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Abstract

Phase Shifting Interferometry (PSI) involves a group of experimental methods for re-
trieving a wave-front phase encoded in the interference fringes. The first step requires
the registration of N-frames of fringes interferograms . The frames of fringes are
formed by the addition of two wave-fronts, one called the reference, typically a wave-
front coming from a flat surface, and a second wave-front reflected by an object under
test. The reference wave-front is sequentially shifted in phase from frame to frame
taking as reference the first phase distribution of this reference wave-front [1]. The
phase-shift is based on synchronous detection , which has been used for a long
time in electrical engineering for determining the phase difference between two elec-
trical signals. The synchronous detection uses as reference an incoming sinusoidal
signal, the sinusoidal signal is sampled and correlated with a cosinusoidal coming from
the object under test [2, 3]. The automatic evaluation of interferometric mea-
surements, actually called Phase Shifting Algorithms (PSA) are very pop-
ular, because of the rapid evaluation of digital interferometric data by a
computer .

The Phase Shifting Algorithms (PSA), are computer programs created with the
objective of obtaining the modulated phase of a signal [4–12]. The PSA in fact are
based on complex quadrature filters in the temporal domain . The convolution
of this filter with the interferometric signal allows the estimation of the modulated phase
φ(x, y). The use of the Fourier Transform applied to the quadrature filter function
helps to find its spectral response or frequency transfer function. The information
of the spectral response it is the most valuable information, this because helps to
the interpretation and analysis of all of its properties. The frequency transfer
function of any quadrature filter it is invariant to rotations and reference
time shift [13].

A PSA is designed for phase estimation, the input arguments for its construction
differ in the phase-shift values between captured interferograms, in the number of phase
steps, and in their sensitivity to the noise [6, 14–20]. An accurate phase-shift is very
common due to vibrations, miss-calibration in the experimental set-up, noise due to
illumination, tall of these point leads to errors in the measured phase, a phenomenon
known as detuning.

The significant addition of this thesis to the theory of PSA is summa-
rized in two points:

• Given an N-step linear PSA, Which value for the phase-step ω0 (fre-
quency carrier) among interferograms should be used to obtain the
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least noisy demodulated phase?. In this Thesis, we answer this ques-
tion in a general way, allowing the possibility to use the close interval
(−π, π). A proper use of the procedure presented in this Thesis (nec-
essarily) involves linear tunable N -step PSA [21].

• How to design linear tunable N -step PSA that can defeat a detuning
in the phase-step ω0?. In this Thesis we give a general building block
and by its consecutive collocation, in the frequency domain, any linear
tunable N -step PSA is capable of performing any desired Frequency
Transfer Function. This gave a complete control over the signal that is
accepted and what signals are filtered out by the linear tunable N -step
PSA. This analysis is extended to the harmonics rejection [22].
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1
Introduction

Linear temporal phase-shifting algorithms (PSA) are widely used to estimate the mod-
ulating phase of interferograms [4, 9, 17, 23, 24]. Linear PSA incorporate a con-
stant phase-step ω0 (in radians/interferogram) to obtain a set of interferometric data
[4, 9, 17, 24]. It is well known that the more temporal interferograms we have, the less
noisy is the phase that we estimate; for example a 5-step linear PSA will provide (in
general) less noisy phase demodulation than a 3-step one [11, 13]. However, if we are
restricted to take, say 5 temporal interferograms, an interesting piece of information to
be aware of is: which value for the phase-step ω0 should be used in a 5-step linear PSA
to obtain the least noisy demodulated phase ? or which value for the phase-step ω0

should be used in a N-step linear PSA to obtain the least noisy demodulated phase ?
Typically π/2, 2π/3, π/3 are used and in fact, any phase-step within the open interval
(0, π) can be employed. In the absence of any measuring noise, all these phase-shifts
yield the same estimate for the modulating phase. However, which of these phase-steps
ω0 is the best to obtain the least noisy phase estimation from a temporal set of 3 noisy
interferograms or N noisy interferograms ? In this Thesis, working in the frequency
space, a general procedure to obtain the optimum phase-step ω0 of a given linear N-
step PSA is given. This general procedure is exemplified to some particular linear PSA,
notably 3, 5, 7, and 27-step PSAs. A proper use of the procedure presented in this
Thesis (necessarily) involves linear tunable N-step PSA.

As it was mentioned before, all PSA takes as input N phase-shifted interferometric
measures, and give an estimation of their modulating phase. The first and best known
PSA designed explicitly to reduce a systematic error source (detuning) was the 5-
steps, Schwider-Hariharan PSA [15]. Since then, dozens of PSAs designed to reduce
specific data error sources on the demodulated phase have been published. In Electrical
Engineering, the Frequency Transfer Function (FTF) of their linear filters is their
standard design tool. Recently the FTF is also being used to design PSAs. In this
Thesis, we propose a technique for designing PSA by fine-tuning the few spectral
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2 Introduction

zeroes of a PSA to approximate a template FTF spectrum. The PSAs spectral zeroes
are moved (tuned) while gauging the plot changes on the resulting FTFs magnitude.

Schwider et al. [19] derived the first (and best known) 5-steps detuning-robust PSI
algorithm, and afterwards Hariharan et al. [15] further analysed its properties. In the
book of Malacara et al. [9] an encyclopedic number of PSI algorithms are presented,
including the motivation behind many of them; their spectral plots are also shown
according to Freischlad and Koliopoulos (F&K) [23]. Spectral analysis of PSA was
popularized only after the F&K paper [23] was published. Nowadays, spectral analysis
is the gold-standard reference to compare among several PSA. Most people uses these
spectra to visualize and gauge among several promising PSA, and choose the best one
for their needs [7, 20, 23, 25, 26].

More recently Surrel proposed an x -polynomial P(x ) associated with a PSA named
the Characteristic Polynomial (CP) [11]. The x -polynomial closely follows the Z -
transform, or in Surrel’s words [11]: ”This introduction of a polynomial is similar to
what is underlying in the Z -transform theory”. That is probably why Surrel preferred
the use of x instead of z for his P(x ) polynomial. Then, Surrel proposed the CP
diagram, to visualize some properties of a PSA based on the (discrete) angular location
over the unit circle of these zeroes and their multiplicities [11]. Surrel proposed no
continuous spectral plot to gauge his x -polynomials [11], as the F&K spectral plot
does provide [23]. He did not follow the standard continuous spectral analysis of Z -
transformed digital filters [3].

In 2010, Burke [27] efficiently combined both perspectives: the discrete CP diagram
[11], and the continuous F&K spectral analysis [23]. Burke did this to point out the
importance of fine-tuning the zeroes of a x -polynomial of symmetric PSAs. That is,
Burke generated a new visualizing-gauging technique, by combining the discrete CP
diagram [11], with the F&K continuous spectrum [23, 27], while finely tuning the PSA’
symmetric spectral zeroes.

However, as demonstrated in [4], one drawback of the F&K’s spectral analysis [23]
is that it changes when the PSI algorithm’s reference carrier (the local oscillator) is
rotated. Another important drawback of the F&K spectrum is that only symmetrical
PSAs may be F&K spectrally analyzed. That is because, F&K analysis needs to: ”an-
alyze the spectrum without constant or common phase factors [19]”, and in this way
obtain two real functions to plot. We repeat, the F&K spectral analysis can only be
made if the PSA is symmetric, such as the ones analyzed by Burke [27], and Larkin et
al [7], and others [9]. As a consequence, general (non-symmetric) PSAs simply cannot
be spectrally analysed using F&K. Briefly, the F&K spectral plot limitations are: a)
The spectral plot changes when the local oscillator is phase shifted [4], and b) F&K
cannot plot the PSA’s spectra of general non-symmetric PSAs. These two drawbacks
are serious limitation of the F&K spectral analysis technique.

A different perspective of the PSA’s theory just discussed was proposed by our
group [4], in which a general theory of PSAs based on the Frequency Transfer Function
(FTF) H(ω) is given. The FTF is just the Fourier transform of the impulse response
of a digital filter h(t)), that is H(ω) = F [h(t)] [3]; where F [·] is the Fourier Transform.
The use of the FTF although new in PSI, has been the standard way of spectral analysis
in signal processing engineering for decades [3]. The spectral analysis of PSAs based
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on the FTF does not have the limitations of the F&K spectral analysis.
The CP and the FTF perspectives are mathematically equivalent. The x -polynomial

follows closely the Z -transform of h(t), while the FTF is the Fourier transform of h(t);
both perspectives are related by exp (ω) [3]. The discrete CP diagram associated with
the x -polynomial only shows the CP’s zeroes and their multiplicities. In other words,
the CP diagram shows the behaviour of H(ω) only at the neighbourhood of the level
set H(ω) = 0. Whereas the plot of |H(ω)| give the continuous, full visualization of
the spectral shape including the zeroes shown in a CP diagram. In short, the CP
diagram is a visual subset of H(ω), representing only its behaviour near H(ω) = 0.
Note that Surrel [11] could have used the continuous FTF spectral plot |P exp (ω)|
for gauging his x -polynomials, but for some reason he did not do that. Therefore, a
CP diagram does not provide the full visualizing information provided by |H(ω)|. As
a consequence, it is difficult to use the CP diagram for fine-tuning the few zeroes in
a PSA. The detailed (continuous) spectral plot provided by |H(ω)|, is paramount to
fine-tuning the spectral shape. We need to visualize and gauge the subtle changes in
the shape of |H(ω)| (magnitude of the FTF), to finely tune the PSA spectral zeroes
to approximate a target spectrum. Finally note that the target spectrum may be es-
timated by spectral estimation of experimentally obtained fringe patterns. This real
data spectral estimation, and the desired phase noise rejection are the key to know the
size N of the PSA.

In this Thesis, just to build a conceptual bridge, we have adopted a combined CP-
FTF visualization. But given that the CP diagram is a visual subset of our |H(ω)| plot,
we would not need the CP diagram since the PSA information is within our |H(ω)|
continuous plot.
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2
Discrete Time Signals

This Chapter summarizes the linear system theory required for understanding this
work. The following chapters make use of the theory presented here.

2.1 Periodic functions and the Spectrum of the sig-

nal

A periodic function is one that repeats endlessly with time. Sine waves, triangular
waves and square waves are examples of periodic functions. Each periodic function has
a period or interval of repetition, related to the frequency as the inverse of it [28]:

T =
1

F
. (2.1)

These examples of signals represent information. Signals are always assumed to
represent useful information. One of the most common signals encountered in nature
is that of a sine wave, which is produced by people talking, motion of a pendulum,
musical instruments, etc. Signals such as the square wave and triangular wave can be
shown to be composed of a combination of sinusoidal waves. The term ofsinusoidal
wave can be applied equally well to sine waves and cosine waves. Thus, sinusoidal
waves would be considered to be the building blocks of many other signals [3, 28].

The signals mentioned above are functions of time. The signal amplitude is mea-
sured at different time instants, monitoring the time evolution (time-domain) of the
signal, in others words, how the signal changed with the passage of time. But there
are other applications for which another representation is more useful: the frequency-
domain representation. This representation depicts the amplitudes and frequencies of
the constituent sinusoidal waves present in the signal being measured. This represen-
tation is also known as the spectrum of the signal.

5



6 Discrete Time Signals

2.2 Analog and Digital Signals

An analog signal has an infinity variety of values as time goes. Analog means con-
tinuous, so an analog signal is continuous both time and amplitude. During a time
interval, an analog signal have any possible value of amplitude between the minimum
and maximum limits, for any time inside of the measurement interval. An analog signal
measured in a specific instant of time is known as a discrete time signal. A discrete time
signal has any possible amplitude only at specific points of time, usually equidistant.
Thus, just a number of amplitude values are known, at many other moments of time
the amplitudes are unknown. Converting an analog signal (continuous-time domain)
into a discrete-time signal (discrete time domain) is achieved by a process known as
sampling [29].

2.3 Impulse Sampling

A sampled-data signal is the result of examining a continuous time signal at periodic
T time intervals, Figure 2.1. The sampling rate or sampling frequency is fs = 1/T .
Assume that each sample has a width that approaches zero, so the samples will be
represented as a sequence of impulse functions [28, 30].

Let xs(t) represent the sampled data signal and x(t) the original continuous-time
signal. The mathematical expression for xs(t) is:

x(t)s = x(t)p(t) , (2.2)

where p(t) is the train of impulse functions defined as:

p(t) =
∞∑
−∞

δ(t− nT ) , (2.3)

and δ(t) is:

δ(t) =
1

2π

∫ ∞
−∞

exp(ωt)dω . (2.4)

The sampled-data signal x[t] can be expressed as

x(t)s = x(t)p(t) = x(t)
∞∑
−∞

δ(t− nT ) , (2.5)

the values of x(t) of importance now are those at t = nT . Hence, an alternative form
for the sampled-data signal is

x(t)s =
∞∑
−∞

x(nT )δ(t− nT ) , (2.6)

the above equation is composed of a series of equally spaced impulses whose weights
represent the values of the original signal at the instants of the sampling points.
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Figure 2.1: (A) Sine continuous time signal with frequency of 2 Hz and unity amplitude.
(B) Sine discrete time signal obtained from (A), sampling period of 0.3s

2.4 Digital Signals for What?

The main objective of Digital Signal Processing (DSP) essentially deals with signals
such as speech, music, video, in other words, any kind of physical quantity that conveys
information. These signals take place in analog continuous time form. Given an analog
signal, a standard objective is the analysis to obtain useful information. The analog
signal is sampled or digitalized and then analysed by using one of the most famous
and powerful math tools, The Fast Fourier Transform (FFT). The FFT applied over
a signal can reveal several useful parameters about the source of the signal. Evidently
the FFT is part of a DSP system that help us to analyse, manipulate and extract
information from the input digital signal through the use of a computer.

2.4.1 Discrete Time System

The theory behind DSP is based on a discrete-time system. A discrete time system is
a transformation that maps a discrete time signal, x(t)s onto a unique g(x) and it is
denoted as: g(x) = T{x(t)s}. A very important class of discrete time systems are the
linear time-invariant systems. A system is said to be linear if obey the following rule
[31]:

T{ax1(t) + bx2(t)} = aT{x1(t)}+ bT{x2(t)} , (2.7)

for any constant a and b. A system T{·}, that maps x(t)s onto g(t) is said to be shift
or time-invariant if a shift in the input causes a similar shift at the output:

g(t) = T{x(t)s} ⇒ g(t− t0) = T{x(t− t0)} . (2.8)
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From Correlation to Convolution

Correlation algorithms are applied dayly by the brain as tools that allow distinguish
among objects. Recognition occurs when the incoming image has a strong match (cor-
relation) with an image in memory. The process used in DSP to measure the similarity
between two signals is called Correlation. When the correlation is performed between
a signal and itself the process is known as Autocorrelation. The Cross-correlation is a
correlation between two different signals. Correlation combines three operations [31]:

• Shifting.

• Multiplication.

• Addition.

these three operations are repeated over and over again until the highest accumu-
lative addition is found.

Convolution is very much like correlation, but includes the additional operation of
flipping. Flipping means the mirror image of a signal about a reference n = 0 axis.

• Flipping.

• Shifting.

• Multiplication.

• Addition.

Then repeating these steps over and over again. The main application of convolution
in DSP is for digital filtering.

In Section 2.3 a discrete time signal was represented as a sequence of numbers. This
representation is made in terms of the discrete time unit impulse δ(t), Equation (2.4).
Any discrete time signal can be represented as a sum of scaled and shifted unit impulses:

x(t) =
∞∑

k=−∞

x(k)δ(t− k) , (2.9)

where δ(t− k) = 1 when t = k. If Equation (2.9) is the input of a linear invariant-time
system the output g(t) is:

g(t) = T{
∞∑

k=−∞

x(k)δ(t− k)} , (2.10)

by the property of linearity, Equation (2.10) may be rewritten as:

g(t) =
∞∑

k=−∞

x(k)T{δ(t− k)} , (2.11)
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by the property of time-invariance, if h(t) is the response to the unit impulse, δ(t),
then the response to δ(t − k) is simply h(t − k). And now, the above expression can
be rewritten as:

g(t) =
∞∑

k=−∞

x(k)h(t− k) . (2.12)

The unit impulse response, h(t) = T{δ(t)}, of a linear time invariant system fully
characterizes that system. More precisely, given the unit impulse response, h(t), the
output g(t), can be determined for any input, x(t). The sum in Equation (2.12) is
commonly called the convolution sum and may be expressed more compactly as:

g(t) = x(t) ∗ h(t) =
∞∑

k=−∞

x(k)h(t− k) . (2.13)

2.5 Constructing waves by Sine and Cosine Waves

A periodic signal can be broken down as a combination of sinusoidal signals. This was
discovered by Jean Baptiste Joseph Baron de Fourier (1768 - 1830). Sinusoidal waves
can be combined together to produce any periodic signal. Figure 2.2 show three sine
waves (A), (B) and (C), they all add together to form the fourth sinusoidal wave (D).
In this case the fundamental frequency is 3 Hz, the frequency of the second harmonic
is 6 Hz, the frequency of the third harmonic is 12 Hz. If the fundamental frequency is
denoted by f1, the equation for the wave in Figure 2.2 (D) results as [31, 32]:

s(t) = 6 sin[2π(f1)t] + 4 sin[2π(2f1)t] + 3 sin[2π(3f1)t] , (2.14)

therefore, s(t) is a combination of a fundamental signal Figure 2.1 (A), second and third
harmonics signals, Figures 2.1 (B) and (C). It is important to note that the frequency
of the wave in Figure 2.1 (D) is the same as the frequency of the lowest frequency sine
wave.

In Figure 2.2 (A-C) all plots started with a zero value at t = 0, this leads to the same
behaviour in Figure 2.2 (D) i.e., there is no way to create a signal with a non zero value
at t = 0 by using Equation (2.14). If the sine functions is replaced in Equation (2.14) by
cosine functions, the result will be a signal whose maximum value is localized at t = 0.
A direct conclusion will be that any periodic signal can be represented by adding sine
and cosine functions of appropriate amplitude and frequency. The periodic signals are
combinations of extremely large number of harmonics. Therefore, the general equation
can be written as follows:

s(t) = a0 + a1 cos[2π(f1)t] + a2 cos[2π(2f1)t] + . . .+ an cos[2π(nf1)t]+

b1 sin[2π(f1)t] + b2 sin[2π(2f1)t] + . . .+ bn sin[2π(nf1)t] ,
(2.15)

where an represents the amplitudes of cosine waves, bn represents the amplitudes of sine
waves, nf1 the fundamental frequency and harmonics and a0 a shifted upward value to



10 Discrete Time Signals

2 4 6 8 10
t (s)

- 10

- 5

5

10

Amplitude

2 4 6 8 10
t (s)

- 6

- 4

- 2

2

4

6

Amplitude

2 4 6 8 10
t (s)

- 4

- 2

2

4

Amplitude

2 4 6 8 10
t (s)

- 3

- 2

- 1

1

2

3

Amplitude
(A) (B)

(C) (D)

Figure 2.2: (A) Sine wave with frequency of 3Hz, amplitude of 6. (B) Sine wave with
frequency of 6Hz, amplitude of 4. (C) Sine wave with frequency of 12Hz, amplitude of 3. (D)
Adition of sine waves (A), (B), (C). The value at t = 0 is 0.

the periodic signal. Equation (2.15) is called a Fourier Series. The sines and cosines
with the fundamental frequency and all the corresponding harmonics, are a basis to
form all the possible periodic waveforms. In general, the more number of elements
in the Fourier Series a better construction of the periodic signal results. However,
there is an important limitation: if the periodic signal has any discontinuity, e.g. an
edge, an infinity number of terms in the Fourier Series cannot exactly reconstruct the
discontinuity of the signal.

2.6 Fourier Transform

In the previous section, a periodic time signal was derived as a sum of sinusoidal
functions, Equation (2.15). The basic signal used as the building block is:

A cos (ωt+ φ) , (2.16)

where A is the amplitude, ω = 2πf is the angular frequency and φ is the phase of the
sinusoid. When φ = π/2, the Equation (2.16) transform into the sine function. The
exponential function exp[ωt], with ω the angular frequency and  =

√
−1, is simply a
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compact notation for describing a vectorial sum of the sine and cosine functions:

A exp(ωt) = A cos(ωt) + A sin(ωt) . (2.17)

The sine and cosine functions can be expressed from Equation (2.17) as:

cos(2πnft) =
1

2
(exp(2πnft) + exp(−2πnft)) , (2.18)

sin(2πnft) =
1

2
(exp(2πnft)− exp(−2πnft)) . (2.19)

Now, Equation (2.15) can be written as:

s(t) =
∞∑

n=−∞
an

1

2
(exp(2πnft) + exp(−2πnft)) +

bn
1

2
(exp(2πnft)− exp(−2πnft)) ,

(2.20)

which can be re-written as:

s(t) =
∞∑

n=−∞

(
1

2
(an − bn) exp(2πnft) +

1

2
(bn + bn) exp(−2πnft)

)
. (2.21)

The periodic function just described in Equation (2.15) is represented by a sum of real
sinusoidal functions. If the signal to be described is a complex signal, the coefficients an and
bn in Equation (2.15) must be complex as represented in Equation (2.21). Using complex
exponential functions such as Equation (2.17), the periodic time signal can be written as:

s(t) =

∞∑
n=−∞

Cn exp[2πnf1t] , (2.22)

with C±n = 1/2(an ∓ bn). The coefficients C±n can be calculated as:

C±n =
1

T

∫ ∞
−∞

s(t) exp[∓2πnf1t]dt . (2.23)

If the period T of the function s(t) tends to infinity, the separation among the sinusoidal
components decrease. This leads to have not just discrete harmonics ω = 2πnf , but instead
any value for ω is allowed. Now, Cn changes to C2πf which leads to the concept of the Fourier
Transform =[·]. Let g(t) be a continuous function, the Fourier Transform of g(t) is G(f),
defined by:

G(f) =

∫ ∞
−∞

g(t) exp[−2πft]dt . (2.24)

The Fourier Transform is used to convert from the time domain to the frequency domain
[30–33], Figure 2.3.
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Figure 2.3: Time and Frequency domain viewpoints.

The Fourier Transform has two important relationships for a Linear system, which are:

=[f(t− t0)] = F (w) exp(−ωt0) , (2.25)

and

=[f(t) exp(ω0t)] = F (ω − ω0) , (2.26)

with ω = 2πf . Equation (2.25) represents the shift-time property of the Fourier Transform
while Equation (2.26) is the shift-frequency property of the Fourier Transform.

2.7 Impulse Sampling and Harmonics

The main point in Section 2.3 was that the weight of an impulse function represents the
sampled number (digital number) at the instant of time that the impulse occurs. The impulse
function has some special mathematical relationships [31, 32]:

If φ(t) is a test function, then: ∫ ∞
−∞

δ(t)φ(t)dt = φ(0) , (2.27)

which together with the shift property of the impulse function leads to:∫ ∞
−∞

δ(t− a)φ(t)dt = φ(a) . (2.28)

Then the Fourier Transform of the impulse function =[δ(t)] is:

=[δ(t)] =

∫ ∞
−∞

δ(t) exp(−2πft)dt = exp(−2πf0) = 1 . (2.29)
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Figure 2.4: The spectrum of the unsampled signal. (B) The spectrum of the sampled
signal.

Since the impulse train in Section 2.3 has a period of T , it may be expanded in a Fourier
Series. This yields

∞∑
n=−∞

δ(t− nT ) =
1

T

∞∑
n=−∞

exp(2πnf0t) . (2.30)

This result can be substitute in Equation (2.6) to obtain:

x(t)s =
1

T

∞∑
n=−∞

x(t) exp(2πnf0t) . (2.31)

Applying the Fourier Transform to both sides of Equation (2.31) the result is:

X(ω) =
1

T

∞∑
n=−∞

X(ω − nω0) . (2.32)

The spectrum of the impulse sample data signal is shown in Figure 2.4. It is clear that
the spectrum of an impulse sampled data signal is a periodic function with frequency Fs. The
baseband sampled signal is repeated at integer multiples of the sample frequency commonly
called signal harmonics. The original signal can be recovered by applying a low-pass filter as
it will be shown in the next chapter.
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3
Digital Filter on Interferometry

In the Chapter 2 the output g(t) of a linear time-invariant system to any input f(t) can be
determined by the convolution with the impulse response h(t) [4, 9, 29]:

g(t) = f(t) ∗ h(t) , (3.1)

in the frequency domain this expression is:

G(ω) = F (ω)H(ω) . (3.2)

The filtering process is equivalent to multiply the input sampled signal F (ω) by the filter
function H(ω) in the frequency domain. A filter H(ω) modifies the output frequencies of the
input signal F (ω). The objective of the filtering process is to pass certain frequencies and
attenuate others. In the frequency domain, the frequency spectrum of a signal is multiplied
by a function which selects what frequency of the signal will pass and what frequencies will
be rejected or cancelled [28, 29, 34].

A digital filter separates frequencies. For example, the input signal to a filter could
have three different frequencies and the output might contain just two or even one of the
frequencies. The best way to describe a filter is a graph, as shown in Figure 3.1. An ideal
filter has a square shape, as the dotted line surrounded the gray zone in Figure 3.1. The
passband all those frequencies included in the output signal without no attenuation. The
stopband include all those frequencies rejected, amplitude zero and infinite attenuation, at
the output signal. The ideal filter has an immediate transition between the passband and the
stopband. This characteristic of the ideal filter is impossible to realize, but a digital filter can
come very close.

The output response of the filter depends on the frequency and amplitude of the input
signal. The frequency response of real filters differs from an ideal filter in these points:

• There could be undulations in the passband.

• There could be undulations in the stopband.

15
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Figure 3.1: Ideal and real frequency response graphs of a filter.

• There could be loss in the passband.

• The stopband attenuation is finite.

3.1 Filtering Fringes and Getting Information

The signal recovered by a CCD, in an experimental set-up related to experiments in optical
interferometry and more exactly, in Phase Shifting Interferometry (PSI), can be mathemati-
cally modelled by [35, 36]:

g(x, y, t) = a(x, y) + b(x, y) cos(φ(x, y) + ω0t) , (3.3)

where a(x, y) is the background illumination, b(x, y) is the fringe visibility (contrast), φ(x, y)
is the phase at (t = 0) that contains information related to the physical variable to be
measured, and ω0t is the temporal sampling period where t ∈ Z. Equation (3.3) can be
rearranged (by using the Euler’s formula) and expressed as:

g(x, y, t) = a(x, y) +
1

2
b(x, y) exp ((φ(x, y) + ω0t)) +

1

2
b(x, y) exp (−(φ(x, y) + ω0t)) . (3.4)

Taking the Fourier Transform of Equation (3.4) the result is [4, 8, 13, 36]:

G(x, y, ω) = a(x, y)δ(ω) +
1

2
b(x, y) exp (φ(x, y))δ(ω − ω0)+

1

2
b(x, y) exp (−φ(x, y))δ(ω + ω0) .

(3.5)

Figure 3.2 represents the spatial frequency spectra of Equation (3.5). The main ob-
jective at this point is to eliminate the background term a(x, y) and one of the terms
1
2b(x, y) exp (±φ(x, y))δ(ω+ω0) as it is show in Figure 3.1. The signal remained is a complex
function in the time domain. The angle of this signal leads to obtain the phase φ(x, y) con-
tained in Equation (3.4). The filter used to achieve the phase estimation φ̂(x, y) is a one-side
bandpass convolution filter tuned at the temporal frequency carrier ±ω0. One-side bandpass
filter is commonly called a quadrature filter , shown in Figure 3.1. The Quadrature fil-
ter are complex functions h(t) in time domain or H(ω) in the frequency domain, its output
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Figure 3.2: Spatial frequency spectra of a(x, y)δ(ω) + 1
2b(x, y) exp (φ(x, y))δ(ω− ω0) +

1
2b(x, y) exp (−φ(x, y))δ(ω + ω0). The value of ω0 is π/2. The frequency variation of the
terms a(x, y), b(x, y) and φ(x, y) are slow compared with the frequency carrier ω0. Each of
the phase terms φ(x, y) are separated from the background signal by the frequency carrier
ω0.

angle gives the searched phase φ(x, y). The frequency properties of a quadrature filter in the
frequency domain are:

H(−ω0) = 0 H(0) = 0 H(ω0) 6= 0 , (3.6)

or

H(−ω0) 6= 0 H(0) = 0 H(ω0) = 0 . (3.7)

The temporal convolution among interferograms and the quadrature filter h(t) = =−1[H(ω)],
where =−1[·], gives as result the complex signal:

I(x, y, t) ∗ h(x, y, t) = I(x, y, ω) ∗H(ω) =
1

2
b(x, y) exp [φ(x, y)] exp(ω0t) . (3.8)

Solving for φ(x, y) and by using Euler’s formula(exp(φ(x, y)) = cos(φ(x, y))+ sin(φ(x, y))
the the result is:

I(x, y, t) ∗ h(x, y, t) =
1

2
b(x, y)(cos(φ(x, y) + ω0t) +  sin(φ(x, y) + ω0t)) , (3.9)

the value of the angle φ̂(x, y, t) from the complex signal is:

tan(φ(x, y) + ω0t)) =
sin(φ(x, y) + ω0t))

cos(φ(x, y) + ω0t)
=
Im(I(x, y, t) ∗ h(x, y, t))

Re(I(x, y, t) ∗ h(x, y, t))
, (3.10)

after some algebraic manipulations, φ̂(x, y, t) is:

φ̂(x, y, t) = arctan

[
Im(I(x, y, t) ∗ h(x, y, t))

Re(I(x, y, t) ∗ h(x, y, t))

]
− ω0t . (3.11)

The latter Equation denotes the capability to estimate the phase φ̂(x, y) at any time, and
usually it is calculated for t = 0.
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Figure 3.3: A)Spatial frequency spectra of a(x, y)δ(ω) + 1
2b(x, y) exp (φ(x, y))δ(ω −

ω0) + 1
2b(x, y) exp (−φ(x, y))δ(ω + ω0), which is the input signal to the PSA. The value of

ω0 is 2π/3. B) After the filtering process, by using a quadrature filter designed by using the
minimum least square, the output single spectrum 1

2b(x, y) exp (φ(x, y))δ(ω−ω0) is selected
to pass, while the others two terms of the input signal in A) are blocked. The properties
listed in Equation (3.7) are performed as H(−ω0) = 0, H(0) = 0 and H(ω0) 6= 0. The output
signal in the time-domain is 1

2b(x, y) exp (φ(x, y)) exp(ω0)t.

A generalization for the interferogram equations and the quadrature filter could be written
by using the sampling theory, Section 2.3, as follows [4, 36]:

In(x, y, nT ) = I(x, y, t)
∑
n

δ(t− nT ) with n = −N, . . . , 0, . . . , N . (3.12)

The quadrature filter, as it will be shown in the next chapter, can be written as:

hn(nT ) = exp (ω0t)
∑
n

anδ(t− nT ) with n = −N, . . . , 0, . . . , N . (3.13)

Equations (3.12) and (3.13) are related to the sampling period nT . A quadrature filter
has the same number of coefficients as the number of interferograms. The coefficients an in
Equation (3.13) grasp a Fourier Series in the frequency domain, see Equation (2.28). Hence,
a quadrature filter has a frequency function depicted by the complex terms an. The PSA or
frequency filter associated, has a Fourier transform Hn(ω) = F [hn(t)]. The implementation of
a temporal convolution between Equation (3.12) and Equation (3.13) results in the following
φ̂(x, y, 0):

φ̂(x, y, 0) = arctan

(∑
n bn sin(ω0nT )I(x, y, nt)∑
n an cos(ω0nT )I(x, y, nt)

)
. (3.14)
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The book Interferogram Analysis for Optical Testing contains a bunch of PSA based in
the number of interferograms and the set value for ω0.

3.2 Filter Transfer Function of PSA

A basic and easy technique, developed in this thesis work, to construct linear PSA is the
successive multiplication of a building blocks which is based in the frequency shifted first-
order difference [21]. The mathematical model of this building block is:

h(t) = [δ(t)− δ(t− 1)] exp(−ω0t) . (3.15)

The Fourier transform of Equation (3.15) is:

H(ω) = F [h(t)] = 1− exp((ω − ω0)) . (3.16)

This filter building block has a zero at frequencies ω = −ω0 and ω = 0, and a non zero
amplitude signal located at ω = +ω0. The minimum PSA is composed by these conditions
and hence, the multiplication of the following two first order systems synthesize a 3-step
linear PSA.

H3(ω) = [1− exp(ω)][1− exp((ω − ω0))] . (3.17)

The construction of H3(ω) by the Minimum Least Square [9] technique, implies a value of
ω0 = 2∗π/3. The PSA designed by the Minimum Least Square tuned at ω0 = 2π/3, according
to Equation 3.17, has the following response in the frequency domain H3(2π/3) = 3 exp(−0).
In other case when the frequency carrier is not ω0 = 2π/3 a phase term not equal to zero is
present.

Figure 3.1 represents the magnitude of H3(ω) designed by Minimum Least Square tech-
nique ω0 = 2π/N , in this case N = 3, and it has two zeros, one at ω = 0 and the second at
ω = −2π/3. These two zeros fulfils the minimum requirements for a 3-step PSA. The size of
the output signal is 3(b/2) and its piston phase displacement or DC output term is 0. The
inverse Fourier transform of H3(ω) is:

h3(t) = F−1[H(ω)] = δ(t) + (1 + exp(ω0))δ(t− 1) + exp(ω0)δ(t− 2) . (3.18)

The interferometric signal for a 3-step with temporal carrier ω0 is expressed according to
Equation (3.12) as:

I3(x, y, t) = I(x, y, 0)δ(t) + I(x, y, 1)δ(t− 1) + I(x, y, 2)δ(t− 2) , (3.19)

the convolution between h3(t) and the interferometric signal I3(x, y, t) gives as result:

I3(x, y, t) ∗ h3(t) =
I(x, y, 0)δ(t) +CI(x, y, 0)δ(t− 1) +DI(x, y, 0)δ(t− 2) + · · ·

I(x, y, 1)δ(t− 1) +CI(x, y, 1)δ(t− 2) +DI(x, y, 1)δ(t− 3) + · · ·
I(x, y, 2)δ(t− 2) +CI(x, y, 2)δ(t− 3) +DI(x, y, 2)δ(t− 4) ,

(3.20)
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ω0 Filter Complex
Response at ω0

π/3 1.73 exp(−π/3)
π/4 1.08 exp(−π/4)
π/2 2.82 exp(−π/2)
2π/3 3 exp(−2π/3)
π 0

Table 3.1: Filter Complex Response at ω0 for linear tunable 3-step. The evaluation
of Equation (3.17) at ω = −ω0 results in the complex output response of the PSA in the
frequency domain.

where C = −(1 + exp(ω0)) and D = exp(ω0). The evaluation at t = −2 where the
sample elements are maximum results in:

|H3(ω0)| exp(∆3(ω0))
b

2
exp(φ̂(x, y)) = DI(x, y, 0) + CI(x, y, 1) + I(x, y, 2) . (3.21)

The 3-step PSA from Equation (3.21) is:

φ̂(x, y) = arctan

(
sin(ω0)(I(x, y, 1)− I(x, y, 2))

I(x, y, 0)− (1 + cos(ω0))I(x, y, 1) + cos(ω0)I(x, y, 2)

)
. (3.22)

The PSA response in the frequency domain is a function of the value ω0, Table 3.2 shows
the 3-step PSA output response for different values of ω0.

3.3 Detuned frequency carrier in PSA

The PSA utilizes a minimum of three temporal phase-shifted interferograms to estimate the
phase φ̂(x, y, 0). Any PSA is the convolution between the signal I(x, y, nT ) and the quadrature
filter h(nT ). The accuracy in the phase estimations depends on the right tuned up between
the complex signal I(x, y, nT ) and the quadrature filter h(nT ). When this is not the case, the
difference between the temporal carrier used to obtain the interferograms and the assumed
value in the PSA will bring an erroneous phase estimation, called detuning error. An example
of a right tuned up quadrature filter with the interferogram is shown in Figure 3.4.

If the frequency carrier ω0 is not the frequency sampling used to obtain the set of N -
interferograms, see Equation (3.12), the quadrature filter and the signal of the interferogram
are not tuned in the frequency domain. This is illustrated in Figure 3.5. This detuning in the
interferogram signal could be due to noise, vibration, or missed calibration in the experimental
set up or even in the image acquisition process. When this detuning is present, the output
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Figure 3.4: A) Single spectrum of the quadrature filter H3(ω, 2∗pi/3). The filter cancels
out the terms of the input signal a(x, y)δ(ω) and 1

2b(x, y) exp [−φ(x, y)]δ(ω + ω0) while the
term 1

2b(x, y) exp [φ(x, y)]δ(ω − ω0). This is possible because the input signal and the filter
are tuned. B) Image zoom around ω0 = −2π/3. It is easy to observe the tuned up relation
between the quadrature filter and the interferogram signal. The tuned frequency is |ω0|.

signal as result of the convolution between the quadrature filter and the interferogram is:

G(x, y, ω)H(ω) = a(x, y)H(ω)δ(ω) +
1

2
b(x, y)H(ω) exp [φ(x, y)]δ(ω − ω0)

+
1

2
b(x, y)H(ω) exp [−φ(x, y)]δ(ω + ω0) .

(3.23)

And applying the conditions expressed in Equation (3.7), the result in Equation (3.23)
must be 1

2b(x, y)H(−ω) exp [φ(x, y)]. As it was mentioned before, if an erroneous temporal
frequency carrier expressed by: ω = ω0 + ∆ω is taken as the sampling frequency, then the
result in Equation (3.23) is:

G(x, y, ω) =
1

2
b(x, y)H(−ω0 −∆ω) exp [φ(x, y)]δ(ω − ω0 −∆ω)

+
1

2
b(x, y)H(ω0 + ∆ω) exp [−φ(x, y)]δ(ω + ω0 + ∆ω) .

(3.24)

The terms of Equation (3.24) can be represented due a phasor diagram, see Figure 3.6.
This representation is visually usefull and allows to express the detuning error as ∆φ = φ

′−φ,
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|H3(ω,2π/3)|

1

2

3

ω(rad)

ω0 + Δω -ω0 - Δω 

1/2 b(x,y) exp[-jφ(x,y)] 1/2 b(x,y) exp[jφ(x,y)]

- π π- 2π
3

- π4
π
4

2π
3

2π
3

Figure 3.5: Single spectrum of the quadrature filter H3(ω, 2∗pi/3). The filter just cancels
out the term of the input signal a(x, y)δ(ω) while the terms 1

2b(x, y) exp [−φ(x, y)]δ(ω+ ω0)
and 1

2b(x, y) exp [φ(x, y)]δ(ω − ω0) are allowed to pass. There is a detuned relation be-
tween the quadrature filter and the interferogram signal. The conditions in Equation (5.3)
are not filled out. The interferograms are not sampled at the frequency |ω0| which
is the tuned frequency for the filter. The terms 1

2b(x, y) exp [−φ(x, y)]δ(ω + ω0) and
1
2b(x, y) exp [φ(x, y)]δ(ω − ω0) are shifted by a value of δ(ω − ω0 −∆ω) and δ(ω + ω0 + ∆ω)
respectively.

which is the difference between the desired phase φ and the undesired phase φ
′
. From

the phasor diagram and by applying the sinus law to the triangle formed by H(ω0 + ∆ω),
H(−ω0 −∆ω) and G(ω) it is obtain:

H(-ω - Δω)

H(ω + Δω)

φ

-φ
φ'

Im

Re

Figure 3.6: Phasor representation of Equation (3.24).

H(ω + ∆ω)

H(−ω −∆ω)
=

sin(φ− φ′)
sin(φ+ φ′)

, (3.25)

as the deviation ∆ω allows to set sin(φ−φ′) ≈ φ−φ′ and sin(φ+φ
′
) ≈ sin(2φ), Equation (3.25)
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turns in:

φ− φ′ =
H(ω + ∆ω)

H(−ω −∆ω)
sin(2φ) . (3.26)

Equation (3.26) can be used to obtain the estimated phase and as it is reported by Mosino
et al [37], the result for ϕ̂(x, y, 0) is:

ϕ̂(x, y, 0) = − |H(ω + ∆ω)|
|H(−ω −∆ω)|

sin(2φ(x, y, 0)) . (3.27)

This Equation shows the fact that the detuned phase always has a component which
depends on the interferogram fringes frequency having twice the interference fringes which is
sin(2φ(x, y, 0)).

3.4 Break Point for the Thesis Targets

There are a lot of techniques, methods, and analysis of PSA in the literature. Each of
them has a particular point of view according to the authors’ comprehension in the field of
Phase Shifting Interferometry. When user wants to select the best PSA for his application,
many times this requires the employment of two or more methods. This situation leads
to a complicated and confused assignment. The use of the Linear Theory System for the
studying and interpretation of the PSA, originated the establishment of a building block as
the framework in design and interpretation of the features wanted in the spectral response.
As individual elements, each of this building blocks can be figured out as individual filters
working over the signal in a characteristic frequency range. In fact, at the present time it
is suitable to construct an N-step quadrature filter that can reject one, two, three or more
frequencies with the same number of interferograms. This is very useful when the supposition
of constant phase-step among the N-interferograms is not valid due to a detuning error in
the frequency carrier..
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4
Design of PSA by Fine-Tuning Spectral

Shaping

4.1 Classification of by its PSA Construction

It is worth to mention that PSAs may be clasified in three large groups:

1. Constant phase-step linear PSAs:

These PSAs are phase estimating formulas in which the phase-step is constant. An
example of a linear PSA with constant phase step (ω0 = π/2) is the 5-step Schwider-
Hariharan algorithm [15, 19, 20]:

φ̂(x, y) = arctan
2 [I (−1)− I(1)]

2I (0)− I (−2)− I (2)
; ω0 =

π

2
, (4.1)

where φ̂(x, y) is the estimated modulating phase.

2. Variable phase-step linear (tunable) PSAs:

In a tunable phase-step PSA, the explicit appearence of the phase-step ω0 is given. We
may generate an infinite number of linear tunable PSAs by selecting a real valued ω0

within the interval (0,π). An example of a 5-step linear-tunable PSA is [38]:

φ̂(x, y)|t=0 = arctan
2 [I (−1)− I (1)] sin (ω0)

2I (0)− I (−2)− I (2)
; ω0 ∈ (0, π) . (4.2)

3. Non-linear self-tuning PSAs

Non-linear self-tuning PSAs is an algorithm that does not need an explicit value of ω0

in the PSA arctangent ratio. The estimation of the frequency carrier ω0 is given by an
algebraic combination of the interferograms’ data. In other words, a formula using the

25
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intensities of the interferograms gives an estimate for ω0 [8, 16, 39, 40]. Stoilov et al
designed the followig 5-step non linear self-tuning PSA [18]:

φ̂(x, y)|t=0 = arctan
2 [I (−1)− I (1)]

√
1−

[
I(−2)−I(2)

2[I(−1)−I(1)]

]2
2I (0)− I (−2)− I (2)

. (4.3)

Comparing Equation (??) with Equation (??), we can see that sin (ω0) is given as the
square root of a non-linear algebraic combination of the interferometric data.

It is easy to note that Equation (4.1) is derived from Equation (4.2), by setting ω0

equal to π/2; the result is the Schwider-Hariharan linear (constant phase-step) PSA. In turn,
Equation (4.3) is an extension of Equation (4.2); the term sin (ω0) is given by the square root
estimator.

The first impression is that linear tunable PSAs are hard to design, but as it will be
shown here they are not so difficult to construct them. Once having a mathematical model
for a linear tunable PSA (with explicit dependence on ω0 as in Equation (4.2)), we look for
the best carrier ω0 within the interval(0, π) that maximizes the signal to noise ratio of the
demodulated phase, see Chapter 5.3.1.

4.2 Spectral analysis of PSI algorithms based on

the FTF

For the reader’s convenience, we briefly review the FTF approach in PSI [4]. Let us show the
standard mathematical model of a set of N phase-shifted interferometric data as

I(x, y, t) =

N−1∑
k=0

{a(x, y) + b(x, y) cos[φ(x, y) + ω0k]} δ(t− k) . (4.4)

Here the background illumination is a(x, y), the fringe contrast is b(x, y), and the carrier
frequency is ω0 (radians/interferogram). The Fourier transform F [·] of this signal over t is

I(x, y, ω) = aδ(ω) +
b

2
exp[−φ]δ(ω + ω0)

+
b

2
exp[φ]δ(ω − ω0).

(4.5)

To know the phase of interest φ(x, y) one needs a filter h(t), to wipe out the aδ(ω) term
and one b/2 term. For this purpose, the measured signal I(t) is introduced into a general
N -steps PSA as

tan[φ(x, y)] =

∑N−1
k=0 ak sin(ω0t)I(k)∑N−1
k=0 ak cos(ω0t)I(k)

. (4.6)

This PSA may be seen as the following N-step of the quadrature filter h(t) tuned at the
frequency ω0 [radians/ per sample],

h(t) =

{
N−1∑
k=0

akδ(t− k)

}
exp(ω0t), H(ω) = F [h(t)] =

N−1∑
k=0

ak exp(−k(ω − ω0)) (4.7)
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The data I(t) in the Equation (4.4) and the quadrature-filter h(t) it may be convolved
as,

S = [I(t) ∗ h(t)]t=N−1 =
N−1∑
k=0

ak exp(ω0k)I(k) . (4.8)

The complex number S is the value of I(t)∗h(t) evaluated at the middle-point t = N −1,
where the filter h(t) and the data I(t) are fully overlaped. Finally, the searched phase is
φ(x, y) = Angle[S].

We visualize and determine the exact frequency behaviour of the PSA by its spectrum’s
amplitude, in other words by plotting |H(ω)| as [4, 36],

|H(ω)| = |F [h(t)]| =
√
Re(ω)2 + Im(ω)2 . (4.9)

Here H(ω) = Re(ω)+Im(ω), being Re(ω) and Im(ω) real-valued functions. The magni-
tude of |H(ω)| has the good properties of being invariant to local oscillator’s exp(ω0t) phase-
shifts, and also having a well defined spectral plot for either a symmetric or non-symmetric
PSA.

4.3 Characteristic Polynomial (CP) associated to a

PSI algorithms

The CP proposed by Surrel [11] is defined from the right hand side of Equation (4.8) as,

P (x) =
N−1∑
k=0

ak exp(ω0k)xk =

N−2∏
k=0

(x− dk) . (4.10)

P (x) is the x -polynomial function or Characteristic Polynomial (CP). The data I(k) in
Equation (4.8) is formally substituted by xk [11] as it is shown in Equation (4.8). As Surrel
shows, it is convenient to express P (x) as a product of N − 1 monomials (x− dk), where dk
represents the exact position of the roots of this CP in the unit circle. M roots at dk means
that the PSA is robust enough to detuning at dk up to order M. Finally, the zeroes at dk,
and their multiplicities are plotted in a CP diagram [11]. The CP diagram is a unit circle
where the roots are market. The first order zeroes are plotted as small solid disks, and their
multiplicities with greater circles around them [11].

Note that the FTF and the CP analyzing features are related by

H(ω) = exp(−(N − 1)ω)P (exp(ω)) . (4.11)

Given that the x -polynomial P (x) is closely related with the Z -transform, the later math-
ematical equivalence obtained in Equation (4.11) has been known for decades in the theory
of the digital linear systems [3].
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Figure 4.1: Magnitude of H5(ω) given by Equation (4.14), and its CP diagram in the
unit circle. The PSA spectral plot H5(ω) has two first-order zeroes at 0 and π, and a second-
order one at −π/2.The PSA spectral plot shows, with circles, where are located the zeros of
the quadrature filter in order to create a link with the plot of the CP diagram.

4.4 Fine-tuning spectral-zeroes for approximating

a desired PSA spectrum

A first-order linear system that generates a spectral zero at ω0 is [3]

h(t) = [δ(t)− δ(t− 1)] exp(−ω0t) . (4.12)

This may be seen by Fourier transforming h(t) as

H(ω) = F [h(t)] = 1− exp((ω − ω0)) . (4.13)

This is the basic building block of our zero-based, spectral-shaping PSAs design. Note
that, the equivalent x -monomial is P (x) = x−exp(−ω0). We will combine several first-order
building blocks (Equation (4.13)), and freely tuning their zeroes, to approximate a desired
PSA spectral template.

As a first example, suppose that a 5-step PSA’s is wanted, which has a flatter rejecting-
band around −π/2. This is the spectral description of the 5-step Schwider-Hariharan (SH )
PSA, see Figure 4.3 [11, 15]. The SH -PSA has the following FTF

HSH(ω) = (1− exp(ω)[(1− exp(−(ω + π/2)]2

(1− exp(−(ω + π))) .
(4.14)

The x -polynomial of the SH -PSA is (x − 1)(x − )1/2(x + 1). The CP diagram and the
plot of HSH(ω) are shown in Figure 4.1. This PSA has a second-order zero at −π/2, and two
first-order zeroes at 0 and π. The second-order zero gives a robustness detuning at −π/2.

The 5 -step SH described in Equation (4.14), is just one example of all the possibles PSA
that can be designed. Now, it is possible to evoke the potential, described in Equation (4.13),
in freely moving the zero location in a PSA filter. By moving one of zero placed at −π/2,
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Figure 4.2: Magnitude of H5(ω) and its CP diagram. The PSA spectrum has been
considerably flattened around π/2 with respect to HSH(ω) for the same measured interfero-
grams. From the CP diagram alone, the spectral shape outside the 4 zeroes shown is absent.
On the other hand, the plot of H5(ω) shows it clearly. One must be aware of the small ripples
within the stop band. The PSA spectral plot shows, with circles, where are located the zeros
of the quadrature filter in order to create a link with the plot of the CP diagram.

and the one at π, it can be possible to flatten the response around −π/2. This is done while
gauging the H5(ω) plot. A feasible non-symmetric PSA with a frequency carrier ω0 = π/2 is:

H5(ω) = [1− exp(ω)][1− exp(−(ω + 0.45ω0))]

[1− exp(−(ω + ω0))][1− exp−(ω+1.4ω0)] .
(4.15)

The equivalent (CP) x -polynomial is P5(x) = (x−1)(x−exp(−0.225π))(x−exp(−0.5π))(x−
exp(−0.7π)). The CP diagram and the plot of HSH(ω) are shown in Figure 4.2. By inverse
Fourier transforming H5(ω), or expanding P5(x), (both options being equally easy by using
any computer numerical program) we find the desired non-symmetric PSA as:

tan(φ) =
−2.4I(π/2) + 2.9I(π) + 0.57I(3π/2)− I(2π)

I(0)− 1.2I(π/2)− 2.3I(π) + 2.7I(3π/2)− 0.23I(2π)
. (4.16)

In Figure 4.3 we show an application for our modified PSA (Equation (4.16)) to simulated
speckle-like interferograms. The 5 interferograms along with the wrapped phase obtained
from (Equation (4.16)) are shown in Figure 4.3.

Let us continue with another example, a 9-step PSA. We want high detuning robustness,
(6 zeroes) at ω0 = π/2, and also robustness to bias illumination’s variation; 2 zeroes at ω = 0.
Figure 4.4 shows the CP diagram of P9(x) = (x− 1)2(x+ )6, and the plot of |P9 = exp(ω)|.

Let us spread the zeros of P9(exp(ω)) around −ω0. A flatter than P9(exp(ω)) spectral
response is obtained by spreading-out its 8 available zeroes. This is done while gauging the
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Figure 4.3: Simulated speckle-like interferograms applied to the modified PSA (Equa-
tion (4.16)). The 5 interferograms used in Equation (4.16) may also be used for the SH -PSA.
However the PSA detuning robustness is higher in the modified PSA (Equation (4.16)) than
in the SH -PSA (Equation (4.14)).
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Figure 4.4: Magnitude of P9 exp(ω) and its CP diagram. The resulting spectral rejec-
tion band is wide, being of 6th order around ω0 and of 2nd order around the origin. The PSA
spectral plot shows, with circles, where are located the zeros of the quadrature filter in order
to create a link with the plot of the CP diagram.
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Figure 4.5: CP diagram, and magnitude of H9(ω). The resulting PSA’s spectral shape
has been further flattened with respect to P9(exp(ω)) around ω0 and around the origin.
From the CP diagram alone, one may only wonder about the spectral amplitude outside the
displayed zeroes, making almost impossible the fine-tuning task performed herein. The PSA
spectral plot shows, with circles, where are located the zeros of the quadrature filter in order
to create a link with the plot of the CP diagram.

|H9(ω)| plot. Another suitable expression for nine non-symmetric PSA:

H9(ω) = [1− exp(−(ω − 0.3ω0))][1− exp(−(ω))][1− exp(−(ω + 0.3ω0))]

[1− exp(−(ω + 0.6ω0))][1− exp(−(ω + ω0))][1− exp(−(ω + 1.4ω0))]

[1− exp(−(ω + 1.7ω0))][1− exp(−(ω + 2ω0))].

(4.17)

As Figure 4.5 shows, the final results of a fine tuned is the flattened of the rejected band
with respect to that of P9(exp(ω)). The 8 zeroes have been spread out around the unit
circle. The designer may wide even more the rejection band at a cost of tolerating bigger
ripples; the signal amplitude at ω0 is 82 times bigger than a signal placed at ω = 0.2ω0. This
plot clearly shows the detailed spectral amplitude including the small ripples which cannot
be seen in the CP diagram. The Invese Fourier transform of H9(ω) allows to find h9(t) and
from it, the searched 9-step non-symmetric PSA.

4.5 Signal-to-Noise power ratio (S/N) in PSA de-

signs

Given that the CP diagram is blind to the continuous spectral amplitude, we cannot see if
our PSA would perform better against noise with a slight change of the data carrier ω0, as
it will be shown in the next chapter. By looking at Figure 4.5 (for example) we see that the
desired signal at ω0 = π/2, does not coincide with the spectra’s peak. Let us calculate the
S/N power-ratio at ω0, and at its peak 1.16ω0 [4],

S/N(ω0) =
|H9(ω0)|2

1
2π

∫ π
−π |H9(ω)|2dω

= 5.3 , S/N(1.16ω0) =
|H91.16ω0)|2

1
2π

∫ π
−π |H9(ω)|2dω

= 6.6. (4.18)
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That means that increasing our carrier ω0 from 0.5π (radians/sample) to 0.58π one obtains
a 24.5% gain in the S/N power-ratio, i.e. (6.6/5.3) = 1.245. This suggested carrier of
1.16ω0 will change the aspect of the continuous plot of H9(ω)) in Figure 4.5. In contrast,
observing the CP diagram alone, it is impossible to see where the location of the PSA’s
spectral maximum is. In addition, the F&K spectral plot [23] cannot be used because it does
not exist for non-symmetrical PSA.



5
N -step linear phase-shifting algorithms with

optimum signal to noise phase
demodulation

5.1 Phase shifting interferometry corrupted by ad-

ditive Noise

The standard mathematical model for an interferogram corrupted by additive noise is:

I(x, y, t) = a(x, y, t) + b(x, y, t) cos[φ(x, y) + ω0t] + n(x, y, t) , t ∈ (0, 1 . . .) . (5.1)

In this Equation, a(x, y) is the background illumination, b(x, y) is the contrast of the
fringes, φ(x, y) is the phase being measured, ω0 is the phase step (or frequency carrier) used,
and finally n(x, y, t) is an additive corrupting noise. The latter is considered Gaussian, sta-
tionary, white, with a flat power spectral density S(ω) = η/2. We know that additive noise
is not the only kind of interferometric measuring noise. There is also the multiplicative or
phase noise that is attributable to speckles because of the coherent laser illumination used.
However, once a linear low pass filter is applied for cleaning up the fringe data, the multi-
plicative noise turns into additive Gaussian noise by the law of large numbers [19]. Moreover,
after using several times a 3x3-averaging filter, one normally ends up with reasonably clear
(still corrupted by some additive noise) fringes [19] as modelled in Equation (5.1). The signal
in Equation (5.1) can be decomposed into complex components as follows:

I(t) = a+
b

2
exp[(φ+ ω0t)] +

b

2
exp[−(φ+ ω0t)] + n(t) . (5.2)

The explicit dependence (x, y) of the signal has been omitted for clarity. To obtain
the searched analytical signal (b/2) exp[(φ + ω0t)] it needs to filter out the low-frequency

33
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phase demodulation

background a(x, y), and the complex signals (b/2) exp[−(φ + ω0t)]. Assuming that the
complex term at +ω0 is kept, the linear PSA (a quadrature filter) must have a frequency
transfer function (FTF) H(ω) with at least the following frequency response [4, 36]

H(−ω0) = 0 H(0) = 0 H(ω0) 6= 0 . (5.3)

Applying this FTF function H(ω) to the interferograms the following complex output
signal is obtained [4, 36]:

F−1[I(ω)H(ω)]t−0 = I(t) ∗ h(t)|t=0 =
b

2
H(ω0) exp(ω0) exp(φ) + n̄ exp(Φ) . (5.4)

F [·] is the Fourier transform operator and F−1[·] its inverse. The symbol ∗ denotes the
one-dimensional (over t) convolution, and h(t) is the quadrature’s filter impulse response
associated with the PSA, having FTF H(ω) = F [h(t)] [36]. The term n̄ exp(Φ) is a complex
random variable associated to the Gaussian additive output noise. Finally, Φ is a random
(phase noise) process uniformly distributed within the interval [0, 2π] [15]. The estimated
phase at t = 0 is given by the linear PSA associated to h(t) as [4]:

φ̂(x, y) =
Im[I(x, y, t) ∗ h(t)]

Re[I(x, y, t) ∗ h(t)]

∣∣∣∣
t=0

, (5.5)

where the operatorsRe[·] and Im[·] take the real and the imaginary part of their argument.
The hat over φ̂(x, y) denotes its estimated value that may differ from the true phase φ(x, y)
stated in Equation (5.1).

In the next section, we describe two spectral linear tunable PSA models. The first an-
alyzed algorithm is the tunable 3-step linear PSA, which is the simplest and probably the
most frequently used algorithm. Later on, we analyze PSAs with 5, 7, 27 step using another
tunable spectral model finding the best carrier ω0 that maximizes the S/N ratio. Other linear
tunable N -step PSA spectral models can be easily defined, although they may have different
optimal carriers ω0.

5.2 Linear tunable phase shifting algorithms

As was mentioned in the introduction of this chapter, to find the best ω0 that maximizes
the S/N ratio we need linear tunable PSA. In this work it is shown how to construct linear
tunable PSAs by combining first-order digital filter, or by combining second-order digital
linear filters. Repeated convolutions of these first or second order digital filters lead to higher
order linear PSAs.

5.2.1 Linear tunable PSAs by combining first-order digital fil-
ter

We first construct linear tunable PSAs by combining two simple first-order digital linear
filters. The basic mathematical model for these first-order filters are:

h1(t) = δ(t)− δ(t− 1) , (5.6)
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h1(t, ω0) = [δ(t)− δ(t+ 1)] exp(−ω0t) , (5.7)

where δ(t) is the Dirac delta function, and  =
√
−1. The FTF of these basic models are:

F [h1(t)] = H1(ω) = 1− exp(ω) , (5.8)

F [h1(t, ω0)] = H1(ω, ω0) = 1− exp[−(ω − ω0)] , (5.9)

the combination of several first order blocks leads to the desired N -step linear tunable
PSA’s FTF [22]. A spectral model for high-order N -step linear tunable PSA may be given
by:

HN (ω, ω0) = Hn
1 (ω)Hm

1 (ω, ω0) ; N = n+m+ 1 , (5.10)

where the number of possible steps N is 3, 4, 5, 6, ..., n + m + 1. The simplest example
of this construction model is a 3-step linear tunable PSA. This filter has the following FTF:

H3(ω, ω0) = H1
1 (ω)H1

1 (ω, ω0) = (1− exp(ω))[1− exp((ω0 − ω))] , (5.11)

and taking the inverse Fourier transform F−1[·] of Equation (5.10), h3(t, ω0) = F−1[H3(ω, ω0)]
one obtains the complex impulse response of the linear 3-step PSA tuned at ω0 as follows:

h3(t, ω0) = −δ(t− 1) + δ(t) + exp(iω0)δ(t)− exp(iω0)δ(t+ 1), ω0 ∈ (0, π) . (5.12)

By using the Equation (4.6) and the Equation (5.12) one obtains a 3-step linear PSA
tuned at ω0 as [41]:

φ̂(x, y)|t=0 = arctan

{
sin(ω0)[I(0)− I(1)]

−I(−1) + I(0) + cos(ω0)[I(0)− I(1)]

}
; ω0 ∈ (0, π) . (5.13)

The equation above represents a 3-step linear tunable PSA and the spectral amplitude
|H3(ω, ω0)| is shown in Figure 5.1 for ω0 = 2π/3. The complex harmonics rejected by this
linear tunable PSA are clearly identified from the plot. In this particular frequency span the
complex harmonics rejected are: (...,−6,−4,−3,−1, 2, 3, 5, 6, ...).

5.2.2 Linear tunable PSAs by combining second-order digital
filters

In this subsection we construct linear tunable PSAs by combining two second-order digital
linear filters. Repeated convolutions of these two (second-order) filters leads to higher-order
linear PSAs. In other words, several convolutions of these two simple building blocks generate
arbitrarily high order linear tunable PSAs [42]. The mathematical forms of these second-order
filters are:

h2(t) =  [δ(t− 1)− δ(t+ 1)] , (5.14)

h2(t, ω0) = − exp(−ω0)δ(t− 1) + 2δ(t)− exp(ω0)δ(t+ 1) . (5.15)
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Figure 5.1: The 3-step linear PSA, tuned at ω = 2π/3. It is shown in this
chapter that the optimum carrier that minimizes the demodulated phase-noise of this
linear PSAs is 2π/3. In this particular figure the complex harmonic rejected are:
(...,−6,−4,−3,−1, 2, 3, 5, 6, ...).

The frequency transfer function (FTF) of these filters are:

H2(ω) = F [h2(t)] = −2 sin(ω) , (5.16)

H2(ω, ω0) = F [h2(t, ω0)] = 2− 2 cos(ω − ω0) . (5.17)

H2(ω) filters out the background a(x, y) at ω = 0, and also the signals components at
ω = (...,−2π,−π, 0, π, 2π, ...), this is shown in Figure 5.1. On the other hand, the filter
H2(ω, ω0) can be frequency tuned to any ω0 (within (0, π)), removing the complex signal at
ω = −ω0 and letting to pass its conjugate at ω = ω0. The simplest spectral product of these
two building blocks gives the FTF of a 5-step tunable PSA:

H5(ω, ω0) = H2(ω)H2(ω − ω0) ; ω0 ∈ (0, π) , (5.18)

This spectrum complies with Equation (3.6), which gives the minimum conditions for
a valid linear tunable PSA. Taking the inverse Fourier transform of Equation (3.6), one
obtains the complex impulse response of a 5-step linear tunable quadrature filter h5(t, ω0) =
F−1[H5(ω, ω0)]

h5(t, ω0) = − exp(−ω0)δ(t− 2) + 2δ(t− 1)+

 exp(−ω0)δ(t)− exp(ω0)δ(t)−
2δ(t+ 1) +  exp(ω0)δ(t+ 2)) .

(5.19)

As this equation shows, the impulse response h5(t, ω0) depends on the choice of the phase-
step ω0 used. Finally, according to Equation (4.6), one obtains a linear 5-step PSA tuned at
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ω0 as

φ̂(x, y)|t=0 = arctan

{
2[I(−1)− I(+1)] + cos(ω0)[I(+2)− I(−2)]

sin(ω0)[2I(0)− I(+2)− I(−2)]

}
. (5.20)

Note that this linear tunable 5-step PSA reduces to the Schwider-Hariharan linear PSA
for ω0 = π/2 [15, 18]. A useful spectral-model for higher order linear PSA is obtained by
combining H2(ω) and higher powers of H2(ω, ω0), increasing the detuning robustness of the
PSA at ω0. In other words, a higher power in H2(ω, ω0) flattens the linear PSA spectral
response at ω0 [4, 21]. Therefore, the spectral model for the high-order N-step linear tunable
PSAs considered in this work has the form:

HN (ω, ω0) = H2(ω)[H2(ω − ω0)]
N−5

2
+1 , N = 5, 7, 9, 11, . . . , (5.21)

For example, one can obtain the spectrum of a N = 27-step PSA tuned at ω0 = π/2 as

H27(ω, π/2) = H2(ω)[H2(ω − π/2)]12 . (5.22)

The Figure 5.2 shows the spectra of a 5-step, 7-step, and 27-step linear PSAs all tuned
at ω0 = π/2, obtained by Equation (5.21). The left side complex signal at ω = −π/2 is
zero for all 5, 7 and 27-step linear PSAs, while being transparent at ω = π/2. The 27-
step linear PSA spectrum is (almost) flat-zero for ω ∈ (−π, 0) as a consequence it has very
small detuning error [4, 21]. In these particular cases, the rejected complex harmonics are:
(...,−8,−6,−5,−4,−2,−1, 2, 3, 4, 6, 7, 8, ...). Also, as Figure 5.2 shows, these quadrature
filters are very robust to detuning at these harmonics. Finally, the linear tunable PSA that
results from this N -step spectral model as given by Equation (5.21) applied to our set of N
phase-shifted interferograms IN (x, y, t) is:

φ̂(x, y) = arctan

{
Im[hN (t, ω0) ∗ IN (x, y, t)]

Re[hN (t, ω0) ∗ IN (x, y, t)]

∣∣∣∣
t=0

}
; ω0 ∈ (0, π) , (5.23)

where hN (t, ω0) = F−1[HN (ω, ω0)].

5.3 Optimum phase-step to obtain the maximum

S/N ratio gain

This section describes the objective of this Chapter, in order to obtain the optimal carrier
ωopt0 for a linear tunable PSAs to obtain the best signal to noise (S/N ) power ratio. As far
as we know, the optimal value ωopt0 for a given linear PSA spectral model that renders the
least noisy demodulated phase has not been published previously to our knowledge.

We assume that the output power noise n̄ in Equation (5.4) is substantially less than
the amplitude of the output complex signal, i.e., n̄ << H(−ω0, ω0)b/2 which is the additive
low-noise approximation. This condition is normally fulfilled when the interferograms are
low-pass filtered to remove some noise [13, 24]. Under these circumstances, the S/N power
ratio of the output phase can be demonstrated to be [24]

[
S

N
(ω0)

]
output

=
|H(ω0)|2

1
2π

∫ π
−πH(ω, ω0)H∗(ω, ω0)dω

[
S

N

]
input

= G(ω0)

[
S

N

]
input

, (5.24)
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Figure 5.2: Linear tunable PSAs with 5, 7 and 27-steps with spectral model given
by Equation (5.21). These quadrature filters remove the DC term at ω = 0 and the
complex frequency component at ω = −π/2. The rejected complex harmonics are:
(...,−8,−6,−5,−4,−2,−1, 2, 3, 4, 6, 7, 8, ...). These harmonics rejections are robust
to detuning.

where (S/N )input is the interferogram’s signal to noise power ratio. H(ω, ω0) stands for
the filter’s spectrum (which depends on the interferogram’s carrier ω0), and H∗(ω, ω0) stands
for its complex conjugate. G(ω0) is the algorithm’s (S/N ) power gain. Note that the S/N
algorithm’s gain G(ω0) is a function of the carrier frequency ω0 alone. In other words, given
a mathematical spectral model for linear tunable PSA providing H(ω, ω0) we may choose the
carrier ω0 which maximizes this power ratio gain G(ω0) in Equation (5.24).

5.3.1 Optimum ω0 to obtain the best (S/N) ratio for a 3-step
linear PSA

Owing to its wide use, let us first analyze the spectrum of a 3-step linear tunable PSA and
find the optimum carrier that minimizes its demodulated phase noise. The 3-step linear PSA
tuned at ω0, has the following formula [41, 43]:

φ̂(x, y) = arctan

{
[1− cos(ω0)][I(x, y,−1)− I(x, y, 1)]

sin(ω0)[2I(x, y, 0)− I(x, y,−1)− I(x, y, 1)]

}
; ω0 ∈ (0, π) . (5.25)

The temporal impulse response associated with this linear tunable PSA is [4, 5]

h3(t, ω0) = sin(ω0)[2δ(0)− δ(t+ 1)− δ(t− 1)] + {[1− cos(ω0)][δ(t− 1)− δ(t+ 1)]} , (5.26)

and its FTF H(ω, ω0) is (in this case real):

H3(ω, ω0) = F [h3(t, ω0)] = 2 sin(ω0)[1− cos(ω)]− 2[1− cos(ω0)] sin(ω); ω0 ∈ (0, π) . (5.27)
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N-
step

Filter Spectral Response (FTF)

3 H3(ω, ω0) = sin(ω0)− sin(ω0 − ω)− sin(ω)
5 H5(ω, ω0) = sin(ω0)− sin(ω0 − 2ω)− 2 sin(ω)
7 H7(ω, ω0) = sin(ω0)+sin(2ω0−3ω)− sin(ω−2ω)− sin(2ω0−ω)− sin(ω)
27 H27(ω, ω0) = sin(ω0−ω

2
)24 sin(ω)

Table 5.1: Filter Transfer Function for the 3, 5, 7, and 27-step linear tunable PSA models
used in this chapter.

N-
step

Linear tunable PSA

3 φ̂3(ω, ω0) = arctan
(
I(−1)−I(1)+cos(ω0)(I(1)−I(−1))

sin(ω0)(I(−1)+2I(0)−I(1)

)
; ω0 ∈ (0, π)

5 φ̂5(ω, ω0) = arctan
(
− cos(ω0)(I(−2)+I(2)+I(−1)−I(1)

sin(ω0)(I(−2)+I(0)−I(2)

)
; ω0 ∈ (0, π)

7

φ̂7(ω, ω0) =

arctan
(

cos(2ω0)(I(−3)+I(3)−I(−1)+I(1)+cos(ω0)(I(2)−I(−2))+3(I(−1)−I(1)
sin(2ω0)(I(−3)+I(3)−I(1)−I(−1))+sin(ω0)(2I(0)−I(2)−I(−2))

)
;

ω0 ∈ (0, π)

Table 5.2: PSA in time domain for the 3, 5, 7, and 27-step models used in this chapter.

Finally, using Equation (5.24) one obtains the S/N ratio gain G(ω0) for a 3-step algorithm
as follows:

G(ω0)φ̂ =
|H3(ω0)|2

1
2π

∫ π
−π |H3(ω, ω0)|2 dω

; ω0 ∈ (0, π) . (5.28)

This last equation states the importance of having a linear tunable PSA in order to find
the best tuning frequency ω0 within the interval(0, π). Equation (5.28) shows that the S/N
ratio gain G(·) depends only on ω0; therefore setting the derivative of this equation (with
respect to ω0) equal to zero to obtain the optimum ωopt0 which renders the S/N power ration
gain G(ω0) at maximum. In the case of the 3-step linear PSA, the optimum phase-shift is:

dG(ω0)

dω0
|ωopt

0 =2π/3 = 0 . (5.29)

This corresponds to the optimal carrier frequency ωopt0 = 2π/3.

Figure 5.1 shows the FTF, H3(ω, 2π/3), corresponding to the optimum-carrier 3-step
linear PSA. This linear PSA filters out the complex signal at ω = −2π/3, while the complex
signal at ω = 2π/3 is allowed to pass. With this result it is now absolutely certain that a
carrier of 2π/3 is the best choice to obtain the cleanest demodulated phase for a 3-step linear
PSA corrupted by additive noise. Table 5.3.1 shows the FTF for the 3, 5, 7, and 27-step
linear tunable PSA models used in this chapter. Table 5.3.1 shows the PSAs for the 3, 5, and
7-step FTFs in Table 5.3.1).
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Figure 5.3: This figure shows the best frequency carrier through the S/N analysis
proposed in this paper.

5.3.2 Optimum phase-step to obtain the maximum S/N gain
in high-order linear tunable PSAs

The main purpose of this sub-section is to calculate the optimum temporal carrier ωopt0

from Equation (5.24). Using these second-order filters we obtain the spectra for the 5, 7,
and 27-step spectra in Table 5.3.1. The optimum carrier ωopt0 is the one that gives the
lowest noise in the phase demodulation process for the linear N-step PSA spectral model in
Equation (5.21). Figure 5.3 shows four plots corresponding to the G(ω0) ratio gain of 3, 5, 7,
and 27 step linear tunable PSAs. The G(ω0) power-ratio gain depends solely on the carrier
frequency ω0 (see Equation (5.24)). Higher order linear PSAs, modeled by Equation (5.21),
HN (ω, ω0) = H2(ω)H2(ω, ω0)

(N−5)/2+1, all have their maximum signal to noise gain G(·) at
ωopt0 = π/2

G(π/2)maximum =
|HN (π/2)|2

1
2π

∫ π
−π |HN (ω, π/2)|2 dω

; ω0 =
π

2
. (5.30)

The step-angle of π/2 is a frequently chosen value in experimental work. Figure 5.3 also
shows the intuitive result that, the more steps we have, the higher (optimum) S/N ratio
is obtained. From Equation (5.20), we see that for N = 5-steps, and ω0 = π/2 we obtain
the Schwider-Hariharan PSA. Therefore, the Hariharan-Schwider linear PSA uses the best
possible carrier within its spectral model in Equation (5.21).
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Conclusions

We have presented a zero-based, fine-tuning, spectrum-shaping technique for designing N-
steps PSA, based on the visualization and gauging of its continuous FTF spectral magnitude
|H(ω)|. This technique gives more possibilities to approximate a target spectrum while
keeping the size N of the PSA unchanged. This PSA design method starts by specifying
a desired PSA spectrums template. Afterwards, the available (N − 1) first-order zeroes are
freely moved (fine-tuned), to approximate it. Finally, the inverse transform of the FTF[h(t)]
is found, and from it the desired (in general non-symmetric) PSA. It is important to remark
that given the option of freely move the PSAs (N − 1) zeroes, the result is non-symmetric
PSAs. These non-symmetric PSAs cannot be analyzed using the F&K spectral-plotting
technique.

Finally do not forget that the target PSA spectrum may be determined by taking the
Fourier transform of actual interferometric measurements of the kind of fringes being ana-
lyzed. This real-data spectral estimation and the desired phase noise-rejection are the key
to estimate how many samples (N ) a given PSA will need and also where its (N − 1) zeroes
may be located.

This Thesis introduces a simple technique to find the optimum phase-shift ω0 which
maximizes the signal to noise ratio (S/N) on the demodulated phase for linear tunable PSA.
This holds true whenever the corrupting interferogram noise is additive, white, and Gaussian.
To apply our procedure, one needs a linear tunable PSA spectral model to vary ω0 and keep
the one that maximizes the G(ω0) ratio in Equation 5.24. The particular spectral models
used in this paper are those in Equation (5.10) and Equation 5.21. These two spectral models
were substituted into Equation (5.24), and the best carrier ω0 that maximizes the S/N ratio
gain, G(ω0) is chosen. This optimization was applied to 3, 5, 7, and 27-step linear tunable
PSAs. We have found that for the case of a 3-step linear PSA, the carrier that maximizes the
G(ω0) ratio is ωopt0 = 2π/3 , while for the spectral model in Equation 5.21, the best G(ω0)
ratio gain is obtained for ωopt0 = π/2 . This optimizing procedure can be easily extended
to other linear tunable PSA spectral models not considered here. Note the important fact
that, the optimum value for depends on the PSA spectral model chosen. For example, one
may have two 5-step linear tunable PSAs with different spectral model, having possibly two
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different optimum carriers that optimize the signal to noise ratio.



A
Appendix A

A.1 Waves by Sine and Cosine Waves

a = Table[0.5*Sin[(2*Pi*2*t)/10], t, 0, 10, 0.01];
b = Table[0.1*Sin[(2*Pi*4*t)/10], t, 0, 10, 0.01];
c = Table[0.1*Sin[(2*Pi*6*t)/10], t, 0, 10, 0.01];

index = Table[t, t, 0, 10, 0.01];

ListLinePlot[a + b + c, DataRange − > 0, 10, ImageSize − > 800, PlotStyle − > Thick]

A.2 Basic Linear Block Construction Definition

bloque[wo ]:= 1√
2π
− Cos[w−wo]√

2π
+ iSin[w−wo]√

2π
;

A.3 Tunable Filter Construction

f1s = TrigReduce[bloque[0] ∗ bloque[−a] ∗ bloque[−1.4 ∗ a]bloque[−0.6 ∗ a]];

absf1s = TrigReduce[(ComplexExpand[Re[f1s]])∧2 + (ComplexExpand[Im[f1s]])∧2];
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ListLinePlot[Table[absfSH, {w,−Pi,Pi, 0.1}],DataRange→ {−Pi,Pi},
PlotStyle→ {{Thickness[0.005],Orange}}, ImageSize→ 1100,

AxesLabel->{Style[ω/ω0Times,FontSize→ 50],

Style[H5(ω, π/2)Times,FontSize→ 50]}Ticks→ {{−10,−5,−1, 1, 5, 10},Automatic},
TicksStyle→ Directive[Times,FontSize→ 45],GridLines→ {{Pi/2/(Pi/2)},None},

GridLinesStyle→ Directive[Thick,Gray],

AxesOrigin→ {0, 0},AxesStyle→ Thickness[0.005]]

A.4 Numerical Evaluation of SNR

potenciaf1s = (1/(2Pi)) ∗ Integrate[absf1s, {w,−Pi,Pi}];

magnitudf1s = absf1s/.w → a;

snrf1s = Table[magnitudf1s/potenciaf1s, {a, 0,Pi, 0.01}];

potenciafSH = (1/(2Pi)) ∗ Integrate[absfSH, {w,−Pi,Pi}];

magnitudfSH = absfSH/.w → a;

snrfSH = Table[magnitudfSH/potenciafSH, {a, 0,Pi, 0.01}];

ListLinePlot[{snr, snrfSH},DataRange→ {0,Pi},
PlotStyle→ {{Thickness[0.005],Orange}, {Thickness[0.005],

Blue}}, ImageSize→ 1100,AxesLabel->{Style[ω,Times,

FontSize→ 50],Style[SNR,Times,FontSize→ 50]},
TicksStyle→ Directive[Times,FontSize→ 45],

AxesOrigin→ {0, 0},AxesStyle→ Thickness[0.005]]
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