

CENTRO DE INVESTIGACIONES

Active thin film variation and analysis of OPV cells through **External Quantum Efficiency (EQE) technique**

O. Amargós-Reyes^{1*}, A. D. Romero-Borja^{1,2}, D. Barreiro-Argüelles¹, and J.L. Maldonado^{1*}

EN OPTICA, A.C. 1 Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Lomas del Campestre, León, Gto 37150, México 🧐

2National Laboratory of Graphenic Materials, Centro de Investigación en Química Aplicada, Blvd. E. Reyna 140, 25294 Saltillo, México

<u>* e-mail: olivia@cio.mx; jlmr@cio.mx</u>

ABSTRACT

Here is reported the analysis of the external quantum efficiency (EQE or IPCE) and, its correlation with the power conversion efficiency (PCE) of organic photovoltaic (OPV) cells, as a function of the active layer thickness. OPVs cells configuration was ITO/PEDOT:PSS/Active layer/PFN/Field's Metal (FM). The active layer was PTB7-Th:PC71BM blend. Active film thickness range was 40-165 nm. Internal quantum efficiency (IQE) was also estimated.

Photocurrent estimation from IPCE and comparison with those measured from the J-V plots: $J_{sc}(mA/cm^2) = \int \frac{P_{in\lambda}\lambda}{1240} \frac{IPCE_{\lambda}}{100} d\lambda$

Tab. 2: Jsc estimated from IPCE

Thickness (nm)	Jsc (<i>mA/cm</i> ²) J-V curve	Jsc (<i>mA/cm</i> ²) IPCE
165	-11.62	-11.66
142	-12.72	-11.30
103	-13.29	-11.86
98	-11.40	-10.85
75	-10.56	-10.69

CONCLUSIONS

It was observed a significant reduction of IQE with the increasing of the active layer thickness (above 120 nm). It could mean that there exist more non-geminate recombination losses. On the other hand, when the active layer thickness have a significant decrease (under 70 nm) PCE is reduced too because not enough charge carriers are generated. There exist a good agreement of the Jsc measured from the J-V curves and the estimated from EQE measurements.

ACKNOWLEDGMENT

Ce-MIE-Sol 207450/27 and CONACyT-SENER grant 245754 (Mexico)

REFERENCES

[1] E. Perez, et al., ACS Appl. Mater. Interfaces 8, 28763 (2016). [2] D. Romero, et al., Synth. Met. 200, 91-98 (2015). [3] G. Palma, et al., Rev. Sci. Instrum. 86, 013112 (2015). [4] H. Park, et al., Sol. Energ. Mat. Sol. Cells 143, 242 (2015). [5] E.A. Katz, et al., Sol. Energ. Mat. Sol. Cells 144, 273-280 (2016). [6] F. Bencheikh, et al., J. Phys. Chem. C, 119, 24643-24648 (2015). [7] L. W. Lim, et al., Synth. Met. 221, 169-175 (2016). [8] B. Ebenhoch, et al., Org. Electron. 22, 62-68 (2015).

