

Modelo general de la ecuación de reflectancia, para un interferómetro de fibra óptica Fabry-Perot de múltiples superficies, y su análisis espectral.

CENTRO DE INVESTIGACIONES EN OPTICA, A.C.

Osvaldo Rodríguez Quiroz, David Monzón Hernández

Centro de Investigaciones en Óptica A. C., Loma del Bosque 115, Colonia Lomas del Campestre, León Guanajuato, C.P. 37150 México. osvaldorg@cio.mx, dmonzon@cio.mx

RESUMEN

En este trabajo se presenta un método simple para obtener la ecuación general de reflectancia, para un Interferómetro de fibra óptica Fabry-Perot (FPI) de múltiples superficies (R_{FPNS}). Aplicando la transformada inversa de Fourier (IFT), a la ecuación de reflectancia, se obtiene la longitud de camino óptico de las cavidades y posteriormente el índice de refracción de cada medio.

METODOLOGIA

El análisis del espectro de la reflectancia en un interferómetro de tres cavidades (aire – vidrio – muestra), se simplifica si utilizamos la transformada inversa de Fourier.

Interferómetro Fabry-Perot de 3 cavidades

INTRODUCCION

Las mediciones del índice de refracción (RI) se han considerado como uno de los temas clave para investigar las propiedades físicas, químicas y biológicas de los materiales. Entre los diversos métodos para la medición del RI, un interferómetro de fibra óptica es un excelente candidato debido a su alta sensibilidad, simple fabricación, tamaño compacto y fácil manejo. En general, en un interferómetro se mide la diferencia de longitud de camino óptico (OPD) entre dos o más haces de propagación.

Figura 3. Arreglo experimental.

Figura 4. Longitud de Camino Óptico.

x=OPL [µm]

RESULTADOS

Longitud de onda [nm

Figura 1. Arreglo experimental de un interferómetro Fabry-Perot de una cavidad.

Para simplificar el análisis de N superficies o N-1 cavidades (figura 2a) se propuso el diagrama equivalente mostrado en la figura 2b. El campo eléctrico total reflejado ($E_{R(NS)}$) es igual a la suma de los campos reflejados por cada superficie. Así que para el análisis de dos superficies, serían los dos primeros términos de la ecuación (5) y así sucesivamente.

Figura 2. Modelo general para el análisis de reflexión de (a) una cavidad o dos superficies y (b) N superficies.

(1)
$$E_{R(NS)} = E_0 \cdot K_0 \sqrt{R_1} e^{-j(2\phi_0 - \theta_1)}$$

CONCLUSIONES

- □ El análisis de la reflectancia mediante la Transformada Inversa de Fourier es el método más recomendable por su simplicidad.
- □ Para determinar el RI de forma más precisa, la posición de los picos (IFT) debe resolverse con una adquisición de datos finamente espaciada.

Las ventajas de éste interferómetro son:

Mediciones sin contacto

Automatizado

Pequeño

• En tiempo real • En campo Múltiples parámetros

BIBLIOGRAFIA

[1] Carlos Moreno-Hernández, David Monzón-Hernández, Iván Hernández-Romano, and Joel Villatoro, "Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a simple", Opt. Express, 2015.

[2] Young Ho Kim, Kwan Seob Park, Byeong Ha Lee, Seok Lee, Deok Ha Woo, Young-Tak Chough, "Highly Accurate Refractive Index Sensor Based on Fourier-Transformed Phase Acquisition in Fiber-Optic Interferometer", IEEE, 2013. [3] Mingshun Jiang, Qiu-Shun Li, Jun-Nan Wang, Zhongwei Jin, 1 Qingmei Sui, Yaohong Ma, Jianguo Shi, Faye Zhang, Lei Jia, 1 Wei-Guo Yao, and Wen-Fei Dong, "TiO2 nanoparticle thin film-coated optical fiber Fabry-Perot sensor", Opt. Express, 2013.