

Active thin film variation in OPV cells and analysis through external and internal quantum efficiency

O. Amargós-Reyes^{1*}, A.D. Romero-Borja¹, D. Barreiro-Argüelles¹, J.A. Gaspar², and J.L. Maldonado^{1*}

1 Centro de Investigaciones en Óptica A. C., Loma del Bosque 115, Lomas del Campestre, 37150 León, Gto, México

²Universidad de Sonora, Boulevard Encinas y Rosales, 83000 Hermosillo, Sonora, México

* e-mail: olivia@cio.mx; jlmr@cio.mx

ABSTRACT

Here is reported an analysis of the external and internal quantum efficiency (EQE and IQE) and, its correlation with the power conversion efficiency (PCE) of organic photovoltaic (OPV) cells, as a function of the active layer thickness, ranging from 40 to 165 nm. OPVs cells configuration was ITO/PEDOT:PSS/PTB7-Th:PC71BM/PFN/Field's Metal (FM: an alternative top electrode). IQE spectra were determined from EQE and net internal absorption spectra; net absorption was estimated through the transfer matrix method (TMM).

INTRODUCTION

External Quantum Efficiency (EQE): To measure how efficiently the device converts the incident light into electrical energy at a given wavelength.

RESULTS ITO/PEDOT:PSS/PTB7-Th:PC71BM/PFN/FM 10 - 40 nm - 100 nm - 55 m - 110 m - 55 m - 120 m - 75 m - 133 m - 75 m -

 η_A : the exciton generation efficiency (Q), η_{CG} : is the CC photo-generation efficiency, η_{CT} : is the CC transport efficiency, η_{CE} : is the subsequent charge extraction efficiency across the interface to the external circuitry.

EXPERIMENTAL SET UP

Fig. 4: (a) J-V and (b) EQE curves of solar cells with different active layer thicknesses

Fig. 5: (a) Optical electric field intensity estimated by TMM considering a unitary incoming intensity passing through these layer thicknesses: 165 nm of ITO, 40 nm of PEDOT:PSS, 100 nm of PTB7-Th:PC71BM and 5 nm of PFN; (b) PTB7-Th:PC71BM absorbance determined by TMM by taking into account all the OPV layers for each

Field's Metal (FM): Alternative top electrode. Is an eutectic alloy, composed by 32.5% Bi, 51% In and 16.5% Sn, that melt at 65°C.

Fig. 1: EQE scheme: a) Power measurements, b) solar cell current measurements

PTB7 vs PTB7-Th

Tab. 1: Comparative data of PTB7 and PTB7-Th [5,6]

Parameters:	PTB7	PTB7-Th
Chemical structure	° (
	F = S $S = S$ S S $S = S$ S S S S S S S S S	$ \begin{array}{c} + s \\ + s $
Hole mobility	$5.8 \times 10^{-4} cm^2 V^{-1} s^{-1}$	$2.83 \times 10^{-3} cm^2 V^{-1} s^{-1}$
Bandgap	1.64 eV	1.58 eV
Absorption coefficient	$1.9 \times 10^4 \ cm^{-1}$	$2.5 \times 10^4 \ cm^{-1}$
$- PTB7-Th:PC_{71}BM (~100 nm)$ $- PTB7:PC_{71}BM (~100 nm)$ $- PTB7:PC_{71}BM (~100 nm)$ $- PTB7:PC_{71}BM (~100 nm)$ $- PTB7-Th$		

Fig. 6: IQE obtained from EQE and the PTB7-Th:PC71BM absorbance (from TMM) from 40 to 165 nm thickness

SPIE OPTICS+ PHOTONICS

CONCLUSIONS

The highest IQE took place for the active layer thickness range 92 to 120 nm. IQE spectra showed a significant reduction with the increasing of active layer thickness (> 120 nm), and also if it was very thin (< 75 nm), it is because of the losses for recombination and trapping, and poor absorption, respectively. If an OPV cell exhibits a low EQE but a high absorption, then the reduction in efficiency arises from either poor transport or poor interfacial kinetics (or both).

ACKNOWLEDGMENTS

REFERENCES [1] D. Barreiro, et al., Sol. Energy 163, 510 (2018). [2] D. Romero, et al., Carbon 134, 301 (2018). [3] H. Park, et al., Sol. Energ. Mat. Sol. Cells 143, 242 (2015). [4] E. A. Katz, et al., Sol. Energ. Mat. Sol. Cells 144, 273 (2016). [5] L. W. Lim, et al., Synth. Met. 221, 169 (2016). [6] Y. Liang, et al., Adv. Mater. 22, E135 (2010).

Ce-MIE-Sol 207450/27, CONACyT-SENER grant 245754 (Mexico) and CONACyT grant 293371 (Mexico)