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Abstract

We present an ab initio study of the GaAs(11) surface. In particular, the spin in-

jection current, the electrical injection current and the degree of spin polarization

are calculated for one-photon excitations. First, we present a formal derivation

of the formulas used to obtain such responses; we explicitly obtain the expres-

sions for both the total and the layered contributions. In the second chapter,

we give an introduction of the method used to calculate the wave function for

a crystalline surface along with all its approximations. In the third chapter, we

make a convergence study to ensure that our calculations will be correct within

our approximations. Finally, in chapter 4, we present our results and its possible

applications.
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Chapter 1

Introduction

In the last decade the field of spintronics or spin electronics was positioned as an
important scientific activity. Statistical studies made during the years 1996 and
2001 by Stephan von Molnár show that the number of research papers that were
published on this subject had increased continously [1]. Year by year papers on
spin injection, detection and manipulation had increased. Moreover, the areas
involving semiconductors has also received special attention because of the fact
that much of the actual electronics is based on semiconductors.

In electronics we use the electron charge as a basic property to work with.
However, it is well known that electrons also posses a spin angular momentum. It is
an intrinsic property whose value does not depend on the electron mass or angular
velocity. Moreover, the spin is connected to a magnetic moment which makes it
act as a magnet. So that, in a magnetic field, the spin can have two directions,
loosely speaking, they are known as up and down. This property provides an
extra degree of freedom leading to an electronics field known as spintronics. Spin
electronics exploits the spin properties as well as the charge properties offering
more opportunities to new electronic devices.

One of these devices is the so-called giant-magneto-resistive (GMR) structure,
which is a device that is used as a read head and a memory-storage cell. It
consists of alternating multi-layers composed of magnetic and non-magnetic met-
als and alloys, and, its performance depends on the relative orientation of the
magnetizations in the layers. The device resistance changes from small (parallel
magnetizations) to large (antiparallel magnetizations) values. This change in re-
sistance is an important effect known as magneto-resistance which is used to sense

1



2 Chapter 1. Introduction

changes in magnetic fields. This resulted in the first spintronics device: the GMR
structure launched by IBM in 1997.

Some recording devices, such as hard disks already employ the GMR effect.
Data is recorded and stored in magnetized iron or chromium oxides. In order
to read it, a read head detects resistance changes in the disk that is rotating
underneath it. GMR technology enables increases in storage capacity of hard
disks. As an example, a popular spintronics device is the Apple iPOD 60GB
which has a GMR read head inside.

Recent innovations in GMR technology have introduced magnetic tunnel junc-
tion devices where the tunneling current is related to spin orientations of the elec-
trons at the electrodes. These devices have two magnetic layers separated by an
insulating metal-oxide layer. Electrons at both sides are able to tunnel only when
their spin polarizations are aligned in the same direction. The resistance is 1000
times higher than in the standard GMR devices.

In the future it is expected that the merger of electronics, photonics and mag-
netics will provide novel spin-devices such as spin resonant tunneling devices,
optical switches and spin-transistors. However, the development of these devices
depends on the knowledge we can acquire in managing the spin of the electron.
Thus, the investigation on spintronics areas is crucial for the improvement of the
electronic industry.

Current investigations in the field of spin electronics are under two different
approaches. The first one has the aim of perfecting the GMR-based technology by
introducing new materials or by engineering better designs on the existing devices.
The second effort is in the field of generation and utilization of spin currents. This
can lead to new devices which can be easily incorporated to existing integrated
circuitry.

In the aim of producing and controlling spin currents, recent discoveries have
given attention to semiconductors as both sources and carriers of spin information.
One of them by Kikkawa et al. [2] demonstrated that the spin relaxation time can
be extended to 100 ns in bulk n-GaAs with a negative doping density of 106cm−3,
and they have shown that spin can be transported over macroscopic scales of 100
micrometers without loss of coherence. Also, Malajovich et al. [3] have shown
that spin coherence can even be transported across semiconductor junctions with
different band gaps, such as GaAs/ZnSe hetero-junctions.

The use of semiconductors in quantum computers has potential benefits. It will
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be easy to incorporate them to the actual devices because of the fact that the elec-
tronic technology is based on semiconductors such as silicon and gallium arsenide.
What is more, semiconductors allow various characteristics to be controlled by ex-
ternal fields such as light and electro-magnetic fields. Moreover, semiconductors
can be controlled by quantum confinement at nanoscales.

Knowing the potential that have semiconductors in spintronics, we decided to
study optical properties of GaAs[110]. We studied a surface because it is formed
of a small number of layers minimizing the size of the quantum integrated circuits.
Among the optical properties that the surface presents we focused on the injection
of electrical and spin currents due to linear absorption of light.

Our study is purely theoretical, however, ab initio calculations have been used
for years giving correct results in most cases. Moreover, understanding the physical
processes that are involved on matter is important in developing a new scientific
area. Spintronics will become a mature science only when the physical processes
inherit to the control and injection of spin currents are completely understood.

All in all, we have introduced spintronics as a new relevant scientific area which
is concerned with the understanding and control of spin currents for its potential
application in spin-electronic devices. As it has been explained, we will study
a semiconductor surface because semiconductors have attracted special attention
after it has been demonstrated that they can be used to store and transport
spin currents. Moreover, a major understanding and control of the spin in nano-
materials will lead to the development of new devices which will revolutionize the
electronic industry.
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Chapter 2

Ab initio calculations

In modern chemistry, computer modeling has been widely used in order to obtain
the physical properties of molecular systems. These simulations have a lot of
advantages over traditional experiments. They save money and time, and, it is
easier to control the parameters in a simulation than in a real situation. Therefore,
they are a powerful tool in the field of material sciences.

First, we can calculate all the optical properties of a material with just one
computer. Second, we need different apparatus for each of the different properties
we want to find in traditional experiments. Moreover, in theoretical calculations
we can easily change one parameter and find its response. In contrast, in real
experiments it is difficult to isolate one variable and measure its particular contri-
bution.

However, theoretical calculations will not replace traditional techniques. On
the contrary, they complement each other. We need theory to understand the
intrinsic physical processes of the materials and we need experiments to validate
the theory. Ab initio calculations have been used for years. They have succeeded
over the time giving us the opportunity to use them as a predictive tool.

In the following sections it will become obvious that we need to solve the
Schrödinger equation for a system of many bodies. However, this equation can
only by solved analytically for an Hydrogen atom. For all other cases we must
use approximations. The approximation methods can be categorized as either ab
initio or semiempirical. The main difference is that ab initio calculations use only
the position and the atomic number of the atoms while we employ some data
extracted from experiments to make semiempirical calculations.

5



6 Chapter 2. Ab initio calculations

Ab initio means from the beginning. In sciences it is also known as first
principles. A calculation is said to be ab initio when we do not use experimental
input in the calculations. We just limit ourselves to values of fundamental physical
constants such as atomic numbers and dielectric constants among others.

In this chapter we will explain how ab initio techniques can be employed to
obtain optical properties of a semiconductor surface. To start our calculations we
will use the coordinates of the atoms in the crystal lattice, and, we will calculate
all the energies among ions and electrons on the system. Then we will solve
the many-body Schrodinger equation for this system in order to obtain the wave
function that describes it. At the end we will use this wave function to calculate
the optical properties of the system.

2.1 Total energy calculations

In 1924 de Broglie proposed the idea that particles behave as waves. He made
it possible by joining the ideas of Einstein and Planck. To illustrate, if you join
Planck’s expression for the quantization of the energy E = hν to the Einstein’s
relativity formula E = mc2 you can easily obtain that λ = h/p. This formula
states that electromagnetic radiation has a particle nature (momentum) and wave
characteristics (wavelength).∗

It was Schrödinger who associated the classical equation for waves to the
de Broglie’s particle waves. With this aim he developed his so called Schrödinger
equation Ĥψ = Eψ. Max Born gave the wave-function ψ a wider meaning. He
named it a probability wave because the square of the wave function |ψ(x)|2 give
us the probability of finding the particle at position x. Moreover, later works
have proved that from the wave function we can obtain other physical properties,
i.e., observables as the position and the momentum can be easily obtained from
the wave function and there are many other properties that can be derived from
them. Thus, it is extremely important to obtain the wave function ψ in order to
get other physical characteristics of the system.

One of the main quantities we are trying to find is the total energy of the
system Etot because of the fact it is related with the wave function by an eigenvalue
equation, the Schrödinger equation. As it is expected, the energy of a system E

∗Here h is the Planck’s constant, ν is the light frequency, λ is the light wavelength, c is the
speed of light and p is the particle’s momentum.
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can be obtained from ψ by the following general expression:

Etot =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 . (2.1)

Thus, we will start by defining the Hamiltonian Ĥ for a system of electrons
and nuclei:

Ĥ = − h̄2

2me

∑

i

∇2
i −

∑

i,I

ZIe
2

|ri −RI |
+

1

2

∑

i6=j

e2

|ri − rj |

−
∑

I

h̄2

2MI
∇2

I +
1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
, (2.2)

where {RI} are the positions of the ions and {ri} denote the electrons. The
electron mass is me, the atomic charge is denoted by Z and the atomic mass by
M .

The problem of solving this equation is formidable. The first approximation
that we are going to use is the Oppenheimer approximation. This treats the nuclei
as being static because of the differences of masses between electrons and nuclei.
Then, the problem is reduced to a system of electrons moving along a frozen nuclei.
If the ions are at rest the Hamiltonian can be rewritten as:

Ĥ = − h̄2

2me

∑

i

∇2
i −

∑

i,I

ZIe
2

|ri −RI |
+

1

2

∑

i6=j

e2

|ri − rj|
+

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
, (2.3)

If we define the total external potential Vec experienced by an electron due to
the presence of ions located at positions {RI} as,

Vec(r) = −
∑

I

ZIe
2

|RI − r| , (2.4)

the Hamiltonian can be rewritten as:†

Ĥ = − h̄2

2me

∑

i

∇2
i +

∑

i

Vec(ri) +
1

2

∑

i6=j

e2

|ri − rj |
. (2.5)

Further simplications will be made to the problem. As it is explained by M.
C. Payne [5] we will use density functional theory to model the electron-electron
interactions and pseudopotential theory to model the electron-ion interactions.

†The last term of equation (2.3) was neglected because it is simply a constant, usually called
the Madelung energy. At the end, this constant will be calculated by using the Ewalds method [4].
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Hartree-Fock energy

Hartree-Fock limit

Exact solution of non-relativistic

Schrödinger equation

Relativistic energy

electron

correlation

energy

E

Figure 2.1 : We show the electron correla-

tion energy, which is equal to the Hartree-

Fock limit minus the energy obtained by

solving the unrelativistic Schrödinger equa-

tion under the Oppenheimer approxima-

tion.

2.2 Electron-electron interactions

The third term of equation (2.3) describes a relation between electrons on the
system. We know by Coulomb’s law that electrons repulse each other by a force
which is inversely proportional to the square of the distance between them. In a
real life system it is extremely difficult to know the exact positions of all electrons
at a given time, therefore, we will made further approximations to simplify this
term.

2.2.1 Hartree-Fock method

Because of the fact that electrons are fermions, the wave function must be an-
tisymmetric under exchange of any two electrons. That is, each electron has a
unique set of quantum numbers. The antisymmetry of the wavefunctions produce
separation among electrons having the same spin orientation. Moreover, these
separations cause a reduction of the Coulombic energy of the system. The reduc-
tion of the energy due to the antisymmetry of the wave functions is known as the
exchange energy.

The exchange correlation is the only correlation considered in the Hartree-
Fock method (HFM). However, there are other correlations to consider. The
Coulomb correlation describes the correlation between spatial electrons of opposite
spin. Their repulsion causes a separation that reduces the energy of the system.
Moreover, there is also a correlation related to the overall symmetry of the system.

In quantum chemistry we can solve the Schrödinger’s equation using the HFM.
In this method the wave function is approximated by a Slater determinant. How-
ever, single determinants cannot always describe exact wave functions. In this case
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this approximation does not take into account the Coulomb correlation. There-
fore, the total energy calculation will be slightly different from the exact solution
of the Schrödinger equation given by (2.3). The difference between both solutions
is known as the correlation energy.‡

Fig. 2.1 shows the differences among energies calculated by different methods.
The lowest energy is the energy calculated by relativistic equations, and, the use
of non-relativistic equations leads to a higher energy value. Moreover, when intro-
ducing the Hartree-Fock approximation the energy obtained is slightly higher than
the exact solution of the Schrödinger equation. The difference between the lowest
energy that we can obtain by using the Hartree-Fock approximation (Hartree-
Fock limit) and the energy obtained by the non-relativistic Schrödinger equation
is called electron correlation energy.

It is extremely difficult to calculate the correlation energy of a complex system.
Many approximations have been used such as Monte Carlo simulations [8]. On
the other hand, there are other methods that describe the effects of the electron-
electron interaction, such as the Density Functional Theory.

2.2.2 Density Functional Theory

The main idea of the Density Functional Theory (DFT) is that any property of a
system conformed of many bodies can be expressed as a functional of the ground
state density ρo(r). That is, the electronic density is set as the basic quantity in
the many-body wavefunction. The electronic wave function is dependent on 3N
variables, three spatial variables for any of the N electrons. On the other hand,
the electronic density is only a function of three variables. Therefore, we will have
a simpler quantity to work with.

The Kohn-Sham (KS) method is a common implementation of the DFT. It
allows to convert the many-body problem of interacting electrons moving in a
static external potential into a problem of non-interacting electrons in an effective
potential. So that the system of electrons can be thought as a classical liquid of
density ρo(r). The effective potential includes the electron-electron interactions
along with the external potential.

‡It was Per-Olov Löwdin who made numerous studies on the Hartree-Fock approximation and
coined the term correlation energy [6], [7].
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2.2.3 Kohn-Sham energy functional

Hohenberg and Kohn showed [9] that the ground-state energy of an interacting
inhomogeneous electron gas in a static potential V (r) can be written as:

Etot =

∫

V (r)ρ(r)dr +
1

2

∫ ∫

ρ̂(r)ρ(r′)

|r − r′| drdr′ +G[ρ] (2.6)

where ρ(r) is the density and G[ρ] is a universal functional of the density.
Kohn and Sham [10] proposed an approximation for G[ρ] that contains the

major part of the effects of exchange and correlation. This is,

G[ρ] ≡ Ts[ρ] +Exc[ρ], (2.7)

where Ts[ρ] is the kinetic energy functional and Exc[ρ] is the exchange-correlation
energy functional. If ρ(r) is slowly variant then we can show that [10]:

Exc[ρ] =

∫

ρ(r)εxc (ρ(r)) dr, (2.8)

where εxc(ρ) is the exchange and correlation energy per electron of a uniform
electron gas of density ρ.§

Using Eq. (2.8) Kohn and Sham [10] proposed a set of equations that must be
solved self-consistently,

∫

δρ(r)

{

VH(r) + V (r) +
δTs[ρ]

δρ(r)
+ Vxc(ρ(r))

}

dr = 0; (2.9)

VH(r) =

∫

ρ(r′)

|r − r′|dr
′ (2.10)

Vxc(ρ) = d(ρεxc(ρ))/dρ (2.11)

where Vxc is the exchange and correlation contribution to the chemical potential
of a uniform gas of density ρ, and, VH is the Hartree potential.¶

§This expression is only valid for slow varying densities because it does not takes into account
inhomogeneities in the electron density. This is the so-called Local Density Approximation (LDA)
because we are assuming that the exchange-correlation energy functional is purely local, i.e., the
electron exchange and correlation energy at any point of the space is a function of the electron
density at that point in space only.

¶The Hartree energy, EH , is the self-interaction energy of the density ρ(r) treated as a classical

charge density. It is explicity given by: EH = 1
2

∫

ρ(r)VHdr = 1
2

∫ ∫ ρ(r)ρ(r′)
|r − r

′|
drdr′.
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Equations (2.9), (2.10) and (2.11) describe a system of noninteracting electrons
moving in a potential VH(r) + V (r) + Vxc(ρ(r)). Knowing this potential can find
the density ρ(r) by solving the Schrödinger equation

{

−1

2
∇2 + [VH(r) + V (r) + Vxc(ρ(r))]

}

ψi(r) = εiψi(r), (2.12)

and by using the Born’s relation

ρ(r) =
N
∑

i=1

|ψi(r)|2, (2.13)

where N is the number of electrons.

The set of Eqs. (2.9)-(2.13) must be solved self-consistently. That is, we first
give an initial ρ(r), then we obtain the potentials V , VH and Vxc from Eqs. (2.10)
and (2.11). At last we find a new ρ(r) by using Eq. (2.12). We repeat the
procedure until the initial ρ and the new ρ are the same considering a given error
tolerance.

It is important to note that only the minimum value of the KS energy func-
tional has physical meaning. At this minimum the electronic density ρ(r) becomes
the ground state density ρo(r) of the system, i.e., all the other densities ρ(r) do
not have physical meaning.

2.2.4 Bloch’s theorem

We just showed that it is possible to solve the Schrödinger’s equation for a system
of many atoms. However, the problem remains extremely difficult because we have
to solve this equation for each one of the electrons conforming the system. There
are two main problems: the number of electrons in the system is infinite, and,
because of the fact that each electronic function extends over the entire solid, the
basis set needed to expand each wave function is also infinite. These problems will
be solved by applying the Bloch’s theorem.

The Bloch’s theorem states that the wavefunctions ψ for a periodic solid can
be made of two parts; a plane wave times a function with the periodicity of the
solid [11]:

ψn(r) = eik·run(r) (2.14)
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If we use reciprocal lattice vectors to expand the periodic part, we find out
that each wave function can be written as a sum of plane waves [5],

ψn(r) =
∑

G

cn,k+Ge
i(k+G)·r, (2.15)

where G denotes reciprocal lattice vectors and k is for reciprocal vectors.

Then it follows that by using the Bloch theorem we will only calculate the
response functions at a unit cell, the irreducible Brillouin zone. This unit cell will
fill all the lattice space without leaving gaps by repetition of crystal translation
operations.

The Bloch’s theorem modifies the initial problem in the following way. We no
longer need to compute an infinite number of wave functions but a finite number
of wave functions at an infinite number of k-points k. According to the boundary
conditions of a particular solid, we find out that the electronic states are dis-
cretized. Thus, we have a finite number of allowed states at an infinite number
of k-points k. Each k contributes to the electronic potential, so that, we need to
calculate an infinite number of k-point contributions in order to compute the total
potential. However, it has been proved that the contributions of k-points which
are very close together are almost identical. Thus, we can represent a region of
k-points by only one k-point. To illustrate, we will only consider some k-point
samples at each zone of the crystal in order to calculate the total energy of the
crystal.

2.2.5 Cutoff energy

Up to now, we have considered a finite number of wave functions in a finite number
of k-points. Moreover, Bloch’s theorem states that we can expand each wave
function in a set of plane waves. Theorically, we need an infinite number of plane
waves to expand a single wave function. Thus, we will introduce another concept
in order to overcome this problem; the cutoff energy.

The coefficients ci,k+G used to expand a wave function with small kinetic
energy are more important than those with large kinetic energy [5]. Therefore,
we will only consider the plane waves with coefficients having a kinetic energy no
longer than a cutoff energy. That is, we will truncate our calculations when we
reach the cutoff energy. The bigger the cutoff energy is, the more accurate the
result will be. However, it will take more time to compute. Thus, it is important
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to choose the minimum cutoff energy at which the results converge in order to
save computing resources and time.

We have overcome the problem of electron-electron interactions, but, how are
we going to solve the electron-ion interactions?

2.3 Electron-ion interactions

2.3.1 Pseudopotential formalism

The core electrons, are nearly unresponsive to many of the physical phenomena
that we can observe in a material. In fact, the column structure of the periodic
table of the elements is based on the passivity of the core states and the reactivity
of the valence states. Thus, it is natural to eliminate the need to include atomic
core states, which is achieved by replacing the strong core potential by a weaker
one, a pseudopotential.

As it was explained Bloch’s theorem states that wave functions can be ex-
panded in a set of plane waves, however, a very large number of plane waves are
needed in order to follow the rapid oscillations of the electrons in the core region.
That is, a large cutoff energy will be needed, leading to a vast amount of comput-
ing time. On the other hand, when we replace the Coulombic core potential by a
weaker one we no longer need a high cutoff energy to expand the wave functions
in the core regions.

All in all, the pseudopotential theory (PST) overcomes two problems; it sim-
plifies the complicated effects caused by the motion of the core electrons of an
atom and its nucleus and guarantees that the valence wavefunction be orthogonal
to all the core states.

The pseudo-potentials are generally repulsive at the origin, and, the resulting
wave functions usually have the correct shape outside the core region, however,
they differ from the real wave functions in its magnitude [12]. Having this in mind,
we will normalize the first ones to ensure that both wave functions be identical
outside the core region as you can see in Fig. 2.2.

At large distances the pseudopotential is identical to the Coulombic potential
of the form Z/r, where Z if the atomic number. When finding its Fourier trans-
formation we can find that it diverges as Z/G2 when G tends to zero. It is not
alarming because the Coulomb contributions to the total energy from the three
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Figure 2.2 : Sketch of all-electron (solid

lines) and pseudo (dashed lines) potentials

along with their respective wave functions.

The wave functions oscillate rapidly in the core

region because of the strong Coulombic attrac-

tion. Outside the core region the two poten-

tials are identical. Source [5].

interactions (ion-ion, electron-ion and electro-electron) cancel each other [5]. Be-
cause of the fact that the system is charge-neutral, there is no Coulomb potential
at G = 0. Thus, there cannot be a contribution to the total energy from the
G = 0 component of the Coulomb potential.

2.4 Ion-ion interactions

The last term of equation (2.2) describes the interactions between all ions in the
array. It is the Coulombic energy due to atoms positioned at R2 and the array of
ions positioned at rJ = r1 + l. As you may note this is an infinite sum. In order
to solve this problem we use the Ewald’s method which will convert this infinite
sum in convergent summations. It is based in the following identity, [5]

∑

`
1

|R1 + `−R2| =
2√
π

∑

`

∫ ∞

η
exp

[

−|R1 + `−R2|2ρ2
]

dρ

+
2π

Ω

∑

G

∫ η

0
exp

[

−|G|2
4ρ2

]

ei(R1−R2)·G 1

ρ3
dρ,

η > 0, (2.16)

where ` denotes lattice vectors, G is for reciprocal lattice vectors and Ω is the
volume of the unit cell. It is important to note that if one chooses a correct value
for η the two summations on the right will converge very rapidly.

As it was mentioned in the previous section the contributions to the total
energy at G = 0 will cancel. Therefore we have to omit the terms at G = 0 at
real space and reciprocal space.



2.5. Computation 15

2.5 Computation

As it was explained before, the main idea is to be able to find the total energy of the
system Etot. Theoretically, this can be done by solving the general equation (2.1)
with the Hamiltonian (2.2). However, the problem of solving the Schrödinger
equation by using the Hamiltonian (2.2) is extremely difficult. Therefore, we
introduced a series of approximations in this chapter; the DFT, the PST, the
Bloch’s theorem and the Ewald methods. At last we explained that the terms for
G = 0 had to be ignored for the Ewald series to converge. All in all, we have
arrived to an alternative form for the total energy Etot:

Etot = Ekin +Eec +EH +Exc[ρ] +Ecc (2.17)

where Ekin is the kinetic energy, Eec is the energy corresponding to the interactions
between ions and electrons, EH is the Hartree energy, Exc[ρ] is the exchange-
correlation energy, and, Ecc is the term that describes the ion-ion interactions.
These terms (per cell ) are given explicitly by: [13, 14]

Ekin =
1

Nc

∑

i,G

ni|ψi(ki + G)|2 h̄
2|ki + G|2

2m
, (2.18a)

Eec =
1

Nc

∑

i

ni

∫

drψ∗
i (r)Vec(r)ψi(r), (2.18b)

EH =
Ω

2

∑

G6=0

|ρ(G)|2 4πe2

|G|2 , (2.18c)

Exc =
Ω

2

∑

G

ρ∗(G)εxc(G), (2.18d)

Ecc =
1

2

∑

s,s′

ZsZs′e
2







4π

Ω

∑

G6=0

[

1

|G|2 cos[G · (Rs −R′
s)]exp

[

−|G|2
4η2

]]

− π

η2Ω
+
∑

l′

[

erfc(ηx)

x

]

x=|l+Rs−R′
s|
− 2η√

π
δss′

}

. (2.18e)

The symbols ni, Nc, Ω are, respectively, the occupation number, the total
number of cells in the system and the cell volume. Zs and Rs are the atomic
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number and the position vector for the sth atom in the basis. ρ(G) stands for the
Fourier transform of the pseudo valence charge density. Vec(r) is the potential due
to the interaction among ions and electrons in the system. εxc(G) is the exchange
correlation energy per electron in Fourier’s space. The prime in the l summation
is used to indicate that the l = 0 term when Rs = R′

s will be excluded to make
the Edwald summations converge.

As you can notice, this expression for the total energy depends on the electronic
density ρ(r). Therefore, we need first to compute ρ(r) in order to find Etot. The
procedure to get ρ(r) is based on the following theorem: [15]

Theorem 1 (Hohenberg-Kohn) For any system of interacting particles in an
external effective potential V eff (r), the potential V eff (r) is determined uniquely,
except for a constant, by the ground state particle density ρo(r).

That is, given a density ρo(r) we can find the effective potential V eff (r) =
Vec(r) + VH(r) + Vxc(ρ(r)). It follows from equation (2.12) that we can obtain
the density ρo(r) from the potential V eff (r). Thus, we will repeat this procedure
until the difference between two subsequent values of the calculated densities ρo(r)
are less than a given error tolerance. At this time we can say that the result has
converged, and we are ready to calculate the total energy by using Eq. (2.17).

As it is shown in Fig. 2.3 the complete process is as follows:

1. Given the atomic coordinates we will construct an ionic potential Vec. This
is achieved by using the pseudopotential method.‖

2. We will choose a cutoff energy for the plane-wave basis set ei(k+G)·r given
by Eq. (2.15).

3. We will give a trial density ρ(r).

4. The exchange-correlation potential Vxc(ρ(r)) and the Hartree potential VH(r)
will be calculated using Eqs. (2.9), (2.10) and (2.11) for the given density
ρ(r).

5. We will find a new density ρ(r) solving the eigenvalue equation (2.12).

6. We will repeat the last two steps until the results converge.

‖When constructing the pseudo-potentials, there are several details that we have to deal with,
however, we will not go into these details here.
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Pick a cutoff for the plane-wave basis set
{

ei(k+G)·r
}

Pick a trial density ρ(r)

Calculate VH and Vxc

Compute Total Energy

Calculate new ρ(r)

IS SOLUTION SELF-CONSISTENT?

Generate new

density ρ(r)

YES NO

Construct Vec given atomic numbers and

positions of ions

Solve Hψ =
[

−

h̄
2
∇2

2m
+ Vec + Vxc + VH

]

ψ = Eψ

Figure 2.3 : We show the

computational procedure to

calculate the total energy of a

solid. Source: [5]

7. Having the density ρ(r) we will calculate the total energy Etot by using
expression (2.17).
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Chapter 3

Injection process

In order to develop spintronics devices, the methods of injection, conduction and
manipulation of charge carriers into semiconductor materials have to be improved.
Since two decades ago the so-called magneto-electric effect has been used to suc-
cessfully inject spin currents into semiconductors. It was first proved by Johnson
and Silsbee [16] in an experiment in which they could transport non-equilibrium
magnetization across the interface made of a ferromagnetic metal and a param-
agnetic metal. The main idea of this approach was the use of a ferromagnetic
metal to inject spin into a semiconductor due to the differences of voltage and
magnetization potential at the interface.

After it was proved that a ferromagnetic metal could be used to inject a prefer-
able spin polarization, applications were developed based on this principle. Among
the first works in this field, there is a current modulator proposed by Supriyo Datta
and B. Das [17]. This device uses magnetized contacts to launch and detect spin
polarizations. Moreover it uses a narrow-gap semiconductor as an analog of an
electro-optic material to control phase shifts between +z polarized and −z polar-
ized electrons via a gate voltage. In these devices magnetized contacts have been
used to inject spin polarizations. We can question ourselves; is there another way
of launch spin polarizations?

Light, which is an electromagnetic (EM) field, can cause this effect. As it is
shown in Fig. 3.1, Ali Najmaie et al. [18] proved that monochromatic fields at ω
and 2ω can be used to inject and control spin and electrical currents in quantum
wells. The main difference between both approaches is that the former uses a
magnetized contact to produce a preferable spin polarization while the latter uses

19
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Material

x

y

z

2ω
ω

Figure 3.1 : Scheme showing that circularly polarized optical fields of frequencies ω and 2ω

produce an average spin population pointing to the −z direction in a given material.

light in order to do so.
In this Chapter we show the equations that predict the changes in spin when

a semiconductor is exposed to light, i.e., an incident EM field will produce a non
equilibrium spin polarization producing majority of either spin-up electrons or
spin-down electrons in the material surface. In order to do so, we are going to
use a semiclassical approximation to show how an observable changes due to a
radiation field.

3.1 Hamiltonian of a system immersed in a radiation
field

The Hamiltonian is an operator corresponding to the total energy that a system
has. That is, according to the Schrödinger’s equation when applying the Hamilto-
nian to a particular state we obtain the energy of the state. Moreover, obtaining
the total energy is extremely important because it is useful to get some other
quantities such as the dielectric function. ∗.

∗Some of the results which we are going to show in this thesis are based on total energy
calculations. That is, we need to get the energy in order to know other quantities. To know more
about this topic you can refer to J. E. Sipe [19].
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The Hamiltonian must involve all the potential and kinetic energies of the sys-
tem. For example, for an electron inside a Hydrogen atom, it just has the kinetic
energy term of the electron and a potential energy term due to the interaction of
the electron and the nuclei. Our case is a little more complex for we have a radi-
ating field that induces a magnetic moment on the electrons due to their intrinsic
spin. Therefore, we need to find the expressions that can model our system when
it is radiated by fileds with frequencies of ω and 2ω. We use these frequencies
because the system will evolve by small perturbations, and for our purposes a
second order approximation in the perturbation is sufficient, see Appendix C.

Our study becomes more complex because we will model a structure of atoms
instead of just an isolated atom, as it was in the Hydrogen case. It is important
to note that a particular electron will feel a potential due to a periodic array of
nucleus and all the electrons around those nucleus. For the moment we will define
the potential V as the sum of all the potential energy in the system. Then in the
future we will consider all the potential terms involved in our structure.

In this section we will get the Hamiltonian of a system radiated by light. In
other words, we will find the physical expressions that model the energy of a
crystal immersed in a monochromatic field of 2ω and ω.

The first step is to describe the radiation field. We could quantize it, but, for
our purposes a classical approach is sufficient. The vector potential describing the
field is given by

A(t) = A(ω)e−i(ω+iε)t + A(−ω)ei(ω−iε)t + A(2ω)e−i(2ω+iε)t + A(−2ω)ei(2ω−iε)t

(3.1)
where ε is a positive number that tends to zero and defines the adiabatic turning
on . So that, when the time t tends to minus infinity the vector potential A(t) is
zero ( A(−∞) = 0 ).

The vector potential does not have a physical meaning but it is related to a
physical observable. Using the Coulomb gauge the Maxwell’s equations can be
written in the following form [20]:

Φ = 0, (3.2a)

∇ ·A = 0, (3.2b)

B = ∇×A, (3.2c)

E = −1

c

∂A

∂t
. (3.2d)
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Substituting Eqs. (3.1) into (3.2d) we can find out that the electric field E(ω) is
related to the vector potential A(ω) as follows:

E(ω) = (iω/c)A(ω). (3.3)

We have described the external electric field. Then, it is time to find the
Hamiltonian operator. The time-independent Hamiltonian in its general form is
defined by

Ĥ =
p̂2

2m
+ V, (3.4)

where V is an arbitrary potential and the first term is the kinetic energy. In our
case V is the time-independent potential due to the ions interaction inside the
crystal lattice.

When an electron is inside of an electromagnetic field, the moment p̂ of the
Hamiltonian has to be substituted by a generalized moment p̂(t). That is, an
electromagnetic field induces a moment p̂(t) [21] given by:

p̂(t) = p̂ − e

c
A(t). (3.5)

Combining Eqs.(3.4) and (3.5) we find that

Ĥ =
p̂2

2m
+ V − e

2mc
p̂ · A(t) − e

2mc
A(t) · p̂ +

e

c
A2(t). (3.6)

We can separate the ground state Hamiltonian Ĥo from the interaction terms
as follows

Ĥ = Ĥo −
e

2mc
p̂ ·A(t) − e

2mc
A(t) · p̂ +

e

2mc
A2(t), (3.7a)

Ĥo =
p̂2

2m
+ V (3.7b)

It is convenient to simplify Eq. (3.7a). To do so we can neglect the last term of
the equation because in the case of a weak field the term A2(t) is small compared
with the term linear in A(t). That is, with ordinary light sources, the intensity is
sufficiently low that the effect of the A2(t) can be neglected compared to that of
the A(t) [22]. After applying this approximation, the following expression defines
the interaction Hamiltonian:

Ĥ = Ĥo −
e

2mc
p̂ · A(t) − e

2mc
A(t) · p̂ (3.8a)
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Using the properties of the differential operator p̂:

Ĥ = Ĥo −
e

2mc
[A(t) · p̂ + (p̂ · A(t))] − e

2mc
A(t) · p̂

= Ĥo −
e

mc
A(t) · p̂− e

2mc
p̂ ·A(t)

The last term is zero using the fact that ∇ ·A = 0 according to Eq. (3.2b). Then
it follows that

Ĥ = Ĥo + Ĥi , (3.8b)

where
Ĥi = − e

mc
A(t) · p̂ (3.8c)

In the last equation we have find a Hamiltonian with two terms. The first one
Ĥo is the ground state Hamiltonian which represents the system at its initial state.
The second one is the interaction Hamiltonian Ĥi which defines the perturbations
that the system will suffer, i.e., the system experiments a transition from its initial
state to an excited state due to the Hamiltonian Ĥi.

3.2 Second quantization

The second quantization (SQ) approach usually referred to as the occupation num-
ber representation give us the opportunity to use vector states. The first state is
the ground state |0〉 which represents the system at its lower energy state where
there are no excited electrons, and, there are other states representing systems
with one or more excited electrons. In order to make it clearer to understand we
will define the ground state as the following ket,

|0〉 = |1v1 , 1v2 , 1v3 , ..., 1vnmax , 0c1 , 0c2 , 0c3 , ..., 0cnmax〉, (3.9)

where the subindex c indicates a conduction band and a valence band is indicated
by v. A filled band is represented by 1 and we set a 0 for an empty band. In
such a way that 1v1 indicates that the first valence band, v1, is occupied by one
electron. In the same form, there is a state representing each one of the scenarios
that might exists, for example, the ket representing a system in which a transition
has occurred between the third valence state and the first conduction state is:

|1v1 , 1v2 , 0v3 , ..., 1vnmax , 1c1 , 0c2 , 0c3 , ..., 0cnmax〉 (3.10)
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In our case it will be much easier because we will define just two possible states
|0〉 for the ground state system, and |c, v,k〉 to indicate that a transition occurred.
Therefore, this quantization approach will make easier our calculations. As shown
in the Appendix A, when using SQ we can represent the ground-state Hamiltonian
as † (A.20)

Ĥo =
∑

c,k

h̄ωc,kâ
†
c,kâc,k −

∑

v,k

h̄ωv,kb̂
†
v,kb̂v,k (3.11)

The operators â† and â are known as the creation-annihilation operators be-
cause they create or annhilate electrons respectively when applied to a certain ket.
The same holds for b̂ and b̂†, but, instead of acting on electrons they annihilate or
create holes in valence bands. For a more detailed explanation about SQ and the
creation-annihilator operators read the Appendix A.

Moreover, any observable Ô can be represented by: (see A.21)

Ô =
∑

c,c′,k

Occ′(k)â†c,kâc′,k +
∑

c,v,k

Ocv(k)â†ckb̂
†
v,k

+
∑

v,c,k

Ovc(k)b̂v,kâc,k −
∑

v,v′ ,k

Ovv′(k)b̂†v′ ,kb̂v,k (3.12)

By using this equation it can be easily shown that the interaction Hamiltonian in
its SQ form has the following form ‡:

Ĥi = − e

mc
A(t) ·



































∑

c,c′,k pcc′(k)â†c,kâc′,ke
i(ωcc′)t

+
∑

c,v,k pcv(k)â†c,kb̂
†
v,ke

i(ωcv)t

+
∑

c,v,k pvc(k)b̂v,kâc,ke
i(ωvc)t

−∑v,v′ ,k pvv′(k)b̂†v′ ,kb̂v,ke
i(ωvv′)t



































, (3.13)

where ωab = ωa − ωb.

†The subindex k, usually refered to as the plane wave vector ( or Bloch wave vector), represents
a vector in reciprocal space. It is repeated an infinite number of times over a periodic lattice, but,
it is unique up to a reciprocal lattice. Thus, we only need to consider the wave vector inside the
first Brillouin zone. It is proportional to the particle crystal momentum, that is, if it is multiplied
by the reduced Planck’s constant we get the particle crystal momentum.

For more details on reciprocal lattices see [11]. We use n to refer to an arbitrary band while c
and v are for conduction and valence bands respectively.

‡A formal deduction of this equation can be found in Appendix B. See Eq. (B.17)
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In conclusion, SQ is a scheme that permit us to reduce our problem to a set of
equations in which the creation-annihilation operators are used. The algebra asso-
ciated with this operators is simple. Therefore, we are going to use the operators
in their SQ form in order to simplify our future calculations.

3.3 Probability of transitions

Let us consider that we want to measure a particular property of a material using
optics; first we need to project light to the material, lets say a laser light with
frequency ω. As the ray of light touches the surface of the material, some effects
will be observed on the material. At this point, we have to measure these responses
and we will be able to find the optical properties of the material.

Let us see the microscopic point of view of this imaginary experiment. We
know by Planck’s quantization of light that it is composed of small particles of
energy h̄ω. When these particles are launched into a semiconductor surface they
will transfer their energy and momentum to the electrons in the material. When
doing so, the electrons that were located in a valence band v will be raised to a
higher energy band called a conduction band c provided that Ecv = h̄ω. This
is called a transition. These transitions will cause the material to change to an
excited state and to experiment changes that we can measure.

Therefore, it is extremely important to find the probability of these transitions
in order to know how the material will be affected after it is radiated. Moreover, by
doing this we will be able to find other properties of the material, e. g., transitions
that are responsible of the response that the material can have.

We start by defining the ket |0〉 to represent the system in its ground state, and,
the ket |c, v,k〉 to represent the system in an excited state. |c, v,k〉 indicates that
an electron has experimented a transition from v to c in a particular k-point. We
need to know the k-point where it happens because k-points are crystal locations
in reciprocal space.

In our ideal model the system will be made up of two states: it can be either
in |c, v,k〉 or in |0〉. These two states form a complete base because they are the
only possible states and because they are mutually orthogonal. In other words,
if the system is known to be at state |0〉 at time t it cannot be at |c, v,k〉 at the
same time and vice versa. Having these ideas in mind, we can divide the system
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|ψ〉 into two possible states |0〉 and |c, v,k〉 as follows:

|ψ〉 = Co(t)|0〉 + Cc,v,k(t)|c, v,k〉. (3.14)

The probability of being at state |ψ(t)〉 is represented by |ψ(t)|2 where
|ψ(t)|2 = 〈ψ(t)|ψ(t)〉. With this definition and using Eq. (3.14) we find that:

|ψ(t)|2 = |Co(t)|2 + |Cc,v,k(t)|2. (3.15)

This equation is helpful because we can see that |Co|2 is the probability of being
at state |0〉 while |Cc,v,k|2 is that of being at state |c, v,k〉. Summing both we find
the probability of being at any state |ψ(t)|2 = 1 .

Having two arbitrary states |a〉 and b〉 we will define 〈a|b〉 as the probability of
passing from the state |b〉 to the state |a〉. This cannot be proven for it is one of
the quantum mechanics postulates [23]. By using this definition we find out that
the probability of experimenting a transition to an excited state is:

〈c, v,k|ψ(t)〉 = Cc,v,k(t). (3.16)

Now we are going to give another form to this probability coefficient Cc,v,k(t).
In perturbations theory the ground state |0〉 evolves by small perturbations, that
can be represented by a unitary operator Û , in order to get the system at its final
state ψ(t), from Appendix C:

|ψ(t)〉 = Û(t)|0〉. (3.17)

then by using Eqs. (C.14) and (3.16) we can obtain§:

Cc,v,k(t) = 〈c, v,k|e−i Ĥot
h̄ Ûint(t)|0〉, (3.18a)

Ûint(t) = 1+
1

ih̄

t
∫

−∞

ĤiI(t
′) dt′+

1

(ih̄)2

t
∫

−∞

dt′
t′
∫

−∞

dt′′ ĤiI(t
′)ĤiI(t

′′)+..., (3.18b)

where,

ĤiI(t) = Û †
o (t)Ĥi(t)Ûo(t) (3.18c)

§A complete deduction of these equations can be found in the Appendix C.
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When the ground state Hamiltonian Ĥo acts on the ground state |0〉 it give us the

minimum energy of the system Eo, where it follows that e−i Ĥot
h̄ |0〉 = e

−iEot
h̄ |0〉.

Then we can observe that the first term of Eq. (3.18a) is zero because all the states
of the system were defined to be orthogonal, leading to the following relation:
〈c, v,k|0〉 = 0.

Dividing the terms in Eq. (3.18a) by order of perturbation, we can find n-order

approximations. We define C(1)
c,v,k(t) as the first order approximation in order to say

that the system was affected by ĤiI just once, and the second order approximation

as C(2)
c,v,k(t):

C(1)
c,v,k(t) =

1

ih̄
〈c, v,k|e−i Ĥot

h̄

t
∫

−∞

dt′Ĥi(t
′)|0〉, (3.19a)

C(2)
c,v,k(t) =

1

(ih̄)2
〈c, v,k|e−i Ĥot

h̄

t
∫

−∞

dt′
t′
∫

−∞

dt′′ Ĥi(t
′)Ĥi(t

′′)|0〉. (3.19b)

In conclusion, we have found the explicit equations that give us the probability
of experimenting a transition from a lower energy band to a higher energy band,
up to second order, since it is enough for our purposes.¶

3.4 Carrier and spin population

We will decompose the time evolution of an operator d〈Ô〉/dt due to excitations
caused by one photon of 2ω, two photons of ω and the interaction between both
excitations. That is,

d〈Ô〉
dt

=
d〈Ô〉1

dt
+

d〈Ô〉2
dt

+
d〈Ô〉I

dt
, (3.20)

where the subindex 1 refers to transitions caused by one photon, the subindex 2 to
transitions caused by two photons and I to the interaction between both of them.

¶Numerous studies that use a perturbative approach have shown that experimental results
can be reproduced by taking into account up to a second order in the perturbation. See [24,25].
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Now, using the second quantized form of a state |ψ(t)〉 (Eq. (3.14)) we find
out that,

d〈Ô〉
dt

=
d〈ψ′|Ô|ψ〉

dt
=

d

dt

∑

c,v,k

∑

c′,v′,k′

C∗
c′,v′,k′Cc,v,k〈c′, v′,k′|Ô|c, v,k〉, (3.21)

where Cc,v,k is the probability of an electron undergoing a transition defined by
Eqs. (3.19).

The operators for carrier density n̂ and spin density Ŝa are defined as

n̂ =
1

V

∑

k

n̂(k), (3.22)

Ŝa =
1

V

∑

k

Ŝa(k), (3.23)

where ,

n̂(k) =
∑

c

â†c,kâc,k, (3.24)

Ŝa(k) =
∑

c,c′

Sa
c′c(k)â†c′,kâc,k, (3.25)

and, the superscript a denotes a cartesian component and V refers to the volume
of the unit cell. Here the spin density operator Ŝa is constructed by the Pauli
matrices:

Ŝa =
h̄

2
σa (3.26a)

σx =
1

2







0 1

1 0






, σy =

1

2







0 −i
i 0






, σz =

1

2







1 0

0 −1






(3.26b)

From Eq. (3.20) it follows that

d〈n̂〉
dt

=
d〈n̂〉1

dt
+

d〈n̂〉2
dt

+
d〈n̂〉I

dt
(3.27a)

d〈Ŝa〉
dt

=
d〈Ŝa〉1

dt
+

d〈Ŝa〉2
dt

+
d〈Ŝa〉I

dt
(3.27b)
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Starting with the one photon (2ω) contributions, it will be shown in the Ap-
pendix D that ‖

d〈n̂〉1
dt

= ξbc
1 (2ω)Eb∗(2ω)Ec(2ω), (3.28a)

d〈Ŝa〉1
dt

= ζabc
1 (2ω)Eb∗(2ω)Ec(2ω), (3.28b)

where,

ξbc
1 (2ω) =

1

V

∑

k

ξbc
1 (2ω;k), (3.28c)

ζabc
1 (2ω) =

1

V

∑

k

ζabc
1 (2ω;k), (3.28d)

and,

ξbc
1 (2ω;k) =

2πe2

h̄2

∑

c,v

vb∗
cv(k)vc

cv(k)

(2ω)2
δ(2ω − ωcv(k)) (3.28e)

ζabc
1 (2ω;k) =

2πe2

h̄2

∑

c,v

Sa
c′c(k)vb∗

c′v(k)vc
cv(k)

(2ω)2
δ(2ω − ωcv(k)) (3.28f)

where the super-indices indicate cartesian components, and repeated indices are
summed. Here vab are velocity matrix elements which are calculated as it is
explained in Appendix E.

In order to construct the two photon contributions we use the Eq. (3.20) and
we substitute Eq. (3.19) into (3.21) to get:

d〈n̂〉2
dt

= ξbcdf
2 (ω)Eb∗(ω)Ec∗(ω)Ed(ω)Ef (ω), (3.29a)

d〈Ŝa〉2
dt

= ζabcdf
2 (ω)Eb∗(ω)Ec∗(ω)Ed(ω)Ef (ω), (3.29b)

where,

ξbcdf
2 (ω) =

1

V

∑

k

ξbcdf
2 (ω;k),

ζabcdf
2 (ω) =

1

V

∑

k

ζabcdf
2 (ω;k), (3.29c)

‖All of the following expressions will be demonstrated in the Appendix D. They were originally
proposed by Ali Najmaie et al. see [18].
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and,

ξbcdf
2 (ω;k) =

2πe4

h̄4

∑

c,v,n,m

vb∗
cm(k)vc∗

mv(k)vd
cn(k)vf

nv(k)

ω4 [ωcv(k)/2 + ωvn(k)] [ωc′v(k)/2 + ωvm(k)]

×δ(2ω − ωcv(k)), (3.29d)

ζabcdf
2 (ω;k) =

2πe4

h̄4

∑

c,c′,v,n,m

Sa
c′c(k)vb∗

c′m(k)vc∗
mv(k)vd

cn(k)vf
nv(k)

ω4 [ωcv(k)/2 + ωvn(k)] [ωc′v(k)/2 + ωvm(k)]

×δ(2ω − ωcv(k)). (3.29e)

The interaction terms,

d〈n̂〉I
dt

= ξbcd
I (ω)Eb∗(ω)Ec∗(ω)Ed(2ω) + c.c., (3.30a)

d〈Ŝa〉I
dt

= ζabcd
I (ω)Eb∗(ω)Ec∗(ω)Ed(2ω) + c.c., (3.30b)

where c.c. stands for complex conjugate and the pseudo-tensors ζ bcd
I and ξabcd

I are
determined by

ξbcd
I (ω) =

1

V

∑

k

ξbcd
I (ω;k),

ζabcd
I (ω) =

1

V

∑

k

ζabcd
I (ω;k), (3.30c)

where,

ξbcd
I (ω;k) = −iπe

3

h̄3

∑

c,v,n

vb∗
cn(k)vc∗

nv(k)vd
cv(k)

ω3 [ωcv(k)/2 + ωvn(k)]

×δ(2ω − ωcv(k)), (3.30d)

ζabcd
I (ω;k) = −iπe

3

h̄3

∑

c,c′,v,n

Sa
c′c(k)vb∗

cn(k)vc∗
nv(k)vd

c′v(k)

ω3 [ωcv(k)/2 + ωvn(k)]

×δ(2ω − ωcv(k)). (3.30e)

You may notice that all these results have a Dirac’s delta δ(2ω − ωcv(k)).
This is expected because a transition is only allowed when the frequency of the
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incident photon is equal to the energy size of the band gap. In our case, it has
to be equal to 2ω because we are focusing on the second harmonic. Moreover,
it can be seen explicitly from Eq. (D.26) that our results are coherent with the
Fermi’s Golden Rule [23]. That is, in order to have a transition we need to have
a coupling between the initial and final band and the frequency of the incident
photon has to be equal to the difference of energies between both bands. Finally,
we have arrived to coherent expressions that show the spin and carrier population
responses due to an incident field of frequencies ω and 2ω.

3.5 Electrical and spin currents

Using a similar approach we can calculate the electrical and spin currents injected
in a material. We employ the electrical current density Ĵa and spin current density

K̂ab = v̂bŜa (3.31)

operators, defined as:

Ĵa =
1

V

∑

k

Ĵa(k),

K̂ab =
1

V

∑

k

K̂ab(k), (3.32)

where

Ĵa(k) = e
∑

c,c′

va
c,c′(k)â†c′,kâc,k,

K̂ab(k) =
∑

c,c′

K̂ab
c,c′(k)â†c′,kâc,k. (3.33)

Here the operator v̂ is the velocity operator.
Following the same steps we took to obtain Eq. (3.27), we get

d〈Ĵa〉
dt

=
d〈Ĵa〉1

dt
+

d〈Ĵa〉2
dt

+
d〈Ĵa〉I

dt
(3.34a)

d〈K̂ab〉
dt

=
d〈K̂ab〉1

dt
+

d〈K̂ab〉2
dt

+
d〈K̂ab〉I

dt
(3.34b)
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In this case the terms for one-photon excitations are:

d〈Ĵa〉1
dt

= ηacd
1 (2ω)Ec∗(2ω)Ed(2ω), (3.35a)

d〈K̂ab〉1
dt

= µabcd
1 (2ω)Ec∗(2ω)Ed(2ω), (3.35b)

where,

ηacd
1 (2ω) =

1

V

∑

k

ηacd
1 (2ω;k), (3.35c)

µabcd
1 (2ω) =

1

V

∑

k

µabcd
1 (2ω;k), (3.35d)

and,

ηacd
1 (2ω;k) =

2πe3

h̄2

∑

c,v

va
c′c(k)vc∗

c′v(k)vd
cv(k)

(2ω)2
δ(2ω − ωcv(k)), (3.35e)

µabcd
1 (2ω;k) =

2πe2

h̄2

∑

c,v

Kab
c′c(k)vc∗

c′v(k)vd
cv(k)

(2ω)2
δ(2ω − ωcv(k)). (3.35f)

The two-photon terms are:

d〈Ĵa〉2
dt

= ηacdfg
2 (ω)Ec∗(ω)Ed∗(ω)Ef (ω)Eg(ω), (3.36a)

d〈K̂ab〉2
dt

= µacdfg
2 (ω)Ec∗(ω)Ed∗(ω)Ef (ω)Eg(ω), (3.36b)

where,

ηacdfg
2 (ω) =

1

V

∑

k

ηacdfg
2 (ω;k),

µabcdfg
2 (ω) =

1

V

∑

k

µabcdfg
2 (ω;k), (3.36c)
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and,

ηacdfg
2 (ω) =

2πe5

h̄4

∑

c,c′,v,n,m

va
c′c(k)vc∗

c′m(k)vd∗
mv(k)vf

cn(k)vg
nv(k)

ω4 [ωcv(k)/2 + ωvn(k)] [ωc′v(k)/2 + ωvm(k)]

×δ(2ω − ωcv(k)), (3.36d)

µabcdfg
2 (ω) =

2πe4

h̄4

∑

c,c′,v,n,m

Kab
c′c(k)vc∗

c′m(k)vd∗
mv(k)vf

cn(k)vg
nv(k)

ω4 [ωcv(k)/2 + ωvn(k)] [ωc′v(k)/2 + ωvm(k)]

×δ(2ω − ωcv(k)). (3.36e)

The interaction terms are:

d〈Ĵa〉I
dt

= ηacdf
I (ω)Ec∗(ω)Ed∗(ω)Ef (2ω) + c.c., (3.37a)

d〈K̂ab〉I
dt

= µabcdf
I (ω)Ec∗(ω)Ed∗(ω)Ef (2ω) + c.c., (3.37b)

where,

ηacdf
I (ω) =

1

V

∑

k

ξacdf
I (ω;k),

µabcdf
I (ω) =

1

V

∑

k

ζabcdf
I (ω;k), (3.37c)

and,

ηacdf
I (ω) = −iπe

4

h̄3

∑

c,c′,v,n

va
c,c′(k)vc∗

c′nv
d∗
nv(k)vf

cv(k)

ω3 [ωcv(k)/2 + ωvn(k)]
δ(2ω − ωcv(k)), (3.37d)

µabcdf
I (ω) = −iπe

3

h̄3

∑

c,c′,v,n

Kab
c,c′(k)vc∗

c′n(k)vd∗
nv(k)vf

cv(k)

ω3 [ωcv(k)/2 + ωvn(k)]
δ(2ω − ωcv(k)). (3.37e)

All in all, we have obtained the general expressions that we will use to calculate
the carriers and spin current injection into a GaAs[110] surface. As you may
notice, we need to find the velocity matrix elements, vab, as well as, the spin
matrix elements, Sbc. To do so we must find the system wave function by using
several approximations explained in Chapter 2.
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Chapter 4

Injection process in GaAs(110)

In this chapter our goal is to determine the correct value of the variables to be
used in our future calculations. First, we need to ensure that our results will
converge. Second, we have to make sure that our calculations will not consume
a huge amount of resources. For example, if we choose a large set of k-points
the wave function can get extremely big, so that we cannot manage it. Thus,
it is important to choose the correct values of the variables in order to make
calculations feasible.

It is interesting to study the GaAs(110) surface because it contains equal num-
ber of Ga and As atoms; other surface planes in this crystal contain only one of
the two species of atoms present in the crystal. Bulk and surface views of GaAs
are shown in Figure 4.1.

As it was explained in Chapter 2, we use the Bloch’s theorem to solve the
Schrödinger equation for a periodic system. However, a surface is not periodic.
The question that arises is: how are we going to solve the Schrödinger equation if
our slab is not periodic?

The answer is simple, we will repeat the slab an infinite number of times and
treat it as an infinite slab. The only restriction we have is that slabs must not
interact among them. To overcome this problem we introduce a vacuum between
each consecutive slabs. The vacuum size will be chosen according to a convergence
study that will be shown in later in this chapter.

Once we choose the vacuum size we have to set a value for other variables,
such as the cutoff-energy and the size of the k-point set among others. This is
not trivial, for instance, if we choose a small cutoff-energy the results may be

35
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Figure 4.1 :

Graphic represen-

tation of the GaAs

crystal. The Gallium

and Arsenide atoms

are represented with

blue and yellow balls

spheres respectively.

At the top left

corner we find the

GaAs(100) surface.

At the top right

corner we show a

representation of the

infinite bulk struc-

ture. At the bottom

left corner the

GaAs(110) surface

along with its unit

cell are shown. At

the bottom right

corner we show the

unit cell of the GaAs

bulk.

wrong, and, as we increase this value the calculations start to converge while
the computation time increases. Thus, a convergence study must be done to
ensure that our calculations will be correct and that they will not consume many
resources.

4.1 Non-periodic slab

Bloch’s theorem cannot be employed when we have a non-periodic system, i.e., it
cannot be employed neither in the perpendicular direction of a crystal surface not
in a slab which has a defect [5]. However, we can construct a super-cell from a
non-periodic slab and repeat it an infinite number of times changing the problem
to one of a periodic super-cell.
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Figure 4.2 : GaAs(110) super-cell.

The super-cell is composed of the

atoms and vacuum delimited by the

rectangle shown in the picture. This

cell is repeated an infinite num-

ber of times to conform an infinite

slab. The Gallium atoms are repre-

sented by blue spheres while the ar-

senic atoms are represented by yellow

spheres.

The super-cell is made of non-periodic slabs and vacuum spaces among them.
They are arranged periodically so that we can employ the Bloch’s theorem. The
vacuum among slabs is chosen sufficiently big so that the surfaces do not interact
between two different slabs.

For the GaAs(110) surface we constructed a super-cell made of slabs with
a fixed number of layers and a vacuum among all slabs. The vacuum size and
the number of layers in the slab will be fixed to a certain value. But, it will be
discussed later on this chapter. Fig. 4.2 shows a representation of the GaAs(110)
super-cell we used in our calculations.

4.2 Relaxation

There is a notable difference between the atoms at the bulk and the atoms at the
surface of a semiconductor. Each atom in the material is exposed to a potential
due to all the other ions. Moreover, the atoms at the surface are surrounded by
less ions than those at the bulk. Thus, the potential that an ion in the surface
feels is different from the potential at which a bulk ion is exposed.
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Initialize random wavefunctions ψI

Calculate ρ(r)

Find the wave functions ψI

from the given ρ(r)

Are wavefunctions self-consistent?

Move ions

Are forces sufficiently small?

STOP

Use old ψ as initial guess
Calculate forces (Hellmann-Feynman)

Calculate total energy

No

Yes

yes

no

Figure 4.3 : Diagram showing the relaxation

process used in ab initio simulations. Source

[26]

This potential difference makes the ions at the surface move from their ideal
positions to a minimum energy position. We usually refer to this process as the
ionic relaxation. In other words, the transition of an atom or molecule from a
higher energy level to a lower one is known as relaxation.

We can model the ionic relaxation by using full dynamical simulation in which
we will find the path that the ions follow to get to their minimum energy position.
On the other hand, we can simplify the process by following a different path if we
arrive to the same final position. This can be done because of the fact that only
the final stage is important and the path we follow is irrelevant for our pourposes.

The relaxation process can be achieved by following the next steps: First,
we find the wave function of the system for a given ionic coordinates. Then we
calculate forces among ions using the Hellmann-Feynman theorem, which will be
explained later. We proceed to move the ions and recalculate forces until we find
the minimum-energy position [5]. The whole process is shown in Fig. 4.3.∗

The relaxation procedure for the GaAs[100] surface is shown in Fig. 4.4. The

∗There are many variables to consider when moving the ions in order to find the minium
energy state. But, we will not discuss this point in this work. For instance, we can use the
Hellmann-Feynman forces to find the position of a local energy minimum. To know more on this
topic please refer to Payne et al. [5].
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atoms at their initial positions suffer a series of displacements to get to their
minimum energy position. The initial positions are shown at the top while their
final positions are shown at the bottom. As you may notice the atoms closer to
the vacuum suffered bigger displacements. This is due to the fact that the atoms
close to the vacuum are surface atoms while the other ones are bulk atoms.

4.2.1 Hellmann-Feynman theorem

The Hellmann-Feynman theorem will be used to calculate the forces acting on the
ions. It uses the wave functions calculated on a previous step, so that, we have to
find the total energies before proceeding to this point. What is more, it is near to
its classical counterpart, that is, the forces are calculated in a similar way as it is
done in classical mechanics.

Theorem 2 (Hellmann-Feynman) Once the spatial distribution of the electron
clouds has been determined by solving the Schrödinger equation, the intermolecular
forces may be calculated on the basis of straightforward classical electrostatics.

Classically, the force F acting on a particle at R is given by the derivative of
the potential energy:

F = −∇RV (R) (4.1)

In quantum mechanics we might expect to have an equivalent expression for
the force F.

F = −∇r〈E〉, (4.2a)

where
〈E〉 = 〈ψ|Ĥ|ψ〉 (4.2b)

In fact, the Hellmann-Feynman theorem [27] states that once the wave functions
ψ have been calculated we can find the force FI acting at a particular particle on
the system, by

FI =
∂E

∂RI
= 〈ψ| ∂Ĥ

∂RI
|ψ〉. (4.3)

The Hellmann-Feynman theorem can be easily demonstrated as follows: Ex-
panding the derivative over the position RI ,

∂E

∂RI
= 〈 ∂ψ

∂RI
|Ĥ|ψ〉 + 〈ψ| ∂Ĥ

∂RI
|ψ〉 + 〈ψ|Ĥ| ∂ψ

∂RI
〉 (4.4)



40 Chapter 4. Injection process in GaAs(110)

Figure 4.4 : Relax-

ation of the GaAs(110)

surface. The atoms at

their ideal positions

(top) were moved to

their minimum energy

positions (bottom).

The yellow and blue

spheres represent

arsenic and gallium

atoms respectively.

If E is an eigenvalue of Ĥ the first and last term sum to zero, i.e.,

∂E

∂RI
= 〈ψ| ∂Ĥ

∂RI
|ψ〉 +E

∂

∂RI
〈ψ|ψ〉 = 〈ψ| ∂Ĥ

∂RI
|ψ〉 (4.5)

Then, it follows that we can introduce errors via the wave functions, in case they
are wrong.

4.2.2 Relaxation of GaAs(110) surface

The GaAs(110) surface was relaxed by using the abinit software. † It was achieved
by using the Broyden-Fletcher-Goldfarb-Shanno minimization (BFGS), modified
to take into account the total energy as well as the gradients [28].

†Abinit is a project of the Université Catholique de Louvaine. For more information visit
http://www.abinit.org/
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Figure 4.5 : Bandstructure of the GaAs(110) sur-

face. Up: We used ideal coordinates when con-

structing the slab. Down: The same case is pre-

sented, but, we used relaxed coordinates. The dif-

ference between both graphics is notorious at the

band gap, i.e., when using ideal coordinates the

band gap almost disappears.

The band structure for the GaAs(110) surface was calculated for both the
relaxed coordinates and the ideal coordinates. The shape of the bands were similar,
however, the ideal-coordinates case gave us a band structure without energy gap.
Illustrations can be seen in Fig. 4.5.

4.3 Convergence parameters

Now we will make a brief study to choose the correct parameters for our final
calculations. The procedure is easy, we choose a parameter and vary it while
leaving everything else constant. That is, we calculate the same property several
times to see how it changes with respect to a given variable. Moreover, according
to our results we choose the minimum value of a given variable at which the results
converge.

We will see that at low values of a certain parameter the response calculated
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Figure 4.6 :

Spin population

pseudo-tensor

ζxyz and the

carrier population

pseudo-tensor ξxx

in a GaAs(110)

surface. The cutoff

energy was varied

from 6 Ha to 12

Ha to verify the

convergence of

this variable. The

number of layers

was fixed to be

eleven, the vacuum

size was set to nine

layers, we used

28 k-points and

the tolerance on

the difference of

total energy was

1 × 10−6 Ha.

will not have a correct form, but, as we increase its value the results start to
converge. We can keep on increasing it, but, we will find out that the response will
remain the same while the time it takes to compute it will get larger. Therefore,
it is important to determine the minimum values at which calculations converge.

All wave functions in subsequent calculations were found by using the abinit
software, and, we used Hartwigsen-Goedecker-Hutter pseudopotentials

All responses were calculated from Eqs. (3.28) and (3.35) introduced on chap-
ter 3. We used Eqs. (3.28) to calculate the carrier and spin population due to one
photon excitations, and, we used Eqs. (3.35) to find the carrier and spin injection
currents due to one photon excitations.
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Figure 4.7 : Spin

population pseudo-

tensor ζyxz and the

carrier population

pseudo-tensor ξxx

in a GaAs(110) sur-

face. The size of

the k-point set was

varied from 28 k-

points to 112 k-

points. The num-

ber of layers was

fixed to be eleven,

the ecut value was

6 Ha, the vacuum

size was set to nine

layers, we used 28

k-points and the

tolerance on the

difference of total

energy was 1×10−6

Ha.

4.3.1 Cutoff energy (ecut)

We calculated the carrier and spin population pseudo-tensors for the GaAs(110)
surface. We used a k-point set of 28 k-points over the first Brillouin zone.‡

We made a series of calculations with cutoff energies ranging from 4 Ha to 12
Ha as it is shown in Fig. 4.6. As you can verify, in this study we found that the
responses start to converge at a cutoff energy of 7.5 Ha.

4.3.2 k-point set size

This time we started with 28 k-points distributed homogeneously into the first
Brilloin zone, and, we found out that when increasing the number of k-points

‡In the following calculations the number of layers was fixed to be eleven, the ecut value was 6
Ha, the vacuum size was set to nine layers, we used 28 k-points and the tolerance on the difference
of total energy was 1 × 10−6 Ha. This values will remain constant unless it is indicated.
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Figure 4.8 : Spin

population pseudo-

tensor ζxzy and the

carrier population

pseudo-tensor ξxx

in a GaAs(110) sur-

face. The num-

ber of atomic lay-

ers at the slab was

changed from 13 to

19 layers. The ecut

value was 6 Ha, the

vacuum size was set

to nine layers, we

used 28 k-points

and the tolerance

on the difference

of total energy was

1 × 10−6 Ha.

(nkpt) the responses start to converge for k-point sets larger than 60 k-points.

As you can see in Fig. 4.7, the calculations start to fluctuate for energies
larger than 3.5 eV. So that, we will have errors for energies larger than this value.
However, the results converge for energies smaller than 3.5 eV.

4.3.3 Number of layers (nlayer)

In this case the slab size was varied. We started with a slab made of 11 atomic
layers and we increased its size by 2 atomic layers until we reached a slab size of
19 atomic layers. During all these calculations the vacuum size was chosen to be
equal to the slab size, for example, a slab of 11 atomic layers would have a vacuum
size equal to 11 atomic layers. This was made in order to keep the slabs isolated.
At the end, we found out that our results start to converge at slab sizes larger
than 15 atomic layers. See Fig. 4.8.
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Figure 4.9 : Spin

population pseudo-

tensor ζyzx and the

carrier population

pseudo-tensor ξxx

in a GaAs(110) sur-

face. The num-

ber of atomic lay-

ers was fixed to

be eleven, the ecut

value was 6 Ha, the

k-point set size was

set to 28 k-points

and the vacuum

size was set to nine

layers. All graph-

ics for toldfe ≤ 1 ×

10−8 coincide.

4.3.4 Tolerance on the difference of total energy (toldfe)

The toldfe sets a tolerance for differences of total energy that, reached twice suc-
cessively, will cause one self-consistent field cycle to stop. Thus, if this value is set
to be too small, the calculations will take more time to be computed but they will
be more accurate. We chose different values for the toldfe as it is shown in Fig.
4.9. As you may notice, all graphics coincide for a toldfe minor to 1 × 10−8 Ha.

4.3.5 Vacuum size

It is important to choose the vacuum size correctly because at small vacuum sizes
collateral effects start to appear. In Fig. 4.10 we can see the electronic density of
two slabs; one of which has a vacuum bigger than the other one. The slab with
smaller vacuum shows a major density in the vacuum region for the conduction
bands, and, this density is due to the tunneling effect. It is present because of
the interaction between two subsequent slabs, moreover, it can modify the total
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energy of the slab leading to errors in our calculations.§

Knowing this, we proceeded to make a final convergence study. This time the
slab was composed of 17 atomic layers, and, the vacuum size was varied from 3 to
12 atomic layers.

As you can see in Fig. 4.11 the vacuum size in the case of the GaAs(110)
surface can be chosen to be as small as 5 atomic layers without affecting the final
response.

All in all, we have found the minimum values that we can assign to variables
such as the ecut = 7.5 Ha, the toldfe= 1 × 10−8 Ha, the nkpt = 60 , a slab of
17 atomic layers and a vacuum size of 7 atomic layers. to ensure the responses
converge. In other words, we have found the variables we need to make our
calculations feasible and congruent.

§Tunneling is a quantum mechanical (QM) phenomena that does not have counterpart in
classical theory. In QM an electron behaves as a probabilistic wave. That is, a wave function
represents the probability of that electron to be in a certain position at a time t. In our example, if
the vacuum between two slabs is infinite, an electron that is in one slab will not have a probability
to be at the other slab. But, as the vacuum decreases the probabilities to be at the other side
increases. There will be a point when electrons will start to move from one slab to another, and,
this is called quantum tunneling.
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Figure 4.10 : Graphic that shows electronic density of the GaAs(110) surface at one k-point.

The yellow line shows the location of the last valence bands. The black line is just a reference to

make clearer the differences between both graphics. The slab size was equal to 11 atomic layers.

Up: The vacuum size was equal to five layers. Down: The vacuum size was equal to seven

layers.
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Figure 4.11 :

Spin population

pseudo-tensor ζxyz

and the carrier

population pseudo-

tensor ξxx in a

GaAs(110) surface.

The number of

atomic layers was

fixed to be eleven,

the ecut value was

6 Ha, the k-point

set size was set

to 28 k-points

and the tolerance

on the difference

of total energy

was 1 × 10−6 Ha.

All graphics were

normalized to the

same volume.



Chapter 5

Layered calculations

As it is explained in the Appendix E the velocity and spin matrix elements we
need were obtained from the wave function ψ of the system. Moreover, ψ can be
easily obtained by solving the Schrödinger equation for an Hydrogen atom, which is
composed of just one electron around a nuclei. However, our problem is a complex
system of a semi-infinite number of atoms arranged periodically to form a crystal
surface. Since the problem is too complex to be solved analytically we used several
approximations explained in Chapter (2). After using these approximations our
problem was changed to one of solving the Schrödinger equation of a super-cell
composed of a number N of layers ` in a slab and a vacuum which is repeated an
infinite number of times.

5.1 Calligraphic momentum matrix elements

All tensors (Eqs. (3.28e) and (3.35e)) calculated in Chapter 3 for one-photon
excitations are similar to the microscopic current density ĵ, given by

ĵ(r, t) = Ω

∫

d3k

8π3

∑

mn

Cmn(k, t)jnm(k; r), (5.1)

where Ω is the unit cell volume and jnm(k; r)δ(k − k
′
) is the matrix element of

the microscopic current operator j, [29]

ĵ =
e

2
[v̂|r〉〈r| + |r〉〈r|v̂] (5.2)

49
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Here Cmn is defined as [29]:

Cmn(k, t) =
−ie
h̄

∫

dω
fnmvb

mn

ωmn(k)[ωmn(k) − ω]
Eb(ω)eiωt, (5.3)

where the sub-indices m and n are for bands, the super-incides a and b indicate
cartesian components, h̄ is the Planck’s constant, e is the elemental charge and
vmn are the velocity matrix elements. With this example we will show how to
find the layered matrix elements used to calculate the layered responses.

We start by finding the velocity matrix elements by using the motion equation
v̂ = (1/ih̄)[r, Ĥ],

vmn(k)δ(k − k
′
) ≡

∫

d3r〈mk|r〉〈|v̂|nk′〉. (5.4)

Since we are using the DFT with the LDA the Hamiltonian is just local and we
can neglect the nonlocal pseudopotential in [r, Ĥ] to get [29]:

〈r|v̂|nk〉 ≈ 1

m
p̂ψn,k(r) (5.5)

where p̂ = −ih̄∇ and ψn,k(r) = 〈r|nk〉.
Up to now, we have shown how to find several responses of a material due to an

incident light field. However, we may want to isolate just one of the two surfaces
on a slab. To calculate the response of just one surface Reining et al. [30] Mendoza
et al. [31] and Mej́ıa et al. [32] proposed that we should replace the momentum
operator p̂ by P̂ ,

p̂ → P̂ ≡ 1

2
[p̂S(z) + S(z)p̂] , (5.6)

in a slab susceptibility calculation, where S(z) is known as the cut function, which
is usually zero over one half of the slab and unity over the other half. Moreover,
Mendoza et al. [29] extended this idea limiting the calculated current response to
a particular layer of the slab. This is done by replacing the cut function S(z) by
a top-hat cut function S`(z) that selects a given layer, [29]

S`(z) = Θ
(

z − z` + ∆b
`

)

Θ
(

z` − z + ∆f
`

)

, (5.7)

where Θ is the Heaviside function. ∆flb
` is the distance that the `th layer extends

towards the front (f) or the back (b) from its z` position. Furthermore, ∆f
` + ∆b

`

is the thickness of layer `.
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Having these ideas in mind we find that the contribution to the current density
from the `th layer of the slab. Integrating the microscopic electric current j(t)
over the entire cell and dividing by the unit cell volume gives the macroscopic
contribution. But, if we want to know the contribution of just one region of the
unit cell to the total response we can integrate over the desired region:

1

Ω

∫

d3rS`(z)j(r, t) ≡ j(`)(t) =

∫

d3k

8π3

∑

m,n

Cmn(k, t)

∫

d3rS`(z)jnm(k; r) (5.8)

where j(`)(t) is the microscopic current in the `th layer. Then, using Eq. (5.1) we

obtain that the velocity matrix element for a given layer V (`)
mn(k) are given by:

∫

d3rS`(z)jnm(k; r) =

∫

d3rS`(z)
e

2
[〈nk|v̂|r〉〈r|mk〉 + 〈nk|r〉〈r|v̂|mk〉]

≡ eV(`)
nm(k). (5.9)

The layered matrix elements of the velocity operator V (`) should not be replaced
on all matrix elements pmn found in Eq. (5.1), but only on the matrix elements
directly associated with the generated current. That is, only in the velocity matrix
elements found in Eq. (5.2) has to be replaced by V (`). Using Eqs. (5.9) and (5.5),
we obtain [29]:

Vnm(k) =
1

m

∫

d3ψ∗
nk(r)Pψmk(r) ≡ 1

m
Pnm(k). (5.10)

5.1.1 Matrix elements for plane waves

As it was explained before when computing optical responses using ab initio meth-
ods we use plane waves to expand the wave function ψ in the following form:

ψnk(r) =
∑

G

Cnk(G) exp[i(k + G) · r], (5.11)

were Cnk are plane waves coefficients. Finally by using Eqs. (5.1.1) and (5.1) we
find an expression similar to that of the non layered momentum matrix elements
shown in Eq. (E.3) (source [29]):

V(`)
mn(k) =

h̄

2

∑

G,G′

C∗
mG′(k)CnG(k)[2k + G + G

′
]δG‖,G′

‖
f`

(

G⊥ −G′
⊥

)

(5.12)
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where the reciprocal lattice vectors G are decomposed into components parallel
to the surface G‖, and perpendicular to the surface G⊥ẑ, so that G = G‖ +G⊥ẑ,
and

f`(g) =
1

L

∫ z`+∆f

`

z`−∆b
`

eigzdz. (5.13)

5.2 Calligraphic spin matrix elements

Using a similar idea we will find the calligraphic spin matrix elements Smn. The
microscopic spin current mick is given by

K(r, t) = Ω

∫

d3k

8π3

∑

mn

Cmn(k, t)Knm(k; r), (5.14)

where Knm(k; r)δ(k−k
′
) is the matrix element of the microscopic current operator

K,

K =
1

2
[v̂S|r〉〈r| + |r〉〈r|v̂S] (5.15)

Here the coefficient Cmn is given by Eq. (5.3).
The contribution to the spin current density from the `th layer of the slab is

given by

1

Ω

∫

d3rS`(z)j(r, t) ≡ K(`)(t) =

∫

d3k

8π3

∑

m,n

Cmn(k, t)

∫

d3rS`(z)Knm(k; r)

(5.16)
Then, using Eq. (5.14) we obtain that the velocity matrix element for a given

layer V(`)
mn(k) are given by:

∫

d3rS`(z)Knm(k; r) =

∫

d3rS`(z)
1

2
[〈nk|v̂S|r〉〈r|mk〉 + 〈nk|r〉〈r|v̂S|mk〉]

≡ K(`)
nm(k). (5.17)

Likewise, setting v̂ = 0 we find the expression for the calligraphic spin matrix
elements:
∫

d3rS`(z)Ŝ
a
nm(k; r) =

∫

d3rS`(z)
1

2
[〈nk|S|r〉〈r|mk〉 + 〈nk|r〉〈r|S|mk〉]

≡ S(`)
nm(k). (5.18)
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5.2.1 Matrix elements for plane waves

The spin matrix elements are given by the Pauli matrices:

Ŝa =
h̄

2
σa (5.19a)

σx =







0 1

1 0






, σy =







0 −i
i 0






, σz =







1 0

0 −1






(5.19b)

When using plane waves (Eq. (5.1.1)) we have to follow the steps to find the
spin matrix elements indicated in Appendix. E to find:

S(`)x
mn =

h̄

2

∑

G

(

C
−

mk (G)
∗
C

+

nk (G) + C
+

mk (G)
∗
C

−

nk (G)
)

δG‖,G′
‖
f`

(

G⊥ −G′
⊥

)

S(`)y
mn =

ih̄

2

∑

G

(

C
−

mk (G)
∗
C

+

nk (G) − C
+

mk (G)
∗
C

−

nk (G)
)

δG‖,G′
‖
f`

(

G⊥ −G′
⊥

)

S(`)z
mn =

h̄

2

∑

G

(

C
+

mk (G)
∗
C

+

nk (G) − C
−

mk (G)
∗
C

−

nk (G)
)

δG‖,G′
‖
f`

(

G⊥ −G′
⊥

)

(5.20)

5.3 Carrier population (layered response)

The calligraphic momentum matrix elements V (`)are used to calculated the layered
responses which use tensors of a form similar to that in Eq. (5.1). However, the
expression for the carriers population xiab found in Eq. (3.28e) does not have that
form. Thus, we will introduce a formalism to find the layered contributions for
the carriers population.

We define ρ̂(r;k) as a charge density operator, such that,

ρ̂(r;k) =
∑

n,m,k

â†n,kâm,kρnm(r;k), (5.21)

where

ρnm(r;k) = eψ∗
n,k(r)ψm,k(r). (5.22)
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Using a SQ approach we can rewrite the operator ρ̂(r;k); by using Eq. (A.21)
and directly substituting ρ̂(r;k) we get,

ρ̂(r;k) =
∑

c,c′k

ρcc(r;k)â†c,kâc′,k +
∑

c,vk

ρcv(r;k)â†c,kb̂
†
v,k

+
∑

v,ck

ρvc(r;k)b̂v,kâc,k −
∑

v,v′k

ρvv′(r;k)b̂†v′ ,kb̂v,k (5.23)

From Eq. (3.21) we find that,

d〈ρ̂(r;k)〉
dt

=
d〈ψ′|ρ̂(r;k)|ψ〉

dt
=

d

dt

∑

c,v,k

∑

c′,v′,k′

C∗
c′,v′,k′Cc,v,k〈c′, v′,k′|ρ̂(r;k)|c, v,k〉.

(5.24)
The coefficient Cc,v,k give us the probability of a transition to happen, and, it
obeys the Fermi’s Golden Rule, Eq. (D.26):

lim
ε→0

d

dt
|Cc,v,k(t)|2 = |Kc,v(t;k)|2 lim

ε→0

e2εt

(2ω − ωcv(k))2 + ε2

= 2π|Kc,v(t;k)|2δ(2ω − ωcv(k)) (5.25)

where Kc,v(t;k) has two terms; one for one-photon transitions and one for two-
photons transitions:

Kc,v(t;k) =
ie

h̄ωcv(k)
E(2ω) · vcv(k) −

(

2e

h̄ωcv(k)

)2
∑

n

vcn(k) ·E(ω)vnv(k) · E(ω)

ω − ωn(k)

(5.26)

By directly substituting Eq. (5.23) into Eq. (5.24), and performing the inter-
mediate algebraic steps, we obtain that the carrier population due to one and
two-photon excitations is given by,

d〈ρ̂(r;k)〉
dt

=
2π

A
∑

c,v,k

|Kc,v(t)|2 [ρcc(r;k) − ρvv(r;k)] δ(ωcv(k) − 2ω) (5.27)

In the above expression, the one-photon excitations term is

d〈ρ̂(r;k)〉1
dt

= ξab
1 (r, 2ω;k)Ea(−2ω)Eb(2ω), (5.28)
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where,

ξab
1 (r, 2ω;k) =

2πe2

Ah̄2

∑

c,v,k

vb
cv(k)va

vc(k)

ω2
cv(k)

[ρcc(r;k) − ρvv(r;k)] δ(ωcv(k) − 2ω).

(5.29)

Now, with the help of the last expression and the top hat cut function S`(z) we
will construct the layer-by-layer contributions. First, we use the function S`(z),
which selects a given layer in the following way:

ξ
(`)ab
1 (r, 2ω;k) =

∫

d3rS`(z)ξ
ab
1 (r, 2ω;k)

=
2πe2

Ah̄2

∑

c,v,k

vb(`)
cv (k)va(`)

vc (k)

ω2
cv(k)

(5.30)

×
(∫

d3r S`(z) [ρcc(r;k) − ρvv(r;k)]

)

δ(ωcv(k) − 2ω)

Then, by combining Eqs. (5.21) and (5.30) it follows that the carrier popula-
tion for one-photon excitations is given by:

d〈ρ̂(r;k)〉(`)1

dt
= ξ

ab(`)
1 (r, 2ω;k)Ea(−2ω)Eb(2ω), (5.31)

where,

ξ
ab(`)
1 (2ω;k) =

2πe2

Ah̄2

∑

c,v,k

vb
cv(k)va

vc(k)

ω2
cv(k)

[

ρ(`)
cc (k) − ρ(`)

vv (k)
]

δ(ωcv(k) − 2ω).

(5.32)

Here ρ(`)nn(k), which represents the number of carriers in a given layer ` and
k-point k, is defined as:

ρ
(`)
nn(k) =

∫

S`(z)ψ
∗
n,k(r)ψn,k(r)d3r. (5.33)

Using these results, we can find the carrier population d〈ρ̂(r;k)〉1/dt for a partic-
ular layer ` and one photon excitations.
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Chapter 6

Results

Up to this point, we have all the elements needed to find the carriers and spin
population, as well as, the electronic and spin injection currents in a GaAs(110)
surface. Along Chapter 3 we found the mathematical expressions for such re-
sponses. In Chapter 4 we made several studies to ensure that our final results
converge.

According to the convergence study performed in Chapter 4, we chose an
energy cutoff equal to 7.5 Ha, a set of 60 k-points was distributed on the first
Brillouin zone. The super-cell was formed by 17 atomic layers and a vacuum
having a length of 7 atomic layers. The tolerance on the difference of total energy
was set to be 1 × 10−8 Ha.

We divided our GaAs(110) surface into seventeen layers as it is shown in Fig.
6.1. We made this division in such a way that at the end all layers contained two
atoms per layer.

6.1 Degree of Spin polarization

We derive the mathematical expression to obtain the degree of spin polarization
for one photon excitations DSP into the GaAs(110) surface. From equations (3.28)
we define:

DSPa =
1

h̄/2

d〈Ŝa〉/dt
d〈n̂〉/dt (6.1)

as the degree of spin polarization, DSPa, along the cartesian direction a. It can
be seen as the percentage of spin polarized electrons among a population of n
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Figure 6.1 : A lateral view of the

GaAs(110) surface along the z and

x axis is shown. We divided it

into 17 layers denoted by gray lines.

Each layer contains two atoms. The

arsenide atoms are drawn as black

points while the gallium atoms are

represented by red crosses.

electrons injected into the surface.

In a real experiment we would radiate the GaAs(110) surface along the ẑ
direction by a circularly polarized field parallel to the surface of the following
form:

E(ω) = E(ω)eiφω
x̂ + αωiŷ√

2
(6.2)

where eiφω is the phase and αω can be either 1 or −1 for left or right circular
polarizations, respectively.

Then from Eqs. (3.28) and (6.2) it follows that,

d〈n̂〉
dt

= ξxxEx∗(ω)Ex(ω) + ξyyEy∗(ω)Ey(ω)
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Figure 6.2 : Experimental dynamics of DSP

in GaAs bulk obtained by Bhat et al. [24]. The

dynamics after excitation by circularly polarized

pump pulses with the excess energy of 90 meV

were measured using probe pulses with circu-

lar polarization for one- and two-photon excita-

tions.

=
E2(ω)

2
(ξxx + ξyy) , (6.3)

and that,

d〈Ŝz〉
dt

= ζzxyEx∗(ω)Ey(ω) + ζzyxEy∗(ω)Ex(ω)

= −iαω
E2(ω)

2
(ζzyx − ζzxy) . (6.4)

Because of symmetry reasons, the tensor component ζabc = ζacb. Moreover,
for the GaAs(110) surface ζabb = ζbab = ζbba = 0, and, ξab = δabξ

a. Using these
relations and knowing that ζabc(ω) is purely imaginary, we can obtain that the
DSPz is equal to:

DSPz =
αω

h̄/2

2ζzxy

ξxx + ξyy (6.5)

We have obtained a expression to calculate the degree of spin polarization along the
z direction (DSPz) into a semiconductor surface radiated by an electro-magnetic
field circularly polarized.

Now we have all the elements to calculate the spin and carriers populations by
one photon excitations given by Eqs. (3.28d) and (3.28c) respectively. Moreover,
using these results and Eq. (6.5) we proceeded to calculate the responses.

The carrier population pseudo-tensor ξxx shown in Fig. 6.4 is found to be
similar to ξyy shown in Fig. 6.5. They start at an energy close to 0.6 eV and they
have their maxima at an energy close to 4.2 eV.

As you can see in Fig. 6.6 ζzxy starts at energies close to 0.6 eV and has its
maxima at an energy of 2.17 eV. After reaching its maxima, it can reach values
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below zero meaning that the spin population is on the other preferential direction.
That is, the intrinsic spin property has two possible polarizations +h̄/2 and −h̄/2
also known as spin-up and spin-down polarizations. A positive ζ abc has a spin
polarization opposite to a negative one.

The DSPz shown in Fig. 6.7 starts abruptly at an energy close to 0.6 eV which
is the energy at which the surface starts to absorb (see Fig. 6.4) and has a second
maxima at 2.1 eV which is the maxima of the spin injection pseudo-tensor ζ zxy

shown in Fig. (6.6). It reaches a DSP polarization of 70% at ω = 0.6 eV and
one of 20% at ω = 2.1 eV. It has a minimum at 1.7 eV which is also a minimum
for the spin injection pseudo-tensor ζyxz. As you may notice, after reaching its
second maxima it approaches to zero just as ζ zxy in Fig. 6.6.

The layered responses have a similar behavior. In Figs. 6.4, 6.5 and 6.6 we
show the contributions of the 17 layers conforming the slab. We put on purpose
the first 6 layers on the first graphic because they conform the top surface. At the
second graphic we always show the bulk layer responses and at the third graphic
we show the contributions of the last 6 layers which conform the back surface. We
also chose the same colors for the layers at the back and top surface so that you
can verify that, in effect, the back and top surfaces are equal. What is more, all
contributions from the layers at the bulk coincide.

The spin injection in zincblende semiconductors was studied by Bhat et al. [24].
They studied the spin injection due to one- and two-photon excitations in GaAs
bulk. The degree of spin polarization (DSP) was calculated both theoretically and
experimentally giving congruent results, 50% and 49 % respectively. These results
were also confirmed experimentally by Stevens et al. [33]. The experimental DSP
obtained by Bhat et al. for GaAs bulk is shown in Fig. 6.2. In this graphic the
dynamics of the DSP in GaAs bulk are shown; circularly polarized pump pulses
were measured using probe pulses. The first pulse leads to a DSP close to 50%
which is congruent with our results, see Fig. 6.14.

6.2 Electric and spin current injection

Now we are going to show the explicit equations for the injection of electric and
spin currents by an incident circularly polarized field. Following the same example
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Figure 6.3 : A lateral view of the

GaAs(110) surface along the z and x

axis is shown. The arsenide atoms

are drawn as black points while the

gallium atoms are represented by red

crosses. The blue solid lines at the

center show that the system is not

centro-symmetric. However, it is

symmetric with respect to a plane

parallel to the x and y axes that

passes at the middle of the slab (green

line).

we used in the last section, the incident field is given by:

E(ω) = E(ω)eiφω
x̂ + αωiŷ√

2
(6.6)

where eiφω is the phase and αω can be either 1 or −1 for left or right circular
polarizations, respectively.

From Eq. (3.34) it follows that the electric current injection for this field
polarization is:

d〈Ĵa〉
dt

= ηaxy(ω)Ex∗(ω)Ey(ω) + ηaxx(ω)Ex∗(ω)Ex(ω)

+ ηayx(ω)Ey∗(ω)Ex(ω) + ηayy(ω)Ey∗(ω)Ey(ω), (6.7a)
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where,

ηacd(ω) =
1

V

∑

k

ηacd(ω;k), (6.7b)

and,

ηacd(ω;k) =
2πe3

h̄2

∑

c,v

va
c′c(k)vc∗

c′v(k)vd
cv(k)

(2ω)2
δ(ω − ωcv(k)), (6.7c)

here the super-index a indicates a cartesian component. In a similar way, the spin
current injection along the z direction for this particular polarization is:

d〈K̂zb〉
dt

= µzbxx(ω)Ex∗(ω)Ex(ω) + µzbxy(ω)Ex∗(ω)Ey(ω)

+ µzbyy(ω)Ey∗(ω)Ey(ω) + µzbyx(ω)Ey∗(ω)Ex(ω), (6.8a)

where,

µabcd(ω) =
1

V

∑

k

ηabcd(ω;k), (6.8b)

and,

µabcd(ω;k) =
2πe2

h̄2

∑

c,v

Kab
c′c(k)vc∗

c′v(k)vd
cv(k)

(2ω)2
δ(ω − ωcv(k)). (6.8c)

Here the super-index b indicates a cartesian component.

6.2.1 Consequences of symmetry

We know look at the nonzero spin and current tensors that will contribute to the
injection of currents in the surface. It is important to know the symmetries to
reduce the number of tensors of all the possible tensors shown above.

When calculating the ηacd(ω) and µabcd(ω) for the GaAs(110) surface we found
that the following components are zero:

ηxxx, ηxyy, ηyxy, ηyyx, ηzxx , ηzyy ,

µzxxx, µzxyy, µzyxy, µzyyx, µzzxx and µzzyy.
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Thus, the only components that contribute for spin and electrical current injection
for this particular incident field polarization are:

ηxxy, ηxyx, ηyxx, ηyyy , ηzxy , ηzyx ,

µzxxy, µzxyx, µzyxx, µzyyy, µzzxy and µzzyx.

This surface at the x direction is different from the y direction. This fact has
repercussions on the optical responses, e.g., ηzyy 6 ηzxx. We found that because of
symmetry reasons:

ηxxy = ηxyx, ηzxy = ηzyx,

µzxxy = µzxyx and µzzxy = µzzyx.

Since ηzxy and ηzyx are four orders of magnitude smaller than ηxxy, ηyxx or ηyyy ,
they can be ignored for practical reasons.

6.2.2 Spin and current pseudo-tensors

We calculated the pseudo-tensors for spin and electric current by using Eqs.
(3.35c) and (3.35d) respectively. The electric current pseudo-tensors (Figs. 6.8,
6.9 and 6.10 ) have a minimum at an energy close to 4.2 eV. Moreover, this en-
ergy is a maximum for the spin current pseudo-tensors shown in Figs. 6.11, 6.12
and 6.13. This behavior was expected because this energy is also a maximum of
absorption (see Fig. 6.4). The reason why it is a minimum for η is the fact that
the electron’s charge is negative.

It is important to note that the η and µ pseudo-tensors are relationed to the
absorption spectra. They all start at an energy close to 1 eV which is the energy at
which the material starts to absorb. That is, they are congruent with the Fermi
Golden’s rule because a photon with less energy that the band gap size is not
absorbed. At an energy close to 3.4 eV there is a minimum of absorption which
is reflected as a maximum in η and a minimum in µ. What is more, all responses
are almost zero after an energy of 8 eV according to the absorption spectra.

The slab is formed of 17 layers but we decided to show just the first 9 layered
responses since the back and front surfaces are equal. All layered responses at the
bulk layers (` = 7 to 9 ) are similar. The responses from layers 1 to 6 have slightly
differences as it was expected. At the end, the sum of all layered responses give
us the total response of the material.
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Figure 6.4 :

Carrier popula-

tion pseudo-tensor

(ξxx) due to an

incident polarized

light of energy

ω. We show all

layered responses

and at the bottom

we show the total

response for that

surface.
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Figure 6.5 :

Carrier popu-

lation pseudo-

tensor ξyy for

one-photon ex-

citations in a

GaAs(110) sur-

face. First, we

present all layered

responses. At the

bottom we show

the total response

for the slab.
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Chapter 7

Conclusions

It was proved in 2003 that it was possible to inject carrier and spin currents into
quantum dot due to the absorption of one or two photons [18]. In this work it
was determined that the currents due to linear absorption of one photon were
zero in bulk GaAs due to its symmetry. In several posterior works [24, 25] it was
proved experimentally and theoretically that it was possible to inject currents into
a non-centrosymmetric semiconductor.

In this case we made a theoretical study of a semiconductor surface. As it is
shown in Fig. 6.3 the surface is non-centrosymmetric and as it was expected the
injected currents due to one photon excitations were different from zero. We have
exploded the non-centrosymmetry of the surface to show that an electric current
together with a spin current can be injected into GaAs(110).

In our work we found that the DSP injected into GaAs(110) is close to 95%.
This result shows that the optical properties of a semiconductor surface need not
to be equal to the bulk case. This can be explained because the symmetry was
broken in our theoretical model by relaxing the surface and imposing an artificial
buckling. Moreover, the potential energy due to the ions at the surface is also
different from that of the bulk case. In order to validate our results we also
calculated the DSP for the GaAs bulk (Fig. 6.14) finding out that it was 50 %
in accordance to the experiments made by Bhat et al. [24] in which they found it
was close to 50 %.

We have shown that the method proposed by Mendoza et al. [29] for calculat-
ing the layer-by-layer contributions to the linear optical response gives congruent
results. All of the responses calculated show a similar behavior; the contributions
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of the top and bottom layers were slightly different from the contributions of the
layers at the middle of the slab. As it was expected, the layers at the inner part
of the slab gave similar results because of the fact that they are bulk layers, then
the responses start to change as we approach to the surface. What is more, the
sum of all layers contributions gives the total response of the slab.

The layered responses corresponding to the top and back surfaces were found
to be equal although the slab was found to be non centro-symmetric. In Fig. 6.1
we can see that the system is not centro-symmetric. To make it clear lets choose
the intersection of the two blue lines to be the center of symmetry. Then if it were
centro-symmetric each of the two blue lines should connect identical atoms, but,
what we see is that gallium atoms are connected to an arsenide atoms. Now that
it is obvious that the system is not centro-symmetric how can we explained that
both surfaces show the same responses?

As you can see on the same illustration there is a green line that marks a plane
parallel to the x and y axes. It is easy to see that the system is symmetric with
respect to this plane Thus, because of the fact that the top and back surfaces are
equal their corresponding layered responses are also equal.

In order to give a physical meaning to the pseudo-tensors found for electrical
injection current we can think of an experiment in which we radiate the sample
with a laser light with an intensity I = 1mWcm−2 with a repetition rate of 130
fs. According to the pseudo-tensors for the electric current and carriers injection
(ηabc ∼ 1011 AV−2s−1 and ξab ∼ 1024 V−2m−1s−1) we obtain a density of carriers
of ∼ 109cm−3 and a current of 90µAcm−3.

All in all, we made a full characterization of the spin and carrier population as
well as spin and electric currents injected into the GaAs(110) surface. We studied
the case of a circularly polarized optical field incident to the surface along the z
direction. The injected currents and populations can be controlled by the incident
field. It is shown in Eq. (6.5) that if we change the polarization of the incident
field (from right-circular to left-circular or vice versa) the DSP injected will also
change its spin polarization.



Appendix A

Second quantization

In order to understand the quantum many body theory we have to broaden the
concept of a classical quantum field. In classical theories there are collective fields
such as sound vibrations and electromagnetic fields. But there are also systems of
identical particles like an electron gas that are not comprised in classical theories.
Hence the importance of the concept of a quantum field . Loosely speaking, it
has the function of adding or subtracting particles to the system and it is closely
related to the second quantization (SQ) approach.

In quantum mechanics (QM) we use the Schrödinger’s wave function to rep-
resent a system of just one body. Now, we have to take the next step, that is, we
have to extend QM to a macroscopic number of particles. This can be achieved
by quantizing the wave function ψ as it was proposed by Jordan and Wigner in
1928 [34]. Then particle field ψ becomes

ψ̂(x, t). (A.1)

In order to comprehend the meaning of this particle field operator we will start
by remembering the Born’s expression for the probability density ρ. He concluded
that ρ(x) = |ψ(x)|2 represents the probability of an electron being at x. Using
the new operator form of the wave function, it follows that

ρ̂(x, t) = |ψ̂(x, t)|2 = ψ̂†(x, t)ψ̂(x, t). (A.2)

From this definition the intensity of the quantum wave represents the fluctuating
density of particles.

77



78 Appendix A. Second quantization

A.1 Operators in its second quantized form

When the quantized wave function is transformed into an operator ψ̂(x, t), it has
to satisfy the Schrödinger’s equation [21]

i
∂ψ̂(x, t)

∂t
= − 1

2m
∇2 ψ̂(x, t) + V(x)ψ̂(x, t) ≡ Ĥ ψ̂(x, t) (A.3)

where Ĥ is not the Hamiltonian of the system but a Hamiltonian density .
Defining uk(x) as eigenstates of Ĥ so that

Ĥuk(x) = Ekuk(x) (A.4)

we can construct the state ψ̂(x, t) and its adjoint ψ̂†(x, t) as follows,

ψ̂(x, t) =
∑

k

âkuk(x)e−iEkt , (A.5a)

ψ̂†(x, t) =
∑

k

â†
k
u∗k(x)eiEkt , (A.5b)

where k denotes vectors that exists on reciprocal space. Here â†
k

are the coeffi-

cients used to construct ψ̂(x, t). They are operators because of the fact that the
wavefunction ψ̂(x, t) was defined as an operator. They are known as the creation
(annihilation) â†(â) operators because they have the role of creating or destroying
electrons at a particular k-point.

This definition implies that a quantized wave function creates or destroys a
wave-packet centered at x. It sets the main difference between classical fields and
quantum fields, the appearance of particles. In other words, a quantum field is no
longer thought as a continuous field but as an entity that is composed of discrete
particles.

Using these definitions we will proceed to construct the Hamitonian operator
Ĥ. The system Hamitonian is defined as follows

Ĥ =

∫

ψ̂†(x, t)Ĥ ψ̂(x, t)d3x

=
∑

k,k′

∫

d3x · ei(Ek−E
k′ )t â†

k
âk′u∗k(x)Ĥuk′(x).

(A.6)
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By using (A.4) we can obtain

Ĥ =
∑

k,k′

ei(Ek−E
k′ )tEk′ â†

k
âk′

∫

d3x · u∗k(x)uk′(x)

=
∑

k

Ekâ
†
k
âk. (A.7)

To interpret the meaning of the last expression we will define the number
operation N̂k as N̂k = â†

k
âk. It obeys an eigenvalue equation because when acting

on a state uk it gives us the number of particles Nk that conform the system
represented by the ket. That is,

N̂kuk = Nkuk. (A.8)

Now we can observe from the Eq. (A.7) that at every k-point k there is a number
Nk of particles that have an energy Ek. Moreover, in order to get the total energy
we have to sum all the k-point contributions.

Similarly approach we can represent any operator as∗,

Ô =
∑

k

Okâ
†
k
âk. (A.9)

A.2 Creation and annihilation operators

When solving the Shrödinger’s equation for a periodic array of atoms we find that
there are regions where energy is prohibited (gaps) and there are other regions
where energy is permitted (bands). As shown in the Fig. A.1 there are valence
bands v and conduction bands c. The valence bands are the bands that are
occupied by electrons when the crystal is at its ground state or state of minimum
energy. When there is a perturbation or when the system has more energy it
experiments a transition to an excited state. That is, an electron from one of the
valence bands was given enough energy to pass to a conduction band.

In the SQ approach a transition is performed by a combination of creation-
annihilation processes. To illustrate, when an electron experiments a transition
from a band v to a band c it is said that the electron was destroyed at the band v
and it was created at the band c. These transitions are represented by the creation

∗A more detailed description of the second quantization techniques can be found in [35].
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v

gap

c c

gap

v

h̄ω

Figure A.1 : We show how a system evolves from its lower state energy to its first excited state.

The letters c and v denote conduction and valence bands respectively. We are using the Pauli

principle so that at most two electrons can occupy the same band, one with spin up and one with

spin down. Left: The system is at its ground state, all of the valence bands are filled while the

conduction bands are empty. Right: A photon of energy h̄ω raises an electron to a conduction

band leaving a hole in the valence band which was occupied by it.

and annihilation operators, namely, â†n,k is the creation operator and ân,k is the

annihilation operator . When the creation (annihilation) operator â†n,k(ân,k) acts
on a state at a given k-point an electron is created (annihilated) in such a state.

We define an electronic state by a ket of the following form |n,k > in order
to denote that we are referring to the band n and k-point k. By using this ket
representation we can define

ân,k|n,k〉 =











|c,k〉 n = v

0 n = c
, (A.10a)

and

â†n,k|n,k〉 =











0 n = v

|v,k〉 n = c
, (A.10b)

Notice that when an electron is annihilated a hole is also created. In a similar
way, when creating an electron we are destroying a hole. Therefore, it is necessary
to define the creation-annihilation operators for holes.
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We define the creation operator for holes as b̂† and the annihilation operator for
holes as b̂. It is important to note that both hole operators and electron operators
act at the same time. Then, we can observe a direct relation between both sets of
operators:

â† acting on c ⇒ b̂ acting on c

â acting on v ⇒ b̂† acting on v. (A.11)

All in all, we define the creation-annihilation operators for holes as follows:

b̂n,k|n,k〉 =











|c,k〉 n = c

0 n = v
, (A.12a)

b̂†n,k|n,k〉 =











0 n = c

|v,k〉 n = v
, (A.12b)

These operators have the following properties:

{ân,k, â
†
n′,k′} = {b̂n,k, b̂

†
n′,k′} = δn,n′δk,k′ (A.13a)

{ân,k, ân′,k′} = {â†n,k, â
†
n′,k′} = {b̂n,k, b̂n′,k′} = {b̂†n,k, b̂

†
n′,k′} = 0 (A.13b)

where the anti-commutation of two operators â and b̂ is defined as follows,

{â, b̂} = âb̂+ b̂â (A.14)

A.3 Ground state Hamitonian in the SQ approach

We can redefine the Hamitonian shown in Eq. (A.7). By using Planck’s quanti-
zation of the energy E = h̄ω and introducing band and k-point degeneracies we
get

Ĥo =
∑

n,k

h̄ωn,kâ
†
n,kân,k. (A.15)

Our next step is to separate the terms that contain the contribution of the con-
duction bands from the ones for valence bands, to obtain

Ĥo =
∑

c,k

h̄ωc,kâ
†
c,kâc,k +

∑

v,k

h̄ωv,kâ
†
v,kâv,k. (A.16)
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In our formalism we will be using the creation-annihilation operators for electrons
when treating conduction bands, but, we will be use the operators for holes when
dealing with valence bands. Then the equation (A.16) becomes

Ĥo =
∑

c,k

h̄ωc,kâ
†
c,kâc,k +

∑

v,k

h̄ωv,kb̂v,kb̂
†
v,k. (A.17)

By using the anti-commutation relation (A.13a),

Ĥo =
∑

c,k

h̄ωc,kâ
†
c,kâc,k +

∑

v,k

h̄ωv,k −
∑

v,k

h̄ωv,kb̂
†
v,kb̂v,k. (A.18)

Since the second term is a constant energy E of the ground state, we will define

the ground state Hamiltonian Ĥo
′
as,

Ĥo
′ ≡ Ĥo −

∑

v,k

h̄ωv,k (A.19)

Renaming the ground state Hamitonian Ĥo
′
as Ĥo we find that,

Ĥo =
∑

c,k

h̄ωc,kâ
†
c,kâc,k −

∑

v,k

h̄ωv,kb̂
†
v,kb̂v,k (A.20)

In a similar way, we can decompose Eq. (A.9) in conduction and valence bands
to finally get the general form of an operator Ô in SQ:

Ô =
∑

c,c′k

Occ′(k)â†c,kâc′,k +
∑

c,vk

Ocv(k)â†c,kb̂
†
v,k

+
∑

v,ck

Ovc(k)b̂v,kâc,k −
∑

v,v′k

Ovv′(k)b̂†v′ ,kb̂v,k (A.21)
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The interaction Hamiltonian

In quantum mechanics (QM) there are two basic representations to work with.
They are the Schrödinger’s picture and the Heisenberg’s picture. Moreover, there
is another useful formalism named as the interaction picture. It is important
to note that we can use any of these forms and the results have to be equal.
They are consistent with each other because when we change of representation
the eigenvalues of an operator do not change.

In this section our main goal is to find the interaction Hamiltonian Ĥi in its
second quantized (SQ) form. In order to do it, we will use the concepts developed
in the last appendix, and we will use the interaction picture.

B.1 The interaction representation

In this section we will use the interaction representation to perform our calcu-
lations in order to work with matrices instead of functions as it is done in the
Schrödinger’s approach. At the end it will let us define the interaction Hamilto-
nian.

An operator in its interaction representation OI(t) is defined as

ÔI(t) = Û †
o (t)ÔÛo(t) (B.1)

where U †
o (t) and Ûo(t) are unitary operators. As it will be shown in Eq. (C.4),

they have the following form:

Û †
o (t) = ei

Ĥot
h̄ (B.2a)
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and

Ûo(t) = e−i Ĥot
h̄ . (B.2b)

Differentiating Eq. (B.1)

dÔI(t)
dt = i

Ĥo

h̄
ei

Ĥot
h̄ Ôe−i Ĥot

h̄ − i
Ĥo

h̄
ei

Ĥot
h̄ Ôe−i Ĥot

h̄

=
i

h̄
ei

Ĥot
h̄

(

ĤoÔ − ÔĤo

)

e−i Ĥot
h̄

=
i

h̄
ei

Ĥot
h̄

[

Ĥo, Ô
]

e−i Ĥot
h̄

=
i

h̄

(

Ĥoe
i Ĥot

h̄ Ôe−i Ĥot
h̄ − ei

Ĥot
h̄ Ôe−i Ĥot

h̄ Ĥo

)

=
i

h̄

(

ĤoÔI − ÔIĤo

)

=
i

h̄

[

Ĥo, ÔI

]

(B.3)

where we used the fact that
[

Ĥo, Ĥo

]

= 0.Here, we used the commutator of two

operators defined by
[

â, b̂
]

= âb̂− b̂â. For more information on this topic read [23].

Eq. (B.3) is the so called equation of motion because it defines the time
evolution of an operator Ô in terms of its commutator with the ground state
Hamiltonian.

B.2 Some useful commutators

Now we are going to show some equations that will be helpful in the future. From
the commutator of Ĥo and âc and Eq. (A.7),

[

Ĥo, âc

]

=
∑

n

h̄ωn

[

â†nân, âc

]

, (B.4)

by using the relations (A.13a) and (A.13b) we can find the following relations:
[

â†nân, âc

]

= âcâ
†
nân

= â†nânâc − δc,nân + â†nâcân

= â†nânâc − δc,nân − â†nânâc

= −δc,nân (B.5)
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Then, Eq. (B.4) becomes

[

Ĥo, âc

]

=
∑

n

−h̄ωnδc,nân

= −h̄ωcâc (B.6)

B.3 The equation of motion

Now we have the elements to build the equation of motion for the annihilation
operator âc. Using eq (B.3)

dâcI(t)
dt

= −iωce
i Ĥot

h̄ âce
−i Ĥot

h̄

= −iωcâcI (B.7)

From the commutator (B.6),

âcĤo = Ĥoâc + h̄ωcâc =
(

Ĥo + h̄ωc

)

âc

âcĤo
2

= âcĤoĤo =
(

Ĥo + h̄ωc

)

âcĤo =
(

Ĥo + h̄ωc

)2
âc. (B.8)

This result will be used to express the equation of motion in another way. By
making a Taylor’s expansion

âce
−i Ĥot

h̄ = âc

(

1 − i

h̄

(

Ĥo + h̄ωc

)

+
1

2

(

− i

h̄

)2 (

Ĥo + h̄ωc

)2
+ ...

)

= e−
i
h̄(Ĥo+h̄ωc)tâc (B.9)

By substituting Eq. (B.9) into Eq. (B.7) the equation of motion for the operator
âc can be written as

dâcI(t)
dt = −iωce

−i Ĥot
h̄ e−

i
h̄ (Ĥo+h̄ωc)tâc

= −iωce
−iωctâc (B.10)

Solving this last equation we find out that

âcI(t) = e−iωctâc (B.11)



86 Appendix B. The interaction Hamiltonian

In a similar way, it is easy to prove that

dâ†cI(t)
dt

= iωce
i Ĥot

h̄ e−
i
h̄ (Ĥo−h̄ωc)tâc

= iωce
iωctâ†c (B.12a)

â†cI(t) = eiωctâ†c (B.12b)

To summarize:
âcI(t) = e−iωctâc (B.13a)

â†cI(t) = eiωctâ†c (B.13b)

b̂vI(t) = eiωvtb̂v (B.13c)

b̂†vI(t) = e−iωvtb̂†v (B.13d)

B.4 The momentum operator

Now, we are going to use these expressions to find the momentum operator p̂ in its
second-quantized form. By using (A.21) the momentum operator can be written
as follows:

p̂I = ei
Ĥot

h̄ p̂e−i Ĥot
h̄ (B.14a)

p̂I =
∑

c,c′,k

pcc′(k)ei
Ĥot

h̄ â†c,kâc′,ke
−i Ĥot

h̄ +
∑

c,v,k

pcv(k)ei
Ĥot

h̄ â†c,kb̂
†
v,ke

−i Ĥot
h̄

+
∑

v,c,k

pvc(k)ei
Ĥot

h̄ b̂v,kâc,ke
−i Ĥot

h̄ −
∑

v,v′,k

pvv′(k)ei
Ĥot

h̄ b̂†v′,kb̂v,ke
−i Ĥot

h̄

(B.14b)

Working on the first term of (B.14b) and using Eqs. (B.10), (B.12) , (B.13)
and (B.14b) we find out that:

p̂
(1)
I (t) =

∑

c,c′,k

pcc′(k)ei
Ĥot

h̄ â†c,ke
− i

h̄ (Ĥo+h̄ωc)tâc′,k

=
∑

c,c′,k

pcc′(k)ei
Ĥot

h̄ e−
i
h̄ (Ĥo−h̄ωc)tâ†c,ke

−iωc′ tâc′,k

=
∑

c,c′,k

pcc′(k)â†c,kâc′,ke
i(ωc−ωc′)t (B.15)
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The remaining terms can be calculated similarly:

∑

c,v,k

pcv(k)ei
Ĥot

h̄ â†c,kb̂
†
v,ke

−i Ĥot
h̄ =

∑

c,v,k

pcv(k)â†c,kb̂
†
v,ke

i(ωc−ωv), (B.16a)

∑

c,v,k

pvc(k)ei
Ĥot

h̄ b̂v,kâc,ke
−i Ĥot

h̄ =
∑

c,v,k

pvc(k)b̂v,kâc,ke
i(ωv−ωc)t, (B.16b)

∑

v,v′ ,k

pvv′(k)ei
Ĥot

h̄ b̂†v′,kb̂v,ke
−i Ĥot

h̄ =
∑

v,v′ ,k

pvv′(k)b̂†v′ ,kb̂v,ke
i(ωv−ωv′)t (B.16c)

With the last four terms we can construct the momentum operator in its SQ
form. It will be helpful to rewrite the interaction Hamiltonian Ĥi defined in Eq.
(3.8c). By substituting the second-quantized form of the momentum into the
definition of Ĥi we can find out that the interaction Hamiltonian can be expressed
by a combination of creation-annihilation operators as follows:

Ĥi = − e

mc
A(t) ·



































∑

c,c′,k pcc′(k)â†c,kâc′,ke
iωcc′ t

+
∑

c,v,k pcv(k)â†c,kb̂
†
v,ke

iωcvt

+
∑

c,v,k pvc(k)b̂v,kâc,ke
iωvct

−∑v,v′,k pvv′(k)b̂†v′ ,kb̂v,ke
iωvv′ t



































(B.17)

where ωij = ωi − ωj.
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Appendix C

Perturbation Theory

Frequently, for a given system it is not possible to solve the Schrödinger’s equation
exactly. In these kind of situations we need to use approximations to simplify the
problem. In quantum mechanics (QM) there are many approximations that can
be used. In this Chapter we will introduce the perturbations theory (PT) as a
method that will simplify the problem of a system radiated by an external field.

The idea behind the PT is that of making a small modification to a solved
problem. As we saw in Eq. (3.8b) the Hamiltonian that describes an atom inside
a radiative field is Ĥ = Ĥo + Ĥi. Where Ĥo is the Hamiltonian of the system
without the external field and Ĥi is the interaction Hamiltonian between a par-
ticle’s orbit and the electromagnetic (EM) field. In this case, if the external field
is not excessively high, the Hamiltonian’s effect will be reduced to the extent of
making small modifications on Ĥo. Therefore, the problem can be thought of a
Hamiltonian Ĥo plus a sequence of small perturbations.

Now we are going to construct mathematical expressions to obtain the ex-
pected value of an observable due to a perturbation. We will introduce unitary
operators Ûo(t) and Û(t) to represent the perturbations that will interact with the
the system. We start with the time dependent Schrödinger’s equation:

ih̄
∂

∂t
ψ = Ĥoψ (C.1)

We can say that the wave function ψ(t) at an initial time to evolves by small
perturbations given by Û(), i.e.,

ψ(t) = Û(t)ψ(to). (C.2)

89
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Then we can construct the following two relations:

ih̄
d

dt
Ûo(t) = ĤoÛo(t), (C.3a)

ih̄
d

dt
Û(t) = ĤÛ(t). (C.3b)

Solving Eq. (C.3a) we find that

Ûo(t) = Ae−i Ĥot
h̄ . (C.4)

Where A is an arbitrary constant. In order to find A we make the perturbation
to start at time t equal to zero. So that,

Ûo(t = 0) = 1 ⇒ A = 1. (C.5)

It is important to note that Ĥo is the ground state Hamiltonian, and after Ĥo

has been perturbed it becomes the perturbed Hamiltonian Ĥ. Therefore at time
t equal to minus infinity Ĥ and Ĥo have to be equivalent.

Ĥ(t→ −∞) = Ĥo. (C.6)

Similarly, the unitary operators:

Û(t→ −∞) = Ûo(t→ −∞). (C.7)

Now, we are going to represent Û as an operator originally equivalent to Ûo

but modified over the time by numerous small perturbations. In order to do so,
we start with the following equation:

ih̄ d
dt

(

Û †
o (t)Û (t)

)

= ih̄
dÛ †

o (t)

dt
Û(t) + ih̄Û †

o (t)
dÛ(t)

dt

= −Û †
o (t)Ĥo

†
Û(t) + Û †

o (t)ĤÛ(t)

= −Û †
o (t)ĤoÛ(t) + Û †

o (t)ĤÛ(t)

= −Û †
o (t)ĤoÛ(t) + Û †

o (t)
(

Ĥo + Ĥi

)

Û(t)

= Û †
o (t)ĤiÛ(t) (C.8)

where we have used the set of equations (C.3) and the fact that Ĥo is a Hermitian
operator. This equation is important because it is an explicit way to explain that
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the time evolution is given by Ĥi. In other words, the system evolutions by small
perturbations over the time.

Integrating both sides of (C.8):

t
∫

−∞

dt′ · ih̄ d

dt

(

Û †
o (t′)Û(t′)

)

=

t
∫

−∞

Û †
o (t′)ĤiÛ(t′) dt′,

ih̄
(

Û †
o (t′)Û(t′) − Û †

o (−∞)Û(−∞)
)

t
∫

−∞

Û †
o (t′)ĤiÛ(t′) dt′.

(C.9)

The second term inside the parenthesis is equal to one. This can be achieved
by applying the relation (C.7) and the fact that unitary operators obey Û Û † =
Û †Û = 1.∗ Rearranging and premultiplying by Ûo(t) we get

Ûo(t)



Û †
o (t)Û(t) = 1 +

1

ih̄

t
∫

−∞

Û †
o (t′)ĤiÛ(t′) dt′



 ,

Û(t) = Ûo(t) +
1

ih̄

t
∫

−∞

Ûo(t)Û
†
o (t′)ĤiÛ(t′) dt′. (C.10)

To a first order approximation we choose Û to be equal to the unperturbed
operator Ûo at time t′. We proceed to insert Û(t′) = Ûo(t

′) into (C.10) to get:

Û(t) − Ûo(t) = Ûo(t)
1

ih̄

t
∫

−∞

ĤiI(t
′) dt′ (C.11)

where ĤiI(t) = Û †
o (t)ĤiI(t)Ûo(t). In this equation we see that Û(t) has a linear

dependence on the perturbation.
To find the second order approximation we introduce the first order solution

into (C.10). So that we obtain a unitary operator Û(t) with squared dependence
on the perturbation Ĥi:

∗Any operator Û that behaves as Û Û† = Û†Û = 1 is a unitary operator. To know more about
unitary operators and their properties please refer to reference [21].
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Û(t) = Ûo(t) +
1

ih̄

t
∫

−∞

Ûo(t)Û
†
o (t′)ĤiÛ(t′) dt′

= Ûo(t) +
1

ih̄

t
∫

−∞

Ûo(t)Û
†
o (t′)Ĥi






Ûo(t

′) + Ûo(t
′)

1

ih̄

t′
∫

−∞

ĤiI(t
′′) dt′′






dt′

= Ûo(t) +
1

ih̄
Ûo(t)

t
∫

−∞

Û †
o (t′)ĤiÛo(t

′)

+
1

(ih̄)2
Ûo(t)

t
∫

−∞

Û †
o (t′)ĤiÛo(t

′)

t′
∫

−∞

ĤiI(t
′′) dt′′ dt′ (C.12)

Now repeating this procedure we get a general expression for U(t). Each of
its terms will have different dependence on the perturbation, i.e., the first one Ûo

does not depends on the perturbation, the second term has a linear dependence
on it, and so on. In general:

Û(t) = Ûo(t)Ûint(t) (C.13)

where,

Ûint(t) = 1 +
1

ih̄

t
∫

−∞

ĤiI(t
′) dt′ +

1

(ih̄)2

t
∫

−∞

dt′
t′
∫

−∞

dt′′ ĤiI(t
′)ĤiI(t

′′) + ...

(C.14)

This means that the wave function originally defined as ψ(t) = Û(t)ψ(to) evolves
from its original state at time to by a series of small perturbations given explicitly
by Eq. (C.14).



Appendix D

Carrier and spin population

This appendix has the purpose of deriving explicitly Eqs. (3.28), (3.29) and (3.30)
parting from the results obtained in the last chapter.

In Eq. (3.18a) we obtained that the probability of experimenting a transition
to an excited state Cc,v,k(t) is given by

Cc,v,k(t) = 〈c, v,k|e−i Ĥot
h̄ Ûint(t)|0〉, (D.1)

where Ûint, originally found in Eq. (C.14), is given by

Ûint(t) = 1 +
1

ih̄

t
∫

−∞

ĤiI(t
′) dt′ +

1

(ih̄)2

t
∫

−∞

dt′
t′
∫

−∞

dt′′ ĤiI(t
′)ĤiI(t

′′) + ... (D.2)

Taking the terms for first and second order in the perturbation we obtained in Eq.
(3.19) that

C(1)
c,v,k(t) =

1

ih̄
〈c, v,k|e−i Ĥot

h̄

t
∫

−∞

dt′Ĥi(t
′)|0〉, (D.3a)

C(2)
c,v,k(t) =

1

(ih̄)2
〈c, v,k|e−i Ĥot

h̄

t
∫

−∞

dt′
t′
∫

−∞

dt′′ Ĥi(t
′)Ĥi(t

′′)|0〉. (D.3b)

We can observe that Cc,v(t) is composed of two terms: a term that is linear in

the perturbation C(1)
c,v (t) and a second order term C(2)

c,v (t) that is quadratic in the
perturbation. We will start by deriving the first one.∗

∗In this chapter we will ignore the k-point dependence in order to simplify the notation.
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D.1 First order approximation

As it was stated in Eq. (3.19) that the coefficient C (1)
c,v (t) has the following form:

C(1)
c,v (t) =

1

ih̄
〈c, v|e−i Ĥot

h̄

t
∫

−∞

dt′ Ĥi(t
′)|0〉, (D.4)

by using the closure relation
∑

c′,v′ |c′, v′〉〈c′, v′| = 1:

C(1)
c,v (t) =

1

ih̄

t
∫

−∞

dt′
∑

c′,v′

〈c, v|e−i Ĥot
h̄ |c′, v′〉〈c′, v′|Ĥi(t

′)|0〉. (D.5)

The first term 〈c, v|e−i Ĥot
h̄ |c′, v′〉 can be expanded in Taylor series as 〈c, v|{1 +

(

−i t
h̄

)

Ĥo +
(

−i t
h̄

)2 Ĥo
2

+ ... }|c′, v′〉. In this expansion the operator Ĥo acts
several times. Therefore, we have to study how it acts on the ket |c′, v′〉. If we
replacing Ĥo by its second quantized form (A.20) we get to:

Ĥo|c′, v′〉 =

(

∑

c′′

h̄ωc′′ â
†
c′′ âc′′ −

∑

v′′

h̄ωv′′ b̂
†
v′′ âv′′

)

|c′, v′〉

=

(

∑

c′′

h̄ωc′′δc′,c′′
∑

v′′

h̄ωv′′δv′,v′′

)

|c′, v′〉

= h̄ωc′,v′ |c′, v′〉 (D.6)

Premultiplying by 〈c, v| we can find that,

〈c, v|Ĥo|c′, v′〉 = h̄ωc′,v′δc′,cδv′ ,v. (D.7)

It follows that the first term in Eq. (D.5) becomes:

〈c, v|e−iĤot/h̄|c′, v′〉 = δc′,cδv′ ,v

(

1 +

(

−i t
h̄

)

h̄ωcv +
1

2!

(

−i t
h̄

)2

h̄2ω2
cv + ...

)

= δc′,cδv′ ,ve
−iωcvt. (D.8)

By inserting (D.8) into (D.5) we can easily find that

C(1)
c,v (t) =

1

ih̄

t
∫

−∞

dt′ e−iωcvt′〈c, v|Ĥi(t
′)|0〉 (D.9)
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It is obvious that the next step is to simplify the second term of Eq. (D.9).
To this end, we start by substituting the operator Ĥi in its second-quantized form
Eq. (B.17):

〈c, v|Ĥi(t)|0〉 = 〈c, v| − e

mc
A(t)

∑

c,c′

pcc′ â
†
câc′e

iωcc′ t|0〉

+ 〈c, v| − e

mc
A(t)

∑

c,v,k

pcvâ
†
cb̂

†
ve

iωcvt|0〉

+ 〈c, v| − e

mc
A(t)

∑

c,v,k

pvcb̂vâce
iωv,ct|0〉

+ 〈c, v| − e

mc
A(t)

∑

v,v′

pvv′ b̂
†
v′ b̂ve

iωv,v′ t|0〉 (D.10)

Using the definitions of the creation-annihilation operators in Eqs. (A.10) and
(A.12). We can easily find that three of the four terms composing the last equation
are zero. That is, âc|0〉 = âc′ |0〉 = b̂v|0〉 = 0. The reason is simple: there are no
electrons to anihilate at conduction bands or holes to annihilate at valence bands
at the ground state of the system. Then it follows that,

〈c, v|Ĥi(t)|0〉 = 〈c, v| − e

mc
A(t)

∑

c,v,k

pcvâ
†
cb̂

†
ve

iωcvt|0〉 (D.11)

Substituting (D.11) into (D.9) we get,

C(1)
c,v (t) = − e

i h̄mc
pcve

−iωcvt

t
∫

−∞

dt′ A(t′)eiωcvt′ . (D.12)

The next step is to substitute the vector potential A(t) defined by Eq. (3.1).
We set A(t) = A(ω)e−i(ω+iε)t because it is sufficient for our purposes. Then
making a simple integration on (D.12) and substituting the vector potential A(t)
we get that:

C(1)
c,v (t;ω) = − e

i h̄mc
pcve

−iωcvt

t
∫

−∞

dt′ A(ω)e−i(ω+iε)teiωcvt′ .

= − e

h̄mc
pcv ·A(ω)

e−i(ω+iε)t

ω − ωcv + iε
(D.13)
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D.2 Second order approximation

As it was done in the last section we will find Cc,v at a second order. Eq. (3.19)
has a term that is twice perturbed by the Hamiltonian Ĥi. This will be the term
that give us the second order approximation. Namely, the second order coefficient

C(2)
c,v is given by:

C(2)
c,v (t) =

1

(ih̄)2
〈c, v|e−i Ĥot

h̄

t
∫

−∞

dt′
t′
∫

−∞

dt′′ Ĥi(t
′)Ĥi(t

′′)|0〉. (D.14)

Following the same procedure that we used to find Eq. (D.9) it is easy to demon-
strate the following:

C(2)
c,v (t) =

1

(ih̄)2
〈c, v|

t
∫

−∞

dt′
t′
∫

−∞

dt′′
∑

c′,v′

e−i Ĥot
h̄ |c′, v′〉〈c, v′|Ĥi(t

′)Ĥi(t
′′)|0〉,

=
1

(ih̄)2

t
∫

−∞

dt′
t′
∫

−∞

dt′′
∑

c′,v′

δc,c′δv,v′e
−iωcv t 〈c′, v′|Ĥi(t

′)Ĥi(t
′′)|0〉,

=
1

(ih̄)2

t
∫

−∞

dt′
t′
∫

−∞

dt′′ e−iωcv t〈c′, v′|Ĥi(t
′)Ĥi(t

′′)|0〉 (D.15)

Up to this point, we have to reduce the following expression 〈c′, v′|Ĥi(t
′)Ĥi(t

′′)|0〉.
introducing the closure relation to make each operator act separately,

〈c, v|Ĥi(t
′)Ĥi(t

′′)|0〉 =
∑

c′′,v′′

〈c, v|Ĥi(t
′)|c′′, v′′〉〈c′′, v′′|Ĥi(t

′′)|0〉, (D.16)

so that we can analyze each term separately.
First, we are going to study the second term of the last equation 〈c′′, v′′|Ĥi(t

′′)|0〉.
By using Eq. (B.17) it is easy to prove that:

〈c′′, v′′|Ĥi(t
′′)|0〉 = − e

mc
A(t′′) ·

∑

c′′′,v′′′

pc′′′v′′′〈c′′, v′′â†c′′′ b̂
†
v′′′ |0〉eiωc′′′ ,v′′′ t

′′

= − e

mc
A(t′′) ·

∑

c′′′,v′′′

pc′′′v′′′δc′′,c′′′δv′′ ,v′′′e
iωc′′′,v′′′ t

′′

= − e

mc
A(t′′) · pc′′v′′e

iωc′′,v′′ t
′′
. (D.17)
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There will be two terms different from zero when substituting Eq. (B.17) into
(D.16). Namely, they are:

〈c, v|Ĥi(t
′)|c′′, v′′〉 =

e

mc
A(t′)





∑

c′′′,c′

pc′′′c′〈c, v|â†c′′′ âc′ |c′′, v′′〉eiωc
′′′ ,c′ t

′

−
∑

c′′′,c′

pc′′′c′〈c, v|â†c′′′ âc′ |c′′, v′′〉eiωc
′′′ ,c′ t

′



 (D.18)

Knowing that 〈c, v|â†c′′′ âc′ |c′′, v′′〉 = δc′,c′′δc,c′′′δv,v′′ , and that 〈c, v|b̂†v′b̂v′′′|c′′, v′′〉 =
δv′′′ ,v′′δv,v′δc,c′′ . By using Eq. (D.17) we can rewrite (D.16) as

〈c, v|Ĥi(t
′)Ĥi(t

′′)|0〉 =

(

− e

mc

)2
{

∑

c′

A(t′) · pcc′A(t′′)pc′ve
iωcc′ t

′
eiωc′vt′′

−
∑

v′

A(t′) · pv′vA(t′′)pcv′e
iωcv′ t

′′
eiωv′vt′

}

(D.19)

by substituting this result into equation(D.15) the coefficient C (2)
c,v (t) becomes:

C(2)
c,v (t) =

1

(imh̄)2

(

− e

mc

)2

e−iωcvt











∑

c′

pcc′ ·
t
∫

−∞

dt′ A(t′)eiωcc′ t
′
pc′v ·

t′
∫

−∞

dt′′ A(t′′)eiωc′vt′′

−
∑

v′

pv′v ·
t
∫

−∞

dt′ A(t′)eiωv′vt′pcv′ ·
t′
∫

−∞

dt′′ A(t′′)eiωcv′ t
′′











(D.20)

Now, it is time to substitute the vector potential A(t) by the expression shown
in Eq. (3.1). But, it is important to know that the only term that will be
considered is A(t) = A(ω)e−i(ω+iε)t. This is because of the fact that in this
approximation two photons have to sum a frequency of 2ω, therefore, each one
must have a frequency of ω. Having this in mind and solving the integrals shown
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in the last expression we get:

C(2)
c,v (t) =

1

(imh̄)2

(

− e

mc

)2

e−iωcvt











∑

c′

pcc′ ·A(ω)pc′v ·A(ω)

t
∫

−∞

dt′ ei(ωcc′−ω−iε)t′
t′
∫

−∞

dt′′ ei(ωc′v−ω−iε)t′′

−
∑

v′

pv′v ·A(ω)pcv′ · A(ω)

t
∫

−∞

dt′ ei(ωv′v−ω−iε)t′
t′
∫

−∞

dt′′ ei(ωcv′−ω−iε)t′′











=
1

(imh̄)2

(

− e

mc

)2

e−iωcvt







∑

c′

pcc′ ·A(ω)pc′v ·A(ω)

t
∫

−∞

dt′ ei(ωcc′+ω+iε)t′
(

ei(ωc′v+ω+iε)t′

i(ωc′v − ω − iε)

)

−
∑

v′

pv′v ·A(ω)pcv′ · A(ω)

t
∫

−∞

dt′ ei(ωv′v−ω−iε)t′
(

ei(ωcv′+ω+iε)t′

i(ωcv′ − ω − iε)t′

)







(D.21)

Using the definition of ωab = ωa − ωb, the last equation becomes:

C(2)
c,v (t) =

1

(imh̄)2

(

− e

mc

)2

e−iωcvt







∑

c′

pcc′ ·A(ω)pc′v ·A(ω)

t
∫

−∞

dt′
ei(ωcv−2ω−i2ε)t′

i(ωc′v − ω − iε)

−
∑

v′

pv′v · A(ω)pcv′ · A(ω)

t
∫

−∞

dt′
ei(ωcv−2ω−i2ε)t′

i(ωcv′ − ω − iε)







=
1

(mh̄)2

(

− e

mc

)2

e−iωcvt

{

∑

c′

pcc′ ·A(ω)pc′v · A(ω)
ei(ωcv−2ω−i2ε)t

(ωc′v − ω − iε)(ωcv − 2ω − i2ε)
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−
∑

v′

pv′v · A(ω)pcv′ · A(ω)
ei(ωcv−2ω−i2ε)t

(ωcv′ − ω − iε)(ωcv − 2ω − i2ε)

}

=

(

e

h̄mc

)2
{

∑

c′

pcc′ · A(ω)pc′v · A(ω)

ω − ωc′v

−
∑

v′

pvv′ · A(ω)pcv′ · A(ω)

ω − ωcv′

}

e−i(2ω+2iε)t

2ω − ωcv + i2ε
(D.22)

D.3 Fermi’s golden rule

In section (3.1) ε was defined as a number that tends to zero to make the vector
potential A(t) be zero at a time equal to minus infinity (A(−∞) = 0). Because
of the fact that it is a small number, we can make the following approximation

2ε ≈ ε. Therefore, the coefficients C(1)
c,v and C(2)

c,v have as a common term e−i(2ω+iε)t

2ω−ωcv+iε .
Thus,

Cc,v(t) = Kc,v(t)
e−i(2ω+iε)t

2ω − ωcv + iε
(D.23)

where,

Kc,v(t) = − e

h̄mc
A(2ω) · pcv

+

(

e

h̄mc

)2
{

∑

c′

pcc′ ·A(ω)pc′v ·A(ω)

ω − ωc′,v
−
∑

v′

pvv′ · A(ω)pcv′ · A(ω)

ω − ωcv′

}

.

(D.24)

The probability of being at a state |c, v〉 is given by |Cc,v(t)|2, using the last
result we find out that

|Cc,v(t)|2 = |Kc,v(t)|2
e2εt

(2ω − ωcv)2 + ε2
(D.25)

As it can be seen in Eq. (3.21) we are interested in the time evolution of an
operator. When finding dCc,v(t)/dt we find out that the last equation acquires a
particular form. This is because the constant ε was defined to be a number close
to zero, and, at the limit of ε tending to zero this function has a well-known form.
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Figure D.1 :

It is shown that

the equation

limε→0 ε/(ω2 + ε2)

behaves as a Dirac’s

delta function. As

the value of ε de-

creases the function

acquires the form

of a Dirac’s delta

function.

Namely, it becomes a Dirac’s delta function as you can see on Fig. D.1.†

lim
ε→0

d

dt
|Cc,v(t)|2 = |Kc,v(t)|2 lim ε→ 0

e2εt

(2ω − ωcv)2 + ε2
= 2π|Kc,v(t)|2δ(2ω − ωcv)

(D.26)
This equation is also known as the Fermi’s Golden Rule. It shows that a transition
from v to c is only allowed when the frequency of the incident photon 2ω is equal
to the energy difference between both bands. Moreover, there should be a coupling
between the bands given explicitly by Kc,v(t).

Using this delta function we are able to find Cc,v at its final form. From
δ(2ω − ωcv) we have that ωcv = 2ω, additionally, we define ω as an average of ωc

and ωv. Explicitly, ω = (ωc + ωv)/2. By substituting Eq. (3.3) and ω into Eq.
(D.23) we finally get:

Kc,v(t) =
ie

h̄mωcv
E(2ω) · pcv −

(

2e

h̄mωcv

)2
∑

n

pcn ·E(ω)pnv ·E(ω)

ω − ωn
(D.27)

where n ∈ {c, v}.

D.4 Responses

Now that we have found the coefficient Cc,v shown in Eq. (D.23). We will show
the algebra needed to find the set of equations shown in Sections 3.4 and 3.5.

†For more information about the Dirac Delta function read [36].
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In those sections our goal was to find an expression for the time evolution of
some operators. In particular, we were interested in the areal electrical current
density operator Ĵ, spin areal density operator Ŝa, spin current density operator
K̂ and areal carrier density n̂, i.e., we wanted to find the following quantities:

d〈n̂〉
dt

,
d〈Ŝa〉

dt
,

d〈K̂〉
dt

, and
d〈Ĵ〉
dt

.

Thus, we can use Eq. (3.21) which give us the time evolution for an operator Ô
in its SQ form:

d〈Ô〉
dt

=
d〈ψ′|Ô|ψ〉

dt
=

d

dt

∑

c,v,k

∑

c′,v′,k′

C∗
c′,v′,k′Cc,v,k〈c′, v′,k′|Ô|c, v,k〉, (D.28)

where the coefficients Cc,v(t) given by Eq. (D.23) are:

Cc,v(t) = Kc,v(t)
e−i(2ω+iε)t

2ω − ωcv + iε
, (D.29a)

and from Eq. (D.26):

|Cc,v(t)|2 = |Kc,v(t)|2δ(2ω − ωcv). (D.29b)

Moreover, using Eq. (D.27) we have,

Kc,v(t) =
ie

h̄mωcv
E(2ω) · pcv −

(

2e

h̄mωcv

)2
∑

n

pcn ·E(ω)pnv ·E(ω)

ω − ωn
(D.29c)

By just substituting the observable Ô in Eq. (D.29a) by the operators n̂, Ŝa, Ĵ
or K̂ we can find the time evolution of those operators. Thus, we directly get the
set of equations (3.27) and (3.34) shown in Chapter 3.
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Appendix E

Matrix elements

This chapter has the purpose of explaining how the matrix elements can be ob-
tained. In particular, we are interested in the momentum matrix elements pm,n

and the spin areal matrix elements Sa
mn.

We part from the wave function ψ expanded in plane waves,

ψm(k; r) =
∑

G

Cmk (G) ei(k+G)·r, (E.1)

where the sub-indices m indicates bands, G is a reciprocal lattice vector and k is
the plane wave vector (or Block wave vector) introduced in section (3.2).

The matrix elements of a particular operator Â are defined as

Âmn = 〈ψm|Â|ψn〉 =

∫

d3rψ∗
mÂψn. (E.2)

It follows that once we have obtained the wave function ψ it is easy to obtain
the matrix elements for any operator. We just have to substitute the wave function
(E.1) into the definition of a matrix element (E.2). Thus, all the information of
the system is represented by the wave function.

E.1 Momentum Matrix Elements

For example, if we want to obtain the momentum matrix elements we just have
to introduce the momentum operator p̂ = −ih̄∇ into Eq. (E.2) . That is,

pmn(k) = 〈ψm|p̂|ψn〉

103



104 Appendix E. Matrix elements

=

∫

d3rψ∗ (−ih̄∇)ψ

The last expression can be reduced by using Eq. (E.1) in the following way,

pmn(k) =
∑

G,G′

C∗
mk (G)Cnk

(

G′) h̄ (k + G)

∫

d3r e−ir·(G−G′)

= h̄
∑

G

C∗
mk (G)Cnk (G) (k + G) (E.3)

In this deduction we used the Kronecker Delta function
∫

d3r e−ir·(G−G
′) = δG,G′ .

E.1.1 Spin degeneracy

If we take into account the spin degeneracy, the wave function becomes an spinor
Ψ, defined as: [21]

Ψ =

(

ψ+

ψ−

)

(E.4)

where + and − are the two possible spin orientations.

In this case the matrix elements have the following form:

〈Ψ|p̂|Ψ〉 =

∫

d3r
(

ψ+∗
m ψ−∗

m

)

(

p̂ψ+
n

p̂ψ−
n

)

= 〈ψ+
m|p̂|ψ+

n 〉 + 〈ψ−
m|p̂|ψ−

n 〉. (E.5)

Now taking into account spin degeneracy, we can expand the wave functions
for spin down (ψ− ) and spin up(ψ+), as follows:

ψ−
m(k; r) =

∑

G

C−
mk

(G) ei(k+G)·r (E.6a)

and

ψ+
m(k; r) =

∑

G

C+
mk

(G) ei(k+G)·r (E.6b)

where we used the superscripts + and − to indicate the two possible spin degen-
eracies.
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Using Eqs. (E.3) , (E.3) we get:

pmn(k) = h̄
∑

G

C+
mk

(G)C+
nk

(G)
∗
(k + G)

+ h̄
∑

G

C−
mk

(G)C−
nk

(G)
∗
(k + G) (E.7)

As you may notice Eqs. (E.3) and (E.7) are similar, but, when our wave
function is a spinor we have a sum for each of the two possible spin polarizations.

E.2 Spin Matrix Elements

The operators for angular momentum 1/2 are known as the Pauli matrices,

Ŝa =
h̄

2
σa (E.8a)

σx =







0 1

1 0






, σy =







0 −i
i 0






, σz =







1 0

0 −1






(E.8b)

We are going to use them to find the spin matrix elements. For example,
to find the spin polarization in the x coordinate we just substitute Sx into the
definition of a matrix element (E.2):

〈Ψm|Sx|Ψn〉 =

∫

d3r
h̄

2

(

ψ+∗
m ψ−∗

m

)







0 1

1 0







(

ψ+
n

ψ−
n

)

=
h̄

2

(

〈ψ−
m|ψ+

n 〉 + 〈ψ+
m|ψ−

n 〉
)

(E.9a)

In a similar way we find the spin matrix elements in the y and z coordinates:

〈Ψm|Sy|Ψn〉 =
ih̄

2

(

〈ψ−
m|ψ+

n 〉 − 〈ψ+
m|ψ−

n 〉
)

(E.9b)

〈Ψm|Sz|Ψn〉 =
h̄

2

(

〈ψ+
m|ψ+

n 〉 − 〈ψ−
m|ψ−

n 〉
)

(E.9c)
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Finally, using Eqs. (E.6) we find:

〈ψ+
m|ψ−

n 〉 =
∑

G,G′

C
+

mk (G)
∗
C

−

nk

(

G′)
∫

d3r e−ir·(G−G′)

=
∑

G,G′

C
+

mk (G)
∗
C

−

nk

(

G′) δG,G′

=
∑

G

C
+

mk (G)
∗
C

−

nk (G) (E.10a)

In a similar way the following terms are:

〈ψ−
m|ψ+

n 〉 =
∑

G

C
−

mk (G)
∗
C

+

nk (G) (E.10b)

〈ψ+
m|ψ+

n 〉 =
∑

G

C
+

mk (G)
∗
C

+

nk (G) (E.10c)

〈ψ−
m|ψ−

n 〉 =
∑

G

C
−

mk (G)
∗
C

−

nk (G) (E.10d)

Now using Eqs. (E.9) and (E.10) we can construct the spin matrix elements as:

Sx
mn =

h̄

2

∑

G

(

C
−

mk (G)
∗
C

+

nk (G) + C
+

mk (G)
∗
C

−

nk (G)
)

(E.11)

Sy
mn =

ih̄

2

∑

G

(

C
−

mk (G)
∗
C

+

nk (G) − C
+

mk (G)
∗
C

−

nk (G)
)

(E.12)

Sz
mn =

h̄

2

∑

G

(

C
+

mk (G)
∗
C

+

nk (G) − C
−

mk (G)
∗
C

−

nk (G)
)

(E.13)

(E.14)

With these sets of equations we have found that the spin and momentum
matrix elements are summations over reciprocal lattice vectors that can be con-
structed easily from the wave function Ψ.



Appendix F

List of abbreviations

BFGS Broyden-Fletcher-Goldfarb-Shanno minimization

DFT Density Functional Theory

DSP Degree of Spin Polarization

ecut Energy cutoff

EM Electro Magnetic

GMR Giant Magneto Resistance

HFM Hartree-Fock Method

KS Kohn-Sham

LDA Local Density Approximation

nkpt Number of k-points

nlayer Number of layers

QM Quantum Mechanics

RTD Resonant Tunneling Devices

SCF Self Consistent Field

SQ Second Quantized or Second Quantization
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PST Pseudopotential Theory

PT Perturbation Theory

toldfe Tolerance on the difference of total energy



Appendix G

List of symbols

A(t) Magnetic vector potential

â† Electrons creation operator

â Electrons anihilation operator

b̂† Holes creation operator

b̂ Holes anihilation operator

B Magnetic field vector

c Speed of light

|Cc,v,k|2 Electronic transition probability coeficient

e Electron charge

E Energy

E Electric field vector

Exc[ρ] Exchange-correlation energy functional

F Force

G[ρ] Universal functional of the density

G Reciprocal lattice vector
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Ĥo Ground-state Hamiltonian operator

Ĥ Hamiltonian operator

Ĵa Areal electric current density operator

k k-point vector

K̂ab Areal spin current density operator

n̂ Areal carrier density operator

Ô Arbitrary operator used to represent an observable

p̂ Momentum operator

r,R Position vector

Ŝa Spin areal density operator

t Time

Ts[ρ] Kinetic energy functional

Û Unitary operator

V Electro-magnetic potential

VH Hartree potential

Vec Electron-core interaction potential

Vxc Exchange-correlation potential

V eff Effective potential

V (R) Potential energy

ω Angular frequency

Z Atomic number

|0〉 Ket representing the system at its ground state

|c, v,k〉 Ket representing the system at an excited state

δ(x) Dirac’s delta
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δab Kronecker’s delta

εxc(ρ) Exchange and correlation energy per electron

ρ Probability density

ρo Ground state density

ρ̂(r;k) Charge density operator

ψ,Ψ Wave function

Φ Scalar potential

Ω Volume

ξab Carrier population pseudo-tensor

ζabc Spin population pseudo-tensor

ηabc electric current pseudo-tensor

µabcd spin current pseudo-tensor
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