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Preface 

 
Fluorescence quenching is a phenomena consisting in the reduction of quantum efficiency 

luminescence of a phosphor as the fluorescent (active) ions increase in concentration within 

the phosphor.  That is quantitatively observed as a reduction on the lifetime of the 

fluorescence emission as the ion concentration increases. It turns out that the lifetime is one 

of the most important parameters on solid state laser optimization. So it is very important to 

solve this complicated problem. If we are able to understand and reproduce the behavior of 

the nonradiative energy transfer processes responsible of the rare earth’s lifetime 

quenching, we could predict the behavior of the lifetime and its dependence on dopant 

concentration. That is, we can establish a strategy to dopant optimization in the active 

medium.  This process up to now is in their majority, handled on a test and error strategy.  

Experimentalists manufacture several solid state laser material samples, doping them with 

several concentrations, and then undergo the photoluminescent characterization of each 

sample in order to find which the best is.  

 

One of the traditional tools to study the dopant concentration quenching in a dielectric 

crystal, it is by means of solving the General Energy Transfer Master Equations (GETME) 

that govern the dynamics of the excitation energy among the active ions within the crystal. 

The GETME up to now had been applied only for the unlikely case in which the energy 

levels of the ions inside the crystal are in resonance.  In addition all the involved ions are 

considered to have only two energy levels (one ground state and one exited state).  These 

two considerations are nowadays supposed to fairly represent the real luminescent systems, 

and by solving the GETME under such assumption one can solve the concentration 

quenching problem.  If we consider the most likely non resonant case of the energy levels, 

and if we increase the number of energy levels of the ions (one ground state and more than 

one exited state), the GETME become a non linear system. The nonlinearity of the new 

system, NLGETME, is a very complicated problem to solve, likewise, the number of 

coupled differential equations of the system increase considerably for each new added 



excited level of the ions.  To reduce the complexity of the NLGETME, we propose a linear 

approach based on the Taylor theorem. Then if we are able to solve NLGETME, we could 

predict what dopant concentrations are ideal without the necessity of generate so many 

samples.  

 

One of the simplest luminescent ions is the rare earth Yb3+, which actually have only two 

energy levels.  Yb3+ ions are commonly used to enhance the absorption cross section of 

Er3+ or Tm3+ in several luminescent materials, with the consequent increment of the 

quantum efficiency of such ions under IR pumping. The trivalent Yb3+ ion is an effective 

sensitizing ion for several reasons. Yb3+ has only one exited 4f level, lying 10000cm−1 

above the ground state, so quenching of high energy levels of the codopants by energy 

transfer to Yb3+ is not as likely as with ions having more high energy levels. It offers 

several very attractive features, in particular an unusually broad absorption band that 

stretches from below 850 nm to above 1070 nm.    

 

Besides, it has been reported that ytterbium doped phosphors had visible emission. This 

visible emission was first observed and explained Nakazahua by means introducing a third 

virtual excited level. Recent new evidence show that this supposed virtual level is in fact a 

real energy level, created by the formation of a Yb-Yb pair, and it can be considered as a 

new entity inside in the crystal. Thus, we have two types of active fluorescent entities:  

isolated Yb ions having two energy levels, and Yb-Yb pairs (or dimers) that have three 

energy levels. Therefore Yb ions in crystals constitute the simplest system to proof if the 

solutions to the NLGETME can explain the fluorescence quenching of the isolated Yb ions 

and its dependence on the Yb ions concentration.  Besides, it is possible that the solutions 

of the NLGETME give an adequate prediction of the visible luminescence of the dimers in 

the visible.  

 

 Due to the complexity of the NLGETME equations and to the great computation 

requirements for solve the NLGETME, it was considered that the first excited energy level 

of the dimmers is always excited. Thus, both the Yb isolated ions and the dimers can be 

considered as entities with two energy levels. Such a consideration prevents us to see what 



happened with the visible emission coming out from the Yb-Yb pairs, and limits us to the 

Quenching in IR fluorescence as a consequence of energy transfer to the excited Yb 

dimmers. The Cooperative Upconversion emission of ZrO2:Yb3+ nanocrystals is much 

higher than that recently reported in YAG:Yb3+ nanocrystals.  In addition, recently 

ZrO2:Yb3+ has been reported as a very promising host for efficient photoluminescent 

applications. Besides, Zirconia is easy to produce by sol-gel and coprecipitation methods in 

our Materials Laboratories.  That is the reason why we are interested in this promising 

crystal doped whit Yb3+.  

In the chapter 1 we will discuss the concentration quenching of luminescence in general. 

Also we review the basic ytterbium spectroscopy, as well as cooperative Yb emission.  Our 

experimental observations on the quenching of the IR emission of Yb as well as the visible 

cooperative photoluminescence are presented.  

NLGETME and GETME theoretical models are developed in chapter 2, two cases we will 

be taken, (1) donors and acceptors having two energy levels and (2) donors with two energy 

levels and acceptors with three energy levels. Resonant and off resonance conditions are 

discussed. To reduce the complexity of the NLGETME, we propose a linear approach 

based on the Taylor theorem.  

In the chapter 3 we present the simulations results using NLGETME and GETME, and we  

approach the Yb3+ quenching problem by considering the construction of dimers as the 

quenching centers in nanocrystalline ZrO2:Yb3+. Also we discuss the nanocrystal size and 

phase effect on Donor and acceptor concentration and effective Donor Life time. 

 In the chapter 4 we present conclusions of this work. We have three notable results, (1) we 

are able to reproduce concentration quenching of Yb ions using the Yb dimmer approach; 

(2) the NLGETME simulations and the dimer construction lead to observe the donor 

lifetime dependence on crystallite size; and (3) the nonresonant energy levels between ions 

is a important parameter that could become an important issue for high concentrations of 

dopants.  At the end of Chapter 4 we indicate some of the immediate perspectives for the 

continuity of the present work.  
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Chapter 1: 

 
Quenching of the IR emission of Yb3+ in ZrO2 

1. Introduction  

 
In general, with increasing doping concentration the distances between active ions 

decrease and in consequence interaction among active ions will increase leading to 

concentration quenching. Thus the lifetimes of upper level decrease. Usually, the 

concentration quenching may occur through the following channels: (1) Cross-

relaxation among active ions, (2) non radiative transfer of energy among active ions and 

in the end transfer to a quenching centers, (3) interaction between active ions and host 

resulting in transfer to energy lattice defects, (4) direct energy transfer to quenching 

centers such as color centers, OH −  radicals, electron and hole vacancies, etc.  

Experimental evidence shows that concentration quenching in Yb-doped laser host may 

occur through Upconversion to co-dopants such as Er3+, Tm3+, Dy3+, Mn, Cr, etc.  Such 

phenomenon is considered a deleterious process for the 1.04 micron emission of Yb3+.  

But, on the other side it is an advantage when one is looking for new visible emitters. 

Another interesting quenching mechanism is the cooperative upconversion process in 

which it is assumed the emission of a visible photon thanks to the simultaneous de-

excitation of two excited Yb3+ ions, so called a Yb3+ pair or YB3+ dimer. Takugo Ishii 

proved theoretically the viability of such a 3Yb +  pair and its absorption and emission 

probabilities [1]. So, in this thesis we focus on the IR fluorescence of ZrO2: 3Yb +  and its 

quenching.  We address the Yb3+ pair topic as an approach to clarify the nature of the 

cooperative upconversion and its relationship with the Yb3+ IR fluorescence quenching. 

Thus, the concentration quenching in 2ZrO  crystals with high 3Yb +  doping levels is 

studied and a plausible explanation is given.   
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2. The concentration quenching of luminescence 

 

In principle, an increase in the concentration of a luminescent center in a given 

material should be accompanied by an increase in the emitted light intensity, this being 

due to the corresponding increase in the absorption efficiency. However, such behavior 

only occurs up to a certain critical concentration of luminescent centers. Above this 

concentration, the luminescence intensity starts to decrease. This process is known as 

concentration quenching of luminescence.  

 

In general, the origin of luminescence concentration quenching lies in a very 

efficient energy transfer among the luminescence centers. The quenching starts to occur 

at a certain concentration, for which there is sufficient reduction in the average distance 

between these luminescence centers to favor energy transfer [2].  Due to very efficient 

energy transfer, the excitation energy can migrate about a large number of centers 

before being emitted. However, even for the purest crystals, there’s always a certain 

concentration of defects or trace ions that can act as acceptors, so that the excitation 

energy can finally be transferred to them. These centers can relax to their ground state 

by multiphoton emission or by infrared emission. Thus, they act as energy sink within 

the transfer chain and so the luminescence becomes quenched, as illustrated in Fig. 1a.  

These kinds of centers are called “killers or quenching traps”.  

 

 
Fig 1 (a) Schemes of possible mechanisms for luminescence concentration quenching: Migration of 

excitation along a chain of donors (circles) and a killer (red circle), acting as non radiative sink. (b) Cross 

relaxation   
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Concentration quenching can also be produced without actual migration of the 

excitation energy among the luminescence centers. This occurs where the excitation 

energy is lost from among the emitting state via “cross relaxation” mechanism. This 

kind of relaxation mechanism occurs by resonant energy transfer between two identical 

adjacent centers, due to the particular energy level structure of these centers. Figure 1b 

shows a simple possible energy-level scheme involving cross-relaxation. We suppose 

that for isolated centers radiative emission (3 → 0) from level 3 is dominant. However, 

for two nearby similar centers a resonant energy transfer mechanism can occur in which 

one of the centers (the excited one, acting as the donor) transfer part of its excitation 

energy –for instance (E3-E2)- to the other center (the non excited one, acting as the 

acceptor) exciting it whit an energy (E1-E0) that in turn is equal to (E3-E2). This 

resonant transfer becomes possible due to the particular disposition of the energy levels, 

in which the energy for the transition 3→ 2 is equal to that for transition 0 → 1. As 

results of the cross relaxation, the donor center will end excited in state 2 while the 

acceptor center will reach the exited state 1. After the non radiative transfer, these states 

undergo a non radiative relaxation or emission of photons with energy other than 

3 0E E→ ; in any case the 3 0→  emission will be quenched.  

 

As the concentration quenching results in the depopulation of the emitting level, 

the decay time of such excited level is reduced each time an energy transfer process 

takes place. In general, this decay-time reduction is much easier to measure 

experimentally than the reduction in population of excited levels.  In fact, the easier way 

to detect luminescence concentration quenching is to analyze the lifetime of the excited 

centers as a function of the concentration. The critical concentration is then the 

concentration for which the lifetime starts to be reduced.  

3. Ytterbium Basic Spectroscopy 

 

Ytterbium is one of the most versatile laser ions in solid state laser host [3]. It offers 

several very attractive features, in particular an unusually broad absorption band that 

stretches from below 850 nm to above 1070 nm because of the 2
7 2F /  →  2

5 2F /  

transition, as illustrated with a representative absorption spectrum in Figure 2. Yb-

doped host can thus be pumped with a wide selection of solid-state or semiconductor 
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lasers, including: AlGaAs ( 800 850nm−∼ ) and InGaAs ( 980nm∼ ) laser diodes, 

Nd:YLF (1047 nm) and Nd:YAG (1064 nm) lasers. This broad pump band also relaxes 

considerably both the requirements for specific pump wavelength and its stability with 

temperature. Just as importantly, Yb fluoresces effectively over an equally impressive 

range, from approximately 970 to 1200 nm (see Fig. 2). This is broader than the range 

available from Nd-doped host Lasers, which is one of the attractions of 3Yb +  over 3Nd + . 

The Yb-doped fiber laser, therefore, can generate many wavelengths of general interest: 

for example, for spectroscopy or for pumping other Lasers and amplifiers [3].  

 

 

 
Fig 2. Ground-state absorption spectrum, emission spectrum and energy level diagram of Yb3+ in silica. 

The solid lines identify the radiative transitions responsible for the two features in the emission spectrum. 

 

Another well-known advantage of 3Yb +  is the simplicity of its energy level diagram. 

As illustrated in the inset of Figure 2, 3Yb +  exhibits only a ground state ( 2
7 2F / ) and a 

metastable state ( 2
5 2F / ) spaced by approximately 110 000cm−, . The radiative lifetime of 

the 2
5 2F /  state is typically in the range of 700 1400−  sμ , depending on the host [4]. 

The absence of higher energy levels greatly reduces the incidence of multi-phonon 

relaxation and ESA (excited-state absorption) and, therefore, should facilitate the 

development of high-power lasers. Yet another benefit is the abnormally high 

absorption and emission cross sections of Yb, which are typically several times higher 

than in multicomponent glasses. These combined features allow for very strong pump 
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absorption and very short cavity lengths (or host length) as in the case of the Disk 

configuration high power Yb3+ lasers [3, 5, 30]. A Yb-doped laser is typically pumped 

into the higher sublevels of the 2
5 2F /  manifold (see inset of Fig. 2). At wavelengths 

below about 990 nm, it behaves as a true three-level system (transition A in Fig. 2), 

whereas at longer wavelengths, from 1000 to 1200 nm (transition B), it behaves as a 

quasi-four-level system.  

 

The special electronic configuration of 3Yb +  makes the 4f electrons less shielded 

than in other ions of the lanthanide series, showing higher tendency to interact with 

neighbor ions. Such interaction is not restricted to different ion. It has been reported that 

Yb-Yb pair interaction produce visible emission [6]. That is, when there is neither an 

intermediate nor a final energy level (from the co-dopant) to be populated in order to 

emit in the visible. Such emission is named cooperative upconversion (CUC) and was 

first observed by Nakazawa in 4YbPO . In this case, two excited 3Yb +  ions decay 

simultaneously to the ground state, whit the subsequent emission of a photon with the 

double of energy. This process has been reported for different materials in bulk as a 

weak signal, but recently it was been reported strong CUC emission in both fibers and 

nanosized phosphors [7, 31], and the general assumption is that the enhanced emission 

is due to nanosized confinement effects. 

4. Cooperative transitions of the 3Yb +  dimer  

 

The trivalent ytterbium ( 3Yb + ) dimers in crystals have been considered a good 

system to investigate cooperative transitions [6, 1]. The usual assumption is that the 

energy structure is simple, analogous to that of a free 3Yb +  ion having only two levels 

( 7 22F /  and 5 22F / ) split by spin–orbit interaction. Absorption and emission in the green 

region could be roughly attributed to the simultaneous transitions of the two 3Yb +  ions 

that conforms the dimer. The first observation was reported by Nakazawa and Shionoya 

in 3
4Yb YPO+ :  [6]. A frequently studied material has been 3

3Yb CsCdBr+ :  Goldner et al. 

calculated the transition probability of cooperative emissions [8]. The theoretical 

concept in those works was based on the Dexter model [32]. Further detailed discussion 

concerning the type of pairs (although still controversial) used a different 
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phenomenological method, which was also based on an isolated ion model [9]. The 

sense of “dimer molecule,” instead of the isolated two-ion model, was directly 

considered by Hehlen and Güdel, who used a notation 3
92Yb Br −

.  in the 3 2 9Cs Yb Br  crystal 

[10]. Their experimental work covered not only the well-studied cooperative emission 

transitions but also the absorption 5 2 5 2 7 2 7 2(2 2 ) (2 2 )F F F F/ / / /→  ones too, and the 

cooperative transition probabilities were estimated. A direct discussion on the relation 

between chemical bonds and cooperative transition probability is seen in an earlier work 

by Schugar et al [11]. They insisted that covalency played a much more important role 

than interionic distances, the only parameter in the Dexter model to discuss the 

difference among different crystals. The relation between covalency and transition 

probability is the key to allow material design, but the number of studies analyzing this 

relation is quite small due to the high degree of complexity reached when taking in to 

account chemical bonding.  

 
Fig 3 (a) A dimer is formed when the distance between an i-th ion Yb and a j-th ion Yb is smaller at a 

critic distance. (b) One dimer has three levels of energy. 

 

The customary consideration for Yb dimer constitution is that two Yb ions are close 

enough so their electronic wavefunctions overlap. A new approach was recently 

proposed by Takugo Ishii [1]. In his work a Yb dimer is constituted of two Yb ions and 

a bridging Oxygen. So the cooperative transition results from the overlap of the 4f 

orbital of Yb ions trough the 2p orbital of the bridging oxygen. His work shows that 

cooperative transitions occur via the 4 2f p−  overlaps between the Yb and O atoms. As 
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a result of this overlap, the resulting entity Yb-O-Yb has a three level energy structure, 

where the higher level corresponds to the cooperative transitions.  And of course the 

intermediate level corresponds to the situations in which only one of the Yb ions 

whiting the dimer is excited. Also he shows that the stronger covalency in 2 3Y O  crystal, 

originating from the smaller coordination number, produces a stronger cooperative 

transition probability than the one for the case of YAG  crystal.  Based on these results; 

from now on we consider (as in Fig. 3) the 3Yb +  with a structure of two energy levels, 

the ground state 2
7 2F /  (denoted with number 0) and its excited state 2

5 2F /  (denoted by 

1).  In consequence the dimer configuration becomes the one shown in fig. 3:  The 

upper level { }5 2 5 22 2F F/ /  (level 2) that corresponds to situation in which both 3Yb + within 

the dimer are excited; the lower-energy region (level 1) is a single-particle excitations in 

which only one ion within the dimer is excited; and the ground state (level 0) in which 

both Yb3+ ions within the dimer are unexcited (in its single ion ground state).  

 

Transition between these new energy levels (0,1, and 2) are originally forbidden 

cooperative transitions. The cooperative absorptions are transitions from the 

{ }7 2 7 22 2F F/ /  configuration (level 0) to the { }5 2 5 22 2F F/ /  (level 2). Once we have set the 

dimer absorption, we can obtain the emission transitions by doing the differences 

between levels.  

 

It was also absorbed that the cooperative absorption spectra is in well agreement 

with the self-convolution ( ) ( )IR IRf v f E v dv−∫ , of the IR absorption [33]. 

If we make the Yb absorption spectrum self-convolution, we can find the dimer 

spectrum approach as shown in the figure 4a. For example, if we make the IR 

absorption spectrum self-convolution in ZrO2:2%Yb crystal host (see fig 4a), we can 

find the cooperative absorption centered at 21.3 cm-1 (469nm)  This peak corresponds to 

the upper energy level { }5 2 5 22 2F F/ /  (level 2) of the dimer. The peak corresponding to 

the energy level 1 of the dimer ( { }7 2 5 22 2F F/ / ) is centered at 11.1 cm-1 (901nm). Besides, 

we can see in the figure 4a the experimental absorption spectrum; the self-convolution 

predicts more or less the experimental absorption spectrum. 

On the other hand, we can predict the cooperative emission doing the IR emission 
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spectrum self-convolution (see fig 4b). The cooperative transition 

5 2 5 2 7 2 7 2(2 2 ) (2 2 )F F F F/ / / /→  leads to the visible emission centred at 19.7 cm-1 (507nm). 

The transitions 7 2 5 2 7 2 7 2(2 2 ) (2 2 )F F F F/ / / /→  and 5 2 5 2 7 2 5 2(2 2 ) (2 2 )F F F F/ / / /→  lead to 

the IR emission centred at 10.2 cm-1 (980nm).  
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Fig. 4 (a) Yb absorption spectrum self-convolution and experimental absorption (b) emission spectrum 

self-convolution 
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5. Concentration quenching in ZrO2:Yb3+. 

One of the most important non-radiative processes that every material shows is 

the multiphonon relaxation by the vibration bands of the system. When the frequency of 

this vibration band increases the non-radiative decay rate increases that in turn will 

reduce the quantum efficiency. The stretching frequency of ZrO2 matrix is about 470 

cm-1,  that is very small compared to that of other hosts. This low phonon energy opens 

up the possibility of higher efficient luminescence of active ions incorporated into ZrO2 

matrix. Furthermore, due to its superior hardness, high refractive index, optical 

transparency, chemical stability, photothermal stability, high thermal expansion 

coefficient, low thermal conductivity and high thermomechanical resistance, it can be 

used in a variety of photonics and industrial applications [12]. 

 

Considerable amount of work has been reported on the mechanical, physical and 

luminescence properties of ZrO2. The reported results on the optical studies include the 

photoluminescence of sol-gel derived amorphous and tetragonal crystalline phase thin 

films of ZrO2:Eu3+, Tb3+, Sm3+ systems [13-14]. Bulk zirconium oxide has been grown 

by the Skull method and cubic doped samples have been characterized [15]. More 

recently, the interest in the nanosized version of this rare earth doped nanophosphor has 

been increased. Electrons confinement effect is not expected due the localization of 

electrons in atomic orbital of active ions. However, excitation dynamics is influenced 

by the nanoscopic interaction and has been reported a dependence of the luminescence 

efficiency with particle size [16,17]. The interest on this new rare earth doped 

nanophosphor is to produce visible emission for application such as solid state lighting, 

displays and new generation television screen. Visible emission can be obtained under 

IR pumping by upconversion processes [18]. This is an interesting approximation 

considering that IR source is a well developed technology. Using this approximation it 

is possible to obtain white light for solid state lighting but new nanophosphors with high 

upconversion efficiency and emission if the basic colors are obtained. The emission of 

this kind of nanophosphors is based in two photon absorption process and also finds 

application in biomedicine [20]. Recently, was also reported visible emission by 

upconversion process in ZrO2:Er3+ nanophosphor pumped at 967 nm [22,23].  
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Nanocrystals doped with 0.5, 1.0, 2.0, 4.0, 8.0, and 12.0 mol% of Yb2O3 were 

prepared by using the sol-gel method. The samples were obtained mixing zirconium n-

propoxide (70%), ytterbium chloride (99.99%), ethanol, hydrochloric acid, nitric acid 

and water. The samples were aged at room temperature, dried at 120 °C for 24 h after 

gelation and annealed at 1000 °C for 10 h. A detailed explanation of sample preparation 

was reported elsewhere [27]. 

 

The crystalline structure and crystallite size of the samples was investigated by 

X-ray diffraction (XRD). The crystalline phase of ZrO2:Yb3+ nanophosphor is 

determined by the Yb concentration, see Fig. 5. At Yb2O3 concentrations lower than 1.0 

the crystalline phase is almost monoclinic and starts to be transformed to tetragonal as 

the dopant concentration increases.  For 2 mol% of Yb2O3, the main crystalline phase is 

tetragonal but monoclinic is still present. The small peak marked (→) correspond to the 

main peak of the monoclinic structure. Pure tetragonal and cubic phase was obtained for 

4 and 8 mol% doped sample, respectively. The average particle size obtained from XRD 

pattern using the Scherrer equation was ~50 nm. Both crystalline structure and 

crystallite size was confirmed with TEM and HRTEM, respectively, see Fig. 6. Well 

faceted individual nanocrystals were observed although agglomeration was present as 

consequence of the high annealing temperature. HRTEM confirm that the Yb3+ ion 

content not affects the particle size but affect the crystalline structure.  
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20 30 40 50 60 702θ

2 % Yb2O3-ZrO2

8 % Yb2O3-ZrO2

12 % Yb2O3-ZrO2

4 % Yb2O3-ZrO2

 
Fig. 5 The crystalline phase of the nanophosphor of ZrO2:Yb3+ is a mixture of phases 

monoclinic and tetragonal. For low concentrations of Yb (0.5%) the phase monoclinic 

predominates, while the phase tetragonal is the main component in high concentrations (2%). 

nevertheless, after 4% a transition is observed to the cubic phase, being this the only present 

when one has 12% Yb. 
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a) 0.5% Yb  mainly monoclinic 

 
b) 2.0%Yb  mainly tetragonal and little monoclinic 

 

  
4.0% Yb pure cubic 

 
8.0% Yb  pure cubic 

 
Figure 6 crystallite size was confirmed with TEM 

 

The absorption spectra of ZrO2:Yb3+ nanophosphors, see fig. 7, present the 

characteristic broad absorption band of Yb3+ ion corresponding to 2F7/2 → 2F5/2 

transition. Such band present characteristics peaks centered at 910, 942, 972 and 1002 

nm and are in agreement with the results reported in different matrices. Notice the peak 

distribution change with the increment of Yb ions.  That is due to the crystalline 

structure change given by the increment on Yb concentration and indicates the presence 

of different Yb sites within the ZrO2. The spectra also show absorption bands centered 

at 310 nm and 260 nm characteristic of the monoclinic and tetragonal structure, 

respectively, reported previously [20]. The cubic structure (8%Yb) presents similar 

absorption bands than tetragonal. In addition, a strong broad absorption band centered at 

453 nm was observed being stronger for higher Yb3+ concentration. We assume that 

such band corresponds to the cooperative absorption produced by the simultaneous 

excitation of two neighboring Yb ions. In the literature, it has been considered as a 

virtual state produced by the ionic interaction of Yb-Yb pairs. As mentioned earlier, few 
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papers have proposed that in some cases such pairs are bridged by an oxygen atom 

forming the system Yb-O-Yb [11,1]. In this case, the overlapping between the Yb-4f and 

the O-2p orbital enhance the interaction of active ion and then the cooperative 

absorption. Because this band is strong and corresponds to the self-convolution of the 

infrared (IR) band, see fig. 6, we believe it is the physical evidence of the existence of 

Yb3+ pairs bridged by an oxygen atom. Notice that no other detectable lines or bands 

corresponding to impurities of other rare earth ions or transition metals were observed 

in the visible region; in particular no Er3+ and Tm3+ impurities were observed.  
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Fig. 7 The absorption spectra of ZrO2:Yb3+ nanophosphors 

 
The samples were pumped at 967 nm and the corresponding Yb3+ IR emission 

was collected with a PMT through a monochromator perpendicular to the pumping 

beam. Powder samples were deposited in a capillary tube hold by a special holder 

designed to maintain both same alignment condition and same quantity of active 

materials.  The IR emission was in the expected range, see Fig. 8, but the Intensity trend 

of the spectra as the Yb2O3 concentration increases was not an increasing one.  Fig. 8a 

clearly shows an initial increase from 0.5 up to 2.0% Yb3+ concentration, and then a 

reduction of luminescence from 2.0%  up to 12% Yb concentration. That luminescence 

behavior is a typical example of luminescence concentration quenching. Curve a) in 

Figure 8b makes clearer the quenching behavior.  That curve corresponds to the 

integrated intensity of the IR emission band.  There we observe again that the 2% Yb 

concentration corresponds to the critical concentration for which the quenching 

becomes important.   
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Fig. 8 a) IR emission and b) integrated intensity of the IR emission band 

 

Now, the immediate question that arises is where does the quenched energy 

goes?   And an interesting fact becomes as a possible response to such question:  

Besides the IR luminescence it is also observed strong blue-green emission. Figure 9a 

shows the visible emission band observed under 967nm pulsed pumping.  Again it is 

observed a first increasing visible luminescence as Yb concentration increases up to 4%, 

and then a quenching of the visible luminescence becomes important up to 12% Yb3+. 

Curve b) in figure 9b, shows the integrated intensity of the visible emission band.  There 

it is clear, again, the quenching behavior of the visible luminescence. However the 

apparent critical concentration is, in this case, 4%Yb3+. 

 
Fig. 9.  a) VIS emission and b) integrated intensity of the VIS emission band 
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One could expect that if the reduction on IR emission was due to energy transfer 

to Yb3+ dimers, then as the concentration increases the quenching of IR should increase 

whit the consequent increase of visible emission from the dimers.  In that sense one 

should expect that the addition of curves in figures 8b and 9b should result in at least a 

straight line whit positive slope.  The slope being Yb3+ concentration dependent, since 

as the concentration increase the higher number of excitation photos absorbed by the 

sample that should be converted in Yb3+ emission whenever it is IR or visible. However, 

that is not the case.  So the quenching trend has to be more complex, and it is clear that 

the sole evidence from the spectra is not enough to provide support for an adequate 

explanation of the phenomena.  Besides, in spite of having taken the spectra under the 

same experimental conditions, there is always lack of calibration due to scattering and 

slight changes in alignment and sensibility of the detection system from sample to 

sample.  So the best way to look at the possibility of quenching is be means of the 

measurement of the decay times of the excited level of Yb3+. Figure 10, shows the 

decay time of the 4F5/2 excited state of Yb3+ at 1041nm.  For these measurements we 

used 25μm slits in the monochromator, and the pump was a CW diode laser at 967nm.  

The pump laser was modulated by a chopper at 100 Hhz.  The PMT signal was 

collected by a 500 MHz Lecroy Oscilloscope. And the signal channel was set with a 50 

Ohms impedance. From figure 10 it is clear that the quenching process starts even at the 

lowest concentration, since as the concentration increases the decay curve falls more 

rapidly.  These tell us that the critical concentration is the smallest one we have, as far 

as we can observe.  So the source of quenching has to be some centre that takes the 

energy away from the Yb3+ excited ions and is present for all concentrations.  In 

addition that centers increases as the Yb3+ concentration increases.  If we assume that 

the isolated Yb3+ emission has an intrinsic life time of about 1200 ms then its theoretical 

decay curve will be a straight line, see Fig. 10.  By looking to the difference between the 

exponential decay of isolated ions (theoretical) and the experimental decays, we can 

conclude that the quenching process imprints a no exponential character to the 

experimental decays.  That is a common characteristic of the decays of luminescence 

centers subject to non-radiative energy transfer process.  The fact that the visible 

luminescence is present even at the lowest concentration and increases with increasing 

Yb concentration, gives support to presume that the quenching centers are the Yb 
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dimers [28, 29].  And the fact that its visible emission is quenched indicates that there is 

also interaction between these dimers and another center that could also be the very 

Yb3+ isolated ions.  

 

In the fugure 11, we can see Quantum efficiency of the 4F7/2 excited state of Yb3+ 

at 1041nm (We calculate the Quantum efficiency as lifetime of each concentration 

divided by lifetime of minor concentration samble). This figure shows a reduction of 

quantum efficiency as the Yb increase. That is the typical behaviour for luminescence 

concentration quenching.  
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Fig. 10 Decay time of the 4F7/2 excited state of Yb3+ at 1041nm 

 

So far, we have shown that ZrO2:Yb3+ is an interesting luminescent material 

where we have concentration quenching of the Yb3+ IR emission. In addition we 

observe the existence of strong visible emission which can be originated from Yb3+ 

dimers that act as the quenching centers for the Yb3+ IR emission.  In the next chapters 

we will develop a teorethical model to approach the problem of the concentration 

quenching of a luminescent center as a consequence of the formation of pairs of the 

same center species. 
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Fig. 11 Quantum efficiency of the 4F7/2 excited state of Yb3+ at 1041nm 
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Chapter 2:   
Non radiative Energy transfer in crystals. 

1. Introduction 

 

The work of this thesis is enclosed in the extensive research area of development 

and optimization of luminescent materials, specifically of solid-state luminescent 

phosphors doped with rare-earth ions. Given that the doping ions are responsible for the 

luminescence, one could think that higher doping concentrations would result in higher 

laser output power. However, as we shown at the preceding chapter, reality is quite 

different, optimum concentration values lay around 2 %mol doping concentration.  At 

least for Yb3+ doped ZrO2.  In fact, it is known that in general the optimun doping 

concentration of Rare earths in solid state host is around 1 %at [1,2,3].  

 

In general, the doping ions in crystal phosphors interact with both, the host lattice 

and other doping ions. When some resonant transitions exist between the interacting 

doping ions, some non-radiative energy transfer processes create additional relaxation 

channels that diminish the quantum efficiency of the phosphor.  That is a reduction of 

the life time becomes evident. Non-radiative energy transfer phenomena have been 

known in solid phosphors and solutions long before lasers were invented and their study 

is still an active research field [1-6]. In the particular field of laser materials, not all the 

effects of non-radiative energy transfer are negative. While some studies evaluate 

detrimental effects of energy transfer on laser performance [7], some others evaluate 

benefits from such processes in alternative to optical pumping mechanisms for co-doped 

solid state lasers, either with flash lamps or diode laser arrays [8]. The study of non-

radiative energy transfer processes can also help to find more convenient dopant 

concentrations for luminescent materials [6].  

 

The theoretical studies on non-radiative energy transfer processes also have a long 

history. Since the 1920’s, different research groups have been modelling the non-

radiative energy transfer processes in different materials [9-10]. However, the 

theoretical models available nowadays do not fully describe and characterize the 
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luminescent properties of luminescent materials. Thus, a common procedure to obtain 

better phosphors has been the time consuming “trial and error” method. A better 

understanding of the microscopic nature of non-radiative energy transfer processes is 

needed for the development of new luminescent materials since it will allow the 

prediction of optimum parameters for preparation and use of single doped and co-doped 

luminescent materials.  

 

The analysis of non-radiative energy transfer processes made in this thesis is based 

on a numerical solution for the General Energy Transfer Master Equations (GETME) in 

crystalline co-doped materials [14]. The GETME are up to now only applicable for 

systems in which the active ions have only two energy levels and the transition energies 

are resonant, or phonon assisted resonant. In this chapter the non resonant case will be 

discussed as well as the resulting nonlinearity of this consideration. Besides we have 

considered more energy levels of the involved ions. This last consideration is due to the 

fact that for considering unconversion processes a more realistic model have to take in 

to acount the intermediate level that is promoted to the upconversion level.  Thus we 

edn with a more general nonlinear model for energy transfer process in crystals that can 

take into account the upconvesrsion processes at the simplest lcomplexity.  It is our goal 

for the next chapther to apply such model in oreder to explain the quenching of the IR 

fluorescence of Yb 3+  in ZrO 2 , already presented in the previous chapter. 

 

2. Fundamentals of non-radiative energy transfer. 

 

The modelling of non-radiative energy transfer phenomena is not an easy task since 

for any given host material a variety of processes may occur between the doping ions 

(i.e. direct energy transfer, energy migration, energy back transfer, energy up-

conversion and energy trapping). Each of these processes can be driven by more than 

one microscopic electronic interaction among dopants. The effects of non-radiative 

energy transfer processes are evident on the luminescence transients (luminescence 

decay) recorded from doped samples. For non-interacting ions, the temporal behavior of 

the luminescence follows an exponential decay but, when some energy transfer 

processes are present, the dopant macroscopic emission becomes non-exponential. In 

fact, recent measurements have recorded complex temporal transients of the 
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luminescence for certain laser materials, which indicates that interactions among 

dopants can be quite complex indeed [10-13].  

 

The microscopic origin for non-radiative energy transfer processes can be visualized 

as an interaction between an excited ion, the donor D, and another not excited ion, the 

acceptor A, with an absorption transition resonant with the de-excitation of the first one. 

If d  and d ′  correspond to eigenfunctions of the lower and upper states of the 

transition in the donor ion while a  and a′  are the corresponding eigenfunctions for 

the acceptor ion, then for an initial state where only the donor ion is excited the 

corresponding eigenstate of the combined system of donor-acceptor will be d a′ . After 

the non-radiative energy transference from D to A takes place, the eigenstate of the 

combined system will be da′ . The probability for the transition d a da′ ′→  to occur 

represents the transfer rate of excitation energy from ion D to ion A, ( )W D A→ , which 

is given by [12, 13,23]  

 ( ) ( )
2 24( ) EMISSION ABSORTION

DA D AW D A d a H da g E g E dE
h
π ′ ′⎛ ⎞

→ = 〈 ⎜⎜ ⎟
⎝ ⎠

∫  (1) 

 

where h is the Planck’s constant, DAH  is the Hamiltonian of the interaction between 

donor and acceptor, ( )EMISSION
Dg E  and ( )ABSORTION

Ag E  are the normalized line shapes of 

the transitions d  d ′→ and a a′→  respectively.  

 

The electronic interactions to consider, between ion D and ion A, are the 

Coulomb interaction and the exchange interaction. The Hamiltonian for the Coulomb 

interaction for electrons in the two ions is given by, 

 

 
12

d aDADA eH q r rR
−= + −  (2) 

 
where DAR  is the vector distance from ion D to ion A, dr  and ar  are the position 

vectors of the electrons around each ion, and eq  is the fundamental electronic charge.  
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2.1 Exchange interaction. 

 
The Exchange interaction is due to the overlap of the antisymmetric wave functions of 

the D and A ions, and therefore it is an interaction of very short reach. This interaction 

decays exponentially with the distance ( )with
i jX YR X Y D A, = ,  between ions. We can 

write the Exchange interaction as [14] 

 
221 exp exp i j

i j i j

o

XY
X YExchange o

X Y X Y XY XY
X

RRW R
L Lτ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (3) 

 

The free parameters for the exchange interaction are XY
oR , 

oXτ  and XYL , the critical 

transfer distance, the free lifetime of the ion X and the effective Bohr’s radius, 

respectively.  

We can interpret XY
oR  as the distance for which the transfer rate is equal to the free X-

ion lifetime, that is 

 
1

i j

o

Exchange XY
X Y o

X

W R
τ

⎛ ⎞
⎜ ⎟
⎝ ⎠

=  

2.2 Electrostatic Interaction 

 
The electrostatic interaction is a result of the interaction of the electric fields of the ions 

inside the crystal host; it is considered that it is an interaction of long reach. The 

electrostatic interaction can be decomposed in a multi polar expansion, where the most 

important terms are dipole-dipole, dipole-quadrupole and quadupole-quadrupole. The 

transfer rate by the electrostatic interaction among the D and A ions can be written as 

[14]   

 

6 8 10

06 08 0101
i j i j

o i j i j i j

elec
D A D A

D D A D A D A

R R RW R
R R Rτ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4) 

 

0SR  defines the critical distance of transfer and the values of S = 6,8,10 define the type 

of interaction: dipole-dipole, dipole-quadrupole and quadupole-quadrupole, 

respectively.  
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The interactions above described are responsible of the interionic processes that involve 

the direct transfer of excitation energy between two ions without the absorption or 

emission of phonons and that is why, in general, such processes are known as resonant 

non-radiative energy transfer.  

 

2.3 Interionic Processes 

 
The main different interionic processes arising as a consequence of energy transfer 

process appear in the literature as (see fig. 2.1):  Cross-Relaxation, Upconversion and 

Energy-Migration.  

 

 
Fig 1 Interionic processes 

 

Cross-Relaxation 

 
Cross-relaxation is the full or partial transfer of excitation energy to an acceptor in a 

lower level. This process can be very efficient, if the energy differences in the 

participating donor and acceptor levels are resonant or the energy needed to excite the 

acceptor is slightly smaller than the energy provided by the donor. Crossrelaxation is 

often used to sensitize ions with small absorption cross section by codoping with ions 

with strong absorption, like ytterbium, to achieve a more efficient excitation.  
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Upconversion 

 
Upconversion is similar to cross relaxation except that the acceptor is initially in an 

excited state. The resulting excitation energy of the acceptor is higher than the original 

excitation energy of the donor. This process allows the realization of lasers with a 

shorter emission- than pump-wavelength [15].  

Energy-Migration 

 
Energy migration is the resonant energy transfer between two ions of the same type. 

This process allows the excitation energy to quickly spread out and therefore raises the 

probability of the other energy transfer processes. Energy migration is described by 

several models depending on the ratio of transfer rates between two donors DDC  and 

between donor and acceptor DAC . Right after the excitation a fast migration of the 

excitation energy between donors occurs [16]. After this first, fast migration to 

neighboring ions, the further spreading of energy can be either described by the 

diffusion-model in the case that DDC  is much smaller than DAC  [17] or the hopping-

model for DDC  larger than DAC  [18].  

 

Due to the strong dependence of the energy transfer transition probabilities on 

the distance between donor and acceptor, the energy transfer processes become most 

important at high doping levels, when the distances among active centers are reduced as 

a result of the increasing concentration of active centers. This can be very useful if 

energy transfer is desired as in sensitized systems or can be harmful if the excitation 

energy is transferred away from the active ion to unwanted impurities. In the case of 

highly doped ytterbium systems, energy transfer to such impurities can cause a nearly 

complete quenching of the excitation energy and therefore make laser operation 

impossible. The energy quenching of 3 5 12Yb Al O  and 2 3Yb RE O:  has been investigated in 

the works of V. Müller and A. Bolz [19,20].   And we have shown its effects on ZrO2 in 

the previous chapter.  
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3. Rate Equation Analysis for Non Radiative Energy transfer: The General 
Energy Transfer Master Equations (GETME). 

 

Experimental measurements of spectral properties such as the fluorescence intensities 

and fluorescence lifetimes as function of variables such as temperature, active ion 

concentration, and lifetime can be used to obtain independent estimates of these same 

parameters. The comparison between theoretical and experimental estimates is used to 

answer these questions about the properties of energy transfer. The most common 

procedure has been to study the “concentration quenching” of fluorescence intensity.  

That is, one observes the variations on intensity spectra as the dopant concentration 

changes. The major problem with this technique requires accurate knowledge of the 

concentration on active ions in a series of samples and a calibrated reference 

luminescent phosphor for which one has a very accurate knwoledge of the dopant 

concentration.  That is generally is not available. Measurement of the time evolution of 

fluorescence is easiest and if enough information is know about the material, it is 

possible to obtain theoretical estimates of all of the relevant parameters from the 

theoretical models described in the book Physics of Solids-State Laser Materials of 

Powell [14]. 

 

The most general expression for the evolution of energy away from an initially 

exited ion is [14] 

 
( ) ( ) ( ) ( )i

ij in i ji j ni n
j n i j n i

dP t
W w P t W P t w P t

dt
β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟≠ ≠⎝ ⎠

= − + + + +∑ ∑ ∑ ∑  (5) 

 

Where ( )iP t  is the probability to finding the excitation at the ith sensitizer (Donor) ion 

at time t, beta is the intrinsic fluorescence decay rate of sensitizer ions, ijW  is the energy 

transfer rate from sensitizer i  to activator (Acceptor) j and jiW  is the transfer in the 

opposite direction (back transfer), inw  describes the energy migration among sensitizer 

ions before fluorescence or transfer to an activation ions occurs. This equation must be 

solved and the results are related to experimental observables such as the fluorescence 

intensity. This requires performing a configuration average after the distribution of all 

possible ion-ion interaction and the inclusion of the initial conditions. Although 
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attempts have been made to develop a general solution to this equation, this is a difficult 

task since a double configuration average is required to account for both spatial disorder 

(random location of ions) and spectral disorder (variation of transition energies from 

site to site as reflected in inhomogeneous broadening of spectral lines). Knowing the 

details of these distributions is critical in understanding the physics of energy transfer in 

a particular case. For example, the time dependence of energy transfer is significantly 

different if the sensitizer and activator ions are located in pairs, all having the same 

separation, randomly separated pairs, or distributed with all of sensitizer on one side of 

the sample and all activators on the other side. However, for most practical case with 

solid-state phosphors, it is sufficient to assume a random spatial distribution of activator 

with the uniformly exited sensitizers either having a similar random distribution or, for 

host-sensitizer case, being distributed in a known lattice configurations. Also, in general 

the spectral distribution is most important al low temperature and can be ignored at 

room temperature where phonons are available to bring transitions of neighboring ions 

in to phonon assisted resonance with each other.  

 

So far, the Transfer Master Equations, Eqs. 5,  are up to now only applicable for 

systems in which the ions have only two energy levels and their energy levels are in a 

resonance condition, phonon assisted or not. In the following sections the non resonant 

case will be discussed as well as the resulting nonlinearity of this consideration. Besides 

we have considered more energy levels of the involved ions.  

 

In order to relate the microscopic transfer rates, Eqs. 4 and 3, to observable 

quantities an average over a macroscopic sample containing many donor and acceptor 

ions must be performed. ln a sample with DN  donors and AN  acceptors we have to deal 

with an ensemble of ions where every donor has a particular environment of AN  

acceptors at different distances. There are two measurable quantities that provide some 

information about the energy transfer from donors to acceptors. They are the time 

development of the donor’s luminescence after pulsed excitation ( )tφ , and the relative 

quantum yield, which is the ratio between the time integral of ( )tφ  and the radiative 

lifetime that the transition would have if acceptors were absent.  
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To obtain an expression for ( )tφ , we first consider the probability for the i-th 

donor to be excited at time t as 1 ( )
iD

P t  and similarly for the j-th acceptor we have 1 ( )
jA

P t . 

The dynamics of these probabilities, for a co-doped sample with DN  donors and AN  

acceptors, can be expressed by the coupled differential equations:  

 
1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 A D A D
i k k i i

i ki i k k k

N N N N
D A D D D

D AD D A D D
k k k kDo

dP
W W P W P W P

dt τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠= = = =

= − + + + +∑ ∑ ∑ ∑  

  (6) 

 
1 11 1

1 1 1 1 1 1

1 1 1 1

1 A D A A
j j jk k

jj j k k k k

N N N N
A A AA D

AA A A A D D
k k k kAo

dP
W W P W P W P

dt τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠= = = =

= − + + + +∑ ∑ ∑ ∑  

  (7) 

 

These equations are obtained by following the master equations proposed by 

Powell [14], and extending the model to include the acceptor subsystem [21,23].  

 

On the equations 6 and 7, 
ODτ  and 

OAτ  are the radiative lifetimes of donor and acceptor 

ions respectively. These lifetimes are measured under conditions where energy transfer 

process can be neglected. The transfer rates involved in both equations correspond to 

the different energy transfer processes that may occur in a given sample for donor-

acceptor interactions and donor-donor interactions, as well as acceptor-aceptor 

interactions.  
1

1
k

i

A
D

W  corresponds to the non-radiative energy transfer rate from 1
iD  to 1

kA  

and defines the process known as direct energy transfer (DET) from donors to 

acceptors.- 
1

1
k

i

D
D

W  is the non-radiative energy transfer rate from 1
iD  to 1

kD  and together 

with 
1

1
i

k

D
D

W  define the process known as energy migration among donors (EMAD). 
1

1
k

j

D
A

W  

is the non-radiative energy transfer rate from 1
jA  to 1

kD  and defines the energy back 

transfer (EBT) process from acceptors to donors. 
1

1
k

j

A
A

W , is the non-radiative energy 

transfer rate from 1
kA  to 1

jA  and together with 
1

1
j

k

A
A

W  define the process known as energy 

migration among acceptors (EMAA). Each of these energy transfer rates can be 

expressed in terms of the microscopic interaction parameters given by equations 4 or 3 

or a sum of them. Here, we call equations 6 and 7 as the General Energy Transfer 

Master Equations (GETME). As noted before, the microscopic interaction parameters 
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can be obtained either from a microscopic approach through transition probability 

calculations or, from fitting the experimental measurements of the fluorescence decay of 

dopants in macroscopic samples. The solution for equations 6 and 7 is:  

 

 Kt
oP P e=  (8) 

 

where  

 

( )

( )
( )

( )

1
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D

D
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P t

P t
P

P t

P t

⎡ ⎤
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⎢ ⎥
⎢ ⎥
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 (9) 
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 (10) 

 

 

and  
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Where 
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1 1

1 1

1 1

1 1
A D

i k k

i i i

N N
D A D

D DD D
k kDo

T W W i N
τ = =

= + + , = ..∑ ∑  (12) 

 
1 1

1 1

1 1

1 1
A D

j k k

j j j

N N
A A D

A AA A
k kAo

T W W j N
τ = =

= + + , = ..∑ ∑  (13) 

 

To compare the predictions from the quantum mechanical calculations with the 

experimental results or to obtain the values for the microscopic interaction parameters 

from experimental measurements, an average of ( )P t  over a macroscopic sample has to 

be performed. It is worth to notice that one of the main differences, among the models 

developed up to now, is the way in which such macroscopic average is obtained.  A 

good review of the previous models can be found in [21,22,23].  

 

So, once the individual excitation probabilities are known for each dopant in the crystal 

sample, we can determine that mean excitation probability that the donor ensemble 

remains excited at time t. The mean excitation probability value gives the average 

number of donors in the excited state and therefore is proportional to the normalized 

donor fluorescence from the crystalline sample, 

 ( )
( )

( ) ( )
1

1 1
0 0

D

i

A D

i i

N
Di k

D N Nk
A Di ik k

P t
P t

P P
=

= =

⎡ ⎤⎣ ⎦=⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦

∑
∑ ∑

 (14) 

 

If this probability is averaged over a large number of randomly generated crystal 

samples, k, the resulting average converges to the macroscopic donor fluorescence 

decay ( )D tφ , 

 ( ) ( )
1

1 mN

D D k
km

t P t
N

φ
=

= ⎡ ⎤⎣ ⎦∑  (14a) 

 

An analogous argument is valid for the acceptor fluorescence 

     ( ) ( )
1

1 mN

A A k
km

t P t
N

φ
=

= ⎡ ⎤⎣ ⎦∑     (14b) 

 

 

Thus, these last 8 Eqs. Allow us to theoretically predict the decay dynamics of the 

active ions (D and A) whiting a crystalline sample. Details of the numerical 
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implementacion are given in Apendix A. This prediction can be compared against the 

experimental ones in order to find the microscopic interaction parameters that drive the 

energy transfer processes responsible of the experimental decat trend.  

 

As has been mentioned above, when dealing with energy transfer prcesses in most of 

the current models it is considered that the energy transfer is driven by a weak 

interaction between D and A ions, and that the transition energy gaps of the individual 

ions are shifted by amounts smaller that the widths of the levels. That is, the process is 

almost resonant, or as sometimes is known in the literature, it is a phonon assisted non 

radiative energy transfer process. Next, we show that when taking in to account the 

population of the ions in the ground state and the off-resonance reality, the master 

equations that govern the dynamics of luminescence are in fact non linear equations, 

that in turn reduce to the GETME under very specific conditions.  So, in order to 

continue in such direction first we will review again what resonance means.  

Phonon-Assisted energy transfer 

To allow energy transfer, some interaction mechanism between the excited donor D and 

de acceptor A is needed. In fact, the probability of energy transfer from the donor 

centers to the acceptor centers is given by Eq. 1:  

 

 ( ) ( )
2 24( ) EMISSION ABSORTION

DA D AW D A d a H da g E g E dE
h
π ′ ′⎛ ⎞

→ = 〈 ⎜⎜ ⎟
⎝ ⎠

∫                   (1) 

 

The integral represents the overlap between the donor emission line-shape, EMISSION
Dg , 

and the acceptor absorption line-shape, ( )ABSORTION
Ag E ; and works as a normalization 

factor of the transition matrix element.  Such normalization constant has a maximum 

when D and A are centers that posses coincident energy level gaps.  That is, they fulfill 

a condition known as “having resonant gap energies”.  Such condition can be fulfilled 

only when both ions are of the same species.  Neverteless, in the literature, when it is 

assumed that such condition is fulfilled the energy transfer process is known as 

“resonant energy transfer”, even if the involved ions are different species.  
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Fig. 2 Phonon-assisted energy transfer. 

 

 

However, when D and A are different species, is usual to find a energy mismatch 

between the transitions of the donor and acceptor ions (see Fig 2). In this case, the 

energy transfer process needs to be assisted by lattice phonons of appropriate energy, 

hωΩ = ± , and this is usually called “phonon-assisted energy transfer”. In these energy 

transfer processes, electron-phonon coupling must be also taken into account, together 

with the interaction mechanism responsible for the transfer.  

 

4. Energy transfer among two energy level ions Revisited: The Non 

Linear General Energy Transfer Master Equations (NLGETME) 

 

Let us consider at the moment that the ions in the crystal host are of the type D and 

A, and that both species have only two energy levels. The D and A ions are distributed 

in the possible places of the crystalline lattice and they are separated by a distance
i jD AR . 

i jD AR  is a discreet aleatory variable that depends on the dopants concentration as well as 

the crystalline phase of the material.  

 

Let us consider that the i-th donor is excited at t=0 and it can transfer its energy to 

another ion inside the crystal. It is convenient to define some variables: ( )1
iDP t  as the 

individual probability of the i-th donor remains excited at the time t, ( )1
jAP t  as is the 

individual probability of the j-th acceptor to remain excited at the time t, ( )0
iDP t  as the 

individual probability of the i-th donor being in its ground state at the time t, ( )0
jAP t  as 

the individual probability of the that j-th acceptor is in the ground state at the time t. 

These probabilities should fulfill that  

 ( ) ( )1 0 1
j jA AP t P t+ =  (15) 

 ( ) ( )1 0 1
j jD DP t P t+ =  (16) 



 33

 

Now, once the i-th donor is excited it has the following possibilities to give up its 

energy:  

1.- The i-th donor can lose energy by a radiative transition (see fig. 3) with a rate  

 
1

Do
τ

 (17) 

 

 
Figure 3 The donor i-th can lose energy by a radiative transition emitting a photon 

 

   

 

 

Then the change of individual probability of the i-th donor is the product of the radiative 

relaxation rate times the probability that the ion is excited ( )1
iDP t , that is to say  

 ( )11
i

Do

DP t
τ

 (18) 

 

2.- The i-th donor can non radiatively transfer its energy to a j-th acceptor at a distance 

i jD AR  with a transfer rate,see fig 4,  

 
1

1
j

i ji

A
D AD

W R
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (19) 

 

 
Figure 4 Direct Transfer (DT) donor→acceptor 

  

 

The notation used for the energy transfer rate is  

 ( )DAR distance between X and Y ionsX
YW =  (20) 
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where X it indicates the ion that receives the excitation energy after the transfer as well 

as its ending state, and Y indicates the initially excited ion that gives up its excitation 

energy during the transfer process. Thus the decrement of the individual probability of 

the i-th donor is the product of the transfer rate by the probability that the ion iD  is 

excited ( )1
iDP t  and that the ion jA  is in the ground state ( )0

jAP t , that is to say  

 ( ) ( )
1

1
1 0j

i j i ji

A
D A D AD

W R P t P t
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (21) 

 

This process is known as Direct Transfer (DT) donor acceptor→   

3.- The i-th donor can give its energy to a j-th donor that is at a distance 
i jD DR  with a 

transfer rate (to see fig 5)  

 
1

1
j

i ji

D
D DD

W R
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (22) 

 

 
Figure 5 Migration between Donors (MD) donor→donor 

 

 

Then the decrement of the individual probability of the i-th donor is the product of the 

transfer rate for the probability that the ion iD  is excited ( )1
iDP t  and the ion jD  is in the 

ground state ( )0
jDP t , that is to say  

 ( ) ( )
1

1
1 0j

i j i ji

D
D D D DD

W R P t P t
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (23) 

 

This process is known as Migration between Donors (MD) donor donor→   

 

Now, besides the above described processes, the ion iD  also can receive energy in the 

following ways:  

4.- The ion iD  can receive energy of an ion jA  that is excited at a distance 
i jD AR  with a 

transfer rate (to see fig 6)  

 
1

1
i

i jj

D
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W R
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (24) 
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Figure 6 Acceptor Back Transfer donor←acceptor 

 

 

Since jA  has a probability ( )1
jAP t  of being excited, then the probability that iD  remains 

excited will be increased for  

 ( ) ( )1

1
0 1i

i j i jj

D
D A D AA

W R P t P t
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (25) 

 

This process is known as Acceptor Back Transfer (ABT) donor acceptor←   

5.- The ion iD  can receive energy of an ion jD  that is excited at a distance 
i jD DR  with a 

transfer rate (to see fig 7)  
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D
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W R
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 (26) 

 

 
Figure 7 Donor Back Transfer donor←donor 

 

 

 

 

Since jD  has a probability ( )1
jDP t  of being excited, then the probability that iD  

remains excited will be increased for  

 ( ) ( )1

1
0 1i

i j i jj

D
D D D DD

W R P t P t
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (27) 

 

This process is known as Donor Back Transfer (DBT) donor donor←   

 

An analogous situation occurs for an excited acceptor ion jA  once it gets excited. So, to 
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describe the probability of this ion to remain excited at time t, similar considerations 

have to be taken.  

 

A simple schematization of the processes above described is shown in Figure 8, where 

the red spheres represent to the acceptors and the blue spheres represent the donors. In 

the figure it is shown how the ions 1A  and 1D  can give its energy to the neighboring 

ions or can relax by emitting a phonon 

 

 
Figure 8 Forms that the ions can give its energy. 

 

 

Then we can write the system of coupled equations that they govern the energy transfer 

processes among two level ions, as:  
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 (29) 

 

 

The equations 28 and 29 govern in a general way the energy flow subject to transfer 

processes among two ion species, A and D. These equations represent a system of 

A DN N+  non linear coupled differential equations. Where in the equations 44 and 46, 

AN  is the total number of A ions in the crystal, DN  it is the total number of D ions that 
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are in the crystal. Remembering equations 15 and 16 we can eliminate the terms that 

involve the ground level for both types of ions:   
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Where  

 
1 1

1 1

1 1

1 A D
j ji

i i i

N N
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1 1

1 1

1 1

1 A D
j ji

i i i

N N
A DA
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j jAo

T W W
τ = =

= + +∑ ∑  (33) 

 

This system of equations is still non linear and its non linearity depends critically on 

having, or not, resonance between the emission transition of the sensitizer and the 

absorption spectrum of the activator. This is explicitly reflected in the spectral overlap 

integral factor appearing in the expression for the energy-transfer rate. Phonons play an 

important role in ensuring the conservation of energy. For resonant electronic transition, 

phonons affect the widths of the spectral lines and thus the magnitude of spectral 

overlap integral. Also the temperature dependence of resonant energy transfer rates are 

contained in spectral overlap integrals.  

 

We can see that equations 30 and 31 are equal to the GETME except for the last term 

that is related with the detuning between the direct transfer and the back transfer 

processes. Besides this last term is a non linear term of second order in P(t).  So, from 

now on we refer to equations 30 and 31 as the Non linear General Energy Transfer 

Master Ecuations (NLGETME).   
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The NLGETME preserve their non linearlity for the case of non resonant energy levels, 

that is if   

 ( ) ( ) ( ) ( )EMISSION ABSORTION EMISSION ABSORTION
D A A Dg E g E dE g E g E dE≠∫ ∫  (34) 

However,  if  

 ( ) ( ) ( ) ( )EMISSION ABSORTION EMISSION ABSORTION
D A A Dg E g E dE g E g E dE=∫ ∫  (35) 

 

then the NLGETME become linear.  In fact they reduce to the GETME system.  That is 

due to the fact that for resonance conditions we have that:  

 j i

i j

D A
A DW W=  (36) 

 

 
Figure 9 (a) Resonant case, (b) the non resonant 

 

 

The resonant case is schematized in the figure 9a. This case is treated with more detail 

in Vega Durán Thesis. The non resonant case is schematized in the figure 9b. In this 

example the back transfer cannot be carried out since the acceptor would not have 

enough energy to excite the donor, the only form that this transition could be carried out 

it is to give additional energy to the material, for example to heat it to be able to broaden 

the energy levels. On the other side, the direct transfer can be carried out because the 

donor has more energy than the acceptor needs, and the difference would get lost in heat 

energy. As conclusion the last terms of NLGETME can be related with the increment or 

decrement of the temperature in the material.  
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4.1 Linearization 

Our system of NLGETME can be rewritten [24] as   

 ( )P f P=  (37) 

 

It is possible to approach ( )f P  to a lineal system and to write it as 

 P KP=  (38) 

 

where the matrix e cK Df P⎛ ⎞
⎜ ⎟,⎝ ⎠

= . The lineal function e cKP Df P P⎛ ⎞
⎜ ⎟,⎝ ⎠

=  is known as the 

lineal part of f  around e cP , .  

If A D A DN N N Nf R R+ +: →  is derivable in e cP , , then for every A DN NP R +∈  exist  

 1i
A D

j

f i j N N
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, , = ,..., +
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 (39) 

 

And the Jacovian is defined by,  
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 (41) 

 

Then from the Taylor Theorem  

 ( ) 221
2e c e c e c e c e cf P f P Df P P P D f P P P⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟, , , , ,⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= + − + − + ...  (42) 

 

if we take only the first order, that its  

 ( ) e c e c e cf P f P Df P P P⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟, , ,⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= + −   

 

 ( ) ( ) ( ) ( )
o

o oP P
f P f P D f P P P

=
= + −⎡ ⎤⎣ ⎦   
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o o
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From equations 30 and 31 we can write  
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The next step is calculate the derivatives 
Dk

f
P
∂
∂  and 

Al
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P
∂
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Derivating  f  with regard to 
kDP   
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Remembering that our equation to solve is  
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Thus the final first order approximation to ( )P f P=  is given by, 

 ( )
oP P

dP D f P P
dt =

= ⎡ ⎤⎣ ⎦  (50) 

 

where ( )
oP P

D f P K W K ′

=
= = +⎡ ⎤⎣ ⎦ , this equations are called LNLGETME. One can 

observe that this is in fact an Linear homogeneous set of coupled differential eqs. and its 

solution is of the form :  

 tK
oP e P=  

 

Notice that this solution has the same algebraic form that the solution for the GETME, 

so the evaluation of this more general solution follows the same numerical 

implementation as described in appendix A.  Therefore the LNLGETME can give us a 

second approximation to the experimental decay of both Donor ans acceptor, and again, 

the comparison between the LNLGETME and the experimental measurements leads to 

the microinteraction parameters of the interactions reposnsible for the energy transfer 

processes taking place in the studied luminescent crystal.  

 

For example if we considerate a imaginary nanocrystal with 20% monoclinic phase, 

80% tetragonal phase, mean diameter 9.7141nm,we considerate only direct transfer 

between donors and dipole-dipole interaction R06 = 6 A. In figure 10, we apply GETME 

and LNLGETME. In the figure 10A we can see the non resonant case. For a slow donor 

and acceptor concentration both systems solutions are similar but if we increase donor 

and acceptor concentration those systems are different. In GETME, the effect quenching 
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concentration is stronger than LNLGETME. This means that if we want to have similar 

lifetime the LNLGETME dipole-dipole interaction must to be bigger than GETME 

dipole-dipole interaction. In conclusion the non resonant energy level is very important 

to solve the quenching concentration. In the figure 10B we can see the resonant case, for 

this example both solutions (GETME and LNLGETME) are equal. 
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Figure 10 a) GETME and b) LNLGETME simulation 
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5. Non radiative energy transfer between two and three level ions 
The General Energy Transfer Upconversion Equations (GETUPE):  

 

Let us consider that the acceptors ions have three energy levels, that is to say, the 

ground state 0A⎛ ⎞
⎜ ⎟
⎝ ⎠

, and two excited levels 1A⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 2A⎛ ⎞
⎜ ⎟
⎝ ⎠

. The donor has only two levels 

of energy, the ground state 0D⎛ ⎞
⎜ ⎟
⎝ ⎠

, and the excited level 1D⎛ ⎞
⎜ ⎟
⎝ ⎠

.  

 

The D and A ions are distributed in the possible places of the crystalline lattice and they 

are separated by a distance
i jD AR . It considered that 

i jD AR  is a discreet aleatory variable 

that depends on the dopants concentration as well as the crystalline phase of the 

material.  

 

Let us consider that the i-th donor is excited in t=0 and it can transfer its energy to 

another ion inside the crystal. It is convenient to define ( )2
jAP t  as is the individual 

probability of the j-th acceptor to remain excited at the time t in second excited energy 

level these probabilities should fulfill that  

 ( ) ( ) ( )2 1 0 1
j j jA A AP t P t P t+ + =  (51) 

 ( ) ( )1 0 1
j jD DP t P t+ =  (52) 

 

 

Next we will show some interactions that involve the second level of the Acceptors 

ions. 

1.- The i-th donor can non radiatively transfer its energy to a j-th acceptor that is its first 

excited energy level at a distance 
i jD AR  with a transfer rate,see fig 11a   
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Figure 11(a) Upconvertion (UC)   donor→acceptor² , (b) Down conversion by cross relaxation from 

acceptor to donor donor←acceptor², (c) Upconversion from acceptor to acceptor acceptor←acceptor² 

 

 

Thus the decrement of the individual probability of the i-th donor is the product of the 

transfer rate by the probability that the ion iD  is excited ( )1
iDP t  and that the ion jA  is in 

the first state ( )1
jAP t , that is to say  
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this is a energy transfer driven upconversion process, This process is known as 

Upconvertion (UC) or 2donant acceptor→ .  

2.- The i-th donor at its ground level can receive energy from a j-th acceptor in the 

excited energy level at a distance 
i jD AR  with a transfer rate (see fig 11b):  
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The probability is  
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this is a cross relaxation process.  

3.- The i-th acceptor in the first level can non radiatively transfer its energy to a j-th 

acceptor in the first level energy at a distance 
i jD AR  with a rate changes given by: (see 

fig 11c):  

 
2

1
1 1j

i j i ji

A
A A A AA

W R P P
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 

4.-  All the processes that involve the increment of probability for excited energy level 
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of the acceptor are schematized in the figure 12, they have the rate changes given by::  
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Figure 12 Forms in that the level one of the aceptor Ai you can receive energy due to the introduction of a 

third energy level to the acepptors. 

 

 

5.- The acceptor in the second energy level can lose his energy in the ways schematized 

in the figure 13, they have the probability:  
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Figure 13 The acepptor in the second energy level can lose his energy in these ways 

 

 

6.- The acceptor can win energy and to be promoted at the second energy level in the 

ways schematized in the figure 14, they have the rate changes given by: 
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Figure 14 The ion Ai it can win energy in the following ways 

 

 

 

Then we can write the system of coupled equations that they govern the Non radiative 

energy transfer between two and three (NLGETME23) level ions (Upconversion), as:  
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It is convenient to eliminate the probabilities of the ground levels of the ions using the 

relationships 51 and 52, to obtain:  
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If we apply the linalization, the NLGETME23 will transform to a linear system. This 

new system is called LNLGETME23 and it has the form [24] 
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Where the jacobian is equal to the sum of two matrixes 
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with 
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The NLGETME23 is equal to NLGETME if all the terms related with the second levels 

are reject.  

 

The NLGETME23 is equal to GETME if all the terms related with the second levels are 

reject and we considerate the resonant case. 
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Chapter 3 

 
Yb3+ dimers as quenching centers in ZrO2:Yb3+ nanocrystals. 

 

1. Introduction 

 

 In Chapter 1 we have shown experimental evidence of the quenching for the IR 

Yb3+ emission in ZrO2.  It is also shown the visible emission that might become from the 

Yb dimers, and is known as the cooperative emission. There, we suggested that the Yb 

dimers could act as quenching centers, it means as acceptors, of the IR Yb3+ emission, 

donors emission.  Thus, the cooperative emission corresponds to an upconversion process 

from the single Yb3+ ions to the Yb dimers.  Revised and extended theoretical models for 

the no radiative energy transfer between two species of ions within a crystalline material 

were developed in Chapter 2. These new models are general and take in to account the most 

plausible off-resonance energy transfer conditions in real crystal phosphors. In the present 

Chapter we apply the above developed models to study the non radiative energy transfer 

processes responsible for the quenching of the IR Yb3+ emission in ZrO2:Yb3+. For that, we 

have to make a several considerations, the most important is that the Yb dimers are the 

acceptors or quenching centers.  

 

2. The Yb dimers in ZrO2.   

 

In crystalline 3
2 :ZrO Yb +  we only have one species ions: the Yb3+ donors.  That is, the 

acceptor species initially doesn’t exist. Now, if we introduce the pair concept, we are able 

to introduce a new species of “centers”,  which have three energy levels (see Chap 1).  

These new “centers” will play the role of the acceptor species. In section 1.5 we indicated 

that ZrO2 presents three different crystalline structures or phases:  monoclinic, tetragonal, 
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and cubic (see also Appendix B).  The phase composition being determined by the Yb3+ 

dopant concentration.  Now, the Zr ions occupy specific sites within the crystalline 

structure, and those are the sites in which the Yb ions can be substituted.  See Appendix B 

for the Zr and O ion site coordinates and structures of ZrO2.  Then distances among Yb ions 

are constrained to be among the distances between Zr sites, and the discrete distribution of 

distances depends on the specific crystalline phase.  Table I list the first eight neighbor 

distances for each of the crystalline phases of ZrO2.    

 
Tabla 1 first eight neighbor distances for each of the crystalline phases of ZrO2 

Neighbor 

distances 

1 2 3 4 5 6 7 8 

Cubic ( A
•

) 
3.631 5.135 6.2891 7.262 8.1191 8.8941 9.6067 10.27 

Monoclinic( A
•

) 
4.0064 4.0514 4.2897 4.3198 4.4669 4.5236 4.593 4.6777 

Tetragonal( A
•

) 
3.5925 3.6291 5.0806 5.1837 6.2436 6.3069 7.185 7.2583 

 

 

In order to simulate a Yb doped ZrO2 crystal, first we construct a crystal sample of size 

(Naa)x(Nbb)x(Ncc), where (a, b, c) are the unitary cell parameters (see appendix B), and Na, 

Nb, Nc are integer numbers. Then, we can randomly substitute the Yb ions within the 

available Zr sites up to the desired Yb concentration. After that, we are in the position to 

compute the distances among all the Yb ions within the generated crystalline sample. Thus, 

we can start to construct the Yb dimers, by substituting two Yb ions, separated by a 

distance Rd from each other, by a single dimer located at the mean distance between the 

corresponding Yb ions, see Figure 1a,b.  If figure 1c) we show the top view of a monolayer 

of Yb doped cubic Zirconia (Fig 1.d) of 7x6x1 unitary cells; yellow spheres are oxygen, 

navy blue are Zr, sky blue are substituted Yb, and lastly the ellipses represent dimers. It is 

also assumed that there always will be an Oxygen ion bridging the pair of Yb ions, that is 

supported in the fact that ZrO2 is constituted only of Zr and O ions.  That is, we consider 

that the crystalline samples do not have defects or Oxygen vacancies.  
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Figure 1. Some formation possibilities for the Yb dimers in Cubic Zirconia. 

  

 

The Yb dimer construction results in a decrease of the net population of donor ions 

(single Yb3+ ions) and an increase of the acceptor Yb dimers.  Such reduction on donor ions 

depends on the net Yb3+ concentration, that is, the higher the Yb3+ concentration the higher 

probability of having two Yb ions at a Rd distance one of the other. In addition, since the 

crystalline sample is finite, its size will constitute a constrain on the net number of dimers 

that can be formed for a fixed Yb3+ concentration.  It is important to remember that donor 

(and acceptor as well) concentration is a macroscopic measure of the average number of 

donors per unit volume. So, in order to get a more realistic approach we sample the above 

procedure for a very high number of computer generated crystalline samples, and average 

the outcoming donor and acceptor concentrations over all the generated samples.  For all 
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the calculations presented from now on we have considered that the dimer distance was 

equal to the first neighbor distance for each crystalline phase, that is Rd= 4.0064A, 3.5925A 

,3.631A, for the monoclinic, tetragonal, and cubic phases of ZrO2. The number of generated 

samples was always 1500 crystal samples.  Of course it is expected that the donor (single 

Yb3+ ions) and acceptor (Yb dimers) concentrations also will have a dependence on the 

crystalline phase since the Zr sites coordinates and first neighbor distances are different for 

different crystalline phases, see appendix B.  In the following we present the most 

representative results of having taken in to account the above Yd dimer construction.   

 

2.1 Nanocrystal size and phase effect on Donor and acceptor 
concentration. 

 
TEM images of all the synthetized Zirconia samples were taken on a transmission electron 

microscope JEOL 2010FEG with an accelerating voltage of 200 kV and a point to point 

resolution of 0.19 nm.  See Figure 2 for an example of the obtained images for the 4mol% 

Yb sample. The observed particle sizes were between 50 and 100 nm, see appendix B. 

From the TEM images of all samples we find that the dopant concentration does not affect 

particle sizes. Nevertheless, our crystal simulation indicate that dopant concentration affect 

directly to the donor and acceptor densities, depending on nanocrystal size and crystalline 

phase. 

 
Figure 2 TEM image of a ZrO2:Yb3+ sample with 4%Yb3+. 
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By doing the 2%mol Yb doped nanocrystals simulations for increasing size we computed 

the acceptor (Yb dimers in red) and donor (single Yb3+ ions in black) densities shown in 

Figure 4. Here the size is reported as the volume VNC=(Naa)x(Nbb)x(Ncc) o the crystalline 

sample.  It is also considered that aNa=bNb=cNc, that is, the nanocrystalline samples are 

“cuasi cubic”. Also in the forthcoming discussion when we refer to the Nanocrystal 

diameter (or size) we are considering that the diameter of the Nanocrystal is given 

by 31.24NC NCVφ = .  One can notice that both curves tend to saturation constant values as 

the nanocrystallite size increases, whereas the standard deviation of both densities tend to 

be zero (standard deviation bands are not shown in Fig. 3). These results indicate that as the 

nanocrystallite size increases the donor and acceptor densities tend to their corresponding 

bulk values. The bulk densities correspond to the macroscopic values that are the average 

of centers per unit volume under the assumption that the material extends over all space. 

From this, we consider that there is a cut off nanocrystal size for which it can be considered 

as “bulk particle”.  Meaning that for all particles of such size or higher the physical and 

optical properties will not change from the average value measured for macroscopic 

samples. From figure 3, one can note that for nanocrystals smaller than 10.77 nm, in 

average diameter size, it is a very important effect of the size on both donor and acceptor 

densities.  That complex behavior depends also on the crystalline phase, and is quite 

different for the three different phase of Zirconia. It is very interesting to observe that for 

monoclinic phase the dimer concentration for small nanocrystals is higher that its presumed 

value for bulk particles.  
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Figure 3 Donor (yb ions) and dimers density vs. volume (cubic diameter size, in unitary cells), for the 

a)monoclinic, b) cubic, and c) tetragonal phases of Zirconia doped with 2% Yb. 
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So, as a first approach, we considered that the bulk character starts at crystallites sizes 

where the corresponding saturation behaviors of the donor and acceptor densities start.  

That is, for particles with diameter sizes bigger that 10.77 nm (or a critical volume of 654.1 

nm3) approximately.  Under this last consideration we have that our experimental 

measurements correspond to bulk like particles since our Zirconia particles are between 50 

and 100 nm.  

Another interesting result is show in the Figure 4 (we use only the cubic phase because this 

is the characteristic phase for a high Yb concentrations).  The donor to dimer densities ratio 

exhibit a drastic reduction as the Yb concentration increases. This behavior could lead to 

the observed quenching in the IR Yb emission, since the overall amount donor density 

reduces and the dimer density increases as the Yb concentration increases.  That is, we have 

more quenching centers and less IR emission centers as the Yb concentration increases.  

 

 

 
Figure 4 (Donor density) / (Pair density) decrease when we increase the Yb concentration. This behavior 

could be the reason of concentration quenching in IR emission.   

 

2.2 Nanocrystal size effect on Donor effective Life time.  

 
Up to now, we have defined a way to separate the dopant ions of a single species in two 

groups: Donors (isolated ions) and Acceptors (pairs or dimers). Assuming all these centers 

are excited at time t=0, by a laser pulse, the dynamics of the population of both type of 

centers could be described by the rate equation models developed in Chapter 2.  That is, we 
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can predict the decay evolution of both the donors and acceptors under the influence of 

several possible energy transfer process among both subsystem centers.  So in order to 

make one of such predictions we only have to evaluate GETME (or NLNGETME) as 

indicated in Apendix A, and the needed parameters are: the crystalline structure of the host, 

the coordinates of the crystallographic sites available to substitute the dopant ions, the 

concentration of dopant ions, the dimer distance Rd, the free ion donor and acceptor life 

times in absence of  energy transfer τD0 and τA0, and the free parameters for each of the 

assumed interactions among dopants: 0
DA
SR  with S=6,8,10 for the multipolar interactions, 

and 0
DAR  and DAL  for the exchange interactions.  The microscopic individual emissions are 

then calculated and averaged over a large number of numerically generated crystal samples 

according to Eq 14 in the Chapter 2. Then, the effective life time of each center (donor or 

acceptor) is obtained by integrating the predicted decay over the time window [0,T] used in 

the simulation: 

   dtt
T

D
D
ef )(

0
∫= φτ      and   dtt

T

A
A
ef )(

0
∫= φτ      (1) 

 

Since the number of acceptor dimers increases one expects that the overall energy transfer 

from donors to acceptors will increase, and therefore the quenching of the donor emission 

will increase.  In fact, variations on the dimers acceptor density are traduced in variations 

on the quenching of the donor luminescence. That is, variations on the dimer acceptor 

density lead to variations on the effective life time of the donor luminescence.  Since we 

have shown that size and phase are factors that affect the density of dimers it should be 

expected that variations in phase or crystallite size should lead to variations on the effective 

life time of the donor centers for fixed concentrations of dopants.  That is, quenching or 

enhancement of the quantum efficiency  ( 
0D

D
ef

τ
τη =  )  can depend on the crystallite size 

for a fixed concentration of a single dopant species, if the formation of pairs is taken in to 

account. Figure 5 shows the effective life time D
efτ  of single Yb3+ ions (donors) as the 

crystallite size increases for two Yb3+ concentrations: (1) .5% Yb, (circles points) and (2)  

4%Yb (square points).  This calculation was done considering the corresponding phase 
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compositions reported in Apendix B.  It was also considered that all the dimers were 

initially excited at the first level and that energy transfer from the donor to the dimers (up to 

its second excited level) was driven by a single dipole-dipole interaction with critical 

distance of R06= 5.25 A. The pair distances Rd were the respective first neighbors distances 

for the corresponding crystallite phases reported in table I.  It was assumed an off-

resonance situation but with null back transfer and null migration processes. From the 

calculations shown in Fig. 5, on can observe that D
efτ  has decreasing behavior as the 

crystallite size increases (reduction on the quantum efficiency). On the other hand, it seems 

clear that for sizes lager than 10.77 nm  D
efτ  tends to a limit value.  We presume such value 

corresponds to the bulk value of D
efτ .  It also can be observed that the variation trend of D

efτ  

depends on the crystallite phase, we can recall that for 1.5% Yb content the phase is a 

mixture of tetragonal and monoclinic whereas for 4% we have pure tetragonal phase.  We 

can also observe the considerable decrease of  D
efτ  between 1.5% and 4% Yb content.  That 

is an indicative of concentration quenching, where the only external parameters changing is 

the overall Yb concentration.  That is the dimer and final donor densities are dependent on 

the Yb3+ concentration.  
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Figure 5 Size effect lifetime using GETME and we only considerate dipole-dipole interaction R06 = 5.25 A. 
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3. Quenching simulation of the IR emission of Yb3+ in ZrO2 
 

At last we are in the position to use the models developed in Chapter 2 to study the 

quenching of the IR emission of Yb3+.  What we do is to use model GETME or 

LNLGETME or NLGETUP in order to fit the experimental decays of the IR emission of 

Yb3+ in ZrO2 shown in Chapter 1.  That fitting allows us to determine the nature of the 

interactions responsible of the energy transfer process that lead to the observed quenching. 

For that, we have to make a couple of considerations: 

 

1) The overall (nominal) concentration of Yb3+ ions is to be divided in to subsystems: 

a)The donors or isolated Yb3+ ions, and b) the acceptors or Yb-Yb pairs here so called Yb 

dimers. 

 

2) It is considered by simplicity that at t=0  all Yb3+ ions are excited.  That means that both 

the donors (single Yb3+ ions) and acceptors in its first energy level, are excited at t=0.  That 

is, acceptors in its second energy level are not excited.  

 

The second assumption also allows  us to consider the energy transfer process as a process 

among two species of two level ions. That is we can use GETME or NLGETME.  The 

drawback is that we will not be able to get predictions for the emission of the first and 

second energy levels of the dimers.  That is, even when the models can compute the 

acceptors emissions, such predictions do not correspond to the real situation.  That means 

we have the acceptors only as trap or sink centers for the IR emission of the donors (Yb3+ 

isolated ions).  

 

Thus we calculated the donor emission for a direct energy transfer from the isolated Yb3+ 

ions to the dimers by evaluating the solution to the NLGETME, see appendix A for the 

calculation algorithm. For this calculation, Yb3+ ions are randomly placed at the 

corresponding 2ZrO  lattice sites within a numerically generated crystal sample of 10,77 nm 

of diameter. We use this diameter because the sizes of our phosphors were around 100 nm 
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for all Yb3+ concentrations.  That is, we had bulk-like samples. After that the Yb dimers 

were computed by using the actual Yb3+ coordinates within the crystalline sample, and 

considering Rd equal to first neighbor distance corresponding to the crystallite phase 

composition for each Yb concentration (see Appendix B).   

 

Then, with such crystal sample the transfer rates matrix (see matrix 48 in of chapter 2) 

among all dopants (in this case single Yb ions and Yb dimers) are calculated according to 

the assumed interaction that drives the transfer of energy. Since we pretend to simulate the 

quenching in the IR emission of the Yb3+ ions, we consider that exchange interaction 

doesn’t exist and that the dipole-dipole interaction is the only one that drives the direct 

energy transfer between donors (Yb ions) to acceptors (Yb dimers). We solve the first order 

approximation LNLGETME (see eq. 50). The microscopic individual emissions are 

calculated and averaged over a large number of numerically generated crystal samples 

according to Eq 14 in the chapter 2.   

 

Assuming that the dopant concentration should not alter the micro interaction 

parameter 0
DA
SR , we find an adjustment using LNLGETME for all the concentrations under 

resonant conditions, see Figure 6. The all concentrations fitting parameter is the 

constant 06 5 25R A= . .  Such value allows fitting simultaneously the decay trend of the IR 

emission of Yb3+ for all the studied Yb3+ concentrations.  That fact gives this value a 

character of physical constant for the direct energy transfer interaction from single Yb3+ ion 

to the Yb dimer, no matter which is the crystalline phase of ZrO2 or the overall Yb 

concentration, or the crystallite size.  That is, we have microscopic quantum characteristic 

interaction parameters that do not depend on the number of interacting donor-acceptor pairs 

or host environment.   

 

On the other side, we also used the LNLGETME under off-resonance conditions, and find 

the results shown in Figure 7, for these simulations we use the same conditions that for 

simulations on-resonance (Fig. 6) but for back transfer it was now considered a value of 

06 6R A= . These off resonance simulations do not adjust well for high concentrations, 

whereas they do for low Yb3+ concentrations.  
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Figure 6. Concentration Quenching using LNLGETME on resonance conditions with R06 =5.25A. We have 

four Yb concentrations, 1.5%, 2%, 4% and 12%. The letter E means Experimental measurement and the letter 

L means the solution of GETME. 
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Figure 7. Concentration Quenching using LNLGETME for off-resonance conditions with R06 =5.25A fot 

direct transfer and R06=6.0A for back transfer.  
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Thus, from the results shown in Figures 6 and 7, it is clear that in fact the ZrO2:Yb3+ is a 

system subject to resonant energy transfer, and that the quenching centers of the IR 

emission of Yb3+ are the Yb dimers.  It was also shown that the density of dimers depends 

on the crystallite size and phase, in addition to its intrinsic dependence on the Yb3+ 

concentration.  It was shown that a direct dipole-dipole driven energy transfer from the 

single Yb3+ ions to the Yb dimers is the mechanisms behind the quenching of the IR 

emission of the single Yb3+ ions.  It was also determined a single interaction parameter for 

the interaction between single Yb ions and dimers that do not depends on the dopant 

concentration nor on the crystalline phase.  The corresponding parameter value was 

R06=5.25 A
•

 for a direct energy transfer process driven by a dipole-dipole interaction.  

 

In regard of the observed visible emission no analysis work was done by now, but we are 

confident that the two to three energy level ions model developed in chapter 2 will be a 

good approximation.  Unfortunately its numerical complexity do not allowed us to 

implement the algorithm on the current PC`s available at the moment.  We hope in the near 

future to have PC`s with enough memory capacity to handle such modeling.  We that 

became possible will be able not only to study the visible emission of the dimers, but also 

initiate the study of more complex systems were we can have more than one species of 

dopants.  The first case could be the Yb to Er system, where we also will be able to 

consider the cooperative contributions of the dimers to the upconversion processes that lead 

to the upconversion emission of Er.  
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Chapter 4 Conclusions and Perspectives 

 

4.1 Conclusions  

 

We can form a pair, with two ions of Yb who are very closely; this pair has three 

levels of energy. A good approach is to consider that the pair will be positioned in the 

crystal host at the average distance between Yb ions. We have analyzed the fluorescent 

decay of 3Yb +  ions in several co-doped 2ZrO  samples with the numerical solutions of 

the corresponding NLGETME. We can simulate the lifetime quenching as a function of 

the concentration. We use the pair approach to simulate the donor fluorescence decay in 

the 2ZrO : 3Yb + . To simulate the quenching of the IR emission of the Yb3+ ions, we 

consider that exchange interaction doesn’t exist and that the dipole-dipole interaction is 

the only one that drives the direct energy transfer between donors (Yb ions) to acceptors 

(Yb dimers).  We are able to adjust the experimental data of the decay of the 

fluorescence in the infrared emission using a unique interaction parameter. First we find 

an adjustment using LNLGETME on resonance conditions for all the Yb3+ 

concentrations.  We adjust with a single 06R  constant all the samples simultaneously 

and it was found to have a value of 06 5 25R A
•

= . . That interaction parameter does not 

depend on the concentration of Yb, being thus a characteristic parameter of the direct 

energy transfer from Yb ions to Yb dimers. This indicates that it is a parameter that 

characterizes the decay of the IR fluorescence of Yb in ZrO 2 :Yb, and leads to the 

quenching of such fluorescence through the consideration of dimer as acceptors.  Such 

dimers are naturally formed (constructed) within the doped crystals by using the first 

neighbor distance as the distance that defines the Yb dimer.  On the other side, when 

considering NLGETME on off-resonance conditions, we can adjust only for low Yb3+ 

concentrations with a unique back transfer parameter of 06 6R A= .  For higher 

concentrations, over 4% Yb3+ content, the off-resonance approach does not give a good 

fit to the experimental decays.  That is presumed as a confirmation that the system 

single Yb3+ ions and Yb dimers in fact constitutes a system were the resonance 

conditions are naturally given by the definition of the dimer energy states.   
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Varying the crystallite size in a simulate way, it was found that both the donors 

density and dimer density are approximately constant for crystallite diameters superior 

to 10,77 nm. Then, for inferior diameters to 10,77 nm we have a nanocrystal and for 

superior diameters the material it expected to present bulk-like behavior. For a small 

diameter (<10.77 nm) the lifetime has a considerable size dependence, but the lifetime 

tend to be almost constant if the crystallite volume increase. 

 

We can reproduce and predict the behavior of the lifetime and its dependence on 

dopant concentration, in particular for the IR emission of Yb3+ in 2ZrO : 3Yb + . So, our 

results support the assumption that Yb dimers are responsible of the concentration 

quenching for the IR Yb3+ emissions.  

 

4.2 Perspectives 

 

     We will try to apply the NLGETUP to explain the lifetime quenching in the 

visible region (cooperative up conversion emission). For that we will have to deal with 

the two to three energy level scheme.  On that scheme the upconversion superior levels 

appear naturally.  If the model works for the Yb3+ system were the on-resonance is a 

fact, we can expect good results for more complicated systems where the off-resonance 

conditions are predominant.  That is the case of upconversion processes in Yb to Er in 

many crystalline systems.  In particular in our group there is experimental evidence of 

very efficient upconversion processes for Yb-Er codoped ZrO2.  Besides, it is important 

to verify if the first order approximation of NLGETUP works properly.  If that is the 

case, we will be in the possibility of solve and simulate the lifetime quenching in the 

visible region for many systems were visible or cooperative emission are present.  
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Appendix A 

 

Diagonalization 

The algebraic technique of diagonalizing a square matrix K can be used to reduce the 

linear system 

 P KP=  (A1) 

to an uncoupled linear system. We first consider the case when K has real, distinct 

eigenvalues. The following theorem from linear algebra then allows us to solve the 

linear system 1.  

Theorem 1. If the eigenvalues 1 2 nλ λ λ, ,...,  of an nxn  matrix K (in our case 

A Dn N N= + ) are real and distinct, then any set of corresponding eigenvectors 

{ }1 2 nv v v, , ...,  forms a basis for nR , the matrix 1 2 nv v v⎡ ⎤
⎢ ⎥⎣ ⎦Θ = , ,...,  is invertible and 

 1
1 2 nK diag λ λ λ− ⎡ ⎤

⎢ ⎥⎣ ⎦Θ = , ,...,  (A2) 

in order to reduce the system 84 to an uncouple linear system using the above theorem, 

define the linear transformation of coordinates  

 1Pζ −= Θ  (A3) 

where  is the invertible matrix defined in the theorem. Then 

 P ζ=  (A4) 

 1 1 1P KP Kζ ζ− − −= Θ = Θ = Θ  (A5) 

 

 

and, according to the above theorem, we obtain the uncoupled linear system 
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 1 2 ndiagζ λ λ λ ζ⎡ ⎤
⎢ ⎥⎣ ⎦= , ,...,  (A6) 

This uncouple linear system has the solution 

 ( ) ( ) ( ) ( ) ( )1 2exp exp exp 0nt diag t t tζ λ λ λ ζ= , ,...,⎡ ⎤⎣ ⎦  (A7) 

And then since ( ) ( )10 0Pζ −= Θ  and P ζ= , it follows that 1 has the solution 

 ( ) ( ) ( )1 0P t E t P−= Θ Θ  (A8) 

where ( )E t  is the diagonal matrix 

 ( ) ( ) ( ) ( )1 2exp exp exp nE t diag t t tλ λ λ= , ,...,⎡ ⎤⎣ ⎦  (A9) 

Also we can solve the system using the exponential operator defined like 

 
0

k k
Kt

k

K te
k

∞

=

=
!∑  (A10) 

it follows that 84 has the solution 

 ( ) ( )0KtP t e P=  (A11) 

In our program we prefer to use the Digitalization method because in the exponential 

operator method we would have to delimit the series and this would cause that the 

method was approximate.  

 

GETME and LNLGETME Algorithm 

Our model computes the solution for the non-radiative Transfer master equations for 

crystalline materials based on the solution GETME and LNLGETME, we can resume it 

in four fundamental steps to obtain the temporal evolution of P(t).  

1. Generate numerically the k-th crystalline sample with donor and acceptor 

ions in the corresponding crystalline places.  
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2. Calculate the individual transfer rates of each dopant in the k-th 

crystalline sample and to outline the GETME or LNLGETME for the k-th 

crystalline sample.  

3. Solve the GETME or LNLGETME in the exact way for the ions in the k-

th crystalline sample. And to obtain the mean values of the probabilities of each 

ions for the systems of donors and acceptors ions in the k-th crystalline sample.  

4. Repeat the steps one to three for each k crystalline sample, and obtain the 

microscopic values of the mean probabilities of excitement, averaging over Nm 

crystalline samples.  

1. First step 

In order to generate a crystalline sample numerically we have to reply the unitary cell a 

finite number of times Ncu. Each unitary cell of the crystal this defined by means of 

their constant vectors of the crystalline lattice a b c, , , as well as for the directors 

cosinesα β γ, , . The ions that constitute the unitary cell of the crystal are located in very 

defined positions by means of their coordinates ( )si si si cu
x y z, ,  inside the unitary cell. In 

general, let us consider that in each unitary cell have two different classes of places. A 

class of places sd  that they can be occupied by the species of donating ions, and a 

second class of places sa  that they can be occupied by the species of acceptors ions. Let 

us also consider that in the unitary cell have Nsd  available places of the class sd , and 

Nsa  available places of the class sa . Then, if we reply this unitary cell Ncu  times, then 

we will have generated a crystalline sample with Nsd Ncu×  available places for donors 

and NsaxNcu available places for acceptors.  

Once we have built the crystalline sample, the following step consists on placing the 

dopant ions to the wanted concentrations. We assume that we want our dopant 

crystalline samples with concentrations nd  and na  of donors and acceptors ions, 

respectively. Then, since we have ( )Nsd Ncu Nsa Ncu× × ×  available sites to receive the 

donors, then the numbers of donating Nd  that we should place in the sample is 

 ( )D D sd cuN int n N N⎛ ⎞
⎜ ⎟
⎝ ⎠

= × ×  (A12) 

where int is the function that capture the entire part of the argument. In a similar way an 
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expression for the of AN  is the number of acceptors. Thus we proceed to place them 

aleatory among the available places.  

In 
3

2 :ZrO Yb +

 we only have one type ions (Yb), ie the acceptor initially doesn’t exist. 

But if we use the pair concept, we generate a new type of “center” who has three energy 

levels, this new “center” act as acceptor.  All the distances are calculated between 

neighbouring donors ions, we replace the donors by a pair, where this distance is 

smaller to Rd, this pair be positioned in the half distance. 

2. Second step 

Once we have the NA and ND ions accommodated in their prospective places inside the 

crystal, we calculate the distances of among all the ions and we store them in a matrix, 

then we substitute in the equation 11 for GETME or 46 for LNLGETME, in order to 

find the characteristic transfer matrix for the k-th crystal sample.  

3. Third step 

We calculate the eigenvectors and the eigenvalues of W and we substitute in the 

equation A8 for each time point whiting the desired time range of experimental 

observation. .  

4. Fourth step 

Repeat the steps one to three for each Nm crystalline sample, and obtain the 

microscopic values of the mean probabilities of excitement, averaging over Nm 

crystalline samples.  
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Appendix B 

Nanocrystals doped with .5, 1.5, 2, 4 and 12 mol% of Yb2O3 were prepared by the sol-

gel method using ytterbium chloride at 99.99% purity. The crystalline structure and 

crystallite size of the samples was investigated by XRD. The crystalline phase of 

ZrO2:Yb3+ nanophosphor it depends on the Yb concentration. For 2 mol% of Yb2O3, the 

main crystalline phase was tetragonal with a little content of monoclinic. Pure tetragonal 

and cubic phase was obtained for 4 and 8 mol% doped sample, respectively. The 

average particle size ~50 nm was obtained from XRD pattern using the Scherrer 

equation. Both crystalline size and crystallite structure were confirmed with TEM and 

HRTEM [4].   

The coordinates of the different crystalline phases of the 2ZrO  are shown in the table 1 

[1,2 and 3]. The Yb dopant substitutes the Zr ions within the crystalline lattices.  

 
Table 1 Coordinates of the ions inside the unitary cell. 

Crystal Coordinates 
Unitary cell 

Cubic phase Monoclinic phase Tetragonal phase 
 a b c a b c a b c 

Zr 0.00 0.00 0.00 0.274 0.038 0.209 0.0 0.0 0.500 
Zr 0.00 0.50 0.50 0.725 0.538 0.290 0.5 0.5 0.000 
Zr 0.50 0.00 0.50 0.725 0.961 0.790    
Zr 0.50 0.50 0.00 0.274 0.461 0.709    
O 0.25 0.25 0.25 0.937 0.828 0.152 0.0 0.5 0.954 
O 0.75 0.75 0.25 0.937 0.671 0.652 0.0 0.5 0.454 
O 0.75 0.25 0.75 0.063 0.171 0.847 0.5 0.0 0.545 
O 0.25 0.75 0.75 0.550 0.254 0.017 0.5 0.0 0.045 
O 0.25 0.25 0.75 0.550 0.245 0.517    
O 0.75 0.75 0.75 0.449 0.745 0.982    
O 0.25 0.75 0.25 0.063 0.328 0.347    
O 0.75 0.25 0.25 0.449 0.482 0.754    
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Tabla 2 Lattice parameters 
  
  
 
 

 

 

 

Figure 1 Crystalline lattice of ZrO₂ in the cubic, Monoclinic and tetragonal phase. 

The phase concentration used in the simulation for different Yb% samples are show in 
the table 1. 
 
Table 3 Phase concentration used in the simulation [4,5] 
Yb concentration Cubic monoclinic tetragonal 

1.5% * - 3% 97% 
2.0% - 3% 97% 
4.0 % 100% - - 
12% 100% - - 

* For 1.5% we don’t have the Phase concentration reported and we use the near Phase concentration 
(2%) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 a (Å) b (Å) c (Å) α β   γ
Cubic  5.135   5.135 5.135 90 90  90 

Monoclinic  5.1507 5.2028 5.3156 90 99.196 90 
Tetragonal  3.5925 3.5925 5.1837 90 90  90 
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NOTES 

The table 1 is very important because this indicate the possible positions of donors ions 

(Yb). Our algorithm can consider the different crystals phases. We think that inside the 

nanocrystal different separate phases exist (figure 2).   

 

Figure 2, Nanocrystal with two phases A and B 

 

For example, we have a nanocrystal with Pa percent of A phase and PB percent of B 

phase, the macroscopic fluorescence is given by 

100
A B

t
PA PBφ φ

φ
+

=  

Where Aφ  is the macroscopic fluorescence of the region with A phase inside of the 

nanocrystal and Bφ  is the macroscopic fluorescence of the region with B. 
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