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Abstract 

 

In this thesis we describe an optical, non-interferometric technique that allows 

characterizing high quality optical samples by measuring their main 

parameters: the refractive index and the geometrical thickness.   

Our technique is based on characterizing a probe Gaussian beam 

transmitted through the sample under test. As the results of the measurements 

rely on tracking the referred parameters, we have devised a homodyne knife-

edge detector to perform the measurements with the required accuracy. In this 

manner we characterize a thin pellicle consisting of a commercially available 

stretch film, obtaining a good agreement with the reported values of the 

manufacturer.  

The relevance of our measurements relies on the difficulty to determine 

the refractive index and the geometrical thickness simultaneously by means of 

other techniques as it will be described in the introduction section. This is 

because the pellicle under test is very thin and it can easily suffer mechanical 

deformation or heating damage. As a consequence, a non-invasive low power 

technique is required. Besides, the center of the pellicle is vibrating constantly 

and if interferometric techniques are used, erroneous measurements would be 

obtained. 

Once we accurately characterized the thin pellicle, we realized that a 

similar approach could be applied for characterizing optical plates. Even when 

there are a variety of techniques used to determine the refractive index and 

geometrical thickness of these plates, typically it is necessary to combine two 

techniques to determine them. In addition, focusing techniques which are 

commonly used are based on focusing a probe beam on the front and back 

surfaces of the plate. This is suitable for samples around one millimeter or 

more. However, when the plate is thinner than 200 microns it becomes difficult 

to discern the focusing at the surfaces thus obtaining misleading readings.  

To alleviate the difficulties mentioned above, our proposal performs the 

measurements in a non-interferometric way and does not need to be combined 
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with any other technique which makes it suitable for the intended 

characterization. In this manner it was possible to characterize a high quality 

optical plate consisting of a cover glass. 

For clarity, the presentation of this thesis is divided in six chapters. In the 

first chapter we present the introduction section on the subject. In chapter two 

the analytical description of our proposal is presented. In this section we 

include a review of the Fourier transform and the Fresnel diffraction integral 

which are widely used in this work. Chapter three provides the description of 

the homodyne detector, our experimental setup used to perform the 

measurements. In chapter four we describe the methodology we follow to 

characterize the pellicle in air. In chapter five we describe the characterization 

of the optical plate. In chapter six we present the conclusions obtained from this 

work. Finally the bibliography is presented.  
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Chapter 1 

Introduction 

Accurate determination of the refractive index and geometrical thickness of 

optical samples has deserved special attention due to their vast field of 

applications [1-6]. Recently, novel research and new techniques in optical 

engineering, electronics, quality control in industry and biomedical applications, 

among others, demand higher accuracies on the measurement of these 

parameters because thinner and smaller components are constantly required.  

This line of research led us to the case of an optical sample consisting on 

a thin pellicle supported only at its peripheral border. For brevity we denote 

these as “pellicles in air”. If one is interested in characterize properly the 

refractive index and geometrical thickness of these pellicles several difficulties 

arises. 

At first impression one may think that interferometric techniques, which 

lead to nanometric resolutions on films deposited on some substrates [7-11] 

could be used. However, the center of the pellicle undergoes a piston-like 

continuous vibration even when using holographic tables in a controlled 

ambient. Therefore interferometric techniques can not be used as the fringe 

pattern will constantly vibrate resulting in erroneous measurements. An 

approach that avoids using interferometric techniques to alleviate the difficulty 

mentioned above can be found in [12]. The sample under test is placed 

between two polarizers and light is directed to the pellicle through one of the 

polarizers. This polarizer is tilted at different angles to be analyzed by the light 

that is transmitted through a second polarizer or analyzer. The angle that 

subtends the pellicle with the optical axis is the main parameter of the 

technique and has to be calculated with high accuracy. The refractive index and 

thickness of the sample are obtained by mathematical relations based on 

measuring at some specific angles. However, in the mentioned report the 

problem on the random and incessant pellicle vibrations that induce variations 
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on the angle is not considered. These vibrations in turn, depending on the 

distance of measurement may introduce severe variations on the readings. 

It is also important to remark that as the pellicle under study is very thin it 

causes severe difficulties when optical tests are intended: the surface of the 

thin film should not be touched by any mechanical device as it can be easily 

damaged. If non-contact techniques based on laser probe beams are to be 

used, they should not exhibit high temperatures as the film can easily be 

deformed, which in consequence would result in misleading readings. 

As it can be seen, the adequate characterization of the desired parameters 

for such sample represents a challenging problem for optical or non-contact 

techniques. 

In this thesis we propose an alternative technique which is not based on 

interferometric principles to overcome these difficulties. This technique results 

more robust and provides the possibility to be applied in industrial 

environments. We demonstrate that it is possible to measure the local 

geometrical thickness and the refractive index of a transparent pellicle in air 

with high accuracy. This is accomplished by combining the diffractive properties 

of a transmitted Gaussian beam with the analytical equations of the light that 

propagates through a thin layer. Our technique is based on tracking the main 

parameters of a probe Gaussian beam transmitted through the sample under 

test at a plane of detection and, as the results of the measurements rely on 

following the referred parameters with high accuracy, we have devised a 

homodyne knife-edge detector that allows us to perform the measurements 

with the required accuracy. We also show that our measurement technique is 

immune to the inherent vibrations mentioned because the sample can be 

placed in the path of a focusing beam where piston-like movements of the 

pellicle do not affect the semi-width of the beam at a plane of detection. The 

feasibility of our proposal is confirmed by determining the refractive index and 

the local geometrical thickness at different spots of a commercially available 

stretch film. Our results are in good agreement with the values reported by the 

manufacturer of the stretch film. 
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By continuing with our research we noticed that there is a similar problem when 

it is attempted to characterize thin optical plates (ranging from 120 to 170 

microns). These plates have several important industrial applications as flat 

panel displays, security window glasses and automobile windshields, among 

others, where their adequate performance depends on the accurate 

determination of their refractive index and geometrical thickness. However, as 

in the case of the pellicle, these plates also present several challenges when 

are tried to be characterized. 

Nowadays a lot of techniques exist for characterizing these optical plates, 

however most of them require to combine two different techniques to determine 

the refractive index and the geometrical thickness. For example, low coherence 

interferometry (LCI) is combined with confocal microscopy [13-17], 

combinations of wave scanning interferometry (WSI) [18-22] or some type of 

focusing techniques based on a cyclic path optical configuration (CPOC) [23-

24] which are based on focusing the probe beam on the surfaces of the sample 

under inspection to obtain two different equations from which the unknown 

parameters can be inferred. However, for measuring the geometrical thickness 

of a plate, conventionally it is necessary to focus a probe beam in their front 

and back surfaces. This is required in order to track the distance that a very 

precise mechanical device has traveled. This distance represents the 

geometrical thickness under measurement. However, when the sample is very 

thin, less than 200 microns, it results very difficult to determine when the probe 

beam has actually been focused as a circle of optical confusion inherently 

arises. As a consequence the mentioned techniques can be suitable for 

samples moderately thick (a few mm) and are difficult to be used for these 

thinner plates. As industry demands thinner plates constantly, alternative 

techniques are required. 

For this reason, in this thesis we propose a technique for measuring 

simultaneously the local geometrical thickness and the refractive index of semi-

transparent thin plates by means of the diffractive properties of a transmitted 

Gaussian beam. This approach can be considered as an extension of our 

proposal used for the pellicle. However, for this case the thin film equations can 
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not be applied due to the optical plate thickness (120-170 microns). Because of 

that our proposal is based on measuring the semi-width of the transmitted 

Gaussian beam when impinges normally to the sample and by determining the 

centroid position when the beam impinges obliquely by tilting the sample at 

different angles. Once again we perform our measurements with the homodyne 

detector to accurately characterize the parameters of the Gaussian beam. 

As power measurements are not performed for this second case, the 

sample does not need to be highly transparent; this widens the range of 

applicability of our technique to semi-transparent samples. It is also important 

to remark that this proposal does not require any prior information of the 

sample under study. 

Now that the focus of this thesis has been presented, it is convenient to 

provide the analytical description used for this work.  
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Chapter 2 

Analytical description 

 

In this section we describe our analytical approach. We consider convenient to 

begin with the definition of the Fourier and inverse Fourier transforms, which 

are related with the propagation of the probe beam as will be shown in a 

following section. The existence conditions and several mathematical 

properties of the transform are also provided [25]. Later the Fresnel diffraction 

integral is defined and several typical cases of interest are presented. Special 

attention is given to the case of the Gaussian distribution. 

 
2.1 Fourier transform 
 
2.1.1 Definition 
 
For clarity and without loss of generality we assume the one dimensional 

definition of the Fourier transform. Let ( )xf  an arbitrary function, complex in 

general, which depends on x , then its Fourier transform is defined as, 

( ){ } ( ) ( )∫
∞

∞−

−= ,2exp dxxuixgxgF π                                      (2.1) 

where u  is the Fourier or frequencies space. If the integral shown in (2.1) 

exists, it is possible to calculate the inverse Fourier transform as, 

( ){ } ( ) ( )∫
∞

∞−

− = .2exp1 duxuiuGuGF π                                     (2.2) 

2.1.2 Existence conditions 

 

For Eqs. (2.1-2.2) to be valid, it is necessary to fulfill the existence conditions, 

which are, 
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a. g  must be absolutely integrable over the infinite ( )yx,  plane. 

b. g  must have only a finite number of discontinuities and a finite number of 

maxima and minima in any finite rectangle. 

c. g  must have no infinite discontinuities. 

 

2.1.3 Mathematical properties 

 

Now we will describe some of the basic mathematical properties of the Fourier 

transform for the two-dimensional case as follows: 

 

1. Linearity theorem. The transform of a weighted sum of two (or more) 

functions is simply the identically weighted sum of their individual 

transforms, that is,  

{ } { } { }hFbgFahbgaF +=+ .                                                   (2.3) 

2. Similarity theorem. A stretch of the coordinates in the space domain ( )yx,  

results in a contraction of the coordinates in the frequency domain ( )vu, , 

plus a change in the overall amplitude of the spectrum, that is, 

( ){ } ,,
1

, 







=

b

v

a

u
G

ba
ybxagF                                                   (2.4) 

considering that ( ){ } ( )vuGyxgF ,, = . 

 

3. Shift theorem. Translation in the space domain introduces a linear phase 

shift in the frequency domain, that is,  

( ){ } ( ) ( )[ ].2exp,, bvauivuGbyaxgF +−=−− π                             (2.5) 
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4. Rayleigh’s theorem (Parseval’s theorem). The left hand integral can be 

interpreted  as the energy contained in the waveform ( )yxg , . This in turn 

means that the quantity ( ) 2
,vuG is an energy density in the frequency 

domain, that is, 

( ) ( ) .,,
22

∫ ∫∫ ∫
∞

∞−

∞

∞−

= dvduvuGdydxyxg                                          (2.6) 

5. Convolution theorem. The convolution of two functions in the space domain 

is equivalent to multiply their individual transforms and inverse transforming, 

that is, 

( ) ( ) ( ) ( ) ,,,,,








=−−∫ ∫
∞

∞−

vuHvuGddyxhgF ηξηξηξ                       (2.7) 

where ( ){ } ( )vuHyxhF ,, = . 

 

6. Autocorrelation theorem. This theorem may be regarded as a special case 

of the convolution theorem in which we convolve ( )yxg , with ( )yxg −−∗ , , that 

is, 

( ) ( ) ( ) ,,,,
2

vuGddyxggF =








−−∫ ∫
∗

∞

∞−

ηξηξηξ                        (2.8a) 

 or similarly, 

( ){ } ( ) ( ) .,,, 2

∫ ∫
∞

∞−

∗ −−= ηξηξηξ ddvuGGyxgF                          (2.8b) 
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7. Fourier integral theorem. At each point of discontinuity of g , the two 

successive transforms yield the angular average of the values of g  in a 

small neighborhood of that point. That is, the successive transformation and 

inverse transformation of a function yields that function again, except at 

points of discontinuity, that is, 

( ){ } ( ){ } ( ).,,, 11 yxgyxgFFyxgFF == −−                                (2.9) 

2.1.4 Fourier transform of a Gaussian distribution 

As we mentioned at the beginning of this chapter, the Fourier transform is 

related with the propagation of the Gaussian beam, is then of interest to 

describe the Fourier of a Gaussian distribution. 

  If we consider a Gaussian distribution with semi-width equal to one, its 

Fourier transform is given by, 

( ){ } ( ).expexp 222 uxF ππ −=−                                     (2.10) 

For the more general case of a Gaussian distribution with semi-width 0r , its 

Fourier transform is given by, 

( ).expexp 22
0

2
02

0

2

urr
r

x
F ππ −=

















−                                (2.11) 

For simplicity in our calculations, in this work we use the following Gaussian 

distribution and its corresponding Fourier transform, 

( ){ } ( ).expexp 22 uxF ππ −=−                                        (2.12) 
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Eq. (2.12) is said to be symmetric under Fourier transformation. And finally it is 

useful to obtain the following expression, 

( )[ ]{ } ,expexp
2

2




















−=−

a

u
axF ππ                                 (2.13) 

where a combination of the similarity theorem in Eq. (2.4) and the Eq. (2.12) 

has been used. In the following section we will use the property of Eq. (2.13) to 

show how a Gaussian distribution is propagated.  

2.2 Fresnel diffraction integral 

 
2.2.1 Definition 
 
The propagation of an optical field can be evaluated by different approaches. In 

particular, one approach that gives very accurate results, being relatively 

simpler than other methods is the Fresnel diffraction integral. This theory is a 

scalar approach that can be applied if the following two conditions are valid: 

 

1. The diffracting aperture must be large compared with the wavelength and, 

2. The diffracting fields must not be observed too close to the aperture. 

 

The Fresnel diffraction integral, for brevity we denote it just as Fresnel integral 

in the successive, permits to determine the amplitude distribution FΨ  , often 

called image distribution, of a wave that propagates with an initial or object 

amplitude distribution IΨ  from an initial plane with coordinates ( )yx,  up to a 

final plane with coordinates ( )ηξ , , both being mutually parallels and separated 

by a normal distance z  as depicted in Fig. 2.1.  

 



 16 

 

Fig. 2.1. Propagation of an object amplitude distribution IΨ  at a plane with 

coordinates ( )yx,  resulting in an image amplitude distribution FΨ  at a plane 

( )ηξ ,  by means of the Fresnel integral. 

 

The analytical expression of the two-dimensional Fresnel integral can be 

expressed as, 

( ) ( ) ( ) ( )[ ]∫ ∫
∞

∞− 







−+−Ψ










=Ψ ,exp,

2
exp

, 22
dydxyx

z
iyx

zi

zi

IF ηξ
λ

π

λ

λ

π

ηξ         (2.14) 

where 1−=i  and λ  is the illumination wavelength. For simplicity in our 

calculations and without loss of generality we can write Eq. (2.14) in its one-

dimensional form as follows, 

( ) ( ) ( )∫
∞

∞−









−Ψ










=Ψ .exp

2
exp

2
dxx

z
ix

zi

zi

IF ξ
λ

π

λ

λ

π

ξ                        (2.15) 
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By using the Fourier transform it is possible to rewrite Eq. (2.15) as, 

( ) ( ) .expexp

2
exp

22

















Ψ

















=Ψ x
z

ixF
z

i
zi

zi

IF
λ

π
ξ

λ

π

λ

λ

π

ξ                    (2.16) 

By representing the final amplitude distribution FΨ  in the form of Eq. (2.16) 

opens the possibility to give it a physical meaning. According to the convolution 

theorem in Eq. (2.7) the Fourier transform of a product results in the 

convolution of the individual transforms. In this manner this propagation 

involves the convolution of a quadratic phase with the Fourier transform of the 

object function.  

 

2.2.2 Fraunhofer approximation 

 

By considering the Fraunhofer approximation for far fields, valid when the 

distance z  is considerably greater than the dimensions of the aperture, this is 

( )22

2
yxz +>>

λ

π
, Eq. (2.16) can be written as, 

( ) ( ){ }.exp

2
exp

2 xF
z

i
zi

zi

IF Ψ
















≈Ψ ξ
λ

π

λ

λ

π

ξ                              (2.17) 

This equation shows that under Fraunhofer approximation the final amplitude 

distribution FΨ consists only in the Fourier transform of the object distribution. 

Now it is convenient to describe some of the typical cases of the Fresnel 

integral for amplitude distributions in the object plane and their corresponding 

amplitude distributions in the image plane.  
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2.2.3 Propagation of a rectangular distribution 

 

The one-dimensional rectangle function of width A  can be defined as, 

.

0
22

1
2

1















=

<

=








otherwise

A
xif

A
xif

A

x
rect                                                       (2.18) 

Fig. 2.2 shows a plot of the )(xrect , with 1=A , this is a rectangle function with 

a width equal to one. 

 

 

Fig. 2.2. Object distribution consisting of a rectangle function of width equal to 

one. 
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If 








A

x
rect  is the initial amplitude distribution at the object plane, it is possible to 

calculate the final amplitude distribution at image plane by means of the 

Fresnel integral as follows, 

( ) ( ) .exp

2
exp

2
dxx

z

i

A

x
rect

zi

zi

F ∫
∞

∞−









−

















= ξ
λ

π

λ

λ

π

ξψ                            (2.19) 

By means of the Fresnel integral it is possible to calculate the amplitude 

distribution at any plane as long as the two conditions for scalar theory are 

fullfilled. Fig 2.3 depicts a plot of the image distribution amplitude when the 

rectangle function is propagated a distance of 5 cm. u  represents the 

frequency space. As for this illustrative case we are interested only in the shape 

of the plot, the amplitude has been normalized for all the examples. 
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Fig. 2.3. Propagation of an object distribution consisting of a rectangle function 

by means of the Fresnel integral at a distance of 5 cm. 

 

Fig. 2.4 shows the image amplitude distribution at a distance of 25 cm, 

 

 

Fig. 2.4. Propagation of an object distribution consisting of a rectangle function 

by means of the Fresnel integral at a distance of 25 cm. 

 

As mentioned, if the Fraunhofer approximation for far field is considered, the 

integral in Eq. (2.19) is simplified to the following equation, 

( ) ,exp

2
exp

2


































≈Ψ
A

x
rectF

z
i

zi

zi

F ξ
λ

π

λ

λ

π

ξ                              (2.20) 

which can be solved exactly resulting in, 
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( ) ,exp

2
exp

2


























=Ψ
z

AcnisA
z

i
zi

zi

F λ

ξ
ξ

λ

π

λ

λ

π

ξ                              (2.21) 

where the sinc function in Eq. (2.21) is defined as, 

( ) ( )
.

sin

x

x
xcnis

π

π
=                                                     (2.22) 

Fig 2.5 shows a plot of the sinc function obtained at a distance of 1 m. 

 

 

Fig. 2.5. Propagation of an object distribution consisting of a rectangle function 

by means of the Fresnel integral at a distance of 1 m. For this case the 

Fraunhofer approximation is considered. 
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2.2.4 Propagation of a Gaussian distribution 

 

As we are interested in analyze the beam profile of a He-Ne laser for our 

experimental setup, it is convenient to describe the Gaussian beam distribution. 

We begin our analysis with the simplest case: a Gaussian function at the beam 

waist, this means that the equation will contain a Gaussian exponential term, 

but no an imaginary quadratic exponential which would correspond to a 

convergent or divergent phase. The analytical equation for this case, at the 

output of the laser at a plane ( )x  is given by, 

( ) ,exp
2
0

2









−=Ψ
r

x
Ax                                                     (2.23) 

where A  is a constant amplitude and 0r  is the beam semi-width. Fig. 2.6 

depicts the Gaussian distribution shown in Eq. (2.23) for the case of amplitude 

equal to one and amplitude semi-width equal to one micron. 
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Fig. 2.6. Gaussian beam distribution with amplitude equal to one and semi-

width equal to one micron. 

 

If we now propagate this beam distribution up to another plane with coordinate 

( )ξ  separated a distance z , by using the Fresnel integral it follows that, 

( ) ( )∫
∞

∞−









−








−










=Ψ ,expexp

2
exp

2

2
0

2

dxx
z

i
r

x
A

zi

zi

F ξ
λ

π

λ

λ

π

ξ                  (2.24) 

and according to Eq. (2.17) we can write, 

  ( ) .expexp
2

exp

2

2
0

2
02









































 −
−
















=Ψ

z

F x
zr

riz
F

z
izi

zi

A

λ

ξ
λπ

πλ
πξ

λ

π

λ

π

λ
ξ      (2.25) 

Solving the Fourier transform and simplifying terms we obtain, 
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( ) ( ),expexp 2
2

2

1 ξβ
ξ

ξ i
r

AF 







−=Ψ                                          (2.26) 

where, 

.

2
exp

2
0

2
0

1
riz

zr

zi

z
i

AA
πλ

λπ

λ

λ

π

−










=                                            (2.27a) 

.
0

4
0

222

r

rz
r

π

πλ +
=                                                     (2.27b) 

.1
4
0

222

4
0

2










+
−=

rz

r

z πλ

π

λ

π
β                                               (2.27c) 

Eq. (2.26) shows that the distribution obtained after the propagation is also a 

Gaussian at plane ξ . In Eqs. (2.27) 1A  is the complex amplitude of the beam, 

r  is the corresponding semi-width of the beam and β  is the quadratic phase. 

Physically the second term in Eq. (2.26) is a real exponential which keeps the 

Gaussian behavior of the initial Gaussian distribution and the third term, the 

exponential with imaginary argument, represents a divergent spherical wave. 

It can be noticed that Eq. (2.26) is complex, to plot this distribution we can 

obtain its corresponding intensity profile. The intensity distribution is given by,  

( ) ,2exp
2

2
2

1 







−=
r

AI F
ξ

ξ                                          (2.28) 

where the intensity semi-width and the amplitude semi-width are related simply 

by, 

.2 IA rr =                                                        (2.29) 



 25 

Fig. 2.7 depicts a plot of the intensity Gaussian profile.  

 
 
Fig. 2.7. Intensity Gaussian profile for a propagated Gaussian beam. 
 
 

From the plot in Fig. (2.7), it can be noticed that the amplitude has been 

decreased drastically with respect that shown in Fig. (2.6), and accordingly the 

semi-width of the propagated profile has been increased from microns up to 

centimeters. The semi-width increases following Eq. (2.27b) and in Fig. 2.8 a 

plot of the semi-width as a function of the distance of propagation is depicted.  
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Fig. 2.8. Plot of the semi-width of the beam as a function of the distance of 

propagation. Zero distance is known as the beam waist, this means the place at 

which the semi-width exhibits a minimum. 

 

2.2.5 Propagation of a Gaussian function with convergent quadratic phase 

 

Now that we have described the Gaussian distribution at the beam waist, it is 

convenient for our purposes to analyze the more general case of a Gaussian 

distribution multiplied by a convergent quadratic phase as described in Eq. 

(2.30), 

( ) ( ).expexp 2
2
0

2

xi
r

x
Ax β−








−=Ψ                               (2.30) 
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The expression in Eq. (2.30) can be interpreted as the Gaussian distribution 

after a focusing lens which introduces the convergent quadratic phase. By 

means of the Fresnel integral we write, 

( ) ( ) ( )∫
∞

∞−









−−








−










=Ψ .expexpexp

2
exp

22
2
0

2

dxx
z

ixi
r

x
A

zi

zi

F ξ
λ

π
β

λ

λ

π

ξ          (2.31) 

Eq. (2.31) can be written in terms of a Fourier transform as follows, 

( ) ( )
.expexp

2
exp

2

2
0

2
02









































 −+
−
















=Ψ

z

F x
zr

zriz
F

z
izi

zi

A

λ

ξ
λπ

πλβλ
πξ

λ

π

λ

π

λ
ξ  

(2.32) 

In a similar way as it was done before in Eq. (2.26), it is possible to obtain an 

overall expression for FΨ , however for this case we are interested only in the 

semi-width. This is given by, 
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The semi-width in Eq. (2.33) will be used later in the section of the 

characterization of the pellicle in air. Now that we have described the 

propagation of a Gaussian beam through a distance of propagation z , it will be 

useful for our purposes to describe the propagation through two or more 

successive planes that will be used in this work. 

 

 

 



 28 

2.2.6 Propagation through two planes 

In this section we analyze two successive propagations, the first one from the 

initial plane up to an intermediate plane, and the second one from this 

intermediate plane up to the final plane. For brevity of the equations, our 

description is one-dimensional. 

In Fig. 2.9 the object field distribution ( )xf  is located at plane x  and it 

propagates up to a plane ξ  separated a distance 1z . At this plane a new field 

distribution is found by means of the Fresnel integral, then it propagates again 

to a final plane Fx  which is separated a distance 2z .  

 

 
Fig. 2.9. Field distribution ( )xf  at plane x  which is propagated to a plane ξ  

separated a distance 1z  and finally up to a plane Fx  separated a distance 2z . 

 
It is expected that the same final field distribution can be obtained by a single 

propagation from plane x  up to plane Fx , this can be represented 

mathematically by, 
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According to Eq. (2.15) these propagations are, 
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where 
λ

π2
=k is the wave-number. Developing and grouping terms it follows 

that, 
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and by solving the Fourier transform we obtain, 
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It follows that, 
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and finally it can be seen that, 
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In Eq. (2.39) the total distance the beam propagates is 21 zz +  and the 

propagation is performed from plane x  up to plane Fx , where the plane ξ  

vanishes for this final expression as expected. 

2.2.7 Propagation through media with refractive index n 

It is now necessary to consider the case of the propagation of the probe beam 

through a sample which exhibits a refractive index with a value n  greater than 

one. If we denote as 0λ the wavelength of the probe beam in air (strictly 

speaking in vacuum), then the wavelength of the field inside the sample will be,  

.0

n

λ
λ =                                                                (2.40) 

In Fig. 2.10 a function ( )xf  at plane x  propagates a distance 1z  in air to the 

plane 1x , then it propagates a distance 2z  through a medium with refractive 

index n  up to the plane 2x . Finally it propagates a distance 3z  in air up to the 

plane 3x . 
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Fig. 2.10. Graphic description of the probe beam propagating from the object 

plane up to the image plane through a medium with refractive index greater 

than one. 

 
For the situation depicted in Fig. 2.10 the integral in Eq. (2.39) is expressed as, 
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Eq. (2.41a) is by itself of the outmost importance for revealing the essence of 

the technique.  It clearly indicates that the Fresnel integral involves an overall 

distance of 
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n

z2  a distance that is virtually less than 2z  

because the refractive index is grater than one. 

By considering a virtual object with the same geometrical thickness as the 

object depicted in Fig. 2.10, and refractive index equal to one, one would obtain 

the following equation, 
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Comparing Eqs. (2.41a) with (2.41b) it becomes apparent the survey of the 

technique. The probe beam travels from the object plane towards the image 

plane trough the sample. If the sample under test is a virtual one, the refractive 

index has a value of one. In contrast, when the sample is a real one, the 

refractive index is greater than one and the overall distance traveled by the 

probe beam results in a shorter apparent distance as compared with the virtual 

case. In consequence, the semi-width of the probe beam exhibits a change and 

this change is precisely the main key that allows us to determine the 

parameters of the sample under test. This result is described later in a following 

section. 

Now it is convenient to describe our homodyne detector which is used to 

perform the measurements to characterize the parameters of the transmitted 

Gaussian beam. 
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Chapter 3 

The homodyne detector 
 
 
In this chapter we describe the knife-edge detector (ked), our experimental 

device used to perform the measurements to characterize the parameters of 

the transmitted Gaussian beam.  

           Before beginning with the description of the ked, we want to remark 

some of its features which we consider as advantages. As the ked is a non-

invasive system, it has potential applications in areas like medicine and biology; 

it works at low power, this avoids damaging the sample under test and other 

optical components; it can be considered as a monochromatic system because 

it has a narrow emission band, and finally, due that the system has a 

continuous operation mode it is possible to model a linear and invariant system. 

 

3.1 Setup for profilometry 

 

The ked was originally intended for high-quality profilometry measurements and 

several important results were obtained and published [26]. Fig. 3.1 depicts one 

original-configuration setup for the ked.  
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Fig. 3.1. Setup of the knife-edge detector for profilometry measurements. The 

elements depicted are described in the text. 

 

In Fig. 3.1 an He-Ne laser (with wave-length λ  equal to 632.8 nm) is focused 

on a sample under test by means of a focusing lens (L). A beam splitter (BS) is 

used to align the sample and a photo diode at different positions. The light 

reflected by the sample is collected by the photo diode. The photo diode whose 

sensitive area is much larger than the dimensions of the incoming beam is 

positioned behind a knife-edge. The knife-edge allows detecting variations in 

the signal due to the sample profile, in this manner obtaining an AC signal. If 

the knife-edge were not placed, a constant DC level would be obtained 

regardless of the sample shape. The sample is fixed to a flexure piezoelectric 

transducer (PZT) which has two purposes. First, it is used to displace vertically 

in plane the sample, in this way performing the scanning of the sample under 

test. Secondly, the PZT is used to vibrate the sample in a plane transversal to 

the optical axis at a low frequency ( )f  with small amplitude ( )0δ . A flexure type 

PZT is preferred as it exhibits low tilt of less than 5 µrad. Finally the power 

collected by the photo diode is sent to an acquisition system. An attenuator (A) 
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is included to avoid damaging the optical components due to excessive 

heating. 

 

3.2 Setup for measuring the illumination source profile 

 

By introducing slight variations on the original setup, intended to widen its 

range of applicability, it was possible to measure small changes in the glucose 

concentration of transparent and turbid solutions. In this manner a theoretical 

characterization of the refractive index as a function of the glucose 

concentration was made for the first time to the best of our knowledge [27]. In 

addition, in this work we devised another setup which allows us to characterize 

the refractive index and geometrical thickness of optical samples. This 

homodyne detector setup is depicted in Fig. 3.2. 

 

 

 
 
Fig. 3.2. Homodyne detector setup for measuring the parameters of the 

transmitted Gaussian beam. 

 
Most of the elements depicted are the same described in Fig. 3.1, however 

some differences exist:  

1. In this configuration it is not necessary to use a beam splitter because 

the system works in transmission mode instead of the original reflective 

mode. 
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2. Besides, for the purpose of including the sample under test between the 

lens and the knife-edge, we use a long working distance ( mc1 ) lens, 

consisting in a Mitutoyo which focuses the beam at a semi-width of 1 

micron.  

3. In this configuration the knife-edge is attached to the PZT to perform a 

scanning of the probe beam, while in the original setup the scanning was 

performed on the sample, typically a calibrated reflective grating, and the 

knife-edge remained fixed.  

 

Finally we want to remark that as we mentioned previously, our setup is non 

interferometric and this feature makes it suitable for measuring the thin pellicles 

discussed in the introduction section.  

Now that we have described the optical part in the homodyne detector, it is 

convenient to provide the description of the acquisition system. 

 The signal collected by the photo-diode is sent to a pre-amplifier which 

amplifies the signal by changing the gain of the system with a variable internal 

resistance. The user can vary this gain to obtain the best possible signal, 

typically a signal with higher amplitude is preferable as it is dominant over the 

electronic noise. However there is a point where the system gets saturated, in 

this manner the user needs to calibrate the gain for every measurement 

depending on the illuminating power. The output signal is send to the lock-in 

amplifier. As mentioned, the lock-in vibrates the PZT at a unique frequency with 

a sinusoidal oscillation. In this manner the lock-in is capable of detecting an AC 

signal with a signal-to-noise ratio of 1000:1. The user can control this frequency 

which is usually as low as 20 hertz or less. Besides, the lock-in communicates 

with the PC via GPIB for sending data.   

The output of the pre-amplifier can be also sent to a digital oscilloscope to 

verify in real time the measurements performed and parameters of interest of 

the signal like amplitude, frequency, shape, etc.  

  On the PC a ramp function is programmed and sent it via a DAQ card. This 

ramp allows to perform the scanning. Both signals, the sinusoidal oscillation 

and the ramp are the inputs of an adder circuit. The output is send to the PZT. 
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In this manner, the PZT is vibrating in an initial position; after a certain time it 

moves to a new position and continues vibrating and repeats the process until 

the whole scanning has been performed. This situation is depicted in Fig. 3.3. 

 

 

Fig. 3.3. Combined movement of the PZT. The PZT is vibrating at a low 

frequency and simultaneously it is expanding vertically, consequently displacing 

the knife-edge for the scanning. The expansion in the figure has been 

exaggerated for clarity. 

 

As mentioned the frequency at which the PZT oscillates is controlled by the 

lock-in. This frequency is set low to avoid undesired movements of the knife-

edge. The time that the PZT stays in a certain position is controlled by the PC. 

On the acquisition program the user controls this time called delay. The delay is 

set in milliseconds and in our experiments we have verified that a delay of 150 

ms is suitable for our purposes. If the delay is set too slow, it is possible that the 

lock-in can not obtain a good average on the value of the signal amplitude at a 

certain point and erroneous measurements may be obtained. 
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 Another parameter which is controlled on the display of the program is the 

number of pixels to be used. By increasing the number of pixels the PZT will 

scan a larger distance. An illustrative example of this situation is depicted in 

Fig. 3.4. In this example we simulate a scanning of a calibrated reflective 

grating with pitch 300 lines/mm. In 3.4a we set the system to 100 pixels to 

record two maxima of the grating. In 3.4b we double the number of pixels and 

consequently the distance we scan on the grating is double, recording four 

maxima.   

 

 

Fig. 3.4a. Simulation of a record of a calibrated grating with pitch 300 lines/mm 

obtained with 100 pixels. 
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Fig. 3.4b. Simulation of a record of the calibrated grating depicted in Fig. 3.7a 

by using 200 pixels.  

 

In the experiments the PZT is not completely linear as illustrated in the 

simulation of Fig. 3.4 but its behavior can be assumed that way with high 

precision for our purposes.  

 It is also important to remark that the PZT has a limit of expansion of about 

100 microns. Therefore care must be taken to not exceed this limit with the 

number of pixels because the PZT can be damaged.  

 Finally, the combination of the delay with the number of pixels used to 

perform the measurements results in a scanning time. Each pixel is a position 

for the PZT and the delay is the time it will stay at that position. These 

parameters can be varied depending on the purposes of each measurement. 

Now that all the elements of the homodyne detector have been described, 

we will provide an analytical expression for the power collected by the 

photodiode for two cases: with the presence of the knife-edge and without it. 
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3.3 The power collected 

 

In Eq. (2.23) we provided the one dimensional amplitude distribution of the 

Gaussian beam. If its corresponding intensity distribution is to be obtained, it is 

necessary to multiply Eq. (2.23) by its complex conjugate. In this manner the 

expression in Eq. (2.28) is obtained, just by changing the axis ξ  for x . It can be 

seen that the same is valid if Eq. (2.30) is used, because the imaginary 

exponential vanishes when the product is performed. Now we are interested in 

the optical power collected by the photodiode. For this let us consider the two 

dimensional case in which there is no knife-edge in front of the photo diode, 

thus all the incoming power impinges on it. The analytical expression for this 

situation is given by, 
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The expression in Eq. (3.1) can be divided in two separate integrals, and with a 

change of variable it follows that, 
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The integrals in Eq. (3.2) are well-known. Therefore it can be noticed that the 

power is a constant on a certain plane, because the semi-width at that plane is 

fixed. As a consequence we will write the power as 0P  to denote that it is 

constant, 

.
2

2
0

2

0

rA
P

π
=                                                         (3.3) 

It is possible to obtain an expression for A  as, 
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By using Eq. (3.4) we can write the Gaussian amplitude distribution as, 
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Now we are going to obtain an expression for the optical power when the knife-

edge is included. This situation is depicted in Fig. 3.5. 

 

 

Fig. 3.5. Closer view of the knife-edge adjustment. It is desirable that the knife-

edge covers half of the sensitive area of the photodiode. However, we include a 

possible adjustment error α  which has been exaggerated for illustrative 

purposes. 

 

Under the situation depicted in Fig. 3.5 the optical power collected by the 

photodiode can be written as, 
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In Eq. (3.6) the lower limit of one of the integrals changes because of the 

positioning of the knife-edge. It is not necessary equal to zero, corresponding to 

block exactly half of the beam, because a possible alignment error α , as 

depicted in Fig. 3.5. For this case it is also possible to solve two separate 

integrals. One of them can be solved in the same way as it was done in Eq. 

(3.2) obtaining, 
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Finally the optical power is given by, 
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where for writing Eq. (3.8) the definition of the complementary error function, 

denoted ( )xerfc  was used as follows, 
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It is also convenient to provide the definition of the error function, denoted 

( )xerf  as, 
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Fig. 3.6 depicts a plot of the ( )xerf , and Fig. 3.7 depicts the corresponding plot 

of the ( )xerfc . 

 

Fig. 3.6. Plot of the error function. 
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Fig. 3.7. Plot of the complementary error function. 

 

As one of the main functions of the homodyne detector will be determining 

changes in the beam semi-width when the sample is included in the setup, we 

describe this process in the following section. 

 

3.4 Measuring the beam semi-width 

 

Measuring changes in the beam semi-width with accuracy is important for the 

measurements required for the adequate characterization of the optical media. 

These changes can be due to a variation on the concentration of a solution 

under test or, in our case, due to a sample tilt at different angles. In this sense, 

the vibrating knife-edge allows determining the semi-width of the Gaussian 

beam in a homodyne way as follows.  

First consider the case when the knife-edge is not vibrating, due to the 

photodiode large sensitive area, the power collected (P ) can be written as, 
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In Eq. (3.11) A  is a constant scale factor and the lower limit of the integral ( )α  

represents the initial position of the knife-edge. 0r  is the semi-width of the beam 

at the plane of detection. In summary, Eq. (3.11) establishes that the 

photodiode integrates the overall beam excluding the portion covered by the 

knife-edge. 

Now, when the knife-edge is vibrating, the lower limit is written as, 

( ),2cos00 tfx πδα +=                                                (3.12) 

where 0x  is a static position  of the vibrating knife-edge. By substituting Eq. 

(3.12) in Eq. (3.11) and by performing an expansion in power series of the 

resulting equation, the linear term is of the form, 
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where B  is a constant. The expansion is performed only to the first term as the 

lock-in amplifier is tuned to the first harmonic. Thus, the signal results 

proportional to the intensity Gaussian profile evaluated at 0x  as indicated by Eq. 

(3.13). 

           To accurately obtain the overall shape of the Gaussian beam with our 

homodyne detector it is necessary to displace the position of the knife-edge to 

different values of 0x . In this way, the shape and width of the Gaussian beam are 

obtained with high accuracy at the plane of detection. 

           As the lock-in is tuned to the first harmonic, the signal results proportional 

to the intensity Gaussian profile evaluated at 0x  as indicated by Eq. (3.13). To 

obtain the overall profile the knife-edge is displaced in plane to different 0x  
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positions. In Fig. 3.8 we provide an example where plots of Gaussian 

distributions obtained experimentally are shown: the solid line represents the 

profile measured without the sample and the dashed line is the case when the 

sample is included in the setup. 

 

 

Fig. 3.8. Gaussian intensity distributions obtained experimentally without the 

sample (solid line) and with the sample included (dashed line). 

 
It can be seen that in the absence of the sample the amplitude is higher and the 

semi-width is thinner and with the sample included occurs the opposite, the 

amplitude decreases and the semi-width increases. This is because the area 

under the curve, the power, is constant. 

 At this point our analytical tools and our experimental setup have been 

described and we are ready to provide the methodology used for the 

characterization of the pellicle in air. 
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Chapter 4 

Characterization of the pellicle in air 
 
 
Our proposal for the determination of the refractive index and the geometrical 

thickness of a thin pellicle in air is as follows. 

Let us consider a laser beam which is focused at the plane of observation 

with coordinates ( )ηξ ,  at the absence of the sample, by means of a focusing 

lens placed on a coordinate plane ( )11, yx  at a distance 0z  from the laser output. 

This is depicted in Fig. 4.1. 

 

Fig. 4.1. Propagation of the Gaussian beam as described in the text. Tz  is set 

such that the plane ( )ηξ ,  corresponds to the best focusing plane. 

The lens is considered very thin and its aperture is large enough to allow 

neglecting truncation of the beam. The plane of observation is adjusted at a 
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distance Tz  behind the lens to attain the best focusing conditions (minimum 

beam semi-width). We will refer to this plane as the best focusing plane. Once 

Tz  has been fixed, the pellicle to be characterized, which has a geometrical 

thickness t , it is introduced transversally to the optical axis z  in the optical 

path. It can be seen that, 

,21 ztzzT ++=                                                         (4.1) 

where 1z  and 2z  are depicted in Fig. 4.1. These distances can be chosen 

arbitrarily as it will be demonstrated below. For illustrative purposes the width of 

the sample has been exaggerated in Fig. 4.1. The overall propagation of the 

Gaussian beam through the system can be calculated by means of the Fresnel 

integral. We first consider a virtual sample, that is, a sample with a refractive 

index equal to one and geometrical thickness t . For this condition we calculate 

the overall propagation from the laser up to the plane of observation and we 

plot the semi-width of the Gaussian beam as a function of distance Tz . These 

calculations allow characterizing all the parameters involved in the propagation 

of the beam. 

           There is a value of Tz  in which the semi-width exhibits a minimum at the 

plane of observation; this Tz  value will be referred as the best focusing distance 

and the corresponding transversal plane will be the best focusing plane. As 

mentioned, for a full characterization of the beam propagation, it is necessary to 

calculate the overall propagation from the laser output up to the plane of 

observation. For simplicity in the description of our proposal this is not 

necessary; it is sufficient to begin our description by considering the beam 

distribution just after the lens, as the case treated in chapter 2, Eq. (2.30). For 

this distribution we obtain at the plane of observation the corresponding semi-

width, denoted ( )Ar , in a similar way as it was done in Eq. (2.33), for 

convenience it is repeated here as, 
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We emphasize that Eq. (4.2) corresponds to the case of a virtual sample with a 

refractive index equal to one. Ar , r , β  and λ  are determined experimentally by 

the homodyne detector. In this manner we propose a value for Tz  which 

matches with our experimental conditions and it is unique. 

By maintaining Tz  constant we now repeat the same calculation for a 

pellicle with a refractive index n  and geometrical thickness t . By using a similar 

treatment as in Eq. (2.41a) the semi-width Br  is given as, 
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In writing Eq. (4.3) it has to be noticed that multiple reflections on the boundary 

do not affect the semi-width of the transmitted amplitude, as is typical when 

using pellicle beam splitters. On the contrary, the transmitted amplitude is 

drastically affected by multiple reflections. Because r , β  and λ  are fixed, it will 

be noticed from Eq. (4.3) that exactly the same value of Br  can be obtained with 

an uncountable set of samples, as follows,  
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where the primed values stands for the set of possible samples. Fig. 4.2 shows 

an illustrative example to clarify the above mentioned. Two different samples, 

denoted sample 1 and sample 2 produce the same semi-width at the best 

focusing plane. Sample 1 has thickness t  and refractive index n  while sample 

2 has thickness t′  and refractive index n′ . 
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Fig. 4.2. Descriptive example where two different samples produce the same 

beam semi-width at the best focusing plane. Sample 1 has thickness t  and 

refractive index n  while sample 2 has thickness t′  and refractive index n′ . The 

remaining parameters are described in the text. 

 

As it can be seen from Fig. 4.2 it is only necessary that Tz  remains fixed to 

attain the same semi-width for both cases. The separation between the sample 

and the lens, denoted 1z  does not affect this parameter, the same occurs for 

2z . Because of that we say that the system is immune to vibrations of the 

pellicle along the z  axis. This feature is of the utmost importance as it 

overcomes the main disadvantage of the interferometric techniques when it is 

intended to measure a very thin and unsupported sample.  

 From Eq. (4.1) we can write, 

,21 tzzz T −=+                                                  (4.5a) 

        or by considering the second sample case, 
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        By substituting Eqs (4.5) in Eq. (4.4) we obtain, 
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In this manner, we can generalize the result obtained in Eq. (4.7) for multiple 

samples as follows,  
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Eq. (4.8) shows that the geometrical thickness multiplied by the ratio of the 

refractive index diminished in one divided by the refractive index is an invariant, 

provided Tz  remains constant, which in our case corresponds to the best 

focusing plane. As mentioned, it is important to remark that the semi-width at 

the best focusing plane is independent of the position of the sample, that is, 

independent of the actual values of 1z  and 2z . Thus back and forth movements 

of the plate under inspection do not affect the size of the Gaussian beam under 

measurement.  An invariant factor F  can be defined as, 

        .
1

n

n
tF

−
=                                                         (4.9) 

Eq. (4.9) is one of the keys in the calculations of the refractive index and 

geometrical thickness of our proposal.  
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Fig. 4.3 depicts an illustrative example where three different samples produce 

the same semi-width. Fig. 4.3a depicts a sample with the following parameters: 

5.1=n  and mt µ10= . By means of Eq. (4.9) we obtain mF µ33.3= . In our 

theoretical simulation by using this parameters we obtain a focused beam with 

semi-width mrB µ16.1= . 

Fig. 4.3b depicts a sample with the same value of F  as requested by Eq. 

(4.8), however in this case the refractive index increases and its corresponding 

geometrical thickness decreases maintaining the same value for F  and as a 

consequence obtaining the same Gaussian semi-width. The numerical values 

obtained for n and t  are shown in the figure.  

Finally in Fig. 4.3c n  decreases while t  increases accordingly and Br  is 

also obtained. The numerical values are also included in the figure.  
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Fig. 4.3. Comparison of three different samples which produce the same 

Gaussian semi-width at the focusing plane. The parameters are: a) 5.1=n  and 

mt µ10= ; b) 7.1=n and mt µ09.8= ; c) 3.1=n and mt µ44.14= . For the three 

cases mF µ33.3=  and mrB µ16.1= . 

 

From Eq. (4.3) it can be noticed that the value of nt /  can be calculated by 

knowing Br . However n  and t  can not be calculated independently. 

To overcome the problem mentioned above, we additionally use the 

equation of the power ( )P  transmitted by a pellicle in a homogeneous medium. 

This is a well known equation [28-29] and for convenience is repeated here as, 
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where 0n  and 1n  are the refractive indices of the homogeneous medium and 

the pellicle respectively and,  
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Eqs (4.10) and (4.11) are valid for plane waves and are applied here with 

reasonable accuracy as the pellicle is preferable placed as close as possible to 

the focal plane, in the Rayleigh zone, where the wave is almost collimated. 

Eqs. (4.10) and (4.11) will be combined with Eq. (4.9) to fulfill the 

information needed. For this, it is necessary to measure accurately the power of 

the Gaussian beam transmitted by the pellicle. Actually what we require is the 

ratio of the power detected when the pellicle is present divided by the power 

detected without the pellicle. In turn, to measure the power by integrating the 

intensity of the Gaussian profile, it is necessary to measure with good accuracy 

the semi-widths of the beams under detection. This is done by means of the 

homodyne detector which is immune to spurious light, harmonics and 

undesired DC components.  

          Before continuing with our description we want to remark that it is not 

necessary to actually measure the geometrical distances depicted in Fig. 4.1. 

Instead of this, we use the homodyne detector to characterize the overall 

experimental propagation of the Gaussian beam. Now, we use the theoretical 

setup of Fig. 4.1 which uses an ideal lens and we fix the corresponding 

parameters properly to match both propagations. As both propagations 

coincide everywhere, both the theoretical and the experimental propagations 

are the same. As a consequence, when a thin sample is introduced in the 
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focused beam, between the lens and the plane of detection, the theoretical 

model must also match with the experimental setup. In this way we have a 

model that allows us to determine the parameters of the sample under study. 

In our experiments the intensity spot size without the pellicle at the best 

focusing plane was approximately 2 µm. As the pellicle physically had to be 

placed away of this plane, we estimate that the pellicle was illuminated by a 

beam with a spot size of about 20 µm. Thus, our measurements represent a 

local value over this region. The corresponding power is obtained by integrating 

the area under the Gaussian distribution. 

        As all the parameters in the experiment are maintained fixed, it is possible 

to obtain the relative power ( )relP  as the ratio between the power when the 

sample is placed ( )filmP , referenced to the power measured without the sample 

( )airP , 

.
air

film

rel
P

P
P =                                                       (4.12) 

Eq. (4.12) represents one of the most important parameters of our proposal.  

Once the semi-widths have been accurately measured with the homodyne 

detector, we proceed to assign to Ar  and Br  in Eqs. (4.2) and (4.3) their 

corresponding values. The parameters r , β  and Tz  were previously 

characterized and calculated numerically by means of the overall diffraction 

propagation of the beam. 

Next we propose arbitrary values to 1z , 2z and n  to calculate its 

corresponding t  value, taking care to fulfill with Eq. (4.1). In this manner, we 

have chosen one of the uncountable set of possibilities that match with our 

experimental semi-width. With these values we proceed in calculating the 

invariant factor F given by Eq. (4.9) and the relative transmitted power as given 

by Eq. (4.12).  

At this point it will be noticed that Eq. (4.10) contains sinusoidal terms on 

n  and t . This behavior is illustrated in Fig. 4.4 that shows a plot of the 
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transmitted power as a function of t  calculated with the referred equation. In 

this plot the corresponding relative power obtained experimentally is also 

included and represented with a solid horizontal line. The values of t  in the plot 

are obtained by varying n  in a range between 1.5 and 1.9, while maintaining 

fixed F given by Eq. (4.9). In Fig. 4.4 circles correspond to the intersection of 

the continuous possible powers with the experimentally obtained relative 

power. 

 

 

Fig. 4.4. Plot of the theoretical relative power transmitted by the sample as a 

function of its geometrical thickness obtained with Eq. (4.10) (oscillating plot). 

The horizontal line corresponds to the transmitted power measured 

experimentally. The circles represent the intersection of both plots (the 

allowable powers). 

 

It will be noticed that the plot in Fig. 4.4 is not periodic. This is a result of 

substituting Eq. (4.9) in Eq. (4.10) with n  substituted by 1n . As the only 

allowable values correspond to the intersection of both plots represented by 
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circles in Fig. 4.4, now, the set of possible geometrical thicknesses has been 

reduced to only ten possibilities. It is now necessary to discern which one 

corresponds to the sample, and with the data available it is not possible. As a 

consequence we have devised the following procedure. 

       We displace the sample slightly to measure in a neighbor spot. At this new 

position we measure again with the homodyne detector as it was done with the 

former measurement. For comparative purposes we repeat Fig. 4.4 in Fig. 4.5 

where plots of the second measurement represented by dashed lines have 

been added. In Fig. 4.5 circles represent the ten possible values allowable for 

the first measurement and squares represent the allowable 14 possible values 

for the second measurement. 

 

 

Fig. 4.5. Plots of the relative transmitted powers as a function of the 

geometrical thickness for two neighbor spots obtained with Eq. (4.10) in a 

similar way as Fig. 4.4. The horizontal lines correspond to the relative powers 

transmitted by the sample which are measured experimentally as described in 
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the text. Circles correspond to allowable values for the first measurement, 

squares for the second measurement. 

 

At this point, we have calculated F for the first measurement and a 

corresponding F ′  for the second measurement. We have found a set of ten 

possible thicknesses for the first measurement and 14 for the second one. 

Now, being the refractive index a characteristic of the material composition, it 

should remain basically constant on the small vicinity where the measurements 

were performed. Thus, 
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for each measurement respectively which allow us to divide Eq. (4.13a) by Eq. 

(4.13b) to eliminate n  as,  
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′
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As F and F ′  are known values, Eq. (4.14) implies that the ratio of the 

thicknesses is also known. To determine t  and t′  we take all the combinations 

that correspond to the 10 values of the first measurement against the 14 values 

of the second one until the ratio fits better. In this way all the non allowable 

values are discarded remaining only the pair t  and t′  which is the unique 

allowable solution. Finally by using Eqs. (4.13a) and (4.13b) two refractive 

indices are obtained, n  and n′ . These two values are expected to be the same 

but as they were obtained experimentally, an inherent small difference arises 

and it is considered in the error uncertainty. 
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    To verify the correctness of the results we performed the same 

measurement on a third neighbor spot. Table 4.1 summarizes the results 

obtained. 

 

Measurement 1n  2n  3n  ( )mt µ1  ( )mt µ2  ( )mt µ3  n∆  

Spot1 - Spot2 1.758 1.757 - 13.35 14.34 - 1x10-3 

Spot2 - Spot3 - 1.757 1.752 - 14.34 14.83 5 x10-3 

Spot1 - Spot3 1.758 - 1.752 13.35 - 14.83 6 x10-3 

 

Table 4.1. Values obtained for the refractive index and geometrical thickness for each 

combination of the three measurements on the stretch film. 

 
Table 4.1 lists the experimental results obtained with our proposal of measuring 

with pairs of neighbor spots. The results confirm the correctness of our 

technique as the results are consistent when measuring with different pairs. 

Obviously more spots can be taken to improve the trustworthiness of the 

technique. For illustrative purposes we have limited this report to only three. 
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Chapter 5 

Characterization of the optical plate 
 

 
Following our research, after the characterization of the pellicle in air, we 

noticed that a similar approach can be applied to characterize the refractive 

index and the geometrical thickness of a semi-transparent optical plate. Most of 

the theory described in the previous chapter is also valid for this case. The 

main differences were mentioned in the introduction section and are repeated 

here for clarity: We realize that no power measurements are required for 

characterizing the optical plate, as a consequence the sample does not need to 

be highly transparent. In this manner, with our technique we are able to 

characterize semi-transparent samples. Besides, for the case of the pellicle we 

used the equations of the power transmitted by a pellicle in a homogeneous 

medium. As the optical plate can not be treated as a pellicle due to its greater 

thickness, we measure the beam semi-width at normal incidence and we also 

measure the shift of the Gaussian centroid when the sample is tilted at different 

angles to determine both parameters of interest separately. The propagation of 

the Gaussian beam from the laser up to the detection plane is the same 

described in Chapter 4 for the pellicle case. The shift of the Gaussian centroid 

is as follows. 

 

 
5.1 Shift of the Gaussian centroid 

 
In Fig. 5.1 a beam impinges on an optical plate of thickness t  and refractive 

index n  with an angle θ  with respect to the normal !  as depicted. We assume 

that the end borders of the plate are parallels. As our technique measures in a 

very thin spot of a high quality sample, this assumption seems reasonable. 

          The oblique incidence will cause two effects: first, the beam will travel a 

larger distance inside the sample making the Gaussian beam wider at the plane 

of detection. It has to be remarked that this broadening of the beam is irrelevant 
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for our proposal as it is not necessary to measure the semi-width of the beam 

when the sample has been tilted; it is only necessary to measure the semi-

width in the transversal case. 

 

 
 

Fig. 5.1. Shifting of the beam centroid due to sample tilting. 
 
The second effect caused by tilting the sample is a shift on the centroid at the 

plane of detection.  

           Let us assume that an incoming Gaussian beam impinges on a point A 

of a virtual glass plate (GP) of refractive index equal to one and thickness t . 

The incident beam forms an angle θ ′    with respect to the normal !  as 

depicted in Fig. 5.1.  As the beam stays in air it propagates up to the point B. 

Now we replace the virtual GP for a real one with refractive index n  greater 

than one and the same thickness t . Because of the real GP the Gaussian 

beam is refracted and it propagates by a different path until it reaches the 

interface at point C. After C both beams will propagate in parallel paths. 

However the center of the Gaussian beam suffered a shift or displacement 

between the virtual and the real GP denoted by h . r  and α  are the distance 

and the angle showed in Fig 5.1, respectively. By simple geometry we have,  
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)sin(αrh = ,                                               (5.1) 

and, 

 
)cos(θ ′

=
t

r .                                              (5.2) 

By using that θθα ′−=  and the Snell law the centroid shift h  can be given as, 
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Measuring the shift h  and the beam semi-width at normal incidence allows 

using Eqs. (4.9) and (5.3) to calculate t  and n . For convenience Eq. (4.9) is 

repeated here and numbered as Eq. (5.4), 
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=                                                      (5.4) 

Up to this point the bases of our proposal have been introduced. Before 

proceeding further it will be convenient to study the behavior of Eqs. (5.3) and 

(5.4) graphically. This is presented in the following section. 

 

5.2 Theoretical behavior of the basic equations 

 
By combining Eqs. (5.3) and (5.4), we obtain, 
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Experimentally measuring Ar , Br  and Tz  allows us to determine values for n  

and t  corresponding to the uncountable set of possible samples. Once fixed n  

and t , F is known. Additionally if t  is maintained fixed, then, it is possible to 

use Eq. (5.5) to plot h  as a function of θ . Fig. 5.2 depicts plots of h  as a 

function of θ  for an illustrative case of a sample with t  = 140 µm and three 

different values of n : 1.4, 1.5 and 1.6. 

 

 
 

Fig. 5.2. Plots of the centroid position as a function of the tilt for three samples 

with t  = 140 µm and 4.1=n , 5.1=n  and 6.1=n  respectively. 

 
 

From Fig. 5.2 it can be noticed that as the tilt increases the separation between 

the curves is also increasing. This indicates that the system becomes more 

sensitive at higher tilts inside a useful region.  

           With a commercially available translation-stage we displace along the 

optical axes the homodyne detector and we recorded the Gaussian profile at 

different positions. The minimum semi-width obtained corresponds to the best 
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focusing conditions. At this plane the values of Tz   and Ar  are registered. In our 

experiment Ar  is approximately one micron. If the detector is maintained at this 

plane the system will exhibit maximum sensitivity which is desirable for very 

thin samples. As in our case the expected geometrical thickness of the sample 

is in the range of 120-170 microns it is convenient to displace the homodyne 

detector slightly from the best focusing plane because our PZT has a maximum 

scanning distance of 100 microns. For our experimental purposes this 

displacement is about mµ5.4 . The other working conditions are: 

2810971.4 −×= mβ , mmr 2.2=  , mrA µ4.1= , cmzT 0.1= , mµλ 632.0= . 

           Next, the sample is placed at normal incidence (zero tilt). Its placement 

is easily done as its corresponding centroid has to coincide with the one of the 

profile recorded without the sample. Under this condition Br  is determined. In 

our case mrB µ77.8=  which result in a value of mF µ45.44= . 

           Finally the sample is tilted in steps of 5 degrees up to 45 degrees by 

means of a precision rotary stage and the Gaussian profile is recorded for each 

case. Fig. 5.3 show plots of the profiles obtained.  The plots are normalized 

with respect to the zero-tilt profile. For clarity Fig. 5.3 exhibits profiles obtained 

up to 30 degrees. The Gaussian profile measured without the sample is also 

included in the plot; its amplitude has been decreased about six times. 
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Fig. 5.3. Gaussian profiles measured with the homodyne detector. The 

narrowest profile (dashed line) is obtained without the sample and its amplitude 

is reduced approximately 6 times. The solid lines are the profiles measured with 

the sample tilted at different angles. The solid line profile at the left corresponds 

to the zero tilt case. The 30 degrees profile has the smaller vertical amplitude. 

            

With the profiles recorded, a plot of the centroids as a function of tilt is 

performed. Fig. 5.4 depicts the experimental measurements (represented by 

circles) and the best fitted theoretical curve obtained with Eq. (5.5). The fitting 

curve is determined with a least square method. The optimal value gives the 

expected sample value of n  and its corresponding t . This method allows us to 

obtain n  with a precision on the third decimal digit and t  with a precision of a 

half micrometer which in our case represents a precision of 0.4%. 
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Fig. 5.4. Fitted theoretical curve adjusted to the experimental values 

(represented by circles). 

 
Our sample consisted of a commercially available cover glass No. 1. The 

manufacturer sample characteristics compared with those obtained with our 

technique are given in Table 5.1. The refractive index reported by the 

manufacturer is only available for mµλ 589.0= . 

 
 n  )( mt µ  

Proposed technique 
1.522 

( mµλ 632.0= ) 129.6 

Reported by manufacturer 
1.523 

( mµλ 589.0= ) 120-170 

 
Table 5.1. Values for n  and t  by using our proposed technique compared with 

the values reported by the manufacturer. 

 
Before finishing this report we want to remark that the sensitivity of the system 

may be increased by placing the homodyne detector at the best focusing plane 

in order to measure thinner samples. In contrast, for wider samples a defocus 

can be intentionally introduced or a larger range PZT can be used. 
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Chapter 6 

Conclusions 
 
 

With our research we have described and proved analytically and 

experimentally a technique based on the diffractive properties of Gaussian 

beams combined with the equations of the transmitted light by a layer to 

measure locally the geometrical thickness and the refractive index of a 

transparent pellicle in air, supported only at its border. Under these conditions 

the pellicle undergoes a continuous piston-like movement making 

interferometric techniques unfeasible to be used for this purpose. In contrast, 

we showed that our technique results immune to these movements making it 

suitable for this application.  

           To remove ambiguities in the analytical equations due to oscillatory 

terms we performed the measurements using combinations of neighbor pairs 

on the region under inspection of the sample allowing us determining their 

corresponding local geometrical thicknesses and refractive index.  This way of 

measuring can be taken as an advantage because by using different 

combinations of neighbor pairs, allows to confirm the consistency and 

correctness of each individual measurement. 

           Aditionally, by continuing with our research we proposed and proved a 

technique capable of simultaneously measuring the refractive index and the 

geometrical thickness of semi-transparent thin optical plates by means of the 

diffractive properties of a transmitted Gaussian beam. The technique is based 

on measuring the semi-width of the transmitted beam and the shift of the 

Gaussian centroid caused by a sample tilt. As the technique is not 

interferometric, it showed to be robust and immune to external noise. To 

illustrate the feasibility of the technique we experimentally determined the 

refractive index and the geometrical thickness of a commercially available 

cover glass. 

           Finally it is worth to mention that our research produced four 

manuscripts which were evaluated and accepted by international journals: two 
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manuscripts that were published in the journal Applied Optics as author and 

two manuscripts published in the journal Optics Communications as co-author. 

Up to date these manuscripts are published and can be found online.  
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