Moreover, for industrial applications, temperature stability of the crystal
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parameters is not meet at all.  For this case, we develop a voltage sensor without temperature

control described below.

A fiber optic voltage sensor based on the longitudinal Pockels effect using a Bi12TiO20

crystal has been proposed, with good sensitivity (0.145% per 1 Vrms) and temperature stability

(±1.5% from –20 oC to 60 oC) [13, 14].  This electric field sensor showed in Figure 1, was

implemented and inserted in a cylindrical non-conductive cover with dimensions of 39

millimeters of length and 13 millimeters of diameter, coupling 100 meters of multimode fiber

to it.  We report on the application and the response of this sensor for high voltage

measurements using two possible forms available of high electric field: continuos electric

wave and pulsed electric wave. Our aim is to show that the sensor behavior is linear and that

this sensor can be useful for high voltage sensing for industrial applications.

Figure 6.1 Fiber optic electric field sensor.
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§6.2 Sensor’s Scheme

Figure 6.2 shows an experimental arrangement of the remote sensor proposed to

measure high voltage in electric transmission lines. An optical beam from a 670-nm non-

polarized superluminiscent light emitting diode (SLED SUPERLUMTM SLD-26-HP with

FHWM 30 nm and 5mW was used as the illumination source with a temperature and current

controller PILOT-2TM both placed in the processing unit. The SLED's beam is guided through

a multimodal fiber (100 m of length and 62.5 / 125 µm) with a Selfoc lens at the end to couple

it to the sensor head. The output irradiance is guided backward by means of an identical

system (Selfoc-fibre optic) to the processing unit.  The sensor head is divided into thre main

parts. The first one is a polarizing prism, which has two functions inside the sensor, i. e. , it

acts as the polarizer (when the light wave gets in in the sensor head) and as analyser (when the

light gets out of it). When the light wave enters into the sensor head, the polarizing prism

polarizes the light lineally with an angle of 45 degrees with respect to the BTO's transmission

axes and the output irradiance decreases in half. When the light wave leaves the sensor head,

the polarizing prism transforms the polarization modulation into amplitude modulation. The

second part of the sensor head is composed of a BTO (5 × 5 × 2 mm3) photorefractive crystal.

This crystal shows isotropic optical properties in the absence of an external electric field.

However, the BTO changes its dielectric properties in the presence of an external electric

field, that is, it becomes anisotropic showing an induced birefringence[14]. Therefore, a phase

diference that is lineally proportional to the external electric field is introduced between the

two components of the light that spreads inside the crystal. This phenomenon is the Pockels

effect [14]. The third element of the sensor head is a back reflecting prism. The back reflecting

prismhas three functions inside the sensor head: (1) to make a double pass through the BTO

crystal thereby increasing the sensitivity of the voltage measurement [14]; (2) to introduce a

π/2 rad phase difference, by double reflection to generate a linear response; (3) to avoid a

phase shift of the wavelength due to variations of the environmental temperature, the back

reflecting prism is made of BF-7 russian glass [15].
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Figure 6.2 Scheme of the fiber optic voltage sensor.

The transmission function of the sensor can be obtained from the 2×2 Jones matrix

formalism of each element of the sensor head as [15],
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where, E denotes the Jones vector of light at the input of the crystal after the polarizer, R(...) is

the rotation matrix, Cinc is the Jones matrix of the BTO crystal for the incident light, W is the

Jones matrix of the back-reflecting prism, Cref is the Jones matrix of the BTO crystal for back-

reflected light and P is the Jones matrix of the analyzer.
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Figure 6.3 shows the sensor’s transmission function and the phase shift due the back-

reflecting prism. Notice that this is necessary to work the sensor in the linear part of the

transmission function. Therefore, we obtain a good linear behavior in the sensor response. It is

shown in Figure 6.3, where the intensity of light is being modulated by the electric field

imposed to the crystal in the linear part of the transmission function. We used the double pass

configuration for high sensitivity proposed in Ref. 13.

Figure 6.3   Sensor’s transmission function.

§6.3 Experimental details

To demonstrate the feasibility of our fiber optic voltage sensor for measuring high

voltage, two experiments were performed. The experiments were directed to calculate the

sensitivity, linearity and speed of the response of the sensor. Sensor head’s response depends

of the orientation inside the electric field (Figure 6.4), having the highest sensitivity when the

electric field vector is normal to the circular surface of the sensor head (x-y plane in Figure

6.4).
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Figure 6.4    Electric field incidence over the plane surface of the sensor head: (a) normal to the x-y plane, (b)

parallel to the x-y plane.

Sensor's response for several degrees of electric field's vector incidence were measured

and plotted in Figure 6.5. We can observe that in normal incidence to the x-y plane we have

the highest amount of electrical modulation. It is obvious if we consider that the optical

modulator used in our sensor's configuration was designed to work like a longitudinal

modulator [15].
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Figure  6.5  Filtered amplified output vs. electric field vector incidence for x-y plane at sensor’s head.

Sensor’s sensitivity is defined by the ratio of the output voltage sensor in mV to the

voltage signal measured. That is:

Sensitivity = [ ]
[ ]rmsmeasured

sensor

kVV
mVV                                               (6.2)

Where Vsensor is the filtered and amplified output of the photodetector when voltage is

sensed by the sensor head in milivolts and Vmeasured is the real voltage applied to the aluminum

tube in kilovolts.

We define horizontal plane like the parallel plane to the physical ground that includes

the sensor element and the voltage element V(t), and the vertical plane like the perpendicular

plane to the physical ground that includes the sensor element V(t) (Figure 6.6). Next, we start

to explain the experiments realized.
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Figure 6. 6    Schematic view of the horizontal and vertical planes.

6.3.1 Continuos electric wave experiments

In the first experiment, a periodic signal of 60 Hz of high ac voltage was measured. For

this, a cylindrical conductor of aluminum tube with 15 cm of diameter, was connected to a

high voltage source that can be adjusted to vary voltage from 0 to 500 kV by means of

transformers. Then the sensor's sensitivity was obtained by changing the distance every 10 cm

between the sensor head and the cylindrical conductor in two mutually perpendicular

directions.

Sensor sensitivity for horizontal/vertical displacement was measured and plotted in

Figure 6.7. Making an approximation, the sensor’s sensitivity in horizontal/vertical plane is

given by the next calibration equation:
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Figure 6.7 shows the approximated sensitivity curve (calibration) in continuous line

and measurements in horizontal and vertical planes are shown in dots. Sensitivity is very

similar for vertical and horizontal planes. It is because the system has a cylindrical symmetry

for the electric field originated by the voltage element [16]. Therefore, measurements made

with this sensor assure us that it can be taking only with the consideration that the x-y plane

must be perpendicular to the electric field to be measured.

Figure 6.7 Sensor’s sensitivity for horizontal and vertical planes.

Sensor’s response is linear for each voltage amplitude signal. Figure 6.8 shows

variations of the output signal for every 10 centimeters from the voltage element V(t) in

horizontal plane with offset view; we can see the slope for each measurement and the

dependence with the distance for intensity measurements in range of 50 kV to 400 kV/60 Hz.
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Figure 6.8    Horizontal distance of the sensor from the voltage element Vs. voltage applied (in offset view).

As we can see in figure 6.9, sensor's sensitivity has a similar behavior as horizontal

plane, we made measurements from the voltage element V(t) for each 10 centimeters in

vertical plane and all are plotted in this figure.

Figure  6.9 Vertical distance of the sensor from the voltage element Vs. voltage applied.
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Therefore, voltage measured for a horizontal/vertical displacement directly results:
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6.3.2 Pulsed electric wave experiments

We also determine the transient response of the fibre optic sensor for several high

voltage impulses, with the sensor head at 1 meter away from the cylindrical conducting

element V(t). Were applied high voltage pulses from 500 kV to 1100 kV/60 Hz. (Figure 6.10).

Figure 6.10. Schematic diagram for high voltage pulses measurement

We realized spectral measurements (with a spectrum analyzer ANDOTM AQ 6312B).

We can see in Fig. 6.11 the transient response when were applied voltages of 699kv, 807kv

and 1000kv. A temporal zoom of the negative impulse of 807kv demonstrate the high
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resolution of the sensor response and we observed the sensor head resolution for those pulses.

Spectral response of the sensor head, show us the behavior of the electric pulse at the

beginning. We can solve for this pulse and is shown in Figure 6.11.

Figure 6.11.    High voltage pulses detected at 1 meter from the voltage element V(t)

Taking the signal after 1 mS, we plotted the values and we observe the linearity and the

transient response of the sensor element were registered. Sensor's response is plotted in Figure

6.12, from different pulse intensity.

Sensor’s response to the transient experiment was of high linearity as we can see from

the Figure 6.12. From this response, we obtained next calibration formulae:
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Figure 6.12 Sensor head’s response to high voltage pulses.

We observe a negative pulse from the graphic; this negative pulse is solve in details in

Figure 6.13 and we interpret this phenomena like a initial spark because the dielectric

resistance has been reached when the high voltage pulse is generated. Moreover, Figure 6.13

show us the sensor’s definition for pulses of few microseconds.
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Figure 6.13. Details of the pulse detected by the sensor head.

§6.4 Conclusions and remarks

A remote fibre optic sensor for measuring high voltage in electric transmission lines

was presented. This sensor is based on a double pass configuration, which increases the

sensitivity and temperature stability. The measurements also show good modulation depth

behaviour and with linear response. These advantages allow us to implement FOS in industrial

environments where the risk of electric shocks exists, since the proposed FOS is robust and

shows a fast response against faster impulse signals.
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Chapter Seven:

General conclusions and outlook

It has been the purpose of this dissertation to demonstrate the advantages that the

Bi12TiO20 (BTO) fiber optic voltage sensor offers for industrial applications. It has been found

that BTO crystal is the most sensitive, whilst using light at a wavelength of 633nm. BTO

retains a good sensitivity even in the near infrared with certain crystal dimensions.

The role of the photoconductivity for operation of fiber optic voltage sensor was

investigated and there was found that the degree of photoconductivity in a crystal together the

optical power determines a non-uniform sensitivity region not considered before for designing

voltage sensors.

Remote sensors with high stability to temperature variations can be made using fiber

optics and a BTO crystal. It has been demonstrate in Chapters Four, Five and Six and we can

summarize the advances achieved in the following relevant aspects:

1. New configuration of BTO based fiber optic voltage sensor with optically controlled

sensitivity has been proposed. The sensor operates at two widely separated wavelengths, one

of which is a control signal. Properly chosen wavelength of the control signal, as well as phase

retarding element, allow increases or decreases in the sensitivity of the sensor by varying the

power of the control signal. For a single wavelength sensor, the sensitivity does not depend of

the optical power. In the dual-wavelength sensor, the sensitivity is function of optical powers

and a relative phase shift, introduced by a phase retarding element. The main advantage of this

sensor includes a remote control of sensitivity and fast changes of a measurable range using a

low-power optical signal. Moreover, the control signal enables us to compensate changes in

sensitivity caused by temperature variations.
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2. New fiber optic voltage and temperature sensor. Taking advantage of a thick phase plate

of the voltage sensor, we demonstrate experimentally, that is possible to measure temperature

and voltage at the same time avoiding an additional temperature sensor and solving the

problem of the temperature stability that this configuration involves.

3. New configuration for high voltage measurements. A double pass configuration for high

voltage measurement has been studied and experimentally demonstrated. The use of this

sensor allow us to measure high voltage impulses from 1 meter of distance away the electric

field source avoiding the risk of electric shock to the user. This remote voltage sensor was

implemented and is today in use by Laboratorio de Pruebas de Equipos y Materiales (LAPEM)

of Comisión Federal de Electricidad (CFE).

Results obtained throw a new option for voltage sensor with several advantages. This

suggests to investigate more materials with similar characteristics than BTO for voltage sensor

applications and to investigate several configurations to compensate the temperature

dependence and to increase the sensitivity for voltage sensors in general.


