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Abstract

Topics on fringe pattern demodulation, or phase recovery of interferograms, have been stud-

ied around the world by several researchers because of their importance in optical metrology

areas. In our days, we can find several methods to demodulate fringe patterns, being spa-

tial or temporal. Actually, the most used methods to recover the phase from fringe pattern

images are those whose algorithms are simple and less heavy with the computer resources.

For example, methods that work with interferogram images with carrier frequency either

spatial or temporal, are very simple compared with methods that work with interferograms

without carrier frequency, or closed fringes. Therefore, to have in some way the possibility

to introduce carrier frequencies, researchers in the laboratories of optical metrology invest

money in faster cameras, more powered (and pulsed) lasers and mechanical components.

However, as the computer technology is advancing and is very commercial, we are able to

have cheap more robust computers, in such a way that we can invest now less money in

computer machines, and throw ourselves to the processing of interferograms without carrier

frequency.

In this thesis, we present an original work about two new techniques to demodulate

interferogram images without carrier frequency or closed fringes. Although this thesis is

not a recompilation of the different demodulation methods, we start by introducing the issue

of the demodulation with two simple techniques for fringe patterns with carrier frequency.

The contribution of this thesis is shown in chapters 2 and 3. In chapter 2, we show an

experimental method to recover the phase of interferograms with closed fringes, within a

twice differentiable function space C2. This gives a theoretical background to demodulate

interferograms with closed fringes by using simple row by row scanning strategies. In chapter

3, we show a more robust method which uses robust quadrature filters. This is a very good

noise-tolerant demodulation method.



Summing up, we will show how these two ideas are complemented in future works to

generate temporal demodulation methods without carrier frequency. We hope forward,

with this work, obtain one of the first demodulation techniques for real-time interferograms

without temporal carrier frequency.

ii



Chapter 1

Introduction

Today, with the help of digital cameras and computer aid, we can record an interferogram

as digital information that can be processed numerically. An interferogram is an image

with fringe patterns generated by the interference with coherent light. Without pretending

to give an exhaustive exposition about light interference, let us explain, a little, how the

interference fenomena is given. Suppose you have two waves:

U1(P, t) = A1(P ) exp[ikφ1(P ) + ωt] (1.1)

and

U2(P, t) = A2(P ) exp[ikφ2(P ) + ωt], (1.2)

where P is the spatial position, t the time position, k = 2π/λ the wave number and λ its

wave length, ω the angular frequency along the time and A1(P ) and A2(P ) the amplitudes

or intensities of the wave fluctuations, respectively. We will refer to the phase functions

φ1(P ) and φ2(P ) as the wave fronts of U1(P ) and U2(P ), respectively. Now, if these waves

interfere, the result of its interference is given as its sum:

U(P, t) = U1(P, t) + U2(P, t). (1.3)

Given the interference wave U(P, t), we can obtain its amplitude or intensity A(P ) as

A(P ) = U(P, t) · U∗(P, t), (1.4)
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where ∗ denotes complex conjugated. If we make some algebra we obtain that the amplitude

A(P ) is given as

A(P ) = A2
1(P ) + A2

2(P ) + 2A1(P )A2(P ) cos k[φ1(P ) − φ2(P )]. (1.5)

From here, we can see that the amplitude or intensity, of the wave of interference, is a

sinusoidal spatial fluctuation whose phase is given as the phase difference of the original

waves.

As the light is a form of electromagnetic radiation, we can model the light propagation

of two coherent sources, as the propagation of two waves like the shown in Eq. (1.1) and

(1.2). Then the light interference is given exactly as in Eq. (1.3). As our eyes are sensitive

to the amplitude or the intensity of the visible electromagnetic radiation, as a result of the

light interference, our eyes see the image of the spatial intensity fluctuation shown in Eq.

(1.5).

This image is called interferogram or fringe pattern. In our context, more properly

written, we found Eq. (1.5) closed to the following equation:

I(P ) = a(P ) + b(P ) cos k[φ1(P ) − φ2(P )], (1.6)

where a(P ) = A2
1(P )+A2

2(P ) models the background illumination and b(P ) = 2A1(P )A2(P )

its contrast1.

The wave nature of light is highly exploited in optical metrology. As we can see in Eq.

(1.6), the interferogram’s phase is given as the difference of the wave fronts from the light

sources, thus, if we take a reference light source with known wave front, we can recover the

shape of the other wave front by demodulating the interferogram’s image. As the wave front

changes depending on the spatial distribution of the source or the medium it passes over, the

interferogram’s phase takes different meanings. For example, in an interferometry system

1For a complete and exhaustive treat about light interference, reader can consult the book of Born and

Wolf [1999].
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for mechanical analysis the wave front has information about stress, surface deformations

or surface profiles. Hence, it is very important to develop techniques to recover the phase

given a fringe pattern or interferogram if we want to recover the information of interest.

Attending to this necessity, researchers in computer and optical sciences, have developed

demodulation techniques since the 80’s decade [Bruning et al., 1974, Takeda et al., 1982,

Schwider et al., 1983, Kreis, 1986, Hariharan et al., 1987]. Now, these techniques are the

basic theory of the interferogram image demodulation.

The demodulation process of an interferogram becomes simple if we have the possibility

to introduce a carrier frequency either spatial or temporal. For this reason reason, re-

searchers in optical metrology design their interferometers in such a way that, it is possible

to introduce a carrier frequency in some way. However, the design of interferometers able

to introduce carrier frequencies are more complicated, because they need special mounts

and more sophisticated optical components such as high resolution cameras and powered

lasers. This drawback, if we can call it in this way, is insignificant when the research of

optical metrology has the money to invest in such a components. However, the investment

may become considerably high if we work, for example, with transient or dynamic events

where it is very difficult to introduce a carrier frequency. In this situations, it is better and

cheaper to deal with a single image interferogram without carrier frequency or closed fringes,

although the demodulation methods for closed fringes, in our days, are more complicated

than those methods for open fringes or with carrier frequency. Maybe, this is the mean

reason the researchers in optical metrology always look for alternatives to the introduction

of carrier frequencies regardless the complexity of the optical setup.

Now, let us to introduce two techniques to demodulate iterferogram’s images with carrier

frequency. This kind of techniques used when we have a frequency carrier either spatial or

temporal. They are very simple and not time consuming in computer implementations.
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1.1 The Fourier transform method

The Fourier Transform Method (FTM) was first shown by Takeda et al. [1982]. This method

works with a single fringe pattern with spatial carrier frequency. To explain this method,

we first will define the mathematical model of a fringe pattern with carrier in the following

way:

I(x, y) = a(x, y) + b(x, y) cos[Φ(x, y) + (u, v) · (x, y)], (1.7)

where a(x, y) is a low frequency signal and, as we said before, represents the background

illumination of the interferogram, b(x, y) is the modulation or interference term, also known

as the contrast of the image interferogram as we said before, Φ(x, y) is the phase that we

want to recover, and the vector (u, v) is the induced carrier frequency in direction x and y.

To simplify the development of the FTM, let us define an interferogram with carrier

just in the x direction. Then, our interferogram is

I(x, y) = a(x, y) + b(x, y) cos[Φ(x, y) + u0x], (1.8)

where u0 is the carrier frequency in x direction. This equation, using complex notation, can

be simply expressed as a linear combination in the following way:

I(x, y) = a(x, y) + c(x, y)eiu0x + c∗(x, y)e−iu0x,

where coefficients c(x, y) and c∗(x, y) are

c(x, y) =
b(x, y)

2
exp[iΦ(x, y)]

and

c∗(x, y) =
b(x, y)

2
exp [−iΦ(x, y)].

Given this, taking the linear and shifting properties of the Fourier transform, we can rep-

resent the Fourier transform of (1.8) with the following expression:

H(u, v) = A(u, v) + C(u − u0, y) + C∗(u + u0, y), (1.9)
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A(u)
C∗(u + ω) C(u − ω)

u

Fig. 1.1: Graphical Illustration of the Fourier transform of an interferogram with carrier

frequency in x direction. (see Eq. (1.8)).

u

C(u − w)

Fig. 1.2: Here we show the graph of lobe C(u − u0, v) after the filtering.

where A(u, v) is the Fourier transform of a(x, y), C(u − u0, v) the Fourier transform of

c(x, y)eiu0x and C∗(u+u0, v) the Fourier transform of c∗(x, y)e−iu0x. we can see a graphical

illustration of this function in Fig. 1.1. The term A(u, v) is centered at the origin since it is

considered to be a low-frequency signal. The symmetrical lobes located around the origin,

represent the Fourier spectrum of the interference term b(x, y) cos[Φ(x, y) + u0x]. In this

form, it is very easy to recover the phase of an interferogram if we filter one of the lobes,

C(u − uo, v) or C∗(u − uo, v), in the Fourier space. If we filter the lobe C(u − uo, v), the

Fourier spectrum graphically looks as in Fig. 1.2. 1.2. If we return to the space (x, y),

assuming we have filtered the lobe C(u − uo, v), we obtain the following complex image

interferogram

g(x, y) = c(x, y)eiu0x, (1.10)

then, the phase is easily recovered by taking the argument of g(x, y)e−iu0x as:

Φ(x, y) = arctan

[

Im{g(x, y)e−iu0x}
Re{g(x, y)e−iu0x}

]

. (1.11)
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Thus, given an interferogram with frequency carrier, like that of Eq. (3.2), we can

easily recover its phase Φ(x, y) by using (1.11) after filtering properly the interferogram in

the Fourier space.

1.2 Phase stepping interferometry

The Phase Stepping Interferometry methods (PSI), are methods to demodulate a sequence

of image interferograms with temporal carrier frequency. These kind of methods are also

called asynchronous temporal methods, because here we obtain the phase of each pixel in

the interferogram’s image independently of the others pixels2.

These techniques are really very fast to obtain the phase of the interferogram sequence,

hence, there is a lot of analysis about them. Among works treating PSI techniques, we

can mention those developed by Bruning et al. [1974], Hariharan et al. [1987] and Schwider

et al. [1983]. Here we are going to introduce the PSI techniques from the point of view of

least square problems.

Consider an interferogram image sequence given by the following expression:

I(x, y, t) = a(x, y) + b(x, y) cos(Φ(x, y) + ωt + α), (1.12)

where ω is the known temporal carrier frequency and α is an initial piston phase. The

objective is to recover the phase given a sequence of time spaced image interferograms

t1, t2, t3, . . . , tn, with n ≥ 3. With the help of trigonometric identities, we can rewrite Eq.

(1.12) as

Î(x, y, t) = a(x, y) + C(x, y) cos(ωt + α) + S(x, y) sin(ωt + α), (1.13)

2Strictly speaking, the Fourier transform method is also asynchronous because the phase in each pixel

is obtained independently of the other pixels, however, in literature it is more common refer to the PSI

techniques as asynchronous methods.
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where

C(x, y) = b(x, y) cos[Φ(x, y)]

S(x, y) = −b(x, y) sin[Φ(x, y)].
(1.14)

Thus, it is easy to see that if we can estimate the coefficients given in (1.14), we can

determine the interferogram’s phase as follow:

Φ(x, y) = arctan

[

−S(x, y)

C(x, y)

]

. (1.15)

Then, we translate the problem of the phase retrieval, to a problem of least squares. In

this way, given an observed sequence modeled as in (1.12), we want to estimate coefficients

a(x, y), C(x, y) and S(x, y), that best fit the observation for each site (x, y). Then, in the

sense of least squares, we may define the error of our estimation as:

E[a(x, y), C(x, y), S(x, y)] =

N
∑

n=1

{a(x, y) + C(x, y) cos(ωtn + α) + S(x, y) sin(ωtn + α) − I(x, y, tn)}2 , (1.16)

therefore, we must to minimize this error in order to obtain the coefficients a(x, y), C(x, y)

and S(x, y).

To minimize the quadratic error given by (1.16), we take its derivatives with respect to

each coefficient [a(x, y), C(x, y), S(x, y)] and we equal these to zero, in such a way that we

obtain the following linear equation system













N
∑

cos(ωtn + α)
∑

sin(ωtn + α)

∑

cos(ωtn + α)
∑

cos2(ωtn + α)
∑

cos(ωtn + α) sin(ωtn + α)

∑

sin(ωtn + α)
∑

cos(ωtn + α) sin(ωtn + α)
∑

sin2(ωtn + α)













·

·













a(x, y)

C(x, y)

S(x, y)













=













∑

I(x, y, tn)

∑

I(x, y, tn) cos ω(ωtn + α)

∑

I(x, y, tn) sin ω(ωtn + α)













. (1.17)

Then, we must to solve this linear equation system in order to obtain coefficients a(x, y),

C(x, y) and S(x, y).
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Summing up, this is the general procedure to estimate coefficients C(x, y) and S(x, y),

in order to recover the phase from an image interferogram set with known temporal car-

rier frequency. In theory, each interferogram set may have any time separation between

interferograms [Greivenkamp, 1984]. However, taking into account the work presented by

Morgan [1982], if we consider that the time separation between interferograms is constant

and the interferograms are uniformly distributed into k periods of the temporal signal, we

can define the temporal carrier frequency in the following way:

ω =
2πk

N∆t
, (1.18)

where k is the number of periods for the temporal signal, ∆t the time separation between

each interferogram and N the number of interferograms. In Fig. 1.3, we illustrate how the

interferogram sequence is located in one period of the temporal signal. The left graphic

shows the interferogram separation for a temporal carrier of ω = 2π/3, while the right

shows the interferogram separation for a temporal carrier of ω = π/2. In both cases, the

initial piston phase is α = 0, and the time separation is ∆t = 1.

For the cases as that are shown in Fig. 1.3, when the interferograms are uniformly

spaced into one period of the temporal signal and the time separation is ∆t = 1, we see

that the temporal carrier frequency is given as:

ω =
2π

N
,

where N is the number of interferograms. If this is the case, then we can obtain the

following:
N

∑

n=1

cos

(

2π

N
n + α

)

= 0,
N

∑

n=1

sin

(

2π

N
n + α

)

= 0. (1.19)

On the other hand, as the cosine is the sine quadrature3 and viceversa, its inner product is

zero, therefore we have the following too:

N
∑

n=1

cos

(

2π

N
n + α

)

sin

(

2π

N
n + α

)

= 0. (1.20)

3This is that the cosine function is orthogonal to the sine function
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Fig. 1.3: An interferogram sequence located in one period a temporal signal. In the left, we

see the position of interferograms for N = 3 and ω = 2π/3 and the right show the position

of interferograms for N = 4 and ω = π/2. The initial piston phase is α = 0 in both cases.

The time interval is ∆t = 1.

Using trigonometric identities again, we can have the following relations as well:

N
∑

n=1

cos2
(

2π

N
n + α

)

=
N

2
,

N
∑

n=1

sin2

(

2π

N
n + α

)

=
N

2
. (1.21)

For this particular case, the equation system shown in expression (1.17) is simplified

having just the following form:













N 0 0

0 N
2 0

0 0 N
2

























a(x, y)

C(x, y)

S(x, y)













=













∑

I(x, y, n)

∑

I(x, y, n) cos
(

2π
N

n + α
)

∑

I(x, y, n) sin
(

2π
N

n + α
)













, (1.22)

where we have done a change of variable from tn to n in order to simplify the notation. The

sums go from n = 1 until N . Then, we can see that coefficients a(x, y), C(x, y) and S(x, y)
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are determined by solving (1.22) as follow:

a(x, y) =
1

N

N
∑

n=n

I(x, y, n), (1.23)

C(x, y) =
2

N

N
∑

n=n

I(x, y, n) cos

(

2π

N
n + α

)

, (1.24)

S(x, y) =
2

N

N
∑

n=n

I(x, y, n) sin

(

2π

N
n + α

)

. (1.25)

And finally, once we have the coefficients estimated, we can recover the phase as

Φ(x, y) = arctan

(

−
∑

I(x, y, n) sin
(

2π
N

n + α
)

∑

I(x, y, n) cos
(

2π
N

n + α
)

)

. (1.26)

The importance of this result is that to estimate coefficients C(x, y) and S(x, y) we only

have to take N equally time spaced interferograms using the following temporal carrier

frequency:

ω =
2π

N
,

being N the number of interferograms to be taken. We can adjust an initial piston phase

α to help us analytically simplify the phase recovery. For example, if we adjust an initial

piston phase α = −π/3, for N = 3, then our temporal carrier will be ω = 2π/3, and our

first interferogram will be taken on position π/3 and the next two on positions π and 5π/3

respectively, according to our temporal carrier frequency ω. In this particular case where

N = 3 and α = −π/3, it is easy to see that the phase is determined as:

Φ(x, y) = arctan

(

−
√

3[I(x, y, 1) − I(x, y, 3)]

I(x, y, 1) − 2I(x, y, 2) + I(x, y, 3)

)

, (1.27)

replacing values directly in Eq. (1.26).

1.3 Summary

A we may see, the techniques developed in 80’s decade, to demodulate image interferograms,

were developed assuming that the interferograms have an spatial or temporal carrier fre-

quency. However, there is some circumstances where it is impossible to introduce a carrier
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frequency, spatial or temporal, due to the nature of the experiment. For this reason, our

interest is to demodulate single image interferograms with closed fringes, or in other words,

without carrier frequency. One of the first intents to demodulate a single image interfero-

gram with closed fringes was made by Kreis [1986], by using the Hilbert transform. However,

until Servin et al. [1997] was defined a more robust demodulation method for single fringe

patterns with closed fringes.

In the next chapters we will show two works to demodulate single fringe patterns with

closed fringes, these works are part of our original work reported in [Estrada et al., 2006,

2007].
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Chapter 2

Path independent demodulation

within the function space C2

As we said in the last chapter, there are several works around the world, already published,

about demodulating Single Fringe Pattern Images (SFPI) with closed fringes. The two bet-

ter known methods are the regularized phase tracker (RPT), and the two-dimensional Hilbert

Transform method (2D-HT). In both cases, the demodulation success depends strongly on

the path followed to obtain the expected estimation. Therefore, both RPT and 2D-HT are

path dependent methods. Here, we will show a novel method to demodulate SFPI with

closed fringes which may follow arbitrary sequential paths. Through the work presented

here, we introduce a new technique to demodulate SFPI with estimations within the func-

tion space C2; in other words, estimations where the phase curvature is continuous. The

technique developed here, uses a frequency estimator which searches into a frequency dis-

crete set. It uses a second order potential regularizer to force the demodulation system to

look into the function space C2. The obtained estimator is a fast demodulator system for

normalized SFPI with closed fringes. Some tests to demodulate SFPI with closed fringes

using this technique following arbitrary paths are presented. The results are compared to

those from RPT technique. Finally, an experimental normalized interferogram is demodu-
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lated with the herein suggested technique1.

2.1 Introduction

Applications of optical interferometry in areas such as digital contouring or strain analysis

in mechanics are very important because they are non-invasive techniques and give full field

measurements [Mujeeb et al., 2006]. For example, the electronic speckle pattern interferom-

etry technique (ESPI), is widely used in this areas [Butters and Leendertz, 1971]. As the

information of interest is usually phase modulated in the generated image interferogram, it

is necessary to apply a demodulation technique.

A Single Fringe Pattern Image (SFPI) is an image interferogram that is considered as a

sinusoidal two-dimensional signal (without taking random fluctuations into account) given

by the following function:

I(x, y) = a(x, y) + b(x, y) cos[φ(x, y)], (2.1)

assuming that a(x, y) and b(x, y) are continuous smooth functions. (x, y) are integer values

that represent a site on the image lattice L where the interferogram is recorded. However,

here we assume that we are working with a normalized fringe pattern as the following:

I ′(x, y) = cos[φ(x, y)]. (2.2)

There are several fringe pattern normalization techniques. For example, Quiroga and Servin

[2003] uses an isotropic fringe pattern normalization, while Guerrero et al. [2005] uses mono-

genic filtering for the fringe pattern normalization.

The demodulation process is based on recovering the encoded phase φ(x, y) given the

fringe pattern image. To do this, the only information we have are the intensity values

I(x, y) of the fringe pattern. When it is possible to introduce a carrier frequency while the

1See Ref. [Estrada et al., 2006]
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fringe pattern image is being recorded, the modulating phase is given as:

φ(x, y) = φ0(x, y) + ωx, (2.3)

where ω is the introduced spatial carrier frequency in x direction. In this case, the mod-

ulating phase is recovered by the well known Fourier transform methods [Takeda et al.,

1982]. However, when non repetitive transitory phenomena are being analyzed, based on

speckle interferometry systems, it is usually impossible to introduce a carrier frequency, be

it spatial or temporal [Stetson and Brohinsky, 1988, Bruning et al., 1974]. In these cases,

there is no choice but to deal with a SFPI with closed fringes.

Two methods that have marked the way to demodulate SFPI with closed fringes are

the Regularized phase tracker (RPT) by Servin et. al. Servin et al. [2001] and the two-

dimensional Hilbert Transform method (2D-HT) by Larkin et. al. [Larkin et al., 2001].

2D-HT defines the following vortex operator to obtain the interferogram’s quadrature in

order to demodulate it:

V(I) = −i exp(−iβ2π)F−1{exp(iψ)F{I}}, (2.4)

where F denotes the 2D Fourier transform. Then, the modulating phase is obtained as

follow:

φ̂(x, y) = arctan

[V[I(x, y)]

I(x, y)

]

. (2.5)

The term β2π = β2π(x, y) in Eq. (2.4) is the modulo 2π fringe pattern’s orientation field

and may be defined as follow:

β2π(x, y) = arctan

[

∂φ(x, y)/∂y

∂φ(x, y)/∂x

]

. (2.6)

Function exp[iψ(u, v)] is called an spiral phase function given by the following expression:

exp[iψ(u, v)] =
u + iv√
u2 + v2

(2.7)

As we can see in Eq. (2.4), we need to have the fringe orientation field β2π(x, y) in

order to use the vortex operator (2.4). Eq. (2.6) looks very easy to compute, but we
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obviously do not have access to the phase of the interferogram. Instead, we have access to

the interferogram’s image and we have to estimate the orientation field β2π(x, y) modulo 2π

given the interferogram’s image. However, to estimate the fringe orientation field β2π(x, y)

from the image interferogram is almost as difficult as to estimate the phase using RPT

method. Larkin et. al. suggested this quadrature operator in Ref. Larkin et al. [2001], but

in their paper it is not presented how to obtain the fringe orientation field. However, in

Ref. Larkin [2001], an outline of the orientation estimation problem was given and in Ref.

Larkin [2005] a way is proposed to obtain the orientation field. Another approach, previous

to the work of Larkin, to obtain the modulating phase, based on the orientation field of the

fringe pattern, was given in Ref Marroquin [1998], which propose a regularized strategy to

obtain the orientation field to correct the sign changes in the phase obtained by the Hilbert

transform.

Quiroga et. al. Quiroga et al. [2002] and Villa et. al. Villa et al. [2005] proposed

separate sequential methods for the fringe orientation field estimation. For example, in

Ref. Villa et al. [2005] a linear orientation field estimator for β2π(x, y) is proposed that

works minimizing sequentially along the fringes the next cost functional with respect to

n(x, y) = [nx(x, y), ny(x, y)] at each site (x, y):

U [n(x, y)] =
∑

(η,ξ)∈Γx,y

{

‖∇I ′(η, ξ) · n(η, ξ)‖2 − ‖n(η, ξ) − n0(η, ξ)‖2s(η, ξ)
}

, (2.8)

where s(η, ξ) is a function indicator that is 1 if the vector n0(η, ξ) was already estimated

previously and 0 in other case. When is estimated the vector n(x, y), by minimizing (2.8),

is set s(x, y) = 1 to label the vector n(x, y) as estimated. The operator ∇(·) is the gradient

operator. Here is assumed that the interferogram I ′(x, y) is filtered with a high pass filter,

in such a way that I ′(x, y) can be represented as

I ′(x, y) = b(x, y) cos[φ(x, y)]

. Once the normalized vector field n(x, y) is estimated, the orientation field, module 2π, is
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obtained as:

β̂2π(x, y) = arctan

[

ny(x, y)

nx(x, y)

]

. (2.9)

On the other hand, RPT which has inspired all the fringe following sequential methods,

obtains the interferogram’s phase by minimizing the following cost functional with respect

to φ̂(x, y), ωx and ωy at the site (x, y):

U [φ̂(x, y), ωx, ωy] =
∑

(η,ξ)∈Γx,y

{

[cos[P (x, y, η, ξ)] − I ′(η, ξ)]2

+ λ[φ̂(η, ξ) − P (x, y, η, ξ)]2s(η, ξ)
}

, (2.10)

where P (x, y, η, ξ) = φ̂(x, y) + ωx(x− η) + ωy(y − ξ) is a phase plane that fits the observed

data in neighborhood Γx,y around the site (x, y), I ′(x, y) is the normalized observed data

given by (2.2), the second term is called the regularization term and is as a low-pass filter

term, being thus the RPT method robust under certain conditions of noise, λ > 0 is as

the bandwith of the regularization term. The function s(η, ξ) is a function indicator that

is 1 if phase was already estimated in site (η, ξ), and 0 in other case. In both cases (Eq.

2.8 and 2.10) the estimation process starts at a site (x, y) which is the initial seed that is

sequentially propagated along a sequential path on the image interferogram.

The minimization process for Eq. (2.8) and (2.10) is difficult and depends strongly

on the initial seed given and on the path followed during the SFPI demodulation. These

methods are called path dependent since from all the possible paths to follow in the two-

dimensional interferogram’s space, only the path following the fringes yields the expected

phase. To illustrate this, in Fig. 2.1, we see two global solutions given for the same SFPI

following different paths with the RPT. In the panel labeled Wrong phase, we see a phase

estimation following an arbitrary path, while in the panel labeled Expected phase, we see a

phase estimation following the fringes, making the path dependence of the RPT evident.

In this thesis, we propose a novel idea, which constrains the phase estimation to look into

the function space C2; that is, estimated phases with a continuous phase curvature. With
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Arbitrary path

Fringe fillowing path

SFPI

Wrong phase Expected phase

Fig. 2.1: Two estimated phases using the RPT from the same SFPI given. Panel labeled

Wrong phase shows the obtained phase by following an arbitrary path, while panel labeled

Expected phase is obtained using a fringe following path. The SFPI given is in panel labeled

SFPI.
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this restriction we remove the local ambiguities avoiding wrong solutions as that shown in

Fig. 2.1 in the panel labeled Wrong phase. Searching into this function space C2, we obtain

the expected modulated phase regardless of the path followed by the demodulator. Our

technique consists in developing a local frequency estimator with second order regularizer

potentials to obtain the expected phase φ̂ ∈ C2. This frequency estimator searches the

expected frequency into a discrete frequency set. In the next section, we will develop the

local frequency estimator and we will show how to obtain the phase given the estimated local

frequency for each site in the image interferogram. Also, we are going to show with examples,

that the technique developed is path independent and obtains the expected modulating

phase.

2.2 Method

Let’s assume first a one-dimensional space x. Then our normalized fringe pattern looks like:

I ′(x) = cos[φ(x)]. (2.11)

To avoid ambiguities in the demodulation process, we limit the estimator’s degrees of free-

dom by restricting the demodulated phase φ to the set C2 of twice differentiable functions.

With this in mind, we start proposing the phase estimation by adjusting the local frequency.

Then, we have the following relation:

cos[φ̂(x) + ω(x)(x − x+)] ≈ I ′(x+), (2.12)

the modulating phase φ̂(x) + ω(x)(x − x+) is a first order Taylor expansion around site x

of the actual phase φ(x), where φ̂(x) is already known previously and ω(x) = dφ(x)/dx is

the local frequency between x and x+. I ′(x) is the normalized signal (Eq. 2.11). Site x+ is

such that may take the following values:

x+ =











x − 1 left

x + 1 right

(2.13)
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S1

ω(x)

U [ω(x)]

(a)

(b)

−π π

2π 2π 2π 2π 2π

2π 2π 2π 2π 2π
S2

0

S1

V [ω(x)]

ω(x)

Fig. 2.2: In this figure, (a) is the graph of the cost function (2.14) and (b) is the graph of the

regularizer potential (2.20). The graph (a) was generated using the parameters I ′(x) = 0.66

and φ̂(x) = 20. We also show the series S1 and S2, which corresponds to the minimum

values of the cost function (2.14). In graph (b) we see that exists only one frequency

ω(x) ∈ Ω = {S1, S2} that minimizes Eq. (2.20).

depending on the demodulation direction taken. We propose to minimize the following cost

function to estimate the frequency ω(x) that satisfies Eq. (2.12):

U [ω(x)] = {cos[φ̂(x) + ω(x)(x − x+)] − I ′(x+)}2. (2.14)

In Fig. 2.2(a) we show the graph for this cost function. As shown in Fig. 2.2(a), this cost

function is ambiguous since it has multiple minimum values due to the cosine periodicity.

But, all the minimum values of Eq. (2.14) can be generated with the following two series:

S1 = (W [φ̂(x)] − arccos[I ′(x+)])(x − x+) ± 2nπ (2.15)

S2 = (W [φ̂(x)] + arccos[I ′(x+)])(x − x+) ± 2nπ, (2.16)
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for n = 0, 1, 2, . . . , where the wrapping operator W [·] wraps the phase φ̂(x) in the interval

[−π, π]. These series are also shown in graph 2.2(a) to see the correspondence with the

minimum values.

As the maximum frequency that a fringe pattern may have in a image interferogram is

π radians per pixel, we are interested on the frequencies that are in the interval [−π, π].

These frequencies may be taken from the series of Eq. (2.15) and (2.16) as follow:

ω1 =























ω(x) if |ω(x)| ≤ |π|

ω(x) − 2π if ω(x) > π

ω(x) + 2π if ω(x) < −π

(2.17)

for ω(x) = (W [φ̂(x)] − arccos[I ′(x+)])(x − x+) and

ω2 =























ω(x) if |ω(x)| ≤ |π|

ω(x) − 2π if ω(x) > π

ω(x) + 2π if ω(x) < −π

(2.18)

for ω(x) = (W [φ̂(x)]+arccos[I ′(x+)])(x−x+). Then we define the discrete set Ω = {ω1, ω2}

as the domain of all possible frequencies that minimize (2.14) and are in the interval [−π, π].

Because we want that the estimated phase φ̂(x) belongs to the function space C2, we

take the priori assumption that the phase curvature in a site x is very smooth in its

neighborhood. Then, we suggest the following potential regularizer to penalize the strong

phase curvature variations between the neighbors x and x + 1:

V [φ̂(x)] = [C
φ̂
(x) − C

φ̂
(x + 1)]2

= [φ̂(x − 2) − 2φ̂(x − 1) + φ̂(x) −

φ̂(x − 1) + 2φ̂(x) − φ̂(x + 1)]2, (2.19)

where, as we can see in this equation, the operator C
φ̂
(·) estimates the backwards phase

curvature in the given site. This, in frequency terms is reduced to:

V [ω(x)] = [ω(x − 2) − 2ω(x − 1) + ω(x)]2 (2.20)
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if we take the demodulation direction to the right and observing that φ̂(x − 2) − 2φ̂(x −

1) + φ̂(x) = w(x)−w(x− 1) and φ̂(x− 1) + 2φ̂(x)− φ̂(x + 1) = w(x + 1)−w(x). If we take

the demodulation direction to the left we have

V [ω(x)] = [ω(x) − 2ω(x + 1) + ω(x + 2)]2. (2.21)

As we can see in Fig. 2.2(b), in the interval [−π, π], this potential regularizer removes the

ambiguities given by cost function (2.14) since it has only a frequency in Ω that minimizes

it. Therefore, we suggest the following estimator to obtain the frequency:

ω̂(x) = min
ω(x)∈Ω

V [ω(x)], (2.22)

where the searched frequency must to be in the discrete set Ω = {ω1, ω2}. V [ω(x)] is defined

as in Eq. (2.20) or (2.21), depending on how the demodulation direction is taken. Finally

we obtain the phase for the current site x+ given by the frequency ω̂(x) with the estimator

of Eq. (2.22) as follows:

φ̂(x+) = φ̂(x) + ω̂(x)(x − x+), (2.23)

which is continuous in curvature since the frequency ω̂(x) obtained with estimator (2.22),

gives the minimum possible phase curvature variation between the neighbors sites of x and

x+.

Eq. (2.23) have some similarity with the Phase Locked Loop (PLL) method applied to

demodulate interferograms. In 1993, Servin Servin et al. [1994] showed the implementation

of a PLL method to demodulate SFPI with carrier frequency. Their iteration to update the

phase in a site x + 1 is given as follow:

φ̂(x + 1) = φ̂(x) − τ [I ′(x) − I ′(x − 1)] sin[φ(x) + ω0x], (2.24)

where, as we can see, there must exist a carrier frequency ω0 in order to apply PLL method

successfully. In the literature, we can find second-order PLL implementations applied to

fringe patterns as that reported in Gdeisat et al. [2000], but all PLL methods works only if a
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carrier frequency is given in the fringe pattern image. Therefore, there are strong differences

between (2.24) and (2.23). First, the frequency for (2.23) is estimated using (2.22) in such

a way that it preserves a continuous phase curvature and second, frequency estimator

(2.22) is applicable to fringe pattern signals with and without carrier frequency. In contrast,

PLL only assumes phase continuity.

2.2.1 Demodulation process.

The demodulation process, considering the previous development, may be summarized with

the following steps:

1. Choose a site x as the initial seed to start the demodulation sequence.

2. Set the estimated phase in the initial seed as φ̂(x) = arccos[I ′(x)].

3. Set the estimated phase in the initial seed neighborhood as φ̂(x+1) = arccos[I ′(x+1)]

and φ̂(x − 1) = arccos[I ′(x − 1)].

4. For each subsequent site x+ to the left and right, that isn’t estimated, do the following:

(a) Construct the frequency discrete set Ω = {ω1, ω2} using Eq. (2.17) and (2.18).

(b) Take the frequency ω̂(x) as shown in Eq. (2.22).

(c) Set the estimated phase in the site x+ using Eq. (2.23).

In this way, we have a simple and fast demodulation process that we are going to call Fre-

quency Curvature Tracker (FCT) because it estimates the frequency restricting its curvature

to obtain the phase in each site x.

A more robust way to set the phase in the neighborhood of the initial seed in step 3, is

the following: construct the frequency set for site x− 1 and x + 1 and choose the frequency

combination that gives less phase curvature. In other words, we use the following criteria
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to choose the frequencies for sites x − 1 and x + 1:

[ω̂(x − 1), ω̂(x + 1)] = min

ω(x − 1) ∈ Ωl,

ω(x + 1) ∈ Ωr

[ω(x − 1) − ω(x + 1)]2. (2.25)

The phase φ(x − 1) and φ(x + 1) is set according to Eq. (2.23), where Ωl is the frequency

discrete set to the left (site x − 1) and Ωr is the frequency discrete set to the right (site

x + 1). This is better than using arc cosine functions like in step 3 because the frequency

around the initial seed with arc cosine functions, may abruptly change its sign.

Now, we are going to test the FCT and to campare it with the RPT applied to the

one-dimensional case to observe that the obtained phase φ̂ with the FCT is φ̂ ∈ C2. Let us

demodulate the signal showed in 2.3(a) which its modulating phase is modeled as φ(x) =

1
2ax2. In Fig. 2.3(b) we see the phase obtained with the FCT technique and Fig. 2.3(d)

shows its phase curvature. In Fig. 2.3(c) we see the phase obtained with the RPT technique

and Fig. 2.3(e) shows its phase curvature. As we can see, the phase curvature obtained with

the FCT is a continuous line as expected. On the other hand, we can see that the phase

curvature obtained with the RPT technique is a line with one abrupt change, therefore, the

phase obtained φ̂ with the RPT is φ̂ /∈ C2 while the FCT obtains a phase φ̂ ∈ C2. Both

phase profiles in Fig. 2.3(b) and 2.3(c) are compatible with the one-dimensional fringe

pattern signal given in Fig. 2.3(a). However, estimated phase profile φ̂ ∈ C2 shown in Fig.

2.3(b) is typical phase profile of a fringe pattern with closed fringes. As our final intention is

to demodulate SFPI with closed fringes, we restrict phase solutions to those phase profiles

which are φ̂ ∈ C2.

Summing up, until here we have developed a demodulation method with a frequency

estimator (Eq. 2.22) that searches in a discrete frequency set. It was tested for one-

dimensional signals without carrier as is shown in Fig. 2.3. Now, we are going to apply the

method in two-dimensional signals.
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Fig. 2.3: In graph 1) a signal is shown which phase is modeled as φ(x) = 1
2ax2. In graph 2)

we show the obtained phase using the FCT and in graph 4) we show its curvature. In graph

3) we show the obtained phase using the RPT technique and in 5) we show its curvature.

As we can see, the phase curvature presented in 4) is a continuous line while the phase

curvature in 5) has one abrupt variation.
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2.3 Two-dimensional case

In this case we are going to implement the frequency curvature tracker or FCT method,

to demodulate square frames into the image interferogram lattice around a given site as a

starting seed. To do this, we are going to use the FCT (see subsection 2.2.1) using a row

by row scanning strategy to demodulate sequentially all sites in the frame. Each row and

column is going to be treated as a one-dimensional signal.

Let (η, ξ) be the initial seed in the frame, where η is the column number and ξ is the

row number. Then we set the phase of the initial seed as φ̂(η, ξ) = arccos[I ′(η, ξ)], where

I ′(·) is defined as in Eq. (2.2). For a graph illustration see Fig. 2.4(Step 1), where the

initial seed is shown. The next step is to demodulate the column of the initial seed using

the FCT described in subsection 2.2.1, taking the column as a one dimensional signal as

shown in Fig. 2.4(Step 2); the same is done for the row of the initial seed as shown in Fig.

2.4(Step 3). Finally, we scan row by row and each row is demodulated with the FCT, using

as an initial seed the value of the column as shown in Fig. 2.4(Step 4). Thus, we have a

row by row demodulation process to demodulate a square frame in a image interferogram.

Our strategy to demodulate an image interferogram following an arbitrary path is by

following the path with square frames as is shown in Fig. 2.5. Therefore, we explained

before how to demodulate a frame. As we can see in Fig. 2.5, a frame in a site slope the

frame of the neighbor site. Then, to maintain a spatial coherence between frames, only the

seed of the first demodulated frame is set using the arc cosine function. The seed of the

subsequent frame is already estimated in the previous frame.

2.4 Tests and results

Now let us to test FCT method with a simulated SFPI with closed fringes following an

arbitrary path. We are going to compare this result with the result of RPT method following

an arbitrary path. For this, we propose a free hand drawn path. In Fig. 3.2(a) we see the
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Step 1 Step 2

Step 4Step 3

Fig. 2.4: Steps for the row by row scanning strategy to demodulate a frame in the image

interferogram lattice. Step 1 shows the initial seed with a circle, Steep 2 shows the column

demodulation, Step 3 shows the row demodulation and Step 4 the row by row scanning to

demodulate each row using the values of the column as an initial seed for each row.

Frame path

Fig. 2.5: In this figure we illustrate a path that is followed with square frames. Each site of

the path, represted with a dark point, is the center of its frame and each frame is such that

intersects the frame of the neighbor site and the neighbor site belong to this intersection.
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Path

(b)

(c) (d)

(a)

Fig. 2.6: (a) is the simulated image interferogram I ′(x, y), (b) is the path to follow, (c) is

the demodulated phase using the FCT in two dimensions and (d) is the demodulated phase

using the RPT.

generated SFPI I ′(x, y) while in Fig. 3.2(b) the drawn path to follow. We can see the phase

obtained using the FCT in Fig. 3.2(c) while in Fig. 3.2(d) the phase obtained with the RPT

following the proposed path. As we can see, the RPT fails to obtain the expected modulated

phase. On the other hand, we can see that the FCT obtains the expected modulated phase

even if we are not following the fringes. In this sense, the FCT is more robust than the

RPT since it obtains the expected phase without taking care on following fringes.

Figure 2.7, shows two even more complicated fringe structures to demonstrate the FCT

method’s ability to demodulate complicated fringes without following the fringes. The

actual phase of the fringe patterns shown in Figs. 2.7(a) and 2.7(b), were generated using

a linear combination of Gaussian functions.

Figure 2.8, shows an experimental SFPI generated with ESPI technique for contouring.
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(b)

(d)

(a)

(c)

Fig. 2.7: A more complicated structure of fringes. (a) and (b) are simulated fringe patterns

and (c) and (d) shows its estimated phase with the FCT using a row by row scanning

strategy. The phase is shown wrapped for illustration purposes.

As the FCT method assume that the modulating phase of the SFPI is continuous in curva-

ture, we can not apply directly the FCT method to the image interferogram shown in Fig.

2.8(a). Firstly, we must use a normalization method able to normalize and filter the fringe

pattern. In this case we have used the normalization method reported in Ref. Guerrero

et al. [2005] tuning properly the filters. Figure 2.8(b) shows the obtained normalized fringe

pattern. The estimated phase is shown in Fig. 2.8(c) while Fig. 2.8(d) shows the estimated

phase wrapped for illustration purposes.

2.4.1 Computational time cost report

We have tested the FCT method for various interferogram sizes and demodulated success-

fully. The computational time cost for the different interferogram image sizes is as follow:

size of 1024 × 1024, 1.14 seconds; size of 512 × 512, 0.320 seconds; size of 256 × 256, 0.089

seconds; size of 128 × 128, 0.016 seconds. These tests were made on a personal computer

with a 64bit processor at 2GHz and 1GB of memory RAM using double precision data.
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(a) (b)

(d)(c)

Fig. 2.8: (a) is a real experimental SFPI, (b) is its normalized version, (c) is the obtained

phase with the FCT using a row by row scanning strategy and (d) is the wrapped phase

showed for illustration purposes.

The FCT algorithm was programmed using a ”C” compiler.

2.5 Discussion and Conclusions

Here, we have demonstrated that estimating the phase into a function space C2, removes

the local ambiguities given by the actual phase estimators as the RPT (see Fig. 2.2). To

estimate the phase into the function space C2, we have developed an estimator based on

the local frequency estimation within a discrete frequency set. The main advantage of this

estimator is that we can to demodulate a SFPI with closed fringes regardless of the path

to follow (see Fig. 3.2). Another advantage is that we do not need to use a minimization

process like the steepest-descent algorithm (see Ref. ?) for non linear systems to estimate

the phase as the RPT method. As we can see in subsection 2.4.1, this method is a fast

demodulation process. Finally, we can use a simple row by row scanning strategy like the

one shown in Fig. 2.4 to demodulate the image interferogram. This is important because
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we do not need program complicated fringe following algorithms.

On the other hand, proposed method assumes that the modulating phase is continuous

and that fringe pattern is normalized. Then, we can not apply this method directly to

an image interferogram like that shown in Fig. 2.8. It is necessary to preprocess the

SFPI to normalize and filter the fringes. This is a drawback of the FCT method as is,

because it can not be applied to a noise contaminated experimental fringe pattern directly.

However, this drawback does not diminish the importance of the suggested method and its

ideas (estimating the phase φ̂ as φ̂ ∈ C2). This is because phase profiles which are in C2,

are typical phase profiles of single fringe pattern images with closed fringes. Furthermore,

nowadays there is not one published work with a path independent technique to demodulate

single image interferograms with closed fringes. At present, we are working with some ideas

to apply these concepts within a modified robust FCT method to be applied directly to

noise contaminated fringe patterns.

It should be clearly remarked, that as shown by the results of Figs. 3.2, 2.7 and 2.8,

the method obtains the expected phase regardless of the path followed by the FCT. If the

underlying modulating phase is continuous and at least one time differentiable, then the

method is guaranteed to be path independent and able to recover the phase.
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Chapter 3

Local Adaptable Quadrature

Filters for Interferograms with

closed fringes

Here, we propose a new approach to demodulate a single fringe pattern with closed fringes

by using Local Adaptable Quadrature Filters (LAQF). Quadrature filters have been widely

used to demodulate complete image interferograms with carrier frequency. However, in this

paper, we propose the use of quadrature filters locally, assuming that the phase is locally

quasimonochromatic, since quadrature filters are not capable to demodulate image interfer-

ograms with closed fringes. The idea, in this paper, is to demodulate the fringe pattern with

closed fringes sequentially, using a fringe following scanning strategy. In particular we use

linear robust quadrature filters to obtain a fast and robust demodulation method for single

fringe pattern images with closed fringes. The proposed LAQF method does not require

a previous fringe pattern normalization. Some tests with experimental interferograms are

shown to see the performance of the method along with comparisons to its closest competi-

tor, which is the Regularized Phase Tracker (RPT), and we will see that this method is

tolerant to higher levels of noise [Estrada et al., 2007].
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3.1 Introduction

In moiré interferometry, as well as in other areas of optical metrology, when one is working

with transient events, one can have situations where it is necessary to deal with a single

fringe pattern with closed fringes. As the information of interest is phase modulated by the

fringe pattern, it is necessary to apply a demodulation method able to demodulate a single

fringe pattern with closed fringes.

A single fringe pattern with closed fringes is typically modeled in the following way:

I(x, y) = a(x, y) + b(x, y) cos[φ(x, y)], (3.1)

where a(x, y) is the background illumination and b(x, y) the modulation term or contrast.

The phase to be demodulated is φ(x, y). If the fringe pattern has a carrier frequency, then

it can be modeled in the following way:

I(x, y) = a(x, y) + b(x, y) cos[φ(x, y) + ωx], (3.2)

where φ(x, y) is the modulating phase, and ω is the carrier frequency. In this case, we can

demodulate the fringe pattern by using quadrature filters like those used with the Fourier

transform method Takeda et al. [1982], and the Hilbert transform method Kreis [1986]. In

both cases, we obtain the wrapped modulating phase φ(x, y). However, this kind of methods

fails to obtain the modulating phase when we have a fringe pattern like the one shown in

(3.1), or in other words, when we have a single fringe pattern with closed fringes.

In this paper we are going to show a new approach to demodulate single fringe pattern

images with closed fringes, using Local Adaptable Quadrature Filters (LAQF). In general,

a quadrature filter is a band-pass filter that is zero in one half of the Fourier domain, and

maps its input to a complex space. For example, if the input is a fringe pattern like the

one shown in Eq. (3.1), the output is a complex signal whose real part is the fringe pattern

itself, and the imaginary part is its quadrature. However, when we have closed fringes, the

input signal quadrature, obtained with a quadrature filter, has abrupt sign changes when
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applied to the complete fringe pattern Kreis [1986]. Hence, quadrature operators have

been proposed to overcome this drawback, i.e. the Larkin’s quadrature operator and the

n-dimensional quadrature transform Larkin et al. [2001], Larkin [2001], Servin et al. [2003].

Since a quadrature filter is not able to recover the expected phase from a complete

single fringe pattern with closed fringes, we propose the use of adaptable quadrature filters

in small regions where the phase may be considered quasimonochromatic. One of the

advantages of using quadrature filters, is that we need only a band-pass filtering to remove

the background illumination from the image interferogram. Then we use the LAQF to

estimate the phase sequentially using a fringe following scanning strategy. This sequential

way, used to demodulate a single fringe pattern with closed fringes, remind us of the first

proposed sequential method, called the Regularized Phase Tracker (RPT) Servin et al.

[2001], with the difference that we use local quadrature filters to estimate the phase.

As we are going to compare the LAQF method, developed here, with the RPT method

shown in Servin et al. [2001], let us to show, in brief, the use of the RPT method to

demodulate single fringe pattern images with closed fringes. Also, we are going to comment

the derived RPT methods that have been published recently.

3.1.1 RPT method

To demodulate the phase, using the RPT method, we minimize the following functional

with respect to φ̂(x, y) and frequencies u(x, y) and v(x, y):

U [φ̂(x, y), u(x, y), v(x, y)] =
∑

(η,ξ)∈Γ

{

[cos p(η, ξ) − I ′(η, ξ)]2 + λ[φ̂(η, ξ) − p(η, ξ)]2
}

, (3.3)

where p(η, ξ) = φ̂(x, y) + u(x, y)(x − η) + v(x, y)(y − ξ) is a phase plane and φ̂(x, y) is the

estimated phase at site (x, y) after the minimization. The closed region Γ is a neighborhood

around site (x, y), and λ is a regularization parameter to strengthen the method against

noise. I ′(x, y) is the fringe pattern shown in Eq. (3.1), but normalized in the following way:

I ′(x, y) = cos[φ(x, y)] (3.4)
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where background illumination a(x, y) is removed using a high-pass filter, and the mod-

ulation term b(x, y) is spatially normalized to the constant value 1, using normalization

techniques for fringe patterns Quiroga et al. [2001], Quiroga and Servin [2003], Guerrero

et al. [2005]. Then, the RPT method needs a previous fringe pattern normalization to

remove the contrast variations of the image interferogram.

To obtain the expected phase using the RPT, it is necessary to use a scanning strategy

to follow the fringes. This scanning strategy first visits the sites from the fringe pattern

that are in the same isophase contour, i.e. following the fringes. One can find an algorithm

with this feature for the scanning strategy in Ref. Strobel [1996]. As our approach also

needs this scanning strategy to obtain the expected phase, we will refer to this scanning

strategy as the Fringe Following Scanning (FFS) throughout this paper.

Then, to demodulate an experimental interferogram with closed fringes, using the RPT,

we do the following main steps in the demodulation process:

1. Apply a band-pass filter to remove the background illumination and attenuate the

noise.

2. Normalize the fringe pattern in order to make the contrast component, b(x, y), spa-

tially constant.

3. Demodulate the fringe pattern using the RPT.

In step 1, band-pass filtering may be easily achieved using low-pass filtering followed by

high-pass filtering. For example, the following spatial filter may be used to apply a band-

pass filter:

gσ(x, y) = exp

[−(x2 + y2)

σ2

]

, (3.5)

where σ controls the filter band-width. Having this, we can apply a band-pass filter in the

following way:

I ′(x, y) = [I − I ∗ gσH
(x, y)] ∗ gσL

(x, y), (3.6)
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where ∗ is the convolution operator, I(x, y) is the image insterferogram modeled in (3.1),

and σL ≪ σH , i.e, σL = 2.4 and σH = 80, for 256 × 256 image interferograms or bigers.

This process can be implemented in a fast way by using the fast Fourier transform Brigham

[1974].

Step 2 is more complicated, since it is necessary to obtain a pre-estimated phase map to

normalize the fringe pattern (see Quiroga et al. [2001], Quiroga and Servin [2003], Guerrero

et al. [2005]), i.e, the simplest way to normalize a single fringe pattern with closed fringes

may be using the Fourier transform method reported in Takeda et al. [1982], however,

this technique may introduce undesired artifacts in the fringe pattern. For this reason, to

estimate the phase of experimental interferograms, the RPT method spends most of the

computational time in the normalization rather than in the demodulation process itself.

Other known approaches to demodulate single fringe patterns with closed fringes that

need a previous fringe pattern normalization are the Larkin’s quadrature operator Larkin

et al. [2001], Larkin [2001], and the n-dimensional quadrature transform Servin et al. [2003].

These methods need a normalized fringe pattern to estimate the fringe orientation angle.

As the fringe pattern normalization may on occasions turn out to be as difficult as

obtaining the phase, in Ref. Legarda-Sáenz et al. [2002] another version of the RPT method

was proposed to deal with the modulation term. Then, the modified RPT functional,

proposed in Legarda-Sáenz et al. [2002], may be written as the following:

U [φ̂, u, v, b̂, bx, by] =
∑

(η,ξ)∈Γ

{

[β(η, ξ) cos p(η, ξ) − I ′(η, ξ)]2

+ λ[φ̂(η, ξ) − p(η, ξ)]2

+ µ[b̂(η, ξ) − β(η, ξ)]2
}

, (3.7)

where b̂ is the modulation estimation, and bx and by its partial derivatives in x and y

respectively. We have removed the (x, y) dependence of each variable for more clarity. The

term β(η, ξ) is a modulation plane defined as β(η, ξ) = b̂(x, y)+bx(x, y)(x−η)+by(x, y)(y−

ξ). If we see Eq. (3.3) and Eq. (3.7), we can see that the modified RPT method reported in
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Legarda-Sáenz et al. [2002], estimates the phase and frequencies along with the modulation

term and its derivatives. As a consequence, using the modified RPT method reported in

Legarda-Sáenz et al. [2002], let us solve a non-linear system with more time-consuming

numerical methods, than the numerical methods used to solve the non-linear system of the

original RPT reported in Servin et al. [2001].

More recently, in Ref. Rivera [2005], a half-quadratic linearized RPT functional was

proposed for the phase estimation that let us solve a linear system instead of the original

RPT non-linear system. Taking this idea, and the idea shown in Legarda-Sáenz et al. [2002]

to estimate the phase and modulation term, in Ref. Legarda-Saenz and Rivera [2006] a

linearized modified RPT method is presented to estimate the phase and modulation term

by solving a linear system. The main advantage in this work is that one can have a linearized

RPT method that estimates the phase and modulation term in the same process as using

Eq. (3.7), but much faster (see Legarda-Saenz and Rivera [2006]).

All versions of the RPT method, mentioned in the last paragraph, model the phase

estimation and the modulation or contrast component of the image interferogram, by using

a cost functional like the shown in Eq. (3.7). As a result, these modified RPT methods

are more robust than the original RPT that uses Eq. (3.3), when the image interferogram

is not normalized. However, if we see Eq. (3.3) and Eq. (3.7), these RPT like methods

support the same levels of noise than the original RPT, since the added terms in Eq. (3.7)

just deal with the modulation variations.

In this paper we present the local adaptable quadrature filter method or LAQF method,

which does not need a previous fringe pattern normalization like the modified RPT methods

shown in Legarda-Sáenz et al. [2002], Rivera [2005], Legarda-Saenz and Rivera [2006], and

let us solve a linear system like the method reported in Legarda-Saenz and Rivera [2006].

As we use local quadrature filters to estimate the local phase, rather than estimate the

local phase by fitting a phase plane with the RPT method, the LAQF method reported

here supports higher levels of noise than the RPT like methods.
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In section 3.2 we are going to show in detail the LAQF method, which particularly uses

Robust Quadrature Filters Marroquin et al. [1997] to estimate the phase locally. In section

3.3, we are going to present comparisons between the proposed method and the RPT to

see that this method, with a simple band-pass filtering, is able to demodulate noisier fringe

patterns than the RPT method. Also, we will show some experimental interferograms to see

its performance with real fringes. Finally, in section 3.4 we will talk about the conclusions

of the work.

3.2 Proposed LAQF method

As we said before, in this method we only use a band-pass filtering previous to the fringe

pattern demodulation using the LAQF. Then, here it is not necessary to normalize the

fringe pattern.

Assuming that we apply a band-pass filtering to the fringe pattern given in (3.1), we

obtain the following fringe pattern:

I(x, y) = b(x, y) cos[φ(x, y)], (3.8)

where (x, y) is a site in L, being L the lattice where the interferogram is recorded. Now,

assume that in a small region Γ around site (x, y), the fringe pattern locally is quasi-

monochromatic. Then, locally the fringe pattern looks like:

I0(η, ξ) = b(η, ξ) cos[φ(x, y) + u0(x − η) + v0(y − ξ)], (3.9)

where (η, ξ) ∈ Γ and (u0, v0) are the local frequencies in x and y respectively. As one can

see in Eq. (3.3), the RPT method also uses this assumption and fits the observed data

in Γ around (x, y) with a phase plane to estimate the phase at site (x, y) (see Eq. 3.3).

Although this technique works properly, we have found a better and more robust way using

local adaptable quadrature filters to estimate the phase sequentially.
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In particular, to estimate the phase in region Γ around site (x, y), we use the Robust

Quadrature Filters developed in Marroquin et al. [1997], to locally demodulate the fringe

pattern. However, we do not apply these filters to the complete image interferogram as

are presented in Marroquin et al. [1997], but we apply these filters locally in a small region

Γ around a site (x, y), and we adapt its tuning frequency as we move through the image

interferogram’s sites using a fringe following scanning or FFS. Hence, we call this method

local adaptable quadrature filters or LAQF along this paper.

Then, the LAQF uses robust quadrature filters to locally estimate the phase. This

process is done by minimizing the following cost functional in region Γ around site (x, y):

U [f ] = RΓ[f, I] + λVΓ[f ], (3.10)

where the filter estimation model f is complex and can be expressed as f(η, ξ) = ϕ(η, ξ) +

iψ(η, ξ), for (η, ξ) ∈ Γ.

The first term RΓ[f, I] in (3.10) is commonly known as the data term, and it depends

on the difference between the observed data I (in this case the interferogram) and the

estimation model f , in such a way that RΓ[f, I] is minimal when f is close to I. Here, we

define RΓ[f, I] as the residual between the finite differences of the observed data and the

finite differences of the filter estimation model in the following way:

RΓ[f, I] =
∑

(η,ξ)∈Γ

‖fx(η, ξ) − 2Ix(η, ξ)‖2 + ‖fy(η, ξ) − 2Iy(η, ξ)‖2, (3.11)

where fx and Ix, are the finite differences in x and fy, and Iy are the finite differences in y.

For example, the finite differences for f in x may be given as fx(x, y) = f(x, y)−f(x−1, y),

and so on. We define the data term in this way because if we take its Fourier transform,

this term has a zero in the origin, which is a desired feature in the use of quadrature filters

to demodulate fringe patterns (see Kreis [1986]).

The second term VΓ[f ] is usually called the regularization term. This term adds restric-

tions to the estimation model f . For example, a commonly used regularization term to

38



restrict the filter estimation model f from being smooth (to obtain a low-pass filter), is the

quadratic norm of the Laplacian’s operator known as the membrane model. In our case,

since we want a quadrature filter, we define the regularization term in the following way,

according to Ref. Marroquin et al. [1997]:

VΓ(f) =
∑

(η,ξ)∈Γ

{

‖f(η, ξ) − f(η − 1, ξ)e−iu0‖2 + ‖f(η, ξ) − f(η, ξ − 1)e−iv0‖2
}

, (3.12)

where i =
√
−1, u0 is the tuning frequency in x, and v0 the tuning frequency in y. In the

Fourier domain, this term, along with RΓ[f, I], looks like a band-pass filter that is zero in

one half of the Fourier domain, and maximum in frequency (u0, v0) (see Marroquin et al.

[1997]). The parameter λ in (3.10) is known as the regularization parameter that controls

the strength of the quadrature filter (or its bandwidth).

To minimize Eq. (3.10), we obtain its gradient with respect to f and equal it to zero.

Then, we can solve the resulting linear equation system using fast straightforward algorithms

such as the Gauss-Seidel algorithm, although we can use more generic algorithms, like the

Steepest-descent used by the RPT method ?Servin et al. [2001]. In Ref. Marroquin et al.

[1997], the gradient of cost functional (3.10) is given explicitly.

Thus, to obtain the local phase in region Γ around site (x, y), we minimize Eq. (3.10)

with respect to f using the tuning frequency (u0, v0). Once given the quadrature filter f

by minimizing (3.10), we obtain the phase (modulus 2π) in region Γ as:

φ̂(η, ξ) = arctan

[

ψ(η, ξ)

ϕ(η, ξ)

]

. (3.13)

Given the phase in region Γ around the current site (x, y) by using (3.13), we move to

the next site using the fringe following scanning or FFS as with the RPT. Just before we

move to the next site, however, we need to update the LAQF tuning frequency to estimate

the phase correctly in region Γ around the next site. The local frequencies for current site

(x, y) may be used as the tuning frequency to estimate the phase in the next site, and are

obtained as the finite differences along x and y of the estimated phase given by (3.13). But,
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as we see from Eq. (3.13), the estimated phase in region Γ around site (x, y) is wrapped

into the [−π, π] interval. For this reason, we take the local frequencies for the current site

(x, y) in the following way:

u0 = arctan

[

sin[(φ̂(x, y) − φ̂(x+, y))(x − x+)]

cos[(φ̂(x, y) − φ̂(x+, y))(x − x+)]

]

(3.14)

and

v0 = arctan

[

sin[(φ̂(x, y) − φ̂(x, y+))(y − y+)]

cos[(φ̂(x, y) − φ̂(x, y+))(y − y+)]

]

, (3.15)

where x+ and y+ are the coordinates of the previous already phase estimated site, given by

the FFS, and they may take the following values:

x+ =











x + 1 If previous site is to the right

x − 1 If previous site is to the left
(3.16)

and

y+ =











y + 1 If previous site is down

y − 1 If previous site is up
, (3.17)

For illustration purposes, In Fig. 3.2, we see an example of the estimated phase in the

region Γ of size 32 × 32 around site (32, 32) from the given fringe pattern. Here, we used

the tuning frequency (u0, v0) = (0.25, 0.24) with λ = 50 to obtain the phase in Γ. We

must remark that in this case, for illustration purposes we have chosen a region size too big

compared with the sizes of n × n, with typically, n ∈ 5, 6, 7, 8.

The scanning strategy to demodulate all sites from the fringe pattern with the LAQF

is the same FFS used by the RPT method, as we said before. We start at site (x, y) as

the initial seed to demodulate the fringe pattern. Then, we visit each site from the fringe

pattern using the FFS. For each visited site, we estimate its local phase by minimizing Eq.

(3.10) and using Eq. (3.13). After this, we obtain the tuning frequency for the next site to

visit using (3.14) and (3.15).

To estimate the phase for the initial seed (x, y), we must know previously the tuning

frequency to use. Here, we propose a simple way to choose the initial seed (x, y) and its
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Fig. 3.1: In this figure, we graphically illustrate how the phase in region Γ around site

(32, 32) is obtained. The left image is the given interferogram where we mark the neigh-

borhood in red. The intermediate images are the real part and imaginary part of the local

quadrature filter, or LAQF, obtained after minimizing Eq. (3.10). Finally, the right image

is the local phase obtained from the RQF.

tuning frequency by using a Gabor filter. A Gabor filter is a quadrature filter defined in

the following way:

gu0,v0(x, y) = exp

[−(x2 + y2)

σ2

]

e−i(u0x+v0y), (3.18)

where σ controls the bandwith of the Gabor filter, and (u0, v0) are its tuning frequencies.

Thus, we tune the Gabor filter onto a frequency (u0, v0) that can be in the fringe pattern.

Then, we filter the fringe pattern with the tuned Gabor filter. Finally, we take as initial

seed the site (x, y) for which the Gabor filter magnitude response is maximal. For example,

suppose that Ĩ is the filtered fringe pattern with the Gabor filter tuned to the frequency

(u0, v0), then we take as initial seed the site:

(x, y) = arg max
(xi,yi)

‖Ĩ(xi, yi)‖, (3.19)

then we use the tuning frequency (u0, v0) to start the demodulation process.

Readers may wonder why use a Gabor filter to choose the initial seed and its tuning

frequency instead of the robust quadrature filter shown in Eq. (3.10). The answer is because
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in this case, we apply the Gabor filter to the complete fringe pattern, which is faster than

minimizing (3.10) for the complete pattern. Another question could be why not to use

just Gabor filters instead of the robust quadrature filters to filter the local region Γ in the

demodulation process. The answer is that since the Gabor filters are convolution filters, they

introduce errors on the edges of the region where the filter is applied. As the region’s sizes

used here are small, to ensure the validity of the assumption of local quasimonochromatic

phase, errors introduced on the edges by using convolution filters are significant in these

small regions. Hence, we use the robust quadrature filters locally, because these filters have

no problems on the region’s edges.

3.3 Tests and results

In all tests presented here, we demodulate the given single fringe patterns with closed fringes

successfully, using the following basic steps:

1. Apply a band-pass filter to attenuate the noise and remove the background contribu-

tion.

2. Demodulate the fringe pattern using the LAQF as described in previous section.

To apply the band-pass filter, we used Eq. (3.6) with σL = 2.5 and σH = 80 using a fast

Fourier transform algorithm Brigham [1974]. The computational time spent in this process,

for a 256 × 256 image insterferogram, was of 0.543 seconds. For our tests we used a 64bit

personal computer architecture in a Linux like operating system, and a C-language 64bit

optimized compiler.

In our first test, we show the levels of noise that the LAQF tolerates, and compare

our results to those obtained with the RPT method. In Fig. 3.2, we see a table with

the obtained results. The fringe patterns shown there were computer generated with the

ground truth phase shown in Fig. 3.3, adding a phase noise whose probability distribution
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Fringe pattern RPT LAQFlow-pass filtering

Fig. 3.2: In this figure: the variance column shows the variance of the Gaussian noise added

to the ground truth phase; the fringe pattern column shows the generated fringe pattern;

the RPT column shows the obtained phase using the RPT method and the LAQF column

the phase obtained using the LAQF.

Fig. 3.3: Ground truth phase used to generate the fringe patterns shown in Fig. 3.2.
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(a) (b)

Fig. 3.4: (a) image interferogram with closed fringes obtained by means of a moiré technique.

(b) expected obtained phase using LAQF. The image interferogram dimensions are 488×500.

is Gaussian with mean zero and variance given in the variance column. Here, the fringe

patterns are already normalized in order to be used with the RPT directly. The parameters

used with the RPT method are λ = 20 and neighborhood size 6 × 6. The parameters used

with the LAQF are λ = 5, neighborhood Γ size 6 × 6.

The computational cost time in these tests, where the fringe pattern’s size is of 256×256,

was 11.1 seconds for the RPT and 4.224 seconds for the LAQF.

As one can see in Fig. 3.2, the phase obtained in all cases with the LAQF method looks

like the ground truth phase shown in Fig. 3.3, unlike the phase obtained with the RPT

method, which differs from the ground truth phase as the noise grows.

In the second test, we show an experimental interferogram with closed fringes generated

using a moiré technique to measure deformations on surfaces. In Fig. 3.4(a), we see the

image interferogram, and in Fig. 3.4(b) its obtained phase with the LAQF. The parameters

used in this test are λ = 5 and neighborhood Γ size 8 × 8.

The next experiment shows what happens when the image interferogram has very low

frequency zones. In Fig. 3.5(a), we see an image interferogram with closed fringes gener-

ated with a moiré technique. This image interferogram has zones where its frequency is
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(a) (b)

Fig. 3.5: (a) image interferogram with very low frequency zones. The image interferogram

was generated with a moiré technique. (b) phase obtained using the LAQF.

practically zero. In Fig. 3.5(b), we see the obtained phase using the LAQF. As we can see,

the LAQF method behaves correctly in zones where the frequency is practically zero.

Finally In Fig. 3.6(a), we show another image interferogram. In this case, the fringes

are available only in a zone of the image. To demodulate this kind of interferograms, a mask

is used to indicate the zone where the fringes exist. As we can see, the phase is obtained

correctly.

3.4 Discussion and conclusions

The LAQF method, developed here, is a robust demodulation method for the recovery of

phase from single fringe patterns with closed fringes without the need of normalization.

This method, compared to the RPT method, tolerates higher levels of noise. As the RPT

method, this method is a sequential method that uses a scanning strategy following the

fringes.

The way to choose the Γ neighborhood size used for the LAQF, is the same way used

to choose the neighborhood size for the RPT. This is by testing different sizes. By testing

different sizes, we found that neighborhood sizes of n × n for n ∈ {5, 6, 7, 8} are situable

to demodualte correctly an image interferogram with closed fringes. Actually there is no
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(a) (b)

Fig. 3.6: (a) is the interferogram to demodulate, and (b) its demodulated phase using the

LAQF. In this example, we see that the fringes exist just in a zone of the image.

rule to say what is the optimum neighborhood size to use, nither for the other secuential

methods like the RPT.

The RPT method is a demodulation method that supports certain levels of noise. Other

modified RPT methods that support variations in the modulation term from the fringe

pattern, have been presented to demodulate single fringe patterns with closed fringes (see

Rivera [2005], Legarda-Sáenz et al. [2002], Legarda-Saenz and Rivera [2006]). However, all

these methods, as they are based on the RPT method, support the same levels of noise

than the RPT. On the other hand, the LAQF approach estimates the modulating phase

using local robust quadrature filters. The single common process between the RPT method

and the LAQF method, presented here, is the fringe following scanning strategy used to

demodulate the image interferogram.
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Chapter 4

Future work and conclusions

In metrology, real-time analysis with traditional interferometer systems is almost impos-

sible, because they need specular reflectors attached to especial mounts [Malacara et al.,

1998]. The main problem here is the difficulty to introduce carrier frequencies in order to

recover the phase as fast as needed. Hence, alternatives for real-time analysis such as holo-

graphic interferometry, or as some people call TV holography, are replacing the traditional

interferometer systems because it is more relievable real-time analysis with holographic in-

terferometry [Goodman, 2004]. For example, one can use pulsed digital holography for

real-time analysis of mechanical stress or deformations [Pedrini et al., 1997]. However, to

use this kind of techniques we need more powered and pulsed lasers because these systems

use very small pupils to introduce the carriers needed and grab the holograms. In pulsed

digital Holography are grabbed at least two holograms in the same image, after that, the

information is recovered by using the Fourier transform, therefore, it is needed high resolu-

tion cameras as well. As a result, the money invested in digital holography is greather than

the money invested for a simple Michelson interferometer, although we will not be able to

do real-time analysis with a Michelson interferometer.

Actually, as the technology is advancing, every day is growing the necessity of optical

systems for real-time analysis in metrology. This is because we have almost reached the

future of measurement systems with the optical metrology. Taking this background, with the
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Fig. 4.1: A volumetric 3-dimensional interferogram without carrier frequencies in both space

nor time. The left is the 3-dimensional interferogram and the right its ground true phase.

idea of simplify the interferometer systems, we bet, on the other hand, in the development

of robust computer techniques to make real-time analysis in optical metrology, rather than

in optical techniques to introduce frequency carriers.

In our days, there is no one robust demodulation technique for temporal interferograms

without both spatial and temporal carriers. This is because the techniques developed until

here, are designed for single image interferograms with closed fringes, that is, without

spatial carrier [Servin et al., 1997, 2001, Larkin et al., 2001, Servin et al., 2003, 2004,

Rivera, 2005, Villa et al., 2005, Estrada et al., 2006, 2007]. The problem to demodulate

an interferogram sequence without both spatial and temporal carriers is the same as to

demodulate a volumetric 3-dimensional interferogram like that shown in Fig. 4.1. In Fig.

4.1, we show an illustration of a volumetric 3-dimensional interferogram without carriers in

any direction. The left shape is the 3-dimensional interferogram and the right its ground

true phase.

One of the first complications to demodulate a volumetric interferogram like the shown

in Fig. 4.1, using the techniques described by Servin et al. [1997, 2001], Larkin et al. [2001],

Servin et al. [2003, 2004], Rivera [2005], Villa et al. [2005] and Estrada et al. [2007], is

the necessity of following the fringes to recover the expected phase. If we translate these

techniques into the three dimensional case, we must to implement a three dimensional fringe
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follower algorithm which, as first lance, is very difficult since actually the interferogram

sequence is given frame by frame and not as a volume like the shown in 4.1. Then, to

demodulate an interferogram sequence we need a path independent demodulation techniche

to throw the fringe follower implementation and simplify the process.

Here, in chapter 2, we have presented a path independent demodulation method for two-

dimensional interferograms and could be easily translated to the three-dimensional case,

though, this method has a very important drawback: is very sensitive to noise [Estrada

et al., 2006]. To make more robust this method we need a more robust and fast frequency

estimation method. In chapter 3 we have presented a lineal method to obtain the wrapped

phase of an interferogram with closed fringes. We have shown that, if we obtain the phase

following an smooth phase curvature, we have not to follow the fringes to obtain the expected

phase. Then we can merge both methods to obtain a robust demodulation method with

out need of following the fringes. This is very important because then we can extend the

method to the 3-dimensional case of interferogram sequences. As the phase estimation is

fast using local adaptable quadrature filters, in local regions, we can tray this method to

make real-time analysis over time and use the strategies shown in chapter 2 to follow an

smooth phase curvature. However, all of this needs to be proofed numerically.
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R. Legarda-Sáenz, W. Osten, and W. Jüptner. Improvement of the Regularized Phase

Tracking Technique for the Processing of Nonnormalized Fringe Patterns. Appl. Opt.,

41(26):5519–5526, 10 September 2002.

D. Malacara, M. Servin, and Z. Malacara. Interferogram Analisys for Optical Testing.

Marcel Dekker, 1998. Chap. 1.

51



J. L. Marroquin. Local phase from local orientation by solution of a sequence of linear

systems. J. Opt. Soc. Am. A, 15(6):1536–1544, June 1998.

J. L. Marroquin, J. E. Figueroa, and M. Servin. Robust quadrature filters. J. Opt. Soc.

Am. A, 14(4):779–791, April 1997.

G. J. Morgan. Least squares estimation in phase-measurement interferometry. Opt. Lett.,

7:386–370, 1982.

A. Mujeeb, V. U. Nayar, and V. R. Ravindran. Electronic Speckle Pattern Interferometry

techniques for non-destructive evaluation: a review. INSIGHT, 45(5):275–281, May 2006.
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