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Chapter 1

Introduction

More than two decades of intense studies of nonlinear dynamic have shown
that the chaos occurs widely in physics, chemistry, biology, engineering,
mathematical and social life [1, 2, 3]. The discovery of chaos changes our
understanding of the foundation of physics, has many practical applications
as well. The nonlinear dynamic sheds new light on the working of lasers, flu-
ids, mechanical structures, and chemical reactions. It has been noted only as
irregular or unpredictable behavior and often attributed to random external
influences. Further studies showed that chaotic phenomena are completely
deterministic and characteristic for typical nonlinear systems.

The interest in chaos and nonlinear dynamic have grown rapidly since
1963, when Lorentz published his numerical work on a simplified model of
convection, and discussed its implication for weather prediction. Nowadays
the researches of nonlinear dynamics are addressing to important practi-

cal applications which include communications, modelling brain and cardiac

vi



CHAPTER 1. INTRODUCTION vii

rhythm activity, earthquake dynamics, etc. (see, e.g., [4] and references
therein).

In nonlinear dynamics, the study of nonlinear oscillators has played a very
important role in the understanding the chaotic phenomenon. The Duffing
oscillator has been treated as paradigm of many ubiquitous system. The
study of such systems is based mostly on approximate analytical approaches
and detail numerical investigations.

Many systems in the nature have several stable states separated by energy
barriers. When the system moves among the stables states, the dynamics be-
comes quite complex. A simple model that illustrates some of this features
is the double-well Duffing oscillator. This model was first introduced to un-
derstand forced vibrations of industrial machinery by the German electrical
engineer Duffing in 1918 [5].

The knowledge of the dynamic behavior of this oscillator under exter-
nal modulation is of great importance and can be adequate to explored a
variety model of physical processes such as stiffening strings, beam buck-
ling, nonlinear electronic circuits, superconducting Josephson parametric
amplifiers, and ionization waves in plasmas, as well as biological processes
6,7,8,9, 10, 11, 12, 13, 14, 15],

The search of laser dynamic with chaotic and turbulent processes in other
field of the nature has been carried out since last 25 years. It has become in-
creasingly evident that misunderstood and troublesome laser properties, such
as unstable emission, poor reproducibly of the laser pulse, limitation of at-

tainable widths of ultrashort pulses and coherence lengths, and also problems
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with the emission mode pattern shapes, spontaneous irregular pulsing, etc.,
are not caused by insufficient technical skill, but are direct consequences of
the inherent nonlinearity of the laser. The improvement of these laser prop-
erties therefore requires not just diligent effort but more understanding of
the physics of this particular nonlinear dissipative system.

In the past decades, revolutionary progress has been achieved in research
and commercialization of erbium-doped fiber lasers (EDFLs). The exclusive
advantages of these lasers are the long interaction length of pumping light
with the active ions that leads to very high gain and a single transversal mode
operation given by a suitable choice of the fiber core diameter and index step.
These features make EDFLs excellent light sources for optical communica-
tions, reflectometry, sensing, medicine, etc. [16, 17]. Meanwhile, these lasers
are quite sensitive to any external perturbation which may destabilize their
normal operation. Therefore, the knowledge of the dynamic behavior of these
lasers under external modulation is of great importance and can be prominent
for many applications.

The mean objective of this thesis is to study nonlinear dynamic of com-
plex system wit parametric modulation. As example of complex system, We
choose Duffing oscillator and a fiber laser. Both the Duffing oscillator and
laser equations model nonautonomous system, in which one of the parame-
ters is modulated harmonically. The Duffing oscillator is commonly used as
a general example in theoretical of nonautonomous system, whereas the fiber
laser is the practical example of such a system.

In numerical calculation We used fourth-order Runge-Kutta algorithm.
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Time series, phase space diagram, and bifurcation diagram has been used to
visualize the dynamic behavior of the system.

The thesis contains seven chapters, the first and second Chapters are ded-
icated to Introduction and basic concept of dynamic nonlinear. The study of
dynamic behavior of two double-well Duffing oscillators subjected to para-
metric or/and stochastic modulation is treated in Chapter 3 and 4 respec-
tively. In Chapter 5 we dedicate to study of dynamics of an erbium-doped
fiber laser with pump modulation. The general conclusion and Appendix are
treated in Chapter 6 and 7 respectively.

More precisely, the thesis is organized in the following way.

Chapter 1 Introduction. It contains preceding, justification, objec-

tives, methodology and structure of the thesis.

Chapter 2 Basic concept of nonlinear dynamics. In this chapter
briefly introduces to the reader to basic concept of dynamic nonlinear, such
as discreet and continuous system, autonomous and nonautonomous system,
brief theory of stability and bifurcation diagram, types of dynamic control,

and various class of solution of nonlinear systems.

Chapter 3 Duffing oscillators. This chapter is devoted to study of
the dynamics of complex systems with parametric modulation. We star with
a brief view of Duffing oscillators and synchronization, then we study the
dynamics of two coupled Duffing oscillators with parametric modulation in

one of them. We also identify intermittent lag synchronization in such a
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system . Finally we give the main conclusion of this part of work.

Specifically studying of the dynamic of two coupled Duffing oscillators with
parametric modulation, first, we search analytically for steady-state solutions
of the system without modulation. Then we find numerically all solutions of
the whole system with parametric excitation for different coupling strengths,
modulation amplitudes and frequencies. This allows us to reveal the relation
with the coupling effects on the Hopf bifurcation of the whole system and on
crisis of coexisting attractors. We also demonstrate that chaotic oscillations
in this system are always synchronized in phase. Finally, an interesting type
of synchronization.

For studying intermittent lag synchronization in parametrically modulated
of two coupled Duffing oscillators, first we make stability analyzes of equation
of system, Then we constructed the codimensional-two bifurcation diagram
in the parameter space of modulation amplitude and coupling strength and
in the space of amplitude and frequency of modulation, the dynamic display
different dynamic, such as, one-well chaos (OWC), cross-well chaos (CWC),
hopping oscillations (HO), and periodic orbits (PO). Then intermittent lag
synchronization is studied. Finally, the main conclusions are given at the

end of the chapter.

Chapter 4 On-off Intermittency in Duffing Oscillators with Para-
metric and stochastic driving. First we do a brief definition and clas-
sification of intermittency phenomenon. Then we dedicate to the coexisting

attractors and on-off intermittency in two coupled Duffing oscillators with
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parametric and stochastic driving. We find numerically all solutions of the
whole system with parametric excitation and noise for different amplitudes
and frequencies of the modulation. This allows us to identify region of the
coexistence of the different attractors. Then we build the basin of attraction
of attractors for fixed values of modulation amplitude and frequency. We
demonstrate that the system without modulation, display only steady state
behavior. Finally, we consider the system without noise.

Moreover in this chapter we also dedicate to Control of on-off intermit-
tency by slow parametric modulation. In this part we study dynamic in two
coupled double-well Duffing oscillators with stochastic driving. We applying
a slow harmonic modulation a system parameter, and demonstrate that the
intermittent attractors can be completely eliminated. The influence of noise
is also investigated. The power-law scaling of the average laminar time with
a critical exponent of -1 as a function of both the amplitude and frequency
of the control modulation is found near the onset of intermittency.

Finally the main conclusions are given at the end of the chapter.

Chapter 5 Dynamic of Laser. In this chapter we study dynamic of
a fiber laser. At the beginning we give view laser dynamic with parametric
modulation.

The chapter is organized as follows. In section 1 we give a introduction. In
Section 2 we describe our model. In order to test the model, in Section 3 we
simulate numerically the experiments reported in our previous works [18, 19]

for the case when the modulation frequency is higher than the relaxation
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oscillation frequency of the laser. Then, in Section 4 we study numerically
the laser dynamics in the low-frequency range, i.e. when the modulation fre-
quency is smaller than the relaxation oscillation frequency. We demonstrate
that the low-frequency range exhibits a rather interesting insight to EDFL
dynamics with external modulation because of the appearance of many “fine”
dynamical phenomena that become latent at higher modulation frequencies.
In Section 5 we describe the experimental setup of the diode-pumped EDFL
with pump modulation and compare the results of simulations with exper-
iments. In the course of experiments, we determine directly the structure
of frequency- and phase-locked states (with respect to pump modulation)
through bifurcation diagrams in space of the modulation parameters. Fi-

nally, the main conclusions are given in Section 6.

Chapter 6 General Conclusion. In this chapter we give the general

conclusions of all the work.

Chapter 7 Appendix. In this last chapter we dedicated to the nor-

malize of the erbium Doped fiber laser equations given in the chapter 5



Chapter 2

Basic Concept of Nonlinear

Dynamics

This chapter briefly summarizes some facts pertaining to the behavior of
nonlinear dynamic system. In §1.1 some basic concepts of dynamical system
are given, such as discreet and continuous system, autonomous and nonau-
tonomous system, etc. In §1.2 and §1.3 we introduce the reader to theory
of stability and bifurcation. In §1.4 and §1.5 we describe various classes of
a solution of nonlinear system The readers who are already familiar with
this topics may want to skip the first chapter and jump directly to the next
chapter.

The material contained in this chapter is standard and can be found in
the most textbooks on nonlinear system and nonlinear dynamic, (see e.g.

1, 2, 3]).
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2.1 Dynamics of Nonlinear Systems

2.1.1 Discreet and Continuous System, Autonomous

and Nonautonomous System

A rough definition of nonlinear dynamic is a system whose time evolution
equation are nonlinear, that is, the dynamic variables describing the prop-
erties of the system appear in the equations in a nonlinear form, and the
superposition principle does not apply.

A dynamical system consists of a set of possible states, together with a
rule that determines the present states in terms past states.

Two types of dynamical system we can find. If the rule is applied at dis-
creet times, it is called discreet-time dynamic system. A discreet-time system
takes the current state as input and updates the situation by producing a
new state as output. By the state of the system, we mean whatever informa-
tion is need so that the rule may be applied. Discreet time system is called
maps.

Mathematically a map is defined as function whose domain (input) space

and range (output) space are the same and the rule that govern a map is

Tn = f (Tn-1) (2.1)

where the variable n stands for time and z,, is the state of the system in time
n. The output of the rule is used as an input value for the next state.

The other important type of a dynamic system is essentially the limit of
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discreet system with smaller and smaller update times, the governed rule
is a set of differential equations and the term of a continue time dynamical
system is sometimes used. In this work we considerate a continuous time
dynamical system.

The general state equation for nonlinear system considered in this work is

= f (u), u (to) = wy, (2.2)
where u € D C R",t € RT. D is an open subset of R". In most cases we
have D = R™. A system of differential equations of the form (2.2), in which
the independent variable ¢ does not occur explicitly is called autonomous
system. Its order is considerate to be equal n.

Consider the following differential equation:

uw=f (u,t), u (to) = wo, uwe D CR", teR". (2.3)

If the right-hand side depends explicitly on time Eqn (2.3) is called nonau-

tonomous system. If 7" > 0 such that

f (u,t)=f (u,t +7T)
exist for all v and ¢, then Eqn (2.3) is said to be time periodic with period
T.
An nth-order time periodic nonautonomous system with period 7' can
always be converted into an (n+1)th-order autonomous system by appending

an extra variable.
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_ ot

o=

The new autonomous system is given by

f (u,t) = f(u,0), u (tg) = uy, (2.4)
N 27‘(‘ . 27Tt0
0 = T 6 (to) = T

The function f on the right-hand side of Eqn (2.2) defined a mapping
f: R — R™ Thus a mapping defined a vector field on R".

The phase space of a dynamical system is a mathematical space with
ortogonal coordinated directions representing each of the variables needed to
specific an isntantaneous state of the system. Generally, the dimension of the
space of phase of Eqn (2.2) is n, (the number of first order scalar differential

equations)

2.1.2 Fixed Point and Linearization

Definition 1 The point u* € R™ where
f(u) =0
is called a fized point u = f (u).

Remark 1 Sometimes the fixed point are called equilibrium point or critical

point.

Fixed point u* of a differential equation @ = f (u) in R" is called attractor
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if there exist a neighborhood A C R" of u* such that u(t) € A implies
limy o u(t) = u*.

If a fixed point u* = a has this property at ¢ — —oo, then u* is called a
repeller.

Let us assume that f is analytic. The linearization of the differential
equation & = f (u) in a neighborhood of the fixed point u* consists in the
expansion of the Taylor series of f around u*. Linearizing means that we
neglect higher order terms.

In the neighborhood of the fixed point u* we can write

du _ Of (u”)
dt  Ou

(u — u*) + higher order terms

and study the linear differential equation

du  Of (u*)
dt  Ou

(u =)

is called the Jacobian matrix or function matrix.

The n x n matrix %

u

To simplify the notation the fixed point is shifted to the origin of the space

phase by y = v — u*. Thus,

dy of (u*)
dt  Ou

Y|

where % = A. It is an n x n -dimensional matrix with constant coeffi-
cients. So the linearized system in the neighborhood of a fixed point u* is of

the form
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dy _

Definition 2 Suppose that the n x n dimensional matriz A has K negative

eigenvalues A\ A, and that these

----------

eigenvalues are distinct. Let {vy ...v, } be a corresponding set of eigenvector.

Then stable and unstable subspace of the linear system Eqn (2.5), E* and E",

are the linear subspace spanned by {vy,...v;} and {vg41,...v,} , Tespectively
E® = span{v; ...vx}

E" = span {vg41,...0,} .

Let us considered a two dimensional case, i.e., A is of 2 x 2 dimensional
matrix.

If the eigenvalues are real and have the same sign the critical point is
called node. If A\; < 0 and A\ < 0 then the critical point is an attractor and
A1 > 0 and Ay > 0 then it is a repeller Figs.(2.1),(2.2).

If the eigenvalues are still real but have different sign, the critical point is
called saddle (Fig.2.3)

When the eigenvalues \; and A\, are complex conjugates

)\172:U:i:u)i

with uw # 0, the critical point is called a focus (Figs. 2.4,2.5).

The last case is when the eigenvalues are purely imaginary. If

)\172 =Zdwi1
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Figure 2.1: The Node attractor (sink)

ue

ul

F
k4

Figure 2.2: Node Repeller
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Figure 2.3: Saddle point

Figure 2.4: Focus Attractor
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Figure 2.5: Focus Repeller

then the critical point is called centre (Fig. 2.6). It is clear that in this case

a critical point is neither an attractor nor a repeller.

2.1.3 Periodic Solution

Let us consider the case differential equation @ = f (u) which can be rep-
resented by a closed orbit in the phase space. The closed orbit is related
to periodic solution. If @(¢,ug) is a solution of the differential equation
= f (u),u € D C R", and suppose that there exists a positive number T’

such that

O(t+T) = d(t) (2.6)

for all ¢ € R*, then ®(t) is called periodic solution of period T. A periodic
solution of autonomous equation @ = f (u) corresponds to a closed orbit in

phase space and a closed orbit corresponds to a periodic solution. A periodic
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Figure 2.6: Center

solution can be a limit cycle. If a limit cycle is reached asymptotically for
t — o0, it is stable, i.e., an attractor. If a limit cycle is reached asymptotically

for t — —o0, it is unstable, i.e., a repeller.

Definition 3 Specific subset A of a phase space R" of differential equation
U = f (u) which is reached asymptotically as t — oo (t — —o0) is called

attractor (repeller).

Theorem 1 Suppose ®(t,ug) is a trajectory of the differential equation i =
[ (u) , u € R* which flow ®(t,up) is contained in a bounded region D of the
phase space for t > 0 . Then the only possible attractor for ®(t,uy) are a

critical point or limit cycle.

For stability analysis of periodic solution we use Poincare map function
to analyze the nature of a limit cycle. Two points are important to analyze

the Poincare map function and its derivatives.
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(i) The Poincare section reduces the original two-dimensional system prob-
lem to an one-dimensional problem.

(ii) Poincare map function states an iterative (finite-size time step) relation
rather than a differential (infinitesimal time step) relation.

Let us consider the Poincare map function as

P, =F(P,)

where F' gives P, in terms of P, and the linearize system is given as

dn+1 =M ndrn

where d,,; = P, — P*, and M = %

p+, (Floquer multiplier for analytic
details see [1]).

The possible behavior of the limit cycle depend of the Floquer multiplier
M : For M < 1,we observe a attractor limit cycle. For M > 1 a repeller

limit cycle and M = 1,a saddle limit cycle.

2.1.4 Chaotic Solution

Chaos is a behavior of a system that fluctuates irregularly in time. This is an
attractor, but not a fixed point and not a cycle. However, not any system
that fluctuates irregularly in time represents chaotic behavior. Chaos as
used in nonlinear dynamics, represents a behavior observed in deterministic
dynamic equation. Chaotic dynamics has the additional property that the

small differences in the initial value will grow over time, but the dynamic will
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be finite, and not grows indefinitely. This property is often called sensitive
dependence on initial conditions. Because of sensitive dependence on initial
conditions, it is impossible to make accurate long term prediction about the
state of the system without knowing exactly its initial state. Any minor
uncertainty will be amplified so as to render actual knowledge of the state
of the system is impossible. In a real system it is always impossible to know
state of the system exactly, since there always exists some experimentally
measured uncertainty:.

Deterministic Chaos means that there is a definite rule with no random

term governed the dynamics.

2.1.5 Bifurcation

A bifurcation describes the qualitative change in dynamics that can be ob-
served while parameter in a system is varied. For example, under the vari-
ation in the parameter value, a fixed point may change from being stable to
unstable, or a cycle might suddenly appear.

These terms can all be mathematically rigorously defined, and we will give

some illustrative examples

2.1.6 Saddle Node Bifurcation

A saddle-node bifurcation results in the creation of two new fixed points, one

stable and one unstable. This can be seen in the simple example
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p=o U poi 0

Figure 2.7: Bifurcation diagram demostrationg saddle-node bifurcation

dz 9
- 2.7
il (2.7)

where p is the control parameter. For p < 0 there are no fixed points in the
system. For p = 0 (the bifurcation value) there is one fixed point (at the
origin * = 0 ), which is semistable. For p > 0 there are two fixed points,
one of which (z* = /p) is stable, while the other (2* = —,/x) is unstable.
Figure 2.7 shows the corresponding bifurcation diagram, in which the
equilibrium value (z*) of the bifurcation variable is plotted as a function of
the bifurcation parameter u. The stable point are show as the solid line, while

the unstable point are denotes the dashed line.
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gtahle

stahle

Figure 2.8: Bifurcation diagram for pitchfork bifurcation

2.1.7 Pitchfork Bifurcation

In a pitchfork bifurcation, a fixed point reverses its stability and two new
fixed points are born. The pitchfork bifurcation occurs at © = 0 in the

one-dimensional ordinary differential equation

== o) (2.
For ;1 < 0 there is a fixed point at * = 0, for u > 0, there are three fixed
points, but the original fixed point at zero now become unstable, and new
symmetrically place stable point appear (see Fig 2.8).
Figure 2.8 shows the bifurcation diagram for the pitchfork bifurcation.
The bifurcation in figure 2.8 is supercritical bifurcation, since there are stable

fixed points to either side of the bifurcation point. Replacing the minus sign

with plus in the Eqn(2.8) results in a subcritical pitchfork bifurcation.
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Figure 2.9: The bifurcation diagram for the transcritical bifurcation

2.1.8 Transcritical Bifurcation

In the transcritical bifurcation there is an exchange of stability between two

fixed points. For the following ordinary differential equation

dx

- = 2lh—2) (2.9)

there is a transcritical bifurcation at 1 = 0 (see Fig.2.9 ). The fixed point
x* = 0 stars out being stable for ;1 < 0, becomes semistable at 1 = 0, and

unstable for ;> 0. The sequence of the changes is the opposite for the other

point (z* = p).

2.1.9 Hopf Bifurcation

The birth and death of a limit cycle are bifurcation events. The birth of the

stable limit cycle is called Hopf bifurcation. We can use the Poincare method



CHAPTER 2. BASIC CONCEPT OF NONLINEAR DYNAMICS 17

to study a limit cycle bifurcation, since for two dimensional state space, the
Poincare section is just a line segment.

To illustrate some of the important concept associated with a limit cycle,
we considerate a two-dimensional equation differential in a polar coordinate

system

dr

= = [ (2.10)
dop

a o

where 7 is the distance from the origin and ¢ is the angular coordinate and
f (r,p) is a nonlinear function that depends on parameter . We can say
that any fixed point of the function f (r, 1) would correspond to a limit cycle.
A stable fixed point of f (r, 1) corresponds to a stable limit cycle of Eqn(
2.10), and an unstable fixed point of f (r, 1) corresponds to an unstable limit
cycle of Eqn (2.10). Consequently, changes in stability of the fixed point of
f (r,n) would lead to changes in the stability of the limit cycle in the Eqn
(2.10).

Consider the following example

dr

= = fop=rp—r) (2.11)
dp
E = 27

Let us interpreter the geometric nature of trajectories Eqn (2.11). The

solution of the angular part is simply
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Figure 2.10: Supercritical Hopf bifurcation. The solid curve corresponds to

stable solution and the dashed curve refer to the unstable solution.

() = ¢y + 27t (2.12)

that is, the angle continues to increase with time as the trajectory spirals
around the origin. If ;1 < 0 there is one stable fixed point of f (r, u) at r = 0,
whereas for p > 0 there is an unstable fixed point of f (r,u) at » = 0,and
stable fixed point of f (r, ) at r = /it (remember that in a polar coordinate
system the radial coordinate r corresponds to the distance of a point from
the origin and is always taken to be positive).

If i increase from negative to positive part, a stable limit cycle will be
born as p crosses 0. . This is called supercritical Hopf bifurcation. The
amplitude of the limit cycle is show in Fig. 2.10

A different scenario for generate a limit cycle, albeit an unstable limit

cycle, occurs when
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dr

= F ) = () (213)
For 1 > 0 there is a single stable fixed point at r = 0, and for y < 0 there

is a single unstable fixed point at » = 0 and an unstable limit cycle with

amplitude r = y/—pu. This scenario is called subcritical Hopf bifurcation.

2.1.10 Routes to Chaos

The mechanism of the transition to chaos is of fundamental importance for
understanding any chaotic behavior. There are three main route to chaos
which can be observed in nonlinear dynamic.

(i) A period doubling bifurcation is commonly observed in periodically
forced nonlinear system, where the varying amplitude of the force signal
(for instance a sinusoidal one) acts as a bifurcation parameter [2]. A typical
diagram of phase space of one of such systems may look like in Figure 2.11. By
increasing one of the bifurcation parameter we observed the transformation a
closed orbit (Fig.2.11a), into two closed orbits (Fig.2.11b), four closed orbits
(Fig.2.11c) and finally an infinite number of closed orbits (Fig.2.11d), which
is the typical period-doubling route to chaos. The period T of the closed
orbit is equal to a period of the excitation force, Two closed orbits indicate

that the period of oscillations is twice as long.

Another possibility, not discussed here, is the transitions to chaos via global bifurca-

tion; Chaotic transients and Crisis
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() (b)

dx/dt
I
dx/dt

T T T T T T T T T T
020 022 024 026 028 030 032 034 036 038 040 042  -045 040 035 -030 -025 -020 -015 -010 -0.05
X X

© _ _ ()

dx/dt

Figure 2.11: Phase space diagrams demostrating typical perid-double route
to chaos. (a) T periodic solution, (b) 2T periodic solution, (c) 4T periodic

solution and (d) chaotic solution
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(ii) Quasiperiodic route the second route to chaos is associated with a Hopf
bifurcation, which generates a limit cycle starting from a fixed point. In many
system undergoing the Hopf bifurcation, a further increase of the control
parameter makes possible to find the second Hopf bifurcation. After the
bifurcation the response of the system is quasiperiodic with two independent
frequencies, so that trajectories are drawn on a two-dimensional torus 72.

If the ratio of the period of the second type of motion (second Hopf bifur-
cation ) to the first period (first Hopf bifurcation) is not a rational number,
then we say, the motion is quasiperiodic. Under some circumstances, if the
control parameter is change further, the motion becomes chaotic. This is
sometime called Ruelle-Takens scenario (D. Ruller and F. Takens were the
first, who in 1970 suggested the theoretical possibility of this route [20]).

The intermittency route to chaos is characterized by dynamics with ir-
regularly occurring bursts of chaotic behavior interspersed with intervals of
apparently periodic behavior. A some control parameter of the system is
changed, the chaotic bursts become longer and occur more frequently until,

eventually, the time record is chaotic.

2.1.11 Control of Chaos

The problem of controlling of chaos attract attention of researchers and en-
gineers since the early 1990’s. Several thousand publications have appeared
over the recent decade [21].They suggested that it may be possible to over-

come the butterfly effect and control chaotic systems. The idea is to apply
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appropriately designed minute perturbations to an accessible system parame-
ter that forces it to follow a desired behavior rather than the erratic, noise-like
behavior indicative of chaos.

In greater details, the key idea underlying most controlling-chaos schemes
is to take advantage of the unstable steady states (USSs) and unstable pe-
riodic orbits (UPOs) of the system (infinite in number) that are embedded
in the chaotic attractor characterizing the dynamics in phase space. Many
of the control protocols attempt to stabilize one such UPO by making small
adjustments to an accessible parameter when the system is in a neighborhood
of the state.

Techniques for stabilizing unstable states in nonlinear dynamical systems
using small perturbations fall into three general categories: open loop control
(nonfeedback control), closed loop control (feedback control), and a combi-

nation of open loop control and closed loop control.

2.1.12 Open Loop Control

The principle of control by perturbation or “control by the program signal”,
that is, the generation of a control signal as a time function disregarding the
values of the controlled process, is based on varying behavior of the nonlinear
system under the action of a predetermined external input wu(t) which can
be either a certain physical action on the system such as force or field or
variation (modulation) of some parameter of the controlled system [21]. This

approach has appeal owing to its simplicity because it does without any
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measurements or sensors. This is specially important for control of superfast
processes occurring, where the system state cannot be measured (at least in
real time). Unfortunately, periodic modulation fails in many cases to entrain
the UPO (its success or failure is highly dependent on the specific form of

the dynamical system).

2.1.13 Closed Loop Control

Feedback of chaos suggested by Ott, Grebogi, and Yorke (OGY) in 1990
[22]. The basic building blocks of a generic feedback scheme consist of the
chaotic system that is to be controlled, a device to sense the dynamical state
of the system, a processor to generate the feedback signal, and an actuator

that adjusts the accessible system parameter, as shown schematically in Fig.

2.12.

In their original conceptualization of the control scheme, OGY suggested
the use of discrete proportional feedback because of its simplicity and because
the control parameters can be determined straightforwardly from experimen-
tal observations. In this particular form of feedback control, the state of the
system is sensed and adjustments are made to the accessible system pa-
rameter as the system passes through a surface of section. Figs. 2.13 [23]
illustrates a portion of a trajectory in a three-dimensional phase space and
one possible surface of section that is oriented so that all trajectories pass
through it. The dots on the plane indicate the locations where the trajectory

pierces the surface.
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chaotic
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of the system

k generate
feedback
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Figure 2.12: Closed loop feedback control scheme

24
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X

Figure 2.13: A segment of a trajectory in a three-dimensional phase space
and a possible surface of section through which the trajectory passes. Some
control algorithms only require knowledge of the coordinates where the tra-

jectory pierces the surface, indicated by the dots
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In the OGY control algorithm, the size of the adjustments is proportional
to the difference between the current and desired states of the system. Specif-
ically, consider a system whose dynamics on a surface of section is governed
by the m-dimensional map z;.; = F' (z;, p;), where z; is its location on the ith
piercing of the surface and p; is the value of an externally accessible control
parameter that can be adjusted about a nominal value py. The map F' is a
nonlinear vector function that transforms a point on the plane with position
vector z; to a new point with position vector z;;;. Feedback control of the
desired UPO (characterized by the location z.(pg) of its piercing through
the section) is achieved by adjusting the accessible parameter by an amount
dpi = pi — Po = —yn X [z; — z«(po)] on each piercing of the section when z;
is in a small neighborhood of z.(py), where v is the feedback gain and n is a
m-dimensional unit vector that is directed along the measurement direction.
The location of the unstable fixed-point z,(po) must be determined before
control is initiated; fortunately, it can be determined from experimental ob-
servations of z; in the absence of control (a learning phase). The feedback
gain v and the measurement direction n necessary to obtain control is deter-
mined from the local linear dynamics of the system about z.(po) using the
standard techniques of modern control engineering ( [24, 1]), and it is chosen
so that the adjustments dp; force the system onto the local stable manifold
of the fixed point on the next piercing of the section. Successive iterations of
the map in the presence of control direct the system to z,(po). It is important
to note that dp; vanishes when the system is stabilized; the control only has

to counteract the destabilizing effects of noise.



Chapter 3

Dufting Oscillators

The Duffing oscillator is one of the prototype systems of nonlinear dynamics
and was successfully explored to model a variety of physical processes such
as stiffening strings, beam buckling, nonlinear electronic circuits, supercon-
ducting Josephson parametric amplifiers, and ionization waves in plasmas,
as well as biological processes [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. This model
was first introduced to understand forced vibrations of industrial machinery
by the German electrical engineer Duffing in 1918 [5].

The Duffing equation is

Loy qde 42y + Ba® = f(t),a > 0; f(t) = fsinwt (or fcoswt)

can be thought of as the equation of motion for a particle of unit mass in
the potential well

V(z) = lwia? + Eat

subjected to a viscous drag force of strength a and driven by an external

periodic signal of period T = (%’r) and strength f. However we can distinguish

27
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three types of potential wells of physical relevance here:

(i) w3 < 0,8 > 0: A double-well with potential minima at z = £y (%‘%')
and a local maximum at z = 0.

(ii) w3 > 0,8 > 0 : A single-well with potential minima at the equilibrium
point at z = 0.

(ili) w? > 0,8 < 0 : a double-hump potential well with a local minimum
at and maxima at z = :i:\z/@ :

Each one of the above three cases has become a classic model to describe
inherently nonlinear phenomenon, exhibiting a rich and baffling variety of
regular (periodic) and complex (chaotic) motions which can coexist or exist

in neighboring parameter regimes. In this thesis we only have discussed the

first case.

3.1 Synchronization of Coupled Oscillators Sys-
tem

In the last years, synchronization of coupled oscillatory systems is attracted
a great attention in almost all areas of natural sciences, engineering and so-
cial life. The main reason of such interest is important practical applications
which include communications, modelling brain and cardiac rhythm activity,
earthquake dynamics, etc. (see, e.g., [4] and references therein). Different
types of synchronization, complete [25], phase [26], lag [27], generalized [28],

intermittent lag [27], and almost synchronization [29], have been identified.
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Moreover, an intriguing synchronization phenomenon, known as oscillation
death (or quenching), which deals with the absence of oscillations for the
coupled system while each subsystem oscillates when isolated, has been ob-
tained theoretically [30, 31, 32] and demonstrated experimentally in chemical
[33] and optical systems [34].

Considering a system of two coupled subsystems: x = f(x,y;A) and
y = g(z,y; B), where x and y are phase-space variables, A and B are sets
of parameters, and f and g are the corresponding nonlinear velocity fields,
one supposes that these subsystems are generally synchronized when y(t) =
h[x(t)], where h represents a functional relation between = and y [28]. When
h = const, one deals with the phenomenon of oscillation death, that can
originate either from a strong coupling that creates a saddle-node pair of
fixed points on the limit cycle [35] or from time delay in the coupling that
initiates a Hopf bifurcation in which the oscillators pull each other off their
limit cycles and collapse to a steady state [36]. Thus, the oscillation death is
a particular case of synchronization when all variables become independent
on time. It should be noted that the death effect has been discovered even
in the middle of the 19th century by William Strutt [37], long before there
was any theory to explain it. He observed that two organ-pipes of the same
pitch, when they stand side by side, may almost reduce one another to silence.
The same effect can appear in two electronic generators, like those used by
Appleton [38], coupled via a resistor. The additional energy loss due to the
current through this resistor may not be compensated by the supply of energy

from the source, and as a result the oscillations die out. All previous studies



CHAPTER 3. DUFFING OSCILLATORS 30

of autonomous (self-oscillatory) systems have demonstrated that oscillation
death can occur only in two cases: (i) if the coupling between oscillators
is sufficiently strong and when the natural frequencies of the oscillators are
sufficiently separated or (ii) if there exists time delay in coupling even when
the frequency mismatch between the oscillators is zero. However, a study of
synchronization phenomena in nonautonomous (periodic forced) systems has
received little attention. It was even thought that oscillation death has no

analogy in the case of periodic forcing and direct coupling [4].

3.2 Dynamics Two Coupled Duffing Oscilla-

tors With Parametric Modulation

The purpose of this part of work is to study the change of dynamic behavior
in a nonautonomous system. In which oscillations appear only either a sys-
tem variable or a parameter in one of the coupled subsystems is modulated,
while without modulation the system stays in a steady state. Coupled sys-
tems using strictly dissipative externally driven oscillators have been investi-
gated in the literature less intensely than self-excited models. For example,
Kapitaniak [39] studied the transition to hyperchaos for a system of coupled
Duffing oscillators, and Landa and Rosenblum [40] investigated synchroniza-
tion phenomena for different types of coupled systems. Furthermore, the
structure of local bifurcations in the parameter space of two coupled periodi-

cally driven Duffing oscillators was studied by Kozlowski et al. [41], and later
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Yin et al. [42] considered the effect of phase difference in mutually coupled
chaotic oscillators. Recently, Raj et al. [43] investigated coexisting attractors
and synchronization of chaos in two coupled Duffing oscillators with driving
forces. However, in all above-mentioned works the external driving force was
applied to the variable of one or both oscillators. Nevertheless, in many real
experiments it is more convenient to modulate a system parameter rather
than a variable. Parametrically modulated systems are commonly used in
many practical applications, in particular, in communications.

The principal difference in studying dynamics of autonomous and nonau-
tonomous systems is that in the latter system two additional parameters (in
addition to coupling strength) can be controllable. These are the amplitude
and frequency of the external modulation. By manipulating these two pa-
rameters one can control positions of critical points [44, 45, 46, 47, 48]. In
the parametrically modulated system one of the parameters, say a (a € A),
is a function of time, i.e., a = (t) while the other parameters can be con-
stant, and therefore, the subsystems are not completely identical, i.e. f # g.
Nevertheless, we may consider the subsystems to be almost identical when
averaged in time parameters are the same, i.e., (A) = B, where (A) is the
averaged in time set of parameters. In this chapter we show that in such a
system the oscillation death can exist even in the almost identical subsys-
tems, when the amplitude and frequency of the parametric excitation are
sufficiently large and that the above conditions for the death are not neces-
sary to be fulfilled. We present detailed numerical estimates of the parameter

space in the coupling strength, modulation amplitude and frequency where
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the death occurs. The boundary values of the modulation parameters for
the death are very important characteristics of a parametrically modulated
system because these values indicate the dead region for information trans-
mission by such a system.

The analysis is carried out on an example of two coupled Duffing oscil-
lators. First, we search analytically for steady-state solutions of the system
without modulation. Then we find numerically all solutions of the whole sys-
tem with parametric excitation for different coupling strengths, modulation
amplitudes and frequencies. This allows us to reveal the relation with the
coupling effects on the Hopf bifurcation of the whole system and on crisis of

coexisting attractors.

3.2.1 Analytical Solutions.

3.2.2 General Equations.

Dynamics of two identical nonlinear oscillators is governed by the equation,

v (x)

== (3.1)

X+yx = —

where © = (z,y), 7 is a damping factor, and V(x) is a two-dimensional non-
harmonic potential function of coupled oscillators. The potential functions

for symmetric Duffing oscillators can be expressed as follows:
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b 1)

Viz,y) = %mz + Zm4 + §m2y2, (3.2)
a b 1)

Viy,z) = §0y2 + Zy“ + §w2y2, (3.3)

where a, ag and b are parameters and 0 is a coupling coefficient. The system
of Egs. (3.1-3.3) has only steady state solutions. To observe oscillation, we

make the system adding the external modulation in the following form

a = ao[l —msin(2wft)], (3.4)

where m and f are the modulation depth and frequency. Here we consider
only the case of a double-well potential, i.e. ay < 0, with positive b (b >
0). This case is more interesting for modelling a real experiment for signal
transmission, because the oscillators have nonzero stable equilibrium points
as distinct from a single-well case.

Equation (3.1) with parametric modulation Eq. (3.4) has steady state and
oscillatory solutions. Since the equilibrium becomes stable at the onset of
oscillation death, conditions for this phenomenon can usually be obtained by
a linear stability analysis of equilibrium points. On the other hand, nonlinear
techniques are better suited for obtaining more global results and details of
dynamical behavior. First, we find steady state solutions analytically in

linear approximation for nonmodulated case.
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3.2.3 Nonmodulated Case.

Consider first the system Eqgs. (3.1-3.4) without parametric excitation (m = 0
and a = ap). It is convenient to replace Egs. (3.1-3.3) by a system of
first-order differential equations by introducing four new variables: x; = =,

Ty =1, 13 =%, 14 = y. Then Eqgs. (3.1-3.3) become

T = @y, (3.5)
Ty = —yTy — ar — bri — dxi73, (3.6)
T3 = Iy, (3.7)
Ty = —yx4— axs—bri — 0xiws. (3.8)

In the system Egs. (3.5-3.8) when iy = &9 = @3 = 24 = 0, We found nine
fixed points, which are Q; = (T1,7T2,73,74), (i = 1,...,9): Q1(0,0,0,0),
@Q2,3(0,0,+/—%,0), Qus5(£+/—1%,0,0,0),

QG_Q(:i:\/%,O, +/—55:0)-

The stability of the fixed points (steady states) in given by eigenvalues of

the Jacobian matrix,

_ 0 1 0 0 ]
S —a — 30z — 012 —v —20T1 T3 0
0 0 0 1
—20T173 0 —a—3b7} 0675 —v
For simplicit}; we consider the case of v = 04, a = ag :_—0.25, and

b = 0.5. The three-dimensional potential function V'(z,y) at fixed coupling
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Figure 3.1: Double-Well potential function Eqn (3.2)

strength 6 = 0.5 is shown in Fig. 3.1. For two-dimensional double-well
potential of the subsystem described by Eq. (3.2) there exist a saddle equi-
librium point at 2" = 0 and a conjugate pair of stable equilibrium points at
¥ = :I:\/W . The positions of stable points x* depend on the coupling
strength as shown in Fig. 3.2. For the potential function Eq. (3.3) of an-
other subsystem, the equilibrium points are at y* = 0 and y* = £1/0.5 — 022
(super indices u and s denote, respectively, to unstable and stable solution).
For our parameters, point (); is a saddle and points (J»_5 are sinks for any
value of § > 0, while the stability of the other four solutions, (Js_o, depends

on 0: they are sinks for 6 < 0.5 and saddles for 6 > 0.5.
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Figure 3.2: Position of stable points x* versus coupled strenth ¢ and variable

Y.
3.2.4 Nonautonomous System.

In the presence of the parametric excitation Eq. (3.4) in one of the oscillators

(master oscillator Eq. (3.6), the system of Egs. (3.5-3.8) becomes

3::1 fr— gj27 (3.9
Ty = —yx9 — ap[l — msin(27ft)|zy — ba? — dxy23, (3.10
Zs = 1 (3.11

Ty = —yr4— apws — br — dxixs. (3.12

The system Egs. (3.9-3.12) exhibits a wide range of dynamical regimes
ranging from steady states to periodic and chaotic oscillations and represents

different types of synchronization
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3.2.5 Codimensional-one Bifurcation Diagrams.

The typical bifurcation diagrams of peak amplitudes of the master (X;) and
slave (Y3) oscillators with f as a control parameter for different § and m are
shown respectively in Figs. 3.3 and 3.4. The general information analysis
of the results performed on the basis of the consideration of the bifurcation
diagrams and time series allows us to reveal the following possible situa-
tions which can be awaited from a system of two coupled oscillators with

parametric driving.

(i) When the coupling and modulation frequency are sufficiently small
(0 £ 0.1 and m < 0.1), the bifurcation diagram of each subsystem has a
standard shape of a linear response (Fig. 3.3(a)). As known, a system of
two coupled oscillators has two resonance (natural) frequencies and at small
0 these resonances are almost coincide.

(ii) With increasing ¢ the response becomes nonlinear and the resonances
are shifted to the high-frequency region and finally disappear at 6 ~ 0.5
(Figs. 3.3(b) and (c)). However, for § < 0.5 both subsystems oscillate in a
periodic regime with the period equal to the period of the modulation (period
one) over all frequency range.

(iii) A further increase in ¢ leads to the appearance of multiple periodic
attractors and death states, i.e., steady state solutions, which does not de-
pend on either f or § (Figs. 3.3(d) and 3.4). These steady state solutions
correspond to the stable equilibrium points in the three-dimensional double-

well potential (Fig. 3.1). At certain parameters the death state coexists
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with periodic or chaotic regimes. Thus, the whole system may be either os-
cillating or dead depending on its previous history. The coexistence of states
in the death phenomena has been also detected in coupled autonomous os-
cillators (self-modulated) [30, 31, 34]. One can see that, as distinct from
autonomous systems, where oscillation death is possible only for strong cou-
plings, in the parametrically modulated system this effect may occur also
for relatively weak couplings, when m and f are relatively high (see Fig.
3.4(a)). The death state appears in the Hopf bifurcation (HB) (at f ~ 0.17
in Fig. 3.4(a)) where the oscillators pull each other off their limit cycles and
collapse to steady states. In Fig. 3.4(a) the periodic attractors coexist with
the steady state for f > 0.17 (partial death).

(iv) At high ¢ all periodic and chaotic attractors undergo boundary crisis
and disappear and only the death state remains (pure death). This situation
is illustrated in Figs. 3.4(b)-(d). The frequency range for the pure death is
located between the HB and crisis points. For example, in Fig. 3.4(b) this
regime is observed between the crisis point at f ~ 0.06 and the HB point at
f =~ 0.09, in Fig. 3.4(c) for f > 0.07 (after the HB), and in Fig. 3.4(d) for
f < 0.15 (before crisis).

3.2.6 Codimensional-two Bifurcation Diagrams.

The codimensional-two bifurcation diagrams in (m, ) parameter space for
different modulation frequencies are shown in Fig. 3.5(a). For low modu-

lation frequencies (f — 0) the HB line (H) approaches to a straight line
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going from 0 = 0.5 at m = 0 to 6 = 0 at m = 1. This line coincides with
a saddle-node bifurcation line for steady state solutions of Egs. (3.9-3.12)
in linear approximation [49]. A faster modulation changes the stability of
periodic solutions by shifting the critical points [44, 45, 46]. With increasing
f from 0 to oo, the H line grows to 0 = 0.5. Above this line the steady state
solutions, responsible for the death state, coexist for certain parameters with
the periodic solutions. We should note that for some frequencies (f < 0.1)
the second HB line appears where the steady state solutions change their
stability (for example, Ha(f = 0.05) in Fig. 3.5(a)). Thus, there exists the
parameter range bounded by this HB line (dashed region) where the death

state is absent.

It is known that coexisting attractors can be destroyed in boundary crisis.
Crisis phenomena in a single two-well forced Duffing oscillator were stud-
ied by Kao et al. [10]. Recently, is was shown that coexisting attractors
can undergo crisis and be annihilated in a parametrically modulated sys-
tem when the modulation frequency is close to the frequency of relaxation
oscillations (imaginary part of corresponding eigenvalues) of the associated
attractor [50, 51]. This means that only the steady state solutions remain sta-
ble, while the other (periodic) solutions become unstable. In Fig. 3.5 we plot
the crisis lines for two modulation frequencies, C'(f = 0.05) and C(f = 0.1).
Two crisis lines for the same frequency, C;(f = 0.1) and Cy(f = 0.1), corre-
spond to different coexisting attractors, each of which has its own relaxation

oscillation frequency. Between C' and H lines only the steady state solutions
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Figure 3.5: Codimentional-two bifurcation diagrams in (m,d) parameter
space for different modulation frequencied f (a) H indicated the Hopf bifur-
cation lines,S is the Saddle node bifurcation, and C is crisis lines. No deth
occurs inside the deshed region bounded by line Hy. The dotted vertical lines
indicate the minimal modulation amplitude for crisis of attractor for corre-
spondig frequencies. (b) Enlarge region of Fig. 5(a) demostranding different

types of chaos at f = 0.1. OWC is one well chaos, HO is hopping oscillation
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are stable, i.e., no oscillatory solutions can be found at any initial conditions
(pure death). Thus, the HB and crisis points indicate the boundaries of the
pure death state in the parameter space. These boundaries are of fundamen-
tal importance in communications with parametrically modulated coupled
systems because they indicate the dead region for information transmission
by such systems.

Chaotic oscillations are observed for high modulation amplitudes (m >
0.75). The bifurcation lines bounded different chaotic regimes are shown
in Figs. 3.5(b) in (m,d) parameter spaces. The regions of one-well chaos
(OWC), cross-well chaos (CWC), and hopping oscillations (periodic windows)

can be distinguished.

3.2.7 Chaos Synchronization

In the coupled oscillators with modulated parameter all periodical regimes
are completely synchronized with the frequency of the external modulation.
The lag in pulses of the master and slave oscillators depends on ¢, m, and f.
In this section we pay our attention on the most interesting case: synchro-

nization of chaos.

3.2.8 Phase Synchronization

Figures 3.6 and 3.7 show time series (a,b), amplitude (c), and phase correla-
tions (d) for two types of chaos: one-well chaos (Fig. 3.6) and cross-well chaos

(Fig. 3.7). To examine the phase correlation, the time of the nth peak (71)
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for the master oscillator x; is plotted against that (75) for the slave oscillator
r3. As seen from the figures in both cases the phases are locked (straight
lines in Figs. 3.6(d) and 3.7(d)), while the amplitudes remain noncorrelated
and sustain an irregular motion of their own (Figs. 3.6(c) and 3.7(c)). Thus,
the chaotic oscillations in the coupled oscillators with parametric modulation

are always synchronized with the phase of the external driving force.

3.3 Intermittent Lag Synchronization in a Two
Coupled Duffing Oscillators with Para-
metric Modulation.

It is known, that in chaotic autonomous nonidentical oscillators, a symmet-
ric coupling can lead to phase synchronization [26]. This regime is charac-
terized by a perfect locking of the phases of the two signals, whereas the
two chaotic amplitudes remain uncorrelated. Lag synchronization consists of
hooking one system to the output of the other shifted in time of a lag time
Tlag [51(t) = s2(t — Tiag)] [27]. Recently, Boccaletti and Valladares [52] char-
acterized intermittent lag synchronization of two nonidentical symmetrically
coupled Rosler systems. They observed intermittent bursts away from the
lag synchronization and described this phenomenon in terms of the existence
of a set of lag times 77, ,(n = 1,2,...), such that the system always verifies

s1(t) =~ sa(t—7j,,) for a given n. In this work we study a similar phenomenon
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Figure 3.6: Phase synchonization of one-well chaos. (a,b) Time serien master
(1) and slave (z3) oscillators, (¢) 1 — 3 plot showing that the amplitude
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Figure 3.7: Phase synchronization of cross-well chaos § = 0.1, f = 0.101,m =

0.8
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in a nonautonomous system with parametric modulation. As distinct from a
self-oscillatory system, all oscillations in a parametrically modulated system
are the forced oscillations induced and driven by an external periodic forcing
and hence they are always phase-locked with the forcing, even when the os-
cillators are identical (see, for example, [53]). In this work we will show that
at certain conditions the regime of intermittent lag synchronization appears
in the nonautonomous system of the coupled oscillators. Similarly to [52],
this regime can be considered as the intermittent behavior between phase
synchronization and lag synchronization.

For stability analysis, it is convenient to transform the nonautonomous
systems Egs. (3.9-3.12) to the autonomous one by adding one degree of

freedom

T = @y, (3.13)
Ty = —vTy — ao[l — msinxs|r; — brl — 123, (3.14)
T3 = @4, (3.15)
Ty = —yT4— agrz — brd — drixs, (3.16)

(3.17)

3.17

Ty = W.

The system Egs. (3.13-3.17) in vector notation can be written in the form

X =U(X;p), (3.18)
where X = [x1, 25, T3, 24, ¥5)' is the state-space vector ([...]! being transpose),

U = [1)y, 1, 15,14, 15]" is the function space, and p = (v, ag, b, d, m,w) is an
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element of the parameter space. This system generates a flow & = {CIDT} on
the phase space R* x S and S! = R/T is the circle of length T' = 27 /w.

The frequency f = w/27 and the amplitude m of the parametric modu-
lation are used as control parameters in the bifurcation diagrams that will
be presented in the following. Due to the symmetric potential of both os-
cillators, the coupled system Eqgs. (3.13-3.17) possesses the same symmetry
properties as a single Duffing oscillator [54], i.e., it is symmetric since the
transformation S : (z1, za, x3, T4, T5)— (—1, —T2, —T3, —T4, x5 + 7) leaves
Egs. (3.13-3.17) invariant. Therefore, this system can support symmetric
orbits and also asymmetric ones which are not invariant with the trans-
formation S. Saddle-node, period-doubling, Hopf, and symmetry-breaking
bifurcations occur in the coupled system Eqs. (3.13-3.17). We use a pertur-
bation analysis to analyze solution stability in the Poincaré section defined
by ¥ = {(z1, T2, 3, 24, 75) € R* x S! : 15 = const}.

The equations for small deviation §X from the trajectory X (¢) are

§X = Li; (X(1)0X,  i,j=1,2,..,5, (3.19)

where L;; = 0V¥,;/0x; is the Jacobian 5 x 5 matrix of derivatives. Equation

(3.19) for system Egs. (3.13-3.17) becomes:
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0xy 0 1 0 0 O 0xq
STy Agr —v Ass 0 Aas 0xo
drs | =] 0 0 O 1 0 0xs3
04 Ay 0 Ay —v 0O 01y
o5 0O 0 0 0 0 o5
) ) ) - ) (3.20)
where Ay = —ag + agmsin xs — 3bx? — dw3%, Aoz = —2crq13, A9y =
agmxy cos Ty, Ay = —2cx173, Ass = —ag — 3bx3® — 0x12

When using the unit matrix I as the initial condition Xy = I, the resulting
solution X (T") after one period T of the oscillation represents the linearized

Poincaré map P. The solution of Eq. (3.19) can be found in the form

X(t) = Xoexp[tLy (X(0))], (3.21)

where the time-independent matrix L;;(X(0)) and the matrix X, contains
the initial conditions. Let u, = A\, + € (k = 1,2, 3,4) be the eigenvalues of
the matrix L;;(X(0)). Then the eigenvalues of the linearized Poincaré map

P may be written as

pp = e = el [cos(TQy,) + i sin(T€,)). (3.22)

Globally, if all Ay < 0, then these eigenvalues spiral into the origin of the
complex plane when the modulation frequency w is decreased, i.e., all suffi-

ciently small perturbations tend towards zero as t — oo and the steady state
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(nodes, saddle nodes, spiral) is stable. For larger values of the modulation
amplitude m, the influence of the nonlinearity becomes more important and
the eigenvalues move towards the critical value +1 (saddle-node bifurcation)
or -1 (period-doubling bifurcation). In the case of the coupled Duffing oscil-
lators Egs. (3.13-3.17) the symmetry of their potentials (Fig. 3.1) implies
the existence of a root P = —H of the Poincaré map P = PP = (—H)?,
where the map H is obtained by integrating the variables of the Poincaré
map over half a period of the oscillation [41].

Although the two oscillators are almost identical, the origin of the lag in
their oscillations is the same as in the case of nonidentical autonomous oscil-
lators [27, 52|, namely, a mismatch of their nonlinear resonance frequencies,
that appears due to the nonlinear coupling and because the modulation is
applied only to the master oscillator.

In this paper we are interested in chaotic regimes. Chaotic oscillations are
observed for relatively high modulation amplitudes (m > 0.75) and low cou-
plings (§ < 0.25). In Fig. 3.8 we present the codimensional-two bifurcation
diagrams in the (m, f) parameter space. In the figure we plot the saddle-
node bifurcation lines which bound different dynamical regimes: periodic
orbits (PO), one-well chaos (OWC), cross-well chaos (CWC), and hopping

oscillations (HO) (periodic windows).

In our system all oscillations are excited by external periodic modulation
and hence they are always phase-locked with the forcing. When the sys-

tem oscillates in a periodic regime, the state variables of the two subsystems



CHAPTER 3. DUFFING OSCILLATORS 51

0.90 -

£ 0.85-

0.80 1

0.75

Figure 3.8: Codimentional-two bifurcation diagram in parameter space of
modulation frequency f and depth for ¢ = 0.1.Intermittent lag synchroniza-
tion occurs in the vecinity of the saddle-node bifurcation lines which bound
different dynamic regimen: one-well chaon (0OWC), cross-well chaos (CWC),
hopping oscillations (HO), and periodic orbits (PO). The dots indicated the
parameter for which the regimen of period-1 ILS (P1) and period-2 ILS (P2)
are observed (see Figs 3.9 and 3.10 )



CHAPTER 3. DUFFING OSCILLATORS 52

are shifted in time, i.e. lag synchronization takes place. Within very nar-
row parameter range, close to the saddle-node bifurcations, short periodic
windows are observed in time, where system jumps from chaos to local pe-
riodicity (Figs. 3.9 and 3.10). During these jumps, the chaotic trajectory
visits closely a periodic orbit. We identify this phenomenon with intermit-
tent lag synchronization (ILS). Two kinds of ILS are seen in Figs. 3.9 and
3.10: one-state period-1 (P1) ILS (Fig. 3.9) and cross-state period-2 (P2)
ILS (Fig. 3.10). In the former case, the z;-trajectory jumps intermittently
from cross-well chaos to the small P1 orbit around each of the potential wells
and back, whereas in the latter case, the trajectory jumps from cross-well
chaos to the large P2 orbit oscillating between the two wells. Figures 3.9(b)
and 3.10(b) display the enlarged parts of the time series where lag synchro-
nization is observed. The modulation parameters for the regimes shown in
Figs. 3.9 and 3.10 are indicated in Fig. 3.8 by the dots. These dots lie
on the saddle-node bifurcation lines which bound respectively the one-well
and cross-well chaotic regimes and the regimes of hopping oscillations and
cross-well chaos.

Rosenblum et al. [27] proposed to describe the occurrence of ILS as
a situation where during some periods of time the system verifies A =
|z3 (t) —x1 (t — 7)| < 1 (7 being a lag time), but where bursts of local non-
synchronous behavior may occur. This phenomenon was identified with on-
off intermittency [55] and the bursts from lag synchronization was found to
result from the small, but negative value of the second global Lyapunov ex-

ponent of the system, so that the trajectory visits attractor regions where the
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Figure 3.9: One-state period-1 intermittent lag synchronization of cross-well
chaos (small orbit synchronization). (a) Time series of master (z;) and slave
(x3) oscillators, (b) enlarged part of (a) demostrating synchronous windows

of periodicity in one states. 6 = 0.1, f =0.107,m = 0.8
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Figure 3.10: Two state period-2 of intermittent lag synchronization of cross-
well chaos (large orbit synchronization). (a) Time series of master (z;) and
slave (z3) oscillators, (b) enlarged part of (a) demostranting synchronous

windows of periodicity in one of the states. 6 = 0.1, f = 0.087,m = 0.8
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local Lyapunov exponent is still positive. In the case of periodically driven

systems, this condition should be modified to be

A=zg(t)— <a3(t) > —nlz (t—7) — (x1 (1)]| <1, (3.23)

where 7 is a proportional coefficient between the alternative amplitudes of
the variables in the synchronous regime, 1 = (:cgnax — :cgnin) / (m?‘a" — m?in).
The proportionality coefficient 7 is introduced because the modulation is
applied only to the master oscillator (X;), and hence the response of the
slave oscillator (X3) is smaller than that master system. Due to the above
reason the averages of the two signals are different and hence they also should
be normalized. As distinct from a (self-oscillatory) system, in our system the
chaotic oscillations of the two variables z; (t) and x5 (t) are always phase
synchronized. Therefore, the intermittent jumps from chaos to the windows
of periodicity can be considered as the intermittent behavior from phase to
lag synchronous regimes. Of course, the criterion Eq. (3.23) can be used
only for characterization of the simplest case of P1 ILS (Fig. 3.9). For
higher periodic regimes (P2, P3,...) of ILS, the shapes of the oscillations
in the periodic windows are different for two oscillators, and hence more
complex relation is required. The temporal behavior of Ag(7o = 116) for the
case of P1 ILS is shown in Fig. 3.11(a).

Similarly to Rosenblum et al. [27], we may characterize lag synchroniza-
tion by the similarity function S(7), defined as the time averaged difference

A, conveniently normalized to the geometrical average of the two mean sig-
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nals

(A?)
(a3 (1)) a3 ()]

and search for its global minimum ¢ = min, S (7), for 79 # 0. The de-

S%(1) =

(3.24)

pendence of the similarity function on the lag time shown in Fig. 3.11(b)
resembles the similar dependence reported previously by Boccaletti and Val-
ladares [52] for Rossler systems. Looking at Fig. 3.11(b), one can see that,
besides a global minimum at 7o = 116, S (7) displays many other local min-
ima at smaller and larger lag times 7,, (n = 1,2,3,...). This means that the
system Egs. (3.13-3.16), besides being lag synchronized during some peri-
ods of time with respect to the global minimum 74, occasionally visits closely
other lag configurations corresponding to the condition Eq. (3.23). The deep
of the nth local minimum is closely related to the fraction of time that the
corresponding lag configuration is closely visited by the system. The differ-
ent lag times 7, can be expressed by the relation 7,, ~ 79 + nT’, where 7' is
the period of external modulation or the return time of the limit cycle onto
the Poincaré section. The nonharmonicity in function S (7) results from the
nonharmonicity of the periodic oscillations due to the high nonlinearity of

the system.
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Figure 3.11: (a) Times series of Ag(7 = 116) in period-1 intermittent lag syn-

chronization regime. The windows with A =~ 0 are see as the low-dimensional

“lag synchronization” attractor. (b) Similarity function S(7) vs lag time 7.
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3.4 Conclusions

We have studied synchronization properties of two mutually coupled oscilla-
tors with parametric modulation in one of them. Chaos in such a system is
always synchronized in phase with the external modulation. We have demon-
strated the oscillation death phenomenon in this system. As distinct from a
(self-oscillatory) system, the death can occur in almost identical oscillators
without any delay in coupling. Detailed numerical estimates of the param-
eter space in the coupling strength, modulation amplitude, and frequency
where the death occurs have been presented. The death can be either partial
or pure. In the partial death state, oscillatory (periodic or chaotic) solutions
coexist with the death state, whereas in the pure death state there are no os-
cillations at all and both subsystems have stable steady state solutions which
are independent on the modulation parameters (amplitude and frequency)
nor on the coupling strength. In this regime there exit only zero solution for
the master oscillator and two nonzero solutions (fixed points) corresponding
to the potential wells for the slave oscillator.

The conditions for oscillation death have been revealed. There are three
important mechanisms responsible for the pure death state: (i) the Hopf
bifurcation in which the death state appears, (ii) the shift of the bifurca-
tion points due to parametric modulation, and (iii) attractor annihilation in
boundary crisis. The Hopf bifurcation of the whole system indicates the low
boundary in coupling for the death state. This boundary is shifted to larger

coupling strengths when the modulation frequency is increased. At relatively
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large couplings (§ > 0.5) the chaotic solutions can undergo crisis and disap-
pear when the modulation frequency approaches the frequency of relaxation
oscillations of the associated attractor. The crisis point indicates the upper
boundary in coupling for the pure death state. The knowledge of boundary
conditions for the death of oscillations is very important in communications
with parametrically modulated systems because these boundaries indicate
the region in the parameter space where information can be lost while trans-
mitting. Recently, oscillation death has been found out numerically in a
loss-modulated COs laser with two coupled cavities [56].

We have found synchronous states, which we identified with intermittent
lag synchronization in two coupled parametrically driven chaotic oscillators.
In the intermittent states, the system during its temporal evolution occasion-
ally changes the behavior from phase synchronization to lag synchronization.
The regime of intermittent lag synchronization appear in the narrow param-
eter range in the vicinity of saddle-node bifurcations. We believe that the
main features of the synchronization phenomena observed in the coupled
Duffing oscillators have to be expected for a wide class of coupled dissipative

driven system and may be found in experiments.
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On-0Off Intermittence

4.1 On-Off Intermittency in Two Coupled Duff-
ing Oscillators With Parametric and Stochas-
tic Driving

Intermittency occurs when the behavior of the system switches back and
forth intermittently between apparently regular behavior and chaotic behav-
ior. The intermittency appears to occur randomly even though the system
is described by deterministic equations. In the intermittency regime, the
behavior of the system is periodic or steady state for some control parameter
value with occasional bursts to chaotic. As the control parameter is changed,
the time spent the system being chaotic increases and the time spent being
periodic decreases until, eventually, the behavior is chaotic all time. As the

control parameter is changed in the other direction, the time spent being pe-

60
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riodic increases until at some value critical, call it A, the behavior is periodic
all the time.

Coexisting attractors and intermittency are common complex phenomena
observed in many nonlinear dynamical systems. The intermittency route
to chaos may be observed in a dynamical system when a control parameter
passes through a critical value. The intermittent behavior is characterized by
irregular bursts (turbulent phases) interrupting the nearly regular (laminar)
phases. Different types of intermittency have been observed and classified
into type I, type II, and type III of Pomeau-Manneville intermittency [57],
on-off [55], and crisis-induced intermittency [58]. The type of intermittency
can be distinguished by the behavior of the Floquet multiplier for a Poincare
map, depends on the type of bifurcation at the critical point.

Type I intermittency. The Floquet multiplier crosses the unit circle
along the real axis at +1. This leads to irregular by occurring bursts of
periodic and chaotic behavior. However, during these bursts, the amplitude
of the motion are stable. This intermittency is called stable intermittency
or tangent bifurcation intermittency since the bifurcation event is a tangent
bifurcation or saddle node bifurcation.

Type II intermittency. If the Floquet multiplier forms a complex con-
jugate pair, then the imaginary part indicates the presence of the second
frequency in the behavior of the system ( the first frequency corresponds
to the original limit cycle, which disappears at the bifurcation event). At
the bifurcation event, the limit cycle associated with the second frequency

becomes unstable and we observe bursts of two-frequency behavior mixed
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with intervals of chaotic behavior. Thus, type II intermittence is a type of
Hopf bifurcation.

Type III intermittency. If the Floquet multiplier is negative and be-
come more negative than —1, then a type of period-doubling bifurcation take
place. The amplitude of the subharmonic behavior created at the bifurca-
tion point grows, while the amplitude of motion associated with the original
period decreases. This periodic behavior, however, is interrupted by bursts
of chaotic behavior. Hence, this is period-doubling intermittency since the
Floquet multipliers change as they do for period doubling, but after the bi-
furcation event, the period-double behavior is unstable.

On-off intermittency is associated with saddle-node bifurcations, and
the crisis-induced intermittency is associated with crisis of chaotic at-
tractors when two (or more) chaotic attractors simultaneously collide with a
periodic orbit (or orbits) [59].

On-off intermittency differs from other types of intermittency because
it requires a dynamical time-dependent forcing of a bifurcation parameter
through a bifurcation point [60], whereas for other types of intermittency the
parameters are fixed. Therefore, this type of intermittency is often called
modulational intermittency [61]. In on-off intermittency one or more dynam-
ical variables of the system exhibit two distinct states as the system evolves
in time. In the “off” state the variables remain approximately constant in
various time intervals. These periods are called laminar phases. The “on”
states are characterized by irregular bursts (turbulent phase) of the variables

away from their constant values.
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The effect of on-off intermittency has been investigated in one-dimensional
maps coupled to either random or chaotic signals [60, 62], in a forced logistic
map whose control parameter fluctuates either chaotically or stochastically
[63] and in periodically forced coupled Duffing oscillators [64, 65]. Like the
other types, on-off intermittency is characterized by fundamental statistical
properties with typical power-law scalings near the onset of intermittency:
(i) for the mean laminar phase as a function of the coupling parameter with
a critical exponent of -1 [62], and (ii) for the probability distribution of the
laminar phase versus the laminar length with exponent -3/2 [62]. The on-
off intermittency has been also detected experimentally in electronic circuits
[66], in a gas discharge plasma [67], in a spin wave system [68], in nematic
liquid crystals [69], and in a laser [70]. In the case of periodically driven
systems, the same critical exponent of -1 for the mean laminar phase has
been found in laser experiments as a function of both the amplitude and

frequency of the parametric modulation near the onset of intermittency [70]

4.2 Coexisting Attractors and On-Off Inter-
mittency in Duffing Oscillators.

In this chapter we study on-off intermittency in a modulated system. On-
off intermittence in such a system appear when either a system variable or
a parameter of the coupled subsystem is driven either randomly or chaoti-

cally [71], or it requires a dynamical-time dependent forcing of a bifurcation
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parameter through a bifurcation point|72], while without modulation, the
system stays in a steady state or periodic state. In a system with externally
of driven dynamic time-dependent forcing has been investigated by Yoshihiko
et al [71], they reported two-stated on-off intermittency. They also studied
two-dimensional map with randomly driven variable, and found one -stated
on-off intermittency. Experimental observation of on-off intermittence was
reported by Philip W., Hammer et al who observed one-state on off intermit-
tence in a tuned nonlinear electronic circuit [72].The noise effects also was
taken into account. Recently A. Pisarchik and V. Pinto [73] have observed
experimentally on-off intermittence in a diode laser with an external cavity
experimentally. The control parameter was the length of the external cavity
that was periodically modulated.

In all above works mentioned , the system has been driven randomly or
chaotically or the external modulation was applied to one of the system vari-
able [71, 72]. Moreover, in an experimental position it is more convenient
to modulate a system parameter. Parametrically modulated systems are
commonly used in many practical applications, and in particular, in commu-
nication.

In this chapter we show that in such systems multiple attractors may
coexist: one-state, two-state on off intermittence and limit cycles. When the
system is not modulated only steady state are observed . We also investigate
the influence of noise.

The analysis is carried out two coupled Duffing oscillators with additional

external noise. First we find numerically all solutions of the whole system
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with parametrical excitation for different amplitudes and frequencies of mod-
ulation. This allows us to identify the location of different attractors. Then
we build the basin of attraction of coexisting attractors for fixed values of the
modulation amplitude and frequency. Finally, we investigate to the system

without noise.

4.2.1 General Equations

Dynamics of two identical nonlinear oscillators with random driving can be

governed by the equation,

X+y%x—q€r = —VV(x), (4.1)

where x = (z,y), 7 is a damping factor, £ is uniformly distributed noise with
level of ¢ in the unit interval [0, 1],and V'(x) is a two-dimensional nonharmonic
potential function of coupled oscillators that for symmetric Duffing oscillators

can be expressed as follows [65]

V(z,y) = (1 -2+ (y* — a®)*(z — d) + b(y* — a®)", (4.2)

where a, d and b(> 0) are parameters. We assume that one of the coupled
subsystems (in the x direction) is randomly driven, i.e. noisy. The solution

of Eqn. (4.1) represents on-off intermittency and limit cycle.
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4.2.2 Time Series

The system Eqs. (4.1,4.2) can be written as four first-order differential equa-

tions in terms of dynamical variables x| = x, 9 = &, 3 = y, and x4 = ),

Ty = g, (4.3)
iy = —vywg+4x1(1 —27) — (23 — a®)® + g€y, (4.4)
iy = a4, (4.5)
iy = —yr4—4daz(z; — a®)(v; — d) — 8bxz(xf — a)®. (4.6)

The system Egs. (4.3-4.6) exhibits different dynamical regimes from regular
states to on-off intermittency in a wide range of parameter values [64]. For
simplicity we consider the case v = 0.04, a = 0.73, b = 0.008, and d = —1.8.
Due to the presence of two invariant subspaces at x3 = +a and x4 = 0, there
are two “off” states, i.e., the phenomenon referred to as two-state on-off
intermittency [65]. The two “off” states arise from two wells in the potential
V(z,y) on the y direction. The potential function V' (z,y) Eq. (4.2) at z =1
is shown in Fig.4.1, which indicates two potential wells at y = £0.73.

We choose a to be the parameter to which the control modulation is ap-

plied in the following form:

a = ap[l —msin(2wft)], (4.7)

where m and f are the modulation depth and frequency and aq is the initial

value of the parameter (ap = 0.73).
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Figure 4.1: The potential function V(x,y) Eq. 4.2 at x = 1, indicating two

wells at y = +a



CHAPTER 4. ON-OFF INTERMITTENCE 68

With Noise Without Modulation

The Figure. 4.2 shows the solution of the system Eqgs. (4.3-4.7) with noise
amplitude ¢ = 2.5 without modulation . In this figure we observe that
trajectory z3(t) is attracted to steady states in the vicinity of the invariant
subspace in x3 = +ag. one state and two state on off intermittency are only

in transients, Figs 4.2 (a)-4.2 (d).

With Noise and Modulation

The Fig.4.3 show the solutions of the system Eqgs. (4.3-4.7) with noise
amplitude ¢ = 2.5 and parametric modulation which frequency f = 0.001,
and m as control parameter. The time series display typical behavior of on-off
intermittency and periodic orbits. General information analysis of the results
performed on the basis of the time series allows us to reveal the following
possible situations which can be awaited from the system of Eqs. (4.3-4.7)

with parametric and random driving.

(i) two-state on off intermittence Fig 4.3(a). This behavior appears due to
the presence of two invariants subspaces, which occurs when the variable x5
complies with condition x5 = ag[l — msin(27 ft)] and z4 = 0, and therefore
the equations of motion Eqs. (4.3-4.7) become a set of equations that describe
a random (stochastic)-damped Duffing Oscillators [71, 74], in which chaos

occurs commonly.
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Figure 4.2: Steady states in the vecinity of the invariant subspace in; (a)
r3 = —ag. (b) x3 = ag. Noise ¢ = 2.5. One state and two state on-off

intermitency are observed only in transients.
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The phenomenon of two-stated on-off intermittency can be understood in
the context of two invariants subspaces. In randomly driven damped Duffing
oscillators, which possesses two invariants subspaces, a typical trajectory
spends a long time near one invariant subspace, is repelled away from this
subspace, then is possibly attracted to the other invariant subspace or the
same subspace, temporally spending a long stretch of time there, is repelled
away again, etc.

(ii) One-state on off intermittency Fig 4.3(b). Regular phase (laminar
phase) is interrupted by an irregular burst (turbulent phase), that is charac-
teristic of on off intermittency. This behavior result from the presence of the
invariant subspace. In our case the system of Eqs. (4.3-4.7) has an invariant
subspace in r3 = ag, in which there is a chaotic attractor. The trajectory
x3(t) spends a long time in the vicinity of the invariant subspace (off state),
is repelled away from the invariant subspace towards irregular burst or on
intermittence, then is attracted to the invariant subspace and spends a long
stretch of time there, is repelled away again,etc.

One-state on off intermittence, in the invariant subspace z3 = —aq is
shown Fig 4.3(c).

(iii) The Figs 4.3 (d-e) shows limit cycle, situated each one in the invariants
subspaces. In this case the control maintains to the trajectory z3(t) in the
vicinity of one of the invariant subspace.

The manipulation of the control parameters (modulation depth and fre-
quency) permits us to determine the location of different coexisting attrac-

tors. The Fig 4.4 we show the existence of two-state on-off intermittency,
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Figure 4.4: Two state on-off intermittency at f = 0.12 and m = 0.6.

and in Fig. 4.5 we demonstrate the coexistence of four attractors; two-state

on-off intermittence, one-state and two-state limit cycle.

These figures have been obtained when we fixed the parameter m and f
and changing the initial condition to find the solution of the system Egs.
(4.3-4.7).

(iv) For low modulation frequencies f and large amplitude m only the
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Figure 4.5: (a) Two state on-off intermittency. (b)-(c) One state periodic
orbit. (d) Two state periodic orbit. f = 0.7 and m = 0.099.
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regime of Two-state on off intermittency is observed in Fig.4.4. With increas-
ing of f and m, the duration of the laminar phase decreases and finally the
laminar phase disappears as a result the trajectory x3(t) oscillating between
of two invariant subspace in x3 = tag[l — msin(27ft)].

(v) For large f and small m we observe coexistence of four attractors;

two-state on off intermittence and one-well, cross-well periodic orbit Fig 4.5

4.2.3 Codimensional-Two Bifurcation Diagrams

The codimensional-two bifurcation diagram in (m, f) is shown in Fig.4.6. For
low modulation frequencies and amplitude we find the coexistence of five
attractors: two one-state on-off intermittence, two-state on-off intermittence
and two one-well period attractors. For very low values of m and f, the
duration of the laminar phase is large. The temporary series in this region
is shown in Fig. 4.3. For large m and low frequencies of modulation we find
the existence of only one-well period attractor.

For high m and f we find coexistence of three attractors: two one-well,
orbits and two-state on off intermittence, coexistence of two attractors: two-
state on off intermittency and cross-well periodic orbits and single attractor:
two-state on off intermittency. For others values of m and f, we find also

the coexistence two, three and four attractors.
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Figure 4.6: Codimentional-two bifurcation diagram in (m.f) parameter space
of the system Eqs.( 4.3-4.7) with noise ¢ = 2.5. Where one-state on-off inter-
mitency, 2 On-0ff is two-state on-off intermittency, 1 R is the one-well period

orbit, and 2 R is cross-well period orbit
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Basin of Attraction

The diagram of Fig 4.7 show the basin attractions for m = 0.09 and f = 0.7,
in which four attractors coexist: two one-well period orbits, cross-well period
orbit and two-state on off intermittence. The black, blue and green dots
represent respectively two-state on off intermittency, one-well periodic orbit
and cross-well periodic orbit. We can observe a light symmetry in y direction
in the basin, because the close orbits are located in the vicinity of invariant

subspaces in 3 = Fay.

Without Noise

The codimensional-two bifurcation diagram in parameter space (m, f) with-
out noise (¢ = 0), are shown in Fig. 4.8. The dynamic of the systems
without noise is much poor that with it. One can see that without noise
at small m only period state exist. We should note that one-state on-off

intermittency never appears without noise.

4.3 Control of On-Off Intermittency by Slow
Parametric Modulation

The possibility for controlling on-off intermittent dynamics was investigated

first by Nagai, Hua, and Lai [65]. Their control method is based on Ott,
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Grebogi, and Yorke (OGY) idea of controlling chaos [75]. Specifically, they
devised an algorithm for stabilizing a trajectory in the vicinity of a desirable
(“off”) state by using arbitrarily small feedback perturbations to a system
parameter. Their close-loop control algorithm requires the knowledge of sys-
tem equations. However, in many practical situations the detailed system
equations are not available. For such a case, an open-loop control algorithm
might be more realistic. Before OGY method, Lima and Pettini [76] pro-
posed a nonfeedback perturbation technique for stabilizing a chaotic system
towards a periodic state. This technique was applied experimentally for elim-
inating chaotic oscillations in a bistable magnetoelastic system [77] and for
stabilizing periodic orbits in a laser [78].

In this work we study the possibility for controlling on-off intermittency
by harmonic modulation applied to an accessible system parameter. Our
method to confine a trajectory in the “off” state is base on Lima and Pettini’s
idea of the open-loop control of chaos. Similarly to Nagai, Hua, and Lai [65],
we assume that the desirable operational state of the system is the “off”
state and the “on” state is undesirable. That is, we wish to avoid temporal
bursts (“on” states) of dynamical variables. As distinct from the closed-loop
control, the open-loop control is not restricted to small perturbations. The
modulation amplitude may be an arbitrarily large to achieve the control goal.
However, the main advantage of this type of the control is that it does not
require a prior knowledge of system equations and thus it may be useful for
some kinds of practical applications. We also show how the control works at

the presence of external noise of different levels.
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4.3.1 System of Equations

The analysis is carried out on an example of two coupled double-well Duffing
oscillators with random driving. Along with many other complex systems,
the coupled Duffing oscillators exhibit coexistence of several attractors, some
of them may be chaotic (intermittent), while the others are steady states. In
such a situation, the control of intermittency may be manifested as annihi-
lation of the intermittent attractors so that all trajectories are driven to the
steady states. In our recent works [50] we showed that coexisting fixed points
and limit cycles in multistable systems can be annihilated by harmonic para-
metric modulation. In this work we demonstrate how the annihilation effect
is achieved with intermittent states in randomly driven Duffing oscillators.

We consider two identical oscillators modelled by Eqgs.4.1-4.7

4.3.2 Control

A glimpse of the results is presented in Fig. 4.9 where we demonstrate the
control effect on some of the coexisting attractors. The system, prior to the
control, is in the chaotic state. When the control is switched on (at ¢ = 5000),
the intermittent attractors disappear and the trajectory is attracted to one of
the remaining steady states. Note, that the external harmonic modulation
creates a limit cycle around each fixed point so that the final state is a
periodic orbit. When the modulation amplitude is applied but it is not
sufficiently large to eliminate an intermittent attractor, the system exhibits

the coexistence of five attractors. In addition to two limit cycles in the
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vicinity of each potential well, two one-state and one two-state intermittency
regimes coexist. In Figs. 4.9(b,c) we demonstrate how a sudden increase in

m annihilates the intermittent states resulting in the periodic bistability.

The required modulation amplitude for the control depends on both the
noise level and modulation frequency as shown in Fig. 4.10. In the presence
of the parametric modulation Eq. (4.7), the intermittent attractors appear
at the certain level of noise (¢ > 1.9 for f = 0.01) [Fig. 4.10(a)]. To eliminate
these attractors, we need to apply the control modulation with m to be above
some critical value m,, i.e., above the bifurcation lines marked in Fig. 4.10.
Note, that for relatively low noise (1.9 < ¢ < 3), there are two critical values
for the modulation amplitude, which correspond to the onset and offset of
on-off intermittency. The two bifurcation lines in Fig. 4.10(a) are the good
fits of the data to the exponential growth and decay with critical exponents
of 1 and 0.25, respectively. As seen from Fig. 4.10(b), the intermittency
attractors can be destroyed only by slow parametric modulation (f < 0.05)
and when m > m,. In the regime of on-off intermittency, a typical trajectory
spends a long time near one invariant subspace (laminar phase) and when
the modulation is fast, the system has no time to respond to the control. In
the other words, the period of the modulation should be of the same order
of magnitude as the characteristic time for which the trajectory spends near
one invariant subspace before being repelled away. Of course, the duration of
the laminar phase depends on the noise level. This suggests that the reason

for the control effect is a resonant interaction of the modulation frequency
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Figure 4.9: A slow parametric modulation leads to the disappearence of inter-
mittency attractor. The initial system are (a) two-state on-off intermitency
without modulation (m = 0), (b) one-state and (c) two-state on-off intermi-
tency with small modulation (m = 0.1). The arrows indicate the moments
when the control with m = 0.4 and f = 0.01 is applied. The trayectory is
attract to the limit cycle in the vicinity of one of the potential wells.This

demostrates the flexibility of the control to select different “off” states
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with the frequency at which the trajectory repelled away from one of the

invariant subspaces.

Taking into account the above speculations, the mean duration of the
laminar phase is one of the important characteristics as for achieving the
control goal as for characterization of the observed intermittent behavior in
general. In Fig. 4.11 we plot in the log-log scale the mean duration of the
laminar phase, < 7 >, as a function of both the relative difference of the
modulation depth from its critical value (m, — m)/m,. [Fig. 4.11(a)] and
the modulation frequency f. We find that in both cases these dependences
obey the -1 scaling law that characterizes on-off intermittency. This result
agrees well with other theoretical works where the control parameter was
driven randomly [62] and with laser experiments where the parameter was

modulated periodically [70].

4.4 Conclusion

The coexistence of multiple attractors has been observed in four dimensional
flow subjected to parametric and/ or stochastic driving. Different coexisting
attractors ( one-wel and cross-well periodic orbits, one-state and two-state
on-off intermittency) appear in different regions of the parameters space of
the modulation frequency and amplitude. One-state on-off intermittency ex-

ists only in the presence of noise. With increasing the control parameter, the
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Figure 4.11: Avarege laminar length (a) versus relative difference of modu-
lation depth from its critical value at f = 0.01, and (b) versus modulation
frequency at m = 0.14 in log-log scales. ¢ = 2.5. The fits of the data to

straight lines are good, the slopes of which are -1.
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duration of laminar phase for both one-state and two-state on-off intermit-
tency decreases.

The possibility of the open-loop control of a chaotic dynamical system that
exhibits on-off intermittency has been demonstrated. We have shown that
a trajectory can be stabilized in the vicinity of a desired state (“off” state)
by slow harmonic modulation applied to an available system parameter. We
have derived the conditions for the modulation amplitude and frequency
to achieve the control goal in the presence of noise of different levels. The
scaling law with a critical exponent of -1 for the mean duration of the laminar
phase versus both the modulation amplitude and frequency has been found.
The coincidence of this scaling relation with other works verifies a universal
character of this scaling relation for different types of driving and different
types of on-off intermittency. The control can be easily realized in practice,
because in the experimental situation the driving signal is well defined and
hence the appropriate modulation parameters can be computed and applied
to the system to eliminate intermittent attractors even without the knowledge

of an adequate theoretical model.



Chapter 5

Laser Dynamic

Laser are usually classified according to the material that provides the optical
amplification. This material determines largely the properties of laser: the
mode of operation (pulse or continuous), the emission wavelength, the output
power/ energy and the coherence properties. Gases, liquid , solid and doped
fiber can provide optical amplification when properly excited.

The laser transition of the amplifying material may be homogeneously
broadened, i.e. light of a certain optical frequency can interact with all
atom/molecules, all of them having the same resonance frequency. The ho-
mogeneous line width Avy, is given by the medium relaxation rates:

Y.+ =7TAvy

where v, and v are the relaxation rates for inversion and polarization,
respectively. In the inhomogeneous broadening case, the material consists
of atoms/molecules of different resonance frequencies. Light of a particular

optical frequency can then only interact with a fraction of the total number

87
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atoms / molecules.

Lasers may be classified in still another way. Lasers operating in a single
emission mode are described by the three equation for the three relevant
variables: field, population and polarization. Usually decay on very different
time scale, which is given by the relaxation rates k£ (damping rate of the laser
resonator), v, and 7)j- If one of theses is large compared with the others, the
corresponding variable relax fast and consequently adiabatically adjusts to
the other variables. The number of equations describing the laser is then
reduced.

Those lasers for which the population and the polarization decay fast in
comparison with the field have been name class A lasers, those for which
only the polarization relaxes fast, class B lasers, and those for which all
three relaxation rates are of same magnitude, class C lasers.

Laser equations for class A laser reduce to one. Therefore, only constant
output solution exist. For the class B laser, oscillation of energy between
field and inversion population is possible and the equations yield relaxation
oscillations. Class C laser with their coupled dynamics of field, inversion
and polarization can display undamped periodic or non-periodic (chaotic)
pulsing.

Class B lasers can, however, show chaotic dynamic when they are external

influenced (modulation of a parameter, injection of external light , feedback).
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5.1 Dynamics of an Erbium-Doped Fiber Laser
With Pump Modulation: Theory and Ex-
periment

From the viewpoint of nonlinear dynamics, rare-doped fiber lasers with exter-
nal modulation among with solid-state, semiconductor, and gas lasers with
electric discharge (like CO; and CO lasers) belong to class-B lasers [79].
These are systems in which polarization is adiabatically eliminated and the
dynamics can be ruled by two rate equations for field and population in-
version. In spite of an impressive array of research on complex dynamics
in lasers, nonlinear dynamics of Erbium Doper Fiber Lasers (EDFLs) was
started to study only recently. The main features of the dynamical behavior
of these lasers are very similar to those of other class-B lasers. Different
scenario for development of a chaotic motion have been found in EDFLs.
First, a period-doubling route to chaos has been observed by Lacot et al.
[80] in a bipolarized two-mode EDFL with harmonic pump modulation of
the krypton laser. The authors also developed a model based on two coher-
ently pumped coupled lasers. Then, a quasi-periodic route to chaos has been
found by Sanzhez et al. [81] in a dual-wavelength EDFL. Eventually, Luo
et al. [82] have revealed the coexistent scenario of the period doubling and
intermittency routes to chaos in a pump-modulated ring EDFL. They also
reported on bistability (coexistence of two periodic attractors) in this laser

[82, 83]. More recently, optical bistability (coexistence of a limit cycle and a
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fixed point) has been detected by Mao and Lit [84] in the vicinity of the first
laser threshold in a dual-wavelength EDFL with overlapping cavities. In our
previous works, we have reported on coexistence of multiple periodic attrac-
tors (generalized multistability) found both theoretically and experimentally
in EDFL subjected to loss [85] or pump modulation [18, 19]. There are also
many works devoted to a study of a self-pulsation behavior of EDFL (see, for
example, [86] and references therein). Such a behavior has been suggested to
be due to the presence of a saturable absorber in the fiber in the form of ion
pairs [87] or pump depletion [88], although these mechanisms are not neces-
sary for explanation of this behavior. Small quasi-sinusoidal modulation of
the laser intensity with a broaden frequency of relaxation oscillations appears
in the power spectrum due to the presence of noise in a diode pump laser [89]
and large self-pulsations can be explained by accounting for a thermo-lensing
effect due to the excited state absorption [90]. These theoretical speculations
describe well all experimentally observed self-pulsing features of EDFLs.
Only few works are devoted to a study of the nonlinear response of EDFL
on parametric modulation. The dynamics of this laser were reported recently
in the work of Sola et al. [86] and in our works [85, 18, 19]. Sola et al. studied
the dynamics of a ring 1533-nm EDFL with sinusoidally modulated 1470-nm
pump diode laser. They developed a rather complicated model [87] which
describes well their experimental results. In our previous works we studied
a linear 1560-nm EDFL pumped by a 967-nm laser diode. Such a laser
is commonly used in many laboratories and serves for various applications.

However, the spectroscopy of this laser is quite different from that of the



CHAPTER 5. LASER DYNAMIC 91

laser studied by Sola et al., and hence their model cannot be used for our
laser.

In this chapter, we study the dynamics of a 1560-nm EDFL with Fabry-
Perot cavity subjected to harmonic pump modulation of the diode laser. We
develop a novel simple model which can be used to describe such a laser and,
as we will show below, perfectly addresses all laser peculiarities observed
experimentally. We investigate theoretically the laser dynamics over a wide
range of frequencies of pump modulation. Our model does not account for a
saturable absorber phenomenon in a fiber and hence the self-pulsing behavior
does not appear. This is stipulated by the following reasons. First, the pump
power used in our experiments is too small to induce a thermo lens in the
fiber, and second, the pump modulation amplitude is much larger than noise.

The chapter is organized as follows. In Section 5.1.1 we describe our
model. In order to test the model, in Section 5.1.2 we simulate numerically
the experiments reported in our previous works [18, 19] for the case when the
modulation frequency is higher than the relaxation oscillation frequency of
the laser. Then, in Section 5.1.3 we study numerically the laser dynamics in
the low-frequency range, i.e. when the modulation frequency is smaller than
the relaxation oscillation frequency. We demonstrate that the low-frequency
range exhibits a rather interesting insight to EDFL dynamics with external
modulation because of the appearance of many “fine” dynamical phenom-
ena that become latent at higher modulation frequencies. In Sections 5.1.4,
5.1.5and 5.1.6 we describe the experimental setup of the diode-pumped EDFL

with pump modulation and compare the results of simulations with exper-
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iments. In the course of experiments, we determine directly the structure
of frequency- and phase-locked states (with respect to pump modulation)
through bifurcation diagrams in space of the modulation parameters. Fi-

nally, the main conclusions are given in Section 5.2

5.1.1 Laser Model

The model is based on the rate equations in which we use a power-balance
approach applied to a longitudinally pumped EDFL, where the excited state
absorption (ESA) in erbium at the 1.5- um wavelength and the averaging
of the population inversion along the pumped active fiber are accounted for.
Such a model would address the two most evident factors, i.e., ESA at the
laser wavelength (see Fig. 5.1) and the depleting of the pump wave at prop-
agation along the active fiber. This model does not include mechanisms for
a self-pulsing behavior of the laser because in our experiments the amplitude
of self-pulsations is small (in 2-3 orders of magnitude) as compared with the
amplitude of the laser response due to pump modulation, and hence this ef-
fect has no influence of the laser dynamics. The possible mechanisms for the
self-pulsing behavior of EDFL (i.e., thermo-lensing effects and noisy pump-
ing) are considered in other works [88, 89] where some modifications are made
in the model.

The balance equations for the intra-cavity laser power P (being a sum
of the powers of the contra-propagating waves inside the cavity, in s~!) and

the averaged (over the active fiber length) population y of the upper (“2”)
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level (being a dimensionless variable, 0 < y < 1) have been derived to be as

follows:

dP 2L

prl ﬁp{rwao [y (€ —mn) = 1] —am} + Py, (5.1)
dy o127y P Yy

wo_ -2 P 2
dt 7”,(2] (yf ) 7_+ pump (5 )

where y = no% fNQ(z)dz, where N, is the population of the upper laser level
“27. ng is the roefractive index of a “cold” erbium-doped fiber core, and L is
the active fiber length, o5 is the cross-section of the absorption transition
from the ground state “1” to the upper state “2”. Here we suppose that the
cross-section of the return stimulated transition is practically the same in
magnitude [90] that yields { = #2522 = 2. 5 = 22 = 0.4 is the coefficient
that stands for the ratio between ESA (093) and ground-state absorption
cross-sections at the laser wavelength, 7). = 2—2‘1 (L+1p) transition time around
trip of a photon in the cavity, (o being the intra-cavity tails of the fiber
Bragg grating (FBG) couplers), gy = Nyo2 is the small-signal absorption
of the erbium fiber at the laser wavelength (Ny = N; + N, being the total
concentration of erbium ions in the active fiber), ay, = v, + i In (%) is the
intra-cavity losses on the threshold (v, being the non-resonant fiber loss and
R is the total reflection coefficient of the FBG couplers), 7 is the lifetime
of erbium ions in the excited state “2”, ry is the fiber core radius, wqg is
the radius of the fundamental fiber mode, and r, = 1 — exp [—2 <;—%>2}
is the factor indicating a match between the laser fundamental mode and

erbium-doped core volumes inside the active fiber. In Eq. (5.1), Py, =
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2
-3 A 200l . N .
Wy (2a) Ta202 jg the spontaneous emission into the fundamental laser
7Ty wo 472019

mode. We assume here that the laser spectrum width is 1072 of the erbium

luminescence spectral bandwidth (A, being the laser wavelength). In Eq.

(5.2), Poump = By 1_eXpE\7£r ‘jﬁ%gl_y)] is the pump power, where P, is the pump
power at the fiber entrance (left-hand side in Fig. 5.5) and § = 3—;’ is the
dimensionless coefficient that accounts for the ratio of absorption coefficients
of the erbium fiber at pump wavelength A, () to that at laser wavelength A,
(ap). The system of Egs. (5.1,5.2) describes the laser dynamics without an
external modulation. In order to account for the harmonic pump modulation,
one needs to write the pump power at the active fiber facet as

P" =P

P p

[1+ mgsin (27 F,,t)], (5.3)
where my and F), are the modulation depth and frequency.

The calculations were performed for the experimental conditions described

in Refs. [18, 19] and in Section 5. The following main parameters are used
L ny by T, To Wo 012 = 021 023 T

cm cm  ns cm cm cm? cm? s

70 1.45 20 8.7 15x107% 35x107% 3x 1072 0.9x 10721 1072

The value of wy has been measured experimentally and it is a bit higher

than the value 2.5x10~* cm given by the formula for a step-index single-mode

fiber wy = 7o (0.65 + 1‘/6115? + 2“%9), where the V- parameter is connected with

numerical aperture NA and ry as V = 2j\r—’"QN A; the values rg and wy result in
g

rw = 0.308. The coefficients characterizing the resonant-absorption proper-

ties of the erbium fiber at the laser and pump wavelengths are cg = 0.4 cm ™!

Yo R

0.038 0.8
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and 8 = 0.5. These values correspond to direct measurements for the heavily
doped fiber with erbium concentration of 2300 ppm. The values v, and R
yield ay, = 3.92x1072. The lasing wavelength is taken to be A, = 1.56 x 104
cm (hv, = 1.274x10712.J), corresponding to the experiment, where the max-
imum reflection coefficients of both FBGs are centered on this wavelength.

The parameters can be varied in the simulations: (1) the excess over the

first laser threshold is defined as ¢ = %, where the threshold pump power
P = Yun NOLTW?’ {1 —exp|—aoLp(1— yth)]}_l and the threshold population

of level “2” y, = (fin) <1 + T‘j‘ut&)) with the radius of the pump beam being
taken, for simplicity, the same as the radius of the lasing beam, i.e., w, = wy,
and (2) the control parameters, i.e., the modulation frequency F},, and depth
mo.

The numerical calculations employing the system of Egs. (5.1)-(5.3) al-
low us to obtain time series and bifurcation diagrams, characterizing the
dynamics of the pump-modulated EDFL. The dynamics of a parametrically
modulated EDFL [85, 18, 19], as well as other class-B lasers (see, for exam-
ple, [79, 91] and references therein), is related to the main laser resonance
which appears close to the relaxation oscillation frequency, fy. The typical
modeling results are presented in the next subsections. A rich variety of
attractors arise in primary saddle-node bifurcations (SNBs). Depending on
the modulation frequency, the laser response can contain either subharmonic
or harmonic components of F;,,. The laser dynamic depends on the modula-
tion frequency. For the convenience, we consider two different ranges of F,,.

At the high-frequency range (F,, > fj), various SNBs give rise to subhar-
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Figure 5.1: Energy level diagram of Erbium

monic laser oscillations, whereas at the relatively low modulation frequencies
(Fn < fo), the higher harmonics of F,, are involved in the laser dynamics.
Recently, the dynamics of the pump-modulated EDFL in the high-frequency
range has been investigated experimentally in Refs. [18, 19]. Therefore, in
this work (see Section 5.1.2, 5.1.3) we present only theoretical results for
this frequency range and compare with our previous experiments. The laser
dynamics in the low-frequency range are studied in details both numerically

and experimentally.
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5.1.2 High-Frequency Range

In order to simulate the laser dynamics in the high-frequency range (£, >
fo), we use the parameters close to the experimental ones taken from Refs.
[18, 19]. The pump power is estimated as P, = 7.4 x 10" s7!. For these
parameters, we find the relaxation oscillation frequency of the laser fy ~ 30
kHz. The bifurcation diagrams of the peak-to-peak laser power with F), as a
control parameter for modulation depth mq = 0.5(50%) is shown in Fig. 5.2.
These diagrams are constructed by taking different initial conditions for P
and N that allows us to plot all coexisting stable solutions in the same dia-
gram. It is seen from the figure, at high mg different subharmonic attractors,
period 1 (P1), period 2 (P2), and period 3 (P3) born in the primary SNBs
coexists within certain frequency range. The comparison of this diagram
with the experimental one reported in Refs. [18, 19] gives a good agreement,
even in details, between the experiment and the developed theoretical model.
Note, that other models of EDFL, which do not address the contributions
in laser dynamics stemming from the two mentioned features (ESA at the
laser wavelength and the depleting of a pump wave within the active fiber)

are not able to arrive such a perfect match with the experiment.

5.1.3 Low-Frequency Range

To study the laser dynamics in the low-frequency range (F,, < fy) the pump
power is chosen to be P, = 2.4x10?° s~!. This yields fy ~ 50 kHz. Depending
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Figure 5.2: Numerical calculate bifurcation diagram of Peak-to-peak laser
intensity with modulation frequency as a control parameter at 50% -depth
modulation of pump laser diode current. The fundamental laser frequency

fo is shown by the dotted line.



CHAPTER 5. LASER DYNAMIC 99

on initial conditions, the laser can oscillate in different periodic regimes with
different number of pulses in the laser output with respect to the period of
the pump modulation, e.g., 1:1, 2:1, 3:1, and so on. Within certain ranges
of the modulation parameters, the laser displays generalized bistability, i.e.,
coexistence of two attractors.

Fig.5.3 shows the bifurcation diagram of the peak-to-peak laser intensity
and phase difference A¢ between the pulses of the fiber laser and the diode
pump laser versus the modulation frequency at the modulation depth =
50%. In Fig.5.3(a), some subdivisions of the coexisting attractors are marked
(compare the regimes labeled with and without “star”). For instance, the
subattractor (labeled as 2:1) is born as a continuous “degenerization” of the
subattractor 1:1* via the appearance of its subharmonics. We plot, near each
attractor branch, the corresponding time series which display the temporal
dynamics in the chosen point of the parameter space. The labels (i runs
from 1 to 6) indicate the associated saddle-node bifurcation points, where
an attractor is born or dead. In Fig. 5.3(b) we shown the phase difference
between the modulation signal from the pump laser and the output of fiber
laser . One can see that the ranges of the phase and frequency locking are
different for different branches of the bifurcation diagram; while for one of
the coexisting periodic regimens the phase is locked to A¢ = 0 for the other
A¢ changes with F,,.

In Fig.5.4, we show the regions of different number of spikes in the laser

response with codimensional two bifurcation diagram in the space of the
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Pmax

Figure 5.3: Peak-to-peak laser intensity and phase difference versus modula-
tion frequency for m = 0.5(50%) by,b2 and b3 are the branches corresponding
to diffenrent attractos. I, IT and III denotte the first, second, and third spike

in the laser reponse.
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modulation amplitude and modulation frequency. The ration of the number
of spikier n:m (winding number are always locked to the external modula-
tion); P1 and P2 are the boundaries of the different frequency-locked regions.
The cross-hatched regions indicate the bistable ranges with the same wind-
ing numbers, similar to Arnold’ tongues [10], and the lines S1 - S6 are the
saddle-node bifurcation lines where the attractors corresponding to different
limit cycles are born and dead. Inside these regions, the two different regimes
with the same periodicity coexist. In order to distinguish these regimes we

make one of them by “stars”.

5.1.4 Experimental setup

In our experiments, the erbium-doped fiber laser is pumped by a commercial
laser diode (wavelength 976 nm, maximum pump power 300 mW) through
a polarization controller (PC) (Fig. 5.5, [92]). The laser cavity of a 1.5-m
length is formed by a piece of heavily doped erbium fiber of a 70-cm length
and a core diameter of 2.7 ym, and two fiber Bragg gratings (FBG1 and
FBG2) with a 2-nm FWHM (full width on half-magnitude) bandwidth and
reflectivity of 91% and 95% at a 1560-nm wavelength. Output power of
the pumping laser diode and fiber laser are recorded through a wavelength-
division multiplexing coupler (WDM) and two photodetectors D1 and D2
and analyzed with an oscilloscope and a Fourier spectrum analyzer. The

output power of the diode laser depends linearly on the laser diode current.
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Figure 5.5: Experimental setup. WDM is the wavelength-divisor multiplex-
ing coupler, PC is the polarization controler, FBG1 and FBG2 are the Bragg

grating, and D1 and D2 are the photo-detector.
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5.1.5 Experimental Results

Without any external modulation, the output power of the erbium-doped
fiber laser represents self-oscillations at fundamental laser frequency fy (in
our case fo = 50 kHz). Such a self-pulsing behavior is usually attributed
to the presence of a saturable loss due to erbium ion pairs, excited state
absorption, or pump depletion in the heavily doped fiber. The harmonic
signal, Agsin (27 f4t) (where A; and f; are the driving amplitude and fre-
quency), applied from a signal generator to the laser driver causes harmonic
modulation of the diode current with f;. In our experiments, the signal with
Ay = 800 mV results in 50% modulation depth of the pump power, while the
average diode current is fixed at 40 mA.

Without external modulation, the output of the laser represents self-
spiking oscillations - either in the form of quasi-sinusoidal modulation (at
the pump powers less than 40 mW), where a signal measured by the photo-
detector is weakly modulated (2-3% of the magnitude) at the relaxation
frequency , or in the form of short pulses of sub-microsecond duration [92].
Note that such a self-pulsing behavior of the heavily doped Erbium fiber
laser is usually attributed to some saturable losses inevitably presented in
the fiber (ESA, pump depleting, etc.).

In this part we study only the case of low average pump powers, when
the self-modulation of the laser output is observed, and of relatively low
frequencies F), of the pump modulation, when F,, < fy. The relaxation

oscillation frequency of our laser f; = 50 kHz (at the pump diode current of
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40 mA).

The experimental bifurcation diagram of the peak-to-peak laser intensity
versus the modulation depth at the modulation frequency F,, = 30kHz is
shown in Fig.5.6. One can see that bistability and even multistability (with
an account of the central short branch 3:2) are observed in the laser under
the pump modulation, i.e., two or three attractors (or limit cycles) may
coexist in the system (like it occurs for a similar laser when the modulation
frequency is higher than the fundamental laser frequency [6]). The insets of
the experimental time series for each attractor clear up the different pulsed

regimes of the laser (1:1, 3:2, and 2:1, from bottom to top).

Figure 5.7 shows the experimental bifurcation diagram of the peak-to-peak
laser intensity versus the modulation frequency at the modulation depth =
50%. Within certain ranges of the modulation frequency, the laser displays
generalized bistability, i.e., coexistence of two attractors. Depending on the
initial conditions, the laser can oscillate in different periodic regimes with the
same ratio of the number of pulses in the laser output and modulation signal
(winding number), e.g., 1:1, 2:1 (compare with Fig.5.3), and 3:1, 4:1, and
so on. In Fig.5.7, some subdivisions of the coexisting attractors are marked
(compare the regimes labeled with and without “star”). For instance, the
subattractor (labeled as 2:1) is born as a continuous ”degenerization” of the
subattractor 1:1* via the appearance of its subharmonics. Again, like in
Fig.5.3, we plot, near each attractor branch, the corresponding time series

which display the temporal dynamics in the chosen point of the parameter
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space. The labels (i runs from 1 to 6) indicate the associated saddle-node
bifurcation points, where an attractor is born or dead. In the Fig. 5.7 we
also plot the phase difference between the modulation signal from the pump
laser and the output of fiber laser . One can see that the ranges of the phase
and frequency locking are different for different branches of the bifurcation
diagram; while for one of the coexisting periodic regimens the phase is locked

to A¢ = 0 or 7 for other A¢ changes with f.

The experimentally measured frequency-locked regions are clearly seen
from Fig.5.8(a) that is the codimensional-two bifurcation diagram in the
space of the modulation amplitude and modulation frequency. Note that the
horizontal and vertical dashed lines indicate, respectively, the values of mod-
ulation amplitude and modulation depth for which the diagrams in Fig.5.6
and Fig.5.7(a) are obtained. It is seen that frequency locking occurs every-
where at certain non-zero modulation depth because the Erbium fiber laser
without external force acts as an autonomous oscillator; P1 and P2 are the
boundaries of the different frequency-locked regions. The cross-hatched re-
gions indicate the bistable ranges with the same winding numbers, i.e., the
tongues like Arnold [10], and the lines S1 - S6 are the saddle-node bifur-
cation lines where the attractors corresponding to different limit cycles are
born and dead. Inside these regions, the two different regimes with the same
periodicity coexist. In order to distinguish these regimes they are marked
(as in Fig.5.3,a) by “stars”. Within the tongues, a period-doubling route to

chaos occurs, whereas between the tongues a quasi-periodic route to chaos is
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registered.

5.2 Conclusions

In this chapter we have investigated in details nonlinear dynamics of a fiber
laser subjected to harmonic modulation of a diode pump laser. Global anal-
ysis of bifurcation structure of phase space has been performed with the use
of a simple theoretical model for an erbium-doped fiber laser. We also have
demonstrated a rich variety of bifurcations and coexistence of multiple at-

tractors that appear in the primary saddle-node bifurcations and discussed
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their relation to main laser resonances.

We have analyzed, both experimentally and theoretically, the structure dy-
namic of the laser in the space of modulation parameters at frequencies lower
and higher than the fundamental laser frequency. We have demonstrated that
generalized bistability results in doubling the saddle-node bifurcation lines in
the parameter space of the modulation frequency and amplitude. The laser
modeling results have been shown to perfectly describe all the experimentally
observed features. Therefore, we believe that our novel model of the Erbium
laser may have a definite impact on future studies of more complicated rare-

earth-doped fiber laser systems with essentially nonlinear dynamics.



Chapter 6

GENERAL CONCLUSION

In this word we have studied:

(i) Synchronization effects in nonautonomous systems and showed that
at certain conditions, the regimes of intermittent lag synchronization and
oscillation death appear in coupled oscillators with parametric modulation.
Specifically, we considered two coupled double-well Duffing oscillators with
harmonic modulation of a parameter in one of the oscillators.

(ii)) We have developed the method of open-loop control of on-off inter-
mittency in a stochastically driven system.

(iii) Dynamics of a 1560-nm erbium-doped fiber laser with Fabry-Perot
cavity subjected to harmonic pump modulation of the diode laser. We de-
veloped a novel simple model of this laser, that describes perfectly all exper-

imental features.
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Chapter 7

APPENDIX

7.1 NORMALIZE THE SYSTEM OF EQUA-
TIONS 5.1 and 5.2

dP 2L

2 = ErtualyE-n -1 aul+ B (1)
dy o127y P Yy

_— = = —-1)—= Pum ) 2
dt e (e —1) T + Lpump (7:2)

2 2
_ 1073y (Ag )\~ 3ol _ p 1—exp[-BagL(1-y)]
where Psp =T <w0 4201 and Ppump = Pp Nowr2L

Doing the following changes of variables

2 2
_ 1073y [ Ag TQZOéoL o _ 1073 [ Ag TQ2040L
PSP - 1T <w0 42019 7, where Y= T \ wo 412010

E—n) =&, =&and T=r1g

the system of equations 7.1 and 7.2 become
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dP 2L

113

2L
P fPTwOéo & — 1] — iathp + v, (7.3)
dy 0197w P y 1 —exp[—pfaoL (1 —y)]
T s ey 4
7t - (¥, — 1) ot Nowr2L , (7.4)

7.1.1 First Normalize

Doing the following in the eqn 7.3

N w dy __ dN
lerw[y€1_1]7 y:gl—j:z;a 2= 1 dh

dP _ Nitr
o= OéOPNl OéthP+ “erw D

t
Tsp

doing [ = 5 and 0 =

We have the following equation

dl T T
— =2L (=2 IN, — 2L (=2 I
a9 (Tr)o‘“ ! (TT)O‘“’ +(€1 w)

For the eqn 7.4 with following change

— _ _ Notry dy _ 1 dNp
N2—7’w[y€2 1]7 Y= " o dt — Eory di

D = — (Sareg) pN,—atruy p, (82r ) {1 — exp |—paL (1 — Mtz

ﬂ'T‘O

t
Tsp

doing [ = 5 and 0 =

(N1 +17y). (7.5)

EoTw

)}
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We have the that equation 7.4 becomes

dN, 7—817527’1110'12 Tsp€2rw Ny + 1y,

W2 (TaSalw02 ) pn Ny )P, (225200 ) Iy e [—BaL (1 —

do ( 7T7’§ i 2= (Notru)+ P N07T7’0L P | ~fag oTw
(7.6)

Nitry _ Notrew . — E1N2+(§ —€o)Tw
= , 1=
flrw fzrw 52

as

for which the equation 7.5 becomes

Ay (7 (€ o (6, ~ &) o
=2 (7) () oo (7) o= 5 (G 0o

(7.7)
The equations 7.6 and 7.7 can be write the following way
dl
i = alNy — bl + ¢(Ny +1y,) (7.8)

% = —dINy — (Ny+1,) +e {1 — exp |:—ﬁOégL (1 — %)} } (7.9)

where

a=2L () <§—> o = 6.6207¢ + 007
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Ty

b— {zL (—) [ath _ %ﬁrw} } — 7.4151¢ + 006

c= ( ) — 0.0163

fzrw

d= (Mﬂ — 4.0763¢ + 003

2
TTo

e=PF, <§ng’fijgz> = 550 for F,, > f

e = 1750 for F,, < fo.
7.1.2 Second Normalize

We can write the Eqn. 7.8 the following way

dI
— = alNy — bl + cNy + cry,

do

with g1 = alNy , N = £ we have

dl c
@ —Iyl—bf—l—ayri—crw

We can write the Eqn. 7.9 the following way

dNo
do

with y1 = alNy , N = £ we have

SV f S
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(7.10)

(7.11)

Beol ] } (7.12)
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d
Y _ —dIy;—y1—ary+ae< 1 —exp |—PaogL (1 —— )| .exp | fapL h
do 52 aloTw
(7.13)
with x = —dI , I = = we have
% =zy1+(—D)y+(—ary)t+ae s 1 —exp | —fagL [ 1 — i .exp | fagL h
do ) alorw
(7.14)
Using © = —dI and I = - in the Eqn 7.11 we have
Y o+ (D + (=) + (—do) (7.15)
i Ty x " U1 C)rw .

Doing the following

ar=—b=—{2L (%

) Joun — 20l=2dr, | b = —7.4151¢ + 006

<ng£2?"w012 )(ﬁg)
1y = =% = 2T s = —1.0011e — 006
2L< )<§2>a0
s = —dery, = — (waﬂ;v‘”w) (5 ) ro = —20.3813
TrH 2Tw
bl - —].
by = —ary = —21L () (g) Qo = —2.0359¢ + 007
bs = — exp [—ﬁaoL (1 - gﬂ — —1.2341¢ — 004
by = 220 = —4.4207e — 007

P, =ae=2L <T”’> <§l> ap <T”’§2“”> B,, where P, = Py(1 — msin2n ft)

& NomrZL

for F,,, > fo P, = (3.6414e 4 010) * (1 — msin 27 ft)
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for F,, < fo. P, = (1.1586e 4 011) *(1 — msin 27 ft)

Then we can write the Eqgs. 7.15 and 7.14 the following way

d—z = xy; + a1 T + agy; + as (7.16)
dyl _ b4y1

7.1.3 Third Normalize

Using the following z = byy;, y1 = = in the Eqs. 7.16 and 7.17 we have
dx ,z
@ b4 +a1$+a26 + a3 (718)
dz
T =22+ b1z + boby + by Py, {1 + b3.€7} (7.19)
Doing x; = b , r = byry and 0, = %, 0 = byf; in the Eqgs. 7.18 and 7.19

we have

dx a
dfoi =112+ (111)4%1 + b—iz + as (720)
d by
- — 2124 24 by + Py {1+ bs.e?} (7.21)
d91 by

using the following change

Ay = by = = {20 (52) [an — 2=l [ 1 (282 — —3.9750




CHAPTER 7. APPENDIX 118

WT% 527"10
B ETAVETAW
Ap=2 = “((?Q)L(jz) S = 22646
aorw
Ag=ag = — (T”f:;jfg””v) (g;p ) ry = —20.3813
By =% = —2.2621e + 006

,Ba
ba (a§2rw )

By = by = —2L () (g) Qo = —2.0359¢ + 007

Bs = by — —exp [—/moL (1 - gﬂ — —1.9341¢ — 004

& Nonr2L

for F,,, > fo P, = (3.6414e 4 010) * (1 — msin 27 ft)

P, =ae=2L <T”’> <§l> ap <T”’§2“”> P,, where P, = Py(1 — msin 27 ft)

for F,, < fo. P, = (1.1586e 4 011) *(1 — msin 27 ft)

d
ﬂ =12+ A1$1 + AQZ + A3 (722)
db,
dz
T =112+ Biz + By + P, {1 + Bs.e”} (7.23)
1

Remember that :
_ [ Tsp82rwoia _ [ Tsp82rwoig
et _—ap U Up o o Jp_ gp =
T =% T e T b4 o b4 o Bagl ot
aorw

—(5.9044e — 010) x P

2 = bgy1 = bsalNa = bsar,, [y&, — 1] = (550;—?“5) {2L <Tsp> <§—;> 040} rw [Y§o — 1] =

= B. [y, — 1] = (8.9999) * [2y — 1]

_ 6 _ _ _ _
0, = by = b4isp = (fgé)up. = C.t =(2.2621e + 008) * ¢
where the coefficient are:
Tspﬁz?";ualz
A= — 5% =5.9044e — 010

aforw
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B = (fal) {2L <T> <§—> ag} r = 8.9999
C=— Ll — —292621e + 008

(_0_a§2rw )Tsp
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