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support in the elaboration of this project. I am most grateful, for the confidence and liberty

he has given me since my first day at CIO and for his help and advices in many different

aspects during all these years. It is a great satisfaction for me to be his first graduate PhD

student. Thanks Ismael!.

I would also like to thank Dr. Alejandro Mart́ınez Rios, for their guidance, support, and

patience when I asked him for his opinions about my work. Also, I highly appreciate the

support and guidance of Dr. Albert Ferrando, Dr. Pedro Fernández de Cordoba and the rest

of the group InterTech during my research stay at the Universidad Politécnica de Valencia,
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the doctorate scholarship with number 183106, and all administrative staff of CIO for their

help and comprehension.

I thank all those people so much for an exceptional PhD experience!

Daniel Enrique Ceballos Herrera

Centro de Investigaciones en Óptica A. C. (CIO)
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Introduction

Optical fibers are a true representative of the remarkable advancements and speed of adop-

tion and commercialization of technology in recent decades. Impulsed by the invention of

the laser, in 1960, these waveguide have quickly spread from the scientific laboratories into

the everyday life: Internet, medical diagnostics, sensors in food, transport, oil and other

industries. The application of fibers allows the possibility of controlling the propagation of

light through them. As a consequence, a range of accessories and fiber-based devices have

been invented. In special, this work is dedicated to a widely exploited group of fiber devices

called long period fiber gratings on a novel kind of fiber: the photonic crystal fiber.

In general, a long period fiber grating (LPFG) is a periodic change in the refractive

index profile along the fiber with periods ranging from several tens to several hundreds of

microns. The grating modifies the spectral transmission of the light in such a way that

different rejection bands in the output spectrum of the fiber are generated. Due to the

high sensitivity of these rejection bands on the external parameters of the fiber, LPFGs

are suitable for sensing technology, biomedical diagnostics, remote sensing in oil, food and

pharmaceutical industry [1].

On the other hand, photonic crystal fibers (PCFs) are a new type of optical fibers

composed by a series of air-hole channels distributed in their cross-profile. These types of

fibers have represented a revolution in the fiber industry due to the fact that the distribution

of air holes provides engineers with new possibilities to manipulate the propagation of light

through them and consequently to control and tailor its properties [2, 3]. These air channels

can be set in random or in a periodic distribution causing, in both cases, the confinement

xvii



of electromagnetic waves within the fiber core. Actually, an amazing variety of fibers with

air-hole inclusions with different properties have been reported [4, 5].

Additionally, the performance of advanced laser processing and several mechanical me-

thods have allowed the fabrication of LPFGs in practically any kind of fiber with complex

index profile. It has allowed the adaptation of the PCF as a new medium for the LPFG

fabrication. As a consequence, the different properties of PCFs have given new features to

LPFGs, resulting in new possibilities in the design of novel all-fiber devices [6].

In order to fully understand and exploit the potential of LPFGs in PCFs, a theoretical

and experimental study of LPFGs with a practical modeling of guided modes in PCFs have

to be performed. This is the motivation of this work which is based on previous independent

extensive studies of LPFGs [7, 8, 9] and PCFs [2, 3]. Specifically, we study the properties

of LPFGs induced mechanically in PCFs. In this work, the chapters are organized in such

a way that they follow the principal concepts mentioned above. In Chapter 1, the physical

theory of long-period fiber gratings and their fabrication’s mechanisms are presented in a

detailed way focusing in the mechanical fabrication method. In Chapter 2, a general context

about PCFs is presented including a review of the development of PCFs and the description

of their principal properties. Furthermore, a description of the numerical methods used to

model these kind of fibers is presented focusing principally on the Fast-Fourier-Transform

(FFT) mode solver which is performed in this work. Chapter 3 describes new properties

of LPFGs obtained as a result of the characterization of different configurations of LPFGs

induced mechanically in PCFs. Chapter 4 shows direct applications of these new spectral

properties in order to improve the performance of fiber lasers and sensors, and finally,

Chapter 5 summarizes all the results obtained and suggests direction for future work.

xviii



1 Long-period fiber gratings

This Chapter presents the properties and background theory of LPFGs and the methods

employed in their fabrication. All these aspects are of great importance to understand

this useful fiber optic device. To explain adequately all these points, a brief review of the

mathematical concepts and modal properties of fiber optics is discussed before.

1.1 Concepts of fiber optics

First, we consider a step-index fiber geometry as shown in Figure 1.1. As it can be seen,

the basic fiber structure is composed by a core, a cladding and the surround of the fiber

with refraction indexes n1, n2 and n3 respectively. According to waveguide theory, the

following condition n1 > n2 > n3 have to be fulfilled in order to allow the propagation of

electromagnetic waves by means of total internal reflection [10]. Nevertheless, this condition

is not completely necessary in other fiber structures where the physical way to propagate

waves is based in photonic bandgaps [11]. We first consider the propagation of waves in fibers

using total internal reflection. The fiber scheme is given in both cartesian (x, y, z) and polar

(r, ϕ, z) coordinates. The z axis direction runs along the optical fiber. The electromagnetic

waves can propagate through the fiber only under certain conditions imposed by the wave-

guide. These waveguide conditions can be modified varying the structural parameters of the

fiber, i.e. the core and cladding radius a1 and a2, the wavelength λ of the electromagnetic

wave, and the value of the refraction index of the core, cladding and surround respectively.

These parameters are usually combined to form another useful parameter called normalized

1
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frequency V = 2πa1
λ

√
n21 − n22. As a result, only a specific number of waves called guided

modes can propagate through the fiber. These modes travel to different velocities v = 2πc
βλ ,

where c is the light velocity in the vacuum, β is the effective propagation constant defined

as β =
2πneff

λ , and neff is the effective refraction index of the mode [10, 12]. These modes

can be guided into the core or cladding as it is shown in Figure 1.1. According to the value

of the V parameter, the fiber can lead the propagation of the fundamental core mode and

other higher-order core modes. Specifically, if V ≤ 2.405 only the fundamental core mode is

propagated, and thus the fiber is called single-mode fiber. The values of neff and β for core

modes obey the following conditions: n1 > neff > n2 and 2πn1
λ > β > 2πn2

λ . The values of

neff and β for higher-order core modes are lower than those for the fundamental core mode.

On the other hand, the cladding modes obey the following conditions: n2 > neff > n3 and

2πn2
λ > β > 2πn3

λ , and in similar way to core modes, the higher-order cladding modes have

lower values of neff and β that those for the fundamental cladding mode respectively. In

the cases where neff < n3 and β <
2πn3
λ , exist a series of modes that do not propagate along

the fiber and are dissipated completely in the surround. These modes are called radiated

modes [10, 12].

In Figure 1.1 one can observe that core modes are highly confined into the core while

the cladding modes are partially confined in the cladding with a portion of their fields in the

surround. In consequence, a certain value of their energy radiates to the surround. This is

the reason why the cladding modes have higher transmission loss than that for core modes

during their propagation. On the other hand, the physical description of the guided modes

in an optical fiber can be made by two ways, by tracing rays and solving the wave equation

into the waveguide [10, 12]. To describe the propagation of modes in this work, we choose

the second one.

Basically, the electromagnetic wave propagation in the fiber lies in the set of Maxwell’s

equations. As a first approximation, the optical fiber is assumed to consist of a linear,

isotropic, homogeneous, lossless dielectric material without any sources such as currents

and free charges. Defining E as the electric field vector and D = ϵE as the electric
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Figure 1.1: Diagram of a cross section of a step-index fiber, showing the coordinate
system, the refractive indexes, and the radii of the core a1 and cladding a2.

displacement vector (where ϵ is the permittivity defined as ϵ = ϵ0n
2), as well as H the

magnetic field vector and B = µH the magnetic flux vector (with µ being the permeability

with µ = µ0), Maxwell’s equations appear as follows [10, 12]:

∇×E = −∂B
∂t

, (1.1a)

∇×H =
∂D

∂t
, (1.1b)

∇ ·D = 0, (1.1c)

∇ ·B = 0, (1.1d)

where E = E(r, ϕ, z, t) and H = H(r, ϕ, z, t) respectively. Standard wave equations can be

derived from the above expressions in order to study the electromagnetic fields in optical

fibers. Particularly, if the refractive index profile does not vary with distance z along the

fiber, i.e. n = n(r, ϕ), and the electromagnetic wave is a monochromatic wave (with a

frequency ω) traveling in the z-direction, the fields E and H can be written in the form:
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E(r, ϕ, z, t) = E(r, ϕ)ej(ωt−βz), (1.2)

H(r, ϕ, z, t) = H(r, ϕ)ej(ωt−βz). (1.3)

In these equations, the fields have components in the r, ϕ and z axes, i.e. E(r, ϕ) =

Er(r, ϕ)r̂ + Eϕ(r, ϕ)ϕ̂ + Ez(r, ϕ)ẑ and H(r, ϕ) = Hr(r, ϕ)r̂ +Hϕ(r, ϕ)ϕ̂ +Hz(r, ϕ)ẑ. These

expressions are also valid if we change the coordinates (r, ϕ, z) to (x, y, z). Additionally, if

the fiber is axially symmetric (as is usually the case), then the refractive index is only a

function of the radial component n = n(r). Now, if we take the curl of equation (1.1)a and

substitute equation (1.1)b, we obtain:

∇× (∇×E) = ϵµω2E, (1.4)

In a similar manner, if we take the curl of equation (1.1)b and substitute equation (1.1)a,

we obtain:

∇× (
1

ϵ(r)
∇×H) = (

ω

c
)2H. (1.5)

Both equations are very important in order to analyze the wave propagation in optical

fibers and other types of waveguides. They give a fully vectorial analysis of the electromag-

netic waves within the fiber. Also, both equations have field solutions (called eigenvectors

of the equation) with ω as the eigenvalue of the solutions. It is important to comment

that the numerical solution of one of these equations is sufficient to describe the modal

solutions of the waveguide. Nevertheless, the question that arises is which of them is better

to solve numerically. In this case, it will depend of the requirements of the modal anal-

ysis. Generally, Equation (1.5) is chosen by the majority of researches due to that the
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magnetic field vector H is not modified when there are high discontinuities in the permit-

tivity profile of the waveguide. In other words, at waveguide boundaries, the tangential

components of E and H are continuous although, for their normal components, only H is

continuous, while for the normal components of E the following relation must be fulfilled:

n1E
normal
1 = n2E

normal
2 . This relation is deduced applying the divergence theorem to Equa-

tions (1.1)c and (1.1)d respectively [13]. Thus, E will be discontinuous at boundaries and

consequently Equation (1.4) could be more difficult to solve in some cases.

If we use the following vectorial relations ∇×∇×E = ∇(∇ ·E)−∇2E and ∇ ·D =

ϵ0∇ · n2E = ϵ0[∇n2 · E + n2∇ · E] = 0, for equation (1.4), and ∇ × (n−2∇ × H) =

(∇n−2)×H + n−2∇×∇×H, and ∇ ·B = ∇ ·H = 0, for equation (1.5), we can obtain

the following expressions:

∇2E +∇(
∇n2

n2
·E) + k2E = 0, (1.6)

∇2H +
∇n2

n2
× (∇×H) + k2H = 0. (1.7)

These equations are similar to Equations (1.4) and (1.5) but expressed in another way.

One can see that ∇(∇n2

n2 · E) and ∇n2

n2 × (∇ × H) represent the vectorial terms of these

equations. If we consider that the refractive index n changes slightly between the core

and cladding, n can be considered constant and these terms can be neglected. Then, all

components of the fields E and H will be governed by a same equation and not differences

of the vectorial composition of the solutions will be obtained, in other words, we will obtain

the following scalar wave equation,

∇2ψ + k2ψ = 0. (1.8)

where ψ can be E or H respectively. This equation is generally called Helmholtz’s equation
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[10, 12]. In many cases, this approximation is adequate for fibers that do not present a high

contrast in their transversal refraction index. In these cases the core field solutions are not

highly confined in the fiber core. This restriction is also called weak guidance condition.

On the other hand, if we continue in the vectorial regime, and consider that n(r) does not

depend of z, and write, ∇ = ∇t +
∂
∂z , E = Et + Ez ẑ, and H = Ht +Hz ẑ, we can obtain

from equations (1.6) and (1.7) the following equations that govern each component of the

fields [12]:

∇2
tEt +∇t(

∇tn
2

n2
·Et) + k2Et = β2Et, (1.9)

∇2
tHt +

∇tn
2

n2
× (∇t ×Ht) + k2Ht = β2Ht, (1.10)

∇2
tEz + iβEt ·

∇tn
2

n2
+ k2Ez = β2Ez, (1.11)

∇2
tHz − (∇tHz − iβHt) ·

∇tn
2

n2
+ k2Hz = β2Hz, (1.12)

where Et = Err̂ + Eϕϕ̂ and Ht = Hr r̂ +Hϕϕ̂. If we only put attention to Equations (1.9)

and (1.10), we can observe that the field solutions of these equations (which correspond to

the eigenvectors of the system) have as eigenvalue the propagation constant β. Also, the

information of the transversal refraction index profile is transferred to these equations by

means of the vectorial terms ∇t(
∇tn2

n2 ·Et) and
∇tn2

n2 × (∇t ×Ht).

To obtain all components of E and H is not necessary to solve each one of Equations

(1.9)-(1.12). It is sufficient to solve only for Ez and Hz. It is due to the fact that from

Maxwell’s equations we can express the transverse fields Et and Ht in terms of Ez and Hz

as follows [12],
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Et =
i

k2n2 − β2
{β∇tEz − (

µ0
ϵ0

)1/2kẑ ×∇thz}, (1.13)

Ht =
i

k2n2 − β2
{β∇tHz − (

µ0
ϵ0

)1/2kn2ẑ ×∇tEz}, (1.14)

where k = 2π
λ . These equations can be expressed in coordinates (r, ϕ, z) or (x, y, z) using

∇t = r̂ ∂
∂r + ϕ̂1

r
∂
∂ϕ , and ∇t = x̂ ∂

∂x + ŷ ∂
∂y respectively.

In general, it is difficult to solve analytically Equations (1.11) and (1.12) for Ez and Hz.

So, we have to consider as a first approximation that the variations of n are small and all

terms with ∇n2 are ignored. Additionally, we consider also that the fiber consists of two

layers: the core and an infinite cladding. Then, we only can solve the above equations for

core fiber modes. For cladding fiber modes one can see Ref. [7]. Now, before to solve these

equations, it is important to mention that the guided modes can also be divided according to

the following classification [14]: Transversal electric modes (denominated TE modes) with

Ez = 0, Transversal magnetic modes (denominated TM modes) with Hz = 0, and Hybrid

modes with Ez ̸= 0 and Hz ̸= 0 (denominated HE or EH modes depending if Ez > Hz

or Hz > Ez respectively). Then, using equations (1.13) and (1.14), we can obtain that

TE modes have the following nonzero components: (Eϕ,Hr, Hz), the TM modes have the

nonzero components: (Er, Ez,Hϕ), and the Hybrid modes have all components of E and

H. Then, if we only solve Equation (1.12) for Hz, we can obtain with the help of Equations

(1.13) and (1.14) the following field components of TE modes,

(0 ≤ r ≤ a1) (r > a1)

Eϕ = −jωµ0 a1u AJ1
(

u
a1
r
)

Eϕ = jωµ0
a1
w

J0(u)
K0(w)AK1

(
w
a1
r
)

Hr = jβ a1
u AJ1

(
u
a1
r
)

Hr = −jβ a1
w

J0(u)
K0(w)AK1

(
w
a1
r
)

Hz = AJ0
(

u
a1
r
)

Hz =
J0(u)
K0(w)AK0

(
w
a1
r
)

(1.15)

where ω = ck, u = a1
√
k2n21 − β2, w = a1

√
β2 − k2n22 and A is a normalization constant.
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These solutions fulfill the boundary conditions at r = a1. In this case Hz and Eϕ must be

continuous. From these boundary conditions, we can obtain the following equation,

J1(u)

uJ0(u)
= − K1(w)

wK0(w)
. (1.16)

In the same manner, if we solve Equation (1.11) for Ez, we can obtain for TM modes,

(0 ≤ r ≤ a1) (r > a1)

Er = −jβ a1
u AJ1

(
u
a1
r
)

Er = −jβ a1
w

J0(u)
K0(w)AK1

(
w
a1
r
)

Ez = AJ0
(

u
a1
r
)

Ez =
J0(u)
K0(w)AK0

(
w
a1
r
)

Hϕ = jωϵ0n
2
1AJ1

(
u
a1
r
)

Hϕ = −jωϵ0n22
J0(u)
K0(w)AK1

(
w
a1
r
)

(1.17)

These solutions also fulfill the boundary conditions at r = a1. In this case, Ez and Hϕ

are continuous. From these boundary conditions we can obtain,

J1(u)

uJ0(u)
= −

(
n2
n1

)2 K1(w)

wK0(w)
. (1.18)

If we solve both Equations (1.11) and (1.12) for Ez and Hz and using again Equations

(1.13) and (1.14), we obtain for hybrid modes,

(0 ≤ r ≤ a1)

Er = − ja21
u2

[
Aβ u

a1
J

′
l

(
u
a1
r
)
+ Cωµ0

l
rJl

(
u
a1
r
)]
cos (lθ + ψ)

Eϕ = − ja21
u2

[
−Aβ l

rJl
(

u
a1
r
)
− Cωµ0

u
a1
J

′
l

(
u
a1
r
)]
sin (lθ + ψ)

Ez = AJl
(

u
a1
r
)
cos (lθ + ψ)

Hr = − ja21
u2

[
Aωϵ0n

2
1
l
rJl

(
u
a1
r
)
+ Cβ u

a1
J

′
l

(
u
a1
r
)]
sin (lθ + ψ)

Hϕ = − ja21
u2

[
Aωϵ0n

2
1
u
a1
J

′
l

(
u
a1
r
)
+ Cβ l

rJl
(

u
a1
r
)]
cos (lθ + ψ)

Hz = CJl
(

u
a1
r
)
sin (lθ + ψ)

(1.19)
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(r > a1)

Er =
ja21
w2

[
Aβ w

a1
K

′
l

(
w
a1
r
)
+ Cωµ0

l
rKl

(
w
a1
r
)]

Jl(u)
Kl(w)cos (lθ + ψ)

Eϕ =
ja21
w2

[
−Aβ l

rKl

(
w
a1
r
)
− Cωµ0

w
a1
K

′
l

(
w
a1
r
)]

Jl(u)
Kl(w)sin (lθ + ψ)

Ez = A Jl(u)
Kl(w)Kl

(
w
a1
r
)
cos (lθ + ψ)

Hr =
ja21
w2

[
Aωϵ0n

2
2
l
rKl

(
w
a1
r
)
+ Cβ w

a1
K

′
l

(
w
a1
r
)]

Jl(u)
Kl(w)sin (lθ + ψ)

Hϕ =
ja21
w2

[
Aωϵ0n

2
2
w
a1
K

′
l

(
w
a1
r
)
+ Cβ l

rKl

(
w
a1
r
)]

Jl(u)
Kl(w)cos (lθ + ψ)

Hz = C Jl(u)
Kl(w)Kl

(
w
a1
r
)
sin (lθ + ψ)

(1.20)

where l is the order of the Bessel functions and C is a normalization constant respectively.

These solutions fulfill the boundary conditions at r = a1. Eϕ and Hϕ are continuous and

from these conditions we can obtain the following equation,

[
J

′
n(u)

uJn(u)
+

K
′
n(w)

wKn(w)

] [
J

′
n(u)

uJn(u)
+

(
n2
n1

)2 K
′
n(w)

wKn(w)

]
= n2

(
1

u2
+

1

w2

)[
1

u2
+

(
n2
n1

)2 1

w2

]
.

(1.21)

Equations (1.16), (1.18) and (1.21) are very important because they govern the eigen-

values of the guided modes in a fiber. In other words, with these eigenvalue equations, we

can obtain the values of the propagation constant β of the modes. The solution of these

equations give as a result the curves shown in Figure 1.2, where the propagation constant β

as a function of the normalized frequency V for some core modes is plotted. The first curve

which correspond to lower values of the normalized frequency V represents the fundamental

core mode HE11. As was mentioned above, if V ≤ 2.405 only the curve for the fundamental

mode obey the eigenvalue equation for Hybrid modes and only this mode is propagated

into the fiber. For values of V > 2.405 other curves can be obtained for higher order core

modes: three almost degenerated (TE01, HE21, TM01), other three almost degenerated

(EH11, HE31, EH12), and so on. It means that all these modes can be guided through the

fiber simultaneously. As example, in Figure (1.3), it is shown the intensity distribution of

the first HE11, TE01, and TM01 modes.
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TE01
TM01

HE21

EH11

HE31

EH12

HE22

EH21

HE41

TM02

TE02

HE11 = LP01 LP11

LP21

LP31

Normalized frequency V

1 2 3 4 5 6

β

Figure 1.2: Plots of the propagation constant β as a function of normalized fre-
quency V for some guided core modes.

HE
11 TE01\TM01

Figure 1.3: Qualitative representation of the intensity distribution of the first
HE11, TE01, and TM01 modes according to Ref. [12].

In principle, if we consider that the refraction index profile of the fiber changes slightly,

i.e. n1 ≃ n2 (as it was made at the beginning of the analytical solution of Ez and Hz),

the higher-order core modes are almost degenerated, but if we apply this approximation

again in Equations (1.16), (1.18) and (1.21), we can obtain the following unified eigenvalue

equation:
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Jm(u)

uJm−1(u)
= − Km(w)

wKm−1(w)
, (1.22)

where m = 1 for TE and TM modes, m = l + 1 for EH modes, and m = l − 1 for

HE modes being l an integer number with l ≥ 1 respectively. In this case, the guided

modes mentioned above are completely degenerated and form a new mode classification

denominated LP guided modes. These LP modes are also indicated in Figure 1.2. In this

figure we can observe that the first LP mode called fundamental mode is formed by LP01 =

HE11, while the higher core modes are formed by LP11 = TE01 + TM01 +HE21, LP21 =

EH11 + HE31 + EH12, etc. In particular, LP modes only have transversal components.

i.e. only have components in (r,ϕ) or (x,y) coordinates [10, 12]. The above characteristic

can be deduced if one take the relative magnitude between the longitudinal and transversal

components of the fields defined in Equations (1.15), (1.17), and (1.19) with the condition

n1 ≃ n2. This condition allows the LP modes to travel along the fiber with transversal

components of the field E or H forming always a transversal vector during its propagation.

The direction of the field vector is called polarization of the field [10, 12]. Specifically, for LP

modes, the polarization is linear during their propagation in an optical fiber with circular

core. From this, one can infer that the LP-mode means linearly polarized mode.

LP01 - x LP01 - yx

y

x

y

βx βy

Figure 1.4: Intensity distribution and direction of the transversal components of
the LP01 fundamental core mode.

In Figure 1.4 we can observe the intensity distribution of the electric field E for the
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fundamental core mode LP01. As it is mentioned above, E only has transversal vectorial

components in x and y directions. The vectorial components are also shown in Figure 1.4

with arrows. In theory, if the fiber core is perfectly circular and the transversal refractive

index of the core is homogeneous, the propagation constant of each transversal component

called βx and βy will be the same. In consequence the difference ∆β = βx − βy ≃ 0. In

the literature ∆β is denominated modal birefringence and it is nonzero for inhomogeneous

or elliptic transversal refractive index of the core [10, 12]. Figure 1.5 shows the intensity

distribution of E for the first higher-order core mode LP11. In the same way, the direction

of its vectorial components are shown with arrows. It is worth to mention that for LP11

modes, we can distinguish two groups or intensity distributions. Both groups called 1 and

2 are shown in each row of Figure 1.5. Again, if the fiber is perfectly circular, both groups

will be degenerated. It is easy to observe that if we rotate the intensity distribution of

group 1, it will coincide with group 2. Additionally, each group has a modal birefringence

∆β which is the same for perfect circular fiber cores.

x

y

βy1

x

y

x

y

x

y

βx

βx βy

1

2 2

LP11 - x LP11 - y

LP11 - x LP11 - y

Figure 1.5: Intensity distribution and direction of the transversal components of
the LP11 core mode.
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LP11 - x LP11 - y

LP11 - x LP11 - yx

y

βy1

x

y

βx1

βy2βx2

LP11 - x LP11 - yx

y

x

y

LP11 - x LP11 - y

Figure 1.6: Intensity distribution and direction of the transversal components of
the LP11 core mode in an elliptical core.

Finally, if we consider fibers with an elliptical core, there can be two orientations for

the field configuration of the LP11 mode. This behavior can be observed in Figure 1.6,

where in one can identify that there are also two different groups of intensity distributions

called again groups 1 and 2. Due to the fact that these groups are not degenerated (unlike

the circular core case), the LP11 mode split into odd (group 1) and even (group 2) LP11

modes respectively [14, 15]. The odd and even LP11 modes have significantly different modal

birefringence. This behavior can also be seen in other modes like the fundamental LP01 core

mode. The elliptical core fibers that support two stable special modes, the LP01 and LP11

(even/odd) modes, are called elliptical core two-mode fibers [14]. It is worth mentioning

that these characteristics described above for core modes are also applied to cladding modes

but with different mathematical expressions. In order to obtain the components of the fields

E and H for cladding modes, one has to solve again Equations (1.11) and (1.12) and apply

the boundary conditions for a three-layer structure [7, 16].
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1.2 Long-period fiber grating theory

A long-period fiber grating (LPFG) consist of a periodic perturbation of the refraction

index of the fiber core that couples energy between two co-propagating modes, typically the

fundamental core mode and a higher-order mode of the core or cladding respectively. The

coupling between these modes must satisfy the following phase matching condition [8, 9],

λres = (n1eff − n2eff )Λ, (1.23)

where λres is the resonance wavelength, n1eff and n2eff are the effective indexes of the

core and cladding modes, and Λ is the grating period. Generally, the value of Λ is found

to be within the range of 100 µm to 1 mm. A pictorial representation of this coupling

can be observed in Figure 1.7. In this figure one can observe that the fundamental core

mode transfers its energy to a cladding mode with higher transmission loss. The high

attenuation of the cladding modes results in the transmission spectrum of the fiber with

a series of attenuation bands centered at discrete wavelengths determined by the phase

matching condition. An example of a typical LPFG transmission spectra is shown in Figure

1.8. As can be seen, each attenuation band correspond to the coupling of the core mode

to different cladding modes. The exact form of the spectrum, and the center wavelengths

of the attenuation bands, are sensitive to the period and length of the LPFG (typically of

the order of 30 mm) and to the local environment: temperature, strain, bend radius and to

the refractive index of the medium surrounding the fiber [17]. Changes in these parameters

can modify the period of the LPFG and/or the differential refractive index of the core and

cladding modes, as a consequence, the phase matching condition is modified resulting in a

change in the central wavelengths of the attenuation bands.

As it is mentioned above, the phase matching condition is an necessary requirement in

the mode coupling of a LPFG. Therefore, its deduction is presented in this work. First,

let us consider without loss of generality the weak guiding condition. In this case, the

propagation of modes can be described using the scalar wave equation given in Equation
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Figure 1.7: Mode coupling between the fundamental core mode and a cladding
mode using a LPFG.

(1.8). Also, we consider an optical fiber with a refractive index profile n2(x, y) in which

there is a periodic z-dependent perturbation given by,

∆n2(x, y, z) = ∆n2(x, y) sin(Kz), (1.24)

where K = 2π
Λ . This perturbation corresponds to the periodic index variation of the fiber

core in a LPFG. If ψ1 and ψ2 are two modes of the fiber, then the periodic perturbation

can, under certain conditions couple energy among them. Thus, we can write the total field

at any value of z as,

ψ(x, y, z) = ψ1 + ψ2 = A(z)ψ1(x, y)e
−is1β1z +B(z)ψ2(x, y)e

−is2β2z, (1.25)

where s1 = ±1 and s2 = ±1 respectively. If s1 and s2 have the same sign, we are describing

two modes propagating along the same direction. If s1 and s2 have different signs, the

modes are propagating in opposite directions. Therefore, we are interested in the first case.

From Equation (1.25) we can distinguish that the amplitudes A and B depend on the
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Figure 1.8: Transmission spectra of a typical LPG induced in a commercial single-
mode fiber, SMF28, with a period Λ = 500 µm, and length L = 30 mm.

propagation length z. This characteristic can be understood if we consider that the energy

of ψ1 is transferred to ψ2 during their propagation along the perturbed core. Then, their

amplitudes have to vary in order to allow this transference. In the absence of perturbation,

A and B would be constants, and the following scalar wave equations are satisfied,

∇2
tψ1 + (k2n2(x, y)− β21)ψ1 = 0, (1.26)

∇2
tψ2 + (k2n2(x, y)− β22)ψ2 = 0. (1.27)

On the other hand, the wave equation to be satisfied by the total field ψ(x, y, z) is,

∇2
tψ +

d2ψ

dz2
+ k2[n2(x, y) + ∆n2(x, y) sin(Kz)]ψ = 0, (1.28)
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where we can observe that the refractive index perturbation is added to the wave equation

respectively. Substituting Equation (1.25) for ψ in Equation (1.28) and reordering terms,

we obtain,

(∇2
tψ1 + [k2n2(x, y)− β21 ]ψ1)A(z)e

−is1β1z +
d2A

dz2
ψ1e

−is1β1z

−2iβ1s1
dA

dz
ψ1e

−is1β1z + k2[∆n2(x, y)sin(Kz)]ψ1e
−is1β1z

+(∇2
tψ2 + [k2n2(x, y)− β22 ]ψ2)B(z)e−is2β2z +

d2B

dz2
ψ2e

−is2β2z

−2iβ2s2
dB

dz
ψ2e

−is2β2z + k2[∆n2(x, y)sin(Kz)]ψ2e
−is2β2z = 0. (1.29)

If we neglect the second derivative of A and B with respect to z (also referred to as the

slowly varying envelope approximation) and using Equations (1.26) and (1.27), we get,

−2iβ1s1
dA

dz
ψ1−2iβ2s2

dB

dz
ψ2e

−i∆βz+k2[∆n2(x, y) sin(Kz)][Aψ1+Bψ2e
−i∆βz] = 0, (1.30)

where ∆β = s1β1 − s2β2. Now, let us consider the orthogonality condition for ψ1 and ψ2

given by [12],

∫ ∞

−∞

∫ ∞

−∞
ψ∗
1(x, y)ψ2(x, y)dxdy = 0. (1.31)

This condition indicates that both modes ψ1 and ψ2 are linearly independents. In other

words, ψ1 and ψ2 have different propagation constants. The details of this condition can

be found in Refs. [10, 12]. Then, if we multiple Equation (1.30) by ψ∗
1 and integrate with

respect to x and y, we can get (considering the orthogonal condition) that,
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dA

dz
= −iκ11

A

s1
sin(Kz)− κ12

B

s1

[
ei(∆β+K)z − ei(∆β−K)z

]
, (1.32)

where,

κ11 =
k2

2β1

∫ ∫
ψ∗
1∆n

2ψ1dxdy∫ ∫
ψ∗
1ψ1dxdy

, (1.33)

κ12 =
k2

2β1

∫ ∫
ψ∗
1∆n

2ψ2dxdy∫ ∫
ψ∗
1ψ2dxdy

. (1.34)

In the same manner, if we multiply Equation (1.30) by ψ∗
2 and integrate, we obtain,

dB

dz
= −iκ22

B

s2
sin(Kz) + κ21

A

s2

[
e−i(∆β+K)z − e−i(∆β−K)z

]
, (1.35)

with,

κ22 =
k2

2β2

∫ ∫
ψ∗
2∆n

2ψ2dxdy∫ ∫
ψ∗
2ψ2dxdy

, (1.36)

κ21 =
k2

2β2

∫ ∫
ψ∗
2∆n

2ψ1dxdy∫ ∫
ψ∗
2ψ1dxdy

. (1.37)

At this point, we have to analyze carefully both Equations (1.32) and (1.35). For

example, if we integrate both equations over a small distance, L = L2 − L1, compared

with the distance over which A and B change appreciably, we can obtain the following

approximations,

∆A = iκ11
A

s1

[
cos(Kz)

K

]L2

L1

+ iκ12
B

s1

[
ei(∆β+K)z

(∆β +K)

]L2

L1

− iκ12
B

s1

[
ei(∆β−K)z

(∆β −K)

]L2

L1

, (1.38)



1.2. Long-period fiber grating theory 19

∆B = iκ22
B

s2

[
cos(Kz)

K

]L2

L1

+ iκ21
A

s2

[
e−i(∆β+K)z

(∆β +K)

]L2

L1

− iκ21
A

s2

[
e−i(∆β−K)z

(∆β −K)

]L2

L1

. (1.39)

In these equations, we can observe that if ∆β −K ≃ 0, the contributions of the first and

second terms in the right side of both equations are negligible compared with the last term,

and hence, can be neglected. Thus, Equations (1.32) and (1.35) can be written as follows,

dA

dz
= κ12

B

s1
ei(∆β−K)z, (1.40)

dB

dz
= −κ21

A

s2
e−i(∆β−K)z. (1.41)

If we use the condition ∆β = K, we obtain,

dA

dz
= κ12

B

s1
, (1.42)

dB

dz
= −κ21

A

s2
. (1.43)

Both Equations (1.42) and (1.43) are very important because they describe the coupling

between two modes under the phase matching condition ∆β = K, where K = 2π
Λ , and

∆β = s1β1 − s2β2 respectively. If we choose s1 = s2 = 1, we describe the coupling between

two co-propagating modes. Then, equations (1.40) and (1.41) describe the mode coupling

in a LPFG. The value of ∆β is determined as follows,

∆β =
2π

λ
(neff1 − neff2 ). (1.44)
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Typically, the values of neff1 and neff2 in optical fibers are very close. For example,

in single mode fibers, ∆neff = neff1 − neff2 has values from 0.001 to 0.01 at λ = 1.5µm

[10]. Then, ∆β has values from 0.004 up to 0.04 µm−1. If we consider the phase matching

condition for co-propagating modes, ∆β = 2π
Λ , and use the typical values of ∆β, we can

deduce that the period Λ has values in the range of 100 to 1000 µm respectively, which is

characteristic in LPFGs.

On the other hand, if we chose s1 = 1 and s2 = −1, we describe the coupling between

two modes propagating in opposite directions. Then, Equations (1.42) and (1.43) describe

another type of mode coupling given in devices called fiber bragg gratings (FBGs) [8, 9].

These gratings couple energy from the fundamental core mode to a higher-order mode of the

core or cladding propagating in opposite direction along the fiber. These kind of gratings

share the same characteristics of LPFGs except for the following cases: first, as it was

mentioned above, the energy transferred to the coupled mode is reflected, instead of being

propagated in the same direction of the fundamental core mode; and second, the value of

the period Λ for FBGs has values lower than 1 µm. This last characteristic can be deduced

again from the phase matching condition ∆β = β1 + β2 = K, with K = 2π
Λ . Typically,

the value of β in single mode fibers is ∼ 6 µm−1 [10]. If we consider β1 ∼ β2 = β, then

2β = 2π
Λ , and consequently Λ ∼ 0.5µm, which is into the range mentioned above for FBGs

respectively. For more information about FBGs, one can revise Refs. [8, 9].

On the other hand, Equations (1.40) and (1.41) for co-propagating modes correspond

to the general case where the condition of phase matching is not completely fulfilled. The

solution of these equations is given in the following way: considering κ12 ≃ κ21 (which is

valid in the weak guiding condition), differentiating Equation (1.41) with respect to z, and

using Equation (1.40) to eliminate A, we can obtain,

d2B

dz2
+ iΓ

dB

dz
+ κ2B = 0, (1.45)

where Γ = ∆β −K. The solution of Equation (1.45) is,
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B(z) = e−iΓz/2
[
b1e

iγz + b2e
−iγz

]
, (1.46)

where γ2 = κ2 + Γ2

4 , and both b1 and b2 are constants. Substituting the solution B(z) in

Equation (1.40), we obtain,

A(z) =
i

κ
eiΓz/2

[(
Γ

2
− γ

)
b1e

iγz +

(
Γ

2
+ γ

)
b2e

−iγz
]
. (1.47)

The constants b1 and b2 are determined by the initial conditions at z = 0. These are:

A(z = 0) = 1, and B(z = 0) = 0. In this way, we can obtain b1 = −b2 respectively. Then,

B(z) = −κ
γ
e−iΓz/2 sin(γz), (1.48)

A(z) = eiΓz/2
[
cos(γz)− i

Γ

2γ
sin(γz)

]
. (1.49)

Thus, the power corresponding to modes 1 and 2 at any value of z is,

P1(z) = |A(z)|2 = cos2(γz) +
Γ2

4γ2
sin2(γz), (1.50)

P2(z) = |B(z)|2 = κ2

γ2
sin2(γz). (1.51)

Equations (1.50) and (1.51) describe the power variation of both modes with z. From

Equation (1.51) we notice that the maximum value of P2 is κ2

γ2 . This value is equal to unity

only when γ = κ (that is, Γ = 0). Then, complete power transfer is possible only if the
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phase matching condition is fulfilled, i.e. Γ = 0. Figure (1.9) gives the variation of P2 with

Γ. In this case z is chosen adequately in order to obtain the maximum value of sin(γz)

with Γ = 0. Then, z = L = π
2κ . In this figure we can observe how the power has a global

maximum at Γ = 0 and has lower values at Γ ̸= 0. Due to this characteristic, Γ is usually

denominated the detuning parameter of the coupled modes [18]. Also, it is very interesting

to observe that the value of L = π
2κ represents the ideal length of perturbation along z to

obtain the maximum coupling between both modes. Then, the length of LPFGs have to be

a multiple integer of this value.

Figure 1.9: Plot of the normalized power, P2, as a function of the detuning pa-
rameter, Γ. The length of the grating is chosen to be ideal, L = π

2κ .

On the other hand, Equation (1.51) can also be expressed in terms of λ. If we consider

again that γ2 = κ2 + Γ2

4 , κ = κ(λ), Γ = Γ(λ), and z = L . Then, we have,

P2(λ) =
κ2(λ)

κ2(λ) + Γ2(λ)/4
sin2

[√
κ2(λ) + Γ2(λ)/4

κ2(λ)

π

2

]
. (1.52)
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Figure 1.10: Plot of the normalized power, P2, as a function of wavelength, λ.
The length of the grating is chosen to be ideal, L = π

2κ .

Figure (1.10) shows the plot of P2 as a function of λ. We can see that this figure has a

curve with similar form than that shown in Figure (1.9). It is important to comment that

the plot of P1 as a function of λ can be obtained using Equation 1.50, and it has similar

form as Figure (1.8). The importance of expressing P2 in terms of λ is found in the fact

that one can obtain the bandwidth ∆λ of the mode coupling as it is indicated in Figure

(1.10). Generally, the bandwidth is defined as the full width at half maximum (FWHM) of

the power spectrum of Equation (1.52). In this case, we have to know the maximum and

the half maximum values of P2 in order to determine ∆λ. According to this procedure, the

bandwidth can be approximated as follows [10, 18],

∆λ =
0.8Λλ

L
(1.53)

In this equation, we can observe that the bandwidth decreases with L and depends directly

on the grating period Λ, and the central wavelength λ for the maximum value of P2. This
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expression is also very interesting because it allows the design of LPFG spectrums modifying

the L, Λ, and λ parameters respectively.

Another way to modify the LPFG spectra is changing the periodicity of the longitudinal

perturbation. For example, we can add a specific kind of chirp in the periodical perturbation

of the grating [8, 9]. As a result, depending on the chirp, the spectrum of Figure (1.10) can

broad or can be apodized eliminating the fluctuations observed at both sides. To describe

mathematically this perturbation, we have to rewrite ∆n(x, y, z) = ∆n(x, y) sin [Kz + δ(z)],

where δ(z) represents the phase change introduced to the grating periodicity. Then, we have

to repeat the analysis performed above with this new perturbation in such a way that we

can obtain the new expressions of P1 and P2 respectively.

On the other hand, another important parameter to analyze is the perturbation coeffi-

cient κ = κ12 ≃ κ21, which contains the information of the fiber index perturbation as it is

indicated in Equations (1.34) and (1.37). With this coefficient, one can control the depth

of the attenuation bands observed in Figure (1.8) and the ideal length L of the grating. For

example, let us consider a LPFG with length L′ < L. Now, if the amplitude of the periodical

perturbation in the refractive index is incremented, the depth of the attenuation bands grows

up to reach a limit. At this point the grating length L′ is equal to the ideal grating length L =

π
2κ . Then, if we increment after this point the amplitude of the periodical perturbation, the

depth of the attenuation bands is reduced; however, if we continue increasing the amplitude

of the perturbation, the depth of the attenuation bands grows again up to reach the limit

value. It means that L′ has the following integer multiple value of L. This behavior is very

common in many LPFG experiments, nevertheless it is restricted to the physical capacity of

the fiber to lead higher values of the perturbation amplitude. Additionally, the coefficient

κ depends on the type of coupled modes. In other words, if the LPFG couples modes with

even symmetry respect to the transversal coordinates x and y of the fiber (commonly called

odd modes), the coefficient κ will have higher values than those for the even modes [7, 19].

This behavior is observed in Figure (1.11), where κ is calculated for different couplings
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between the fundamental core mode and different higher order cladding modes specified by

ν.

Figure 1.11: Coupling coefficient κ for different cladding modes in a typical fiber,
showing odd and even modes separately [19].

Figure 1.12: Plot of the LPFG period Λ as a function of the resonant wavelength
λ for the coupling between the guided core mode and cladding modes of order 1-9
[1].

Let us consider again the phase matching condition ∆β = 2π
Λ , which was determined

in the deduction of Equations (1.42) and (1.43). If we use Equation (1.44), we can express



26 Chapter 1. Long-period fiber gratings

the phase matching condition as it is indicated in Equation (1.23). This equation is used

frequently for researches to characterize the coupling of LPFGs. As an example, Figure

(1.12) shows a plot of the grating period Λ as a function of λ obtained from Equation (1.23)

[1]. As it can be seen, the different curves represent the coupling between the fundamental

mode with different cladding modes numerated from 1 to 9 respectively. These kind of plots

are amply used in the experimental results of this work.

1.3 LPFG fabrication methods

The fabrication of LPFGs implies the introduction of a periodic index modulation of the

core in the optical fiber. This can be obtained by permanent modification of the refractive

index of the fiber core or by physical deformation of the fiber respectively. In the following

sections, a brief overview of the four most popular techniques will be described, focusing

principally in the manufacture of LPFGs by mechanical methods.

1.3.1 LPFG manufacture by UV irradiation

The ultraviolet (UV) irradiation was the first method used to manufacture gratings in 1989

by Meltz et al, who used holographic interference between two coherent beams directed to

the fiber axis [20]. Significant improvement was obtained in the manufacture of gratings with

this method when Hill et al proposed a novel method of UV exposure through a amplitude

mask placed in close proximity to the fiber [21]. Later, a further useful technique was

presented in the form of a point a point periodic grating manufacture using UV irradiation

[22].

The UV exposure method requires that the fiber first be made receptive to UV irradi-

ation, in other words, the fiber must be made photosensitive prior to writing the grating.

It can be obtained by doping the fiber core (usually of silica) with impurity atoms (such

as germanium, boron or a combination of these elements) or by hydrogen loading exposing
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the fiber to high-pressure H2 gas at elevated temperatures for a prolongated period of time

so that hydrogen diffusion into the core material takes place. The later method is prefer-

able because hydrogen loading can be achieved in standard fibers, providing a cheaper and

simpler way to obtain UV photosensitivity fibers [23].

The UV inscription method for LPFGs can be made in two ways. One of them consists

on the irradiation of the fiber through an amplitude mask with the desired period [9]. The

amplitude mask can be made of chrome plated silica with a series of periodical slits which

allows the UV transmission. The width of the slits correspond to the required grating

period. First, the fiber is placed in contact with the amplitude mask so that its axis is

oriented perpendicular to the slits of the plate. Then, the mask’s pattern is imprinted onto

the photosensitive fiber core as shown in Figure (1.13), thus yielding a grating with the

same periodicity given on the mask. The inscription occurs when the UV irradiation is

exposed in front of the mask where alternate bands of maximum intensity are transmitted.

It causes the appearance of peaks in the refractive index modulation of the photosensitive

fiber core. The exposure is repeated until the index modulation has reached a sufficient

level to provide the desired attenuation depth in the LPFG transmission spectrum. As it

can be observed, this technique imply a permanent modification of the refractive index of

the fiber core.

Amplitude 

mask

Fiber

UV 

irradiation

Figure 1.13: Scheme of the UV irradiation method using an amplitude mask
technique for LPFG manufacture in UV photosensitive fibers.

A second way to generate gratings with UV irradiation is based on a period by period
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inscription. This method implies a periodic point by point modulation of the core refractive

index until the desired grating length is obtained. Unlike the amplitude mask technique,

the index change is induced by a single spot illumination at different points along the fiber,

each one separated by the grating period which not necessarily have to be uniform, allowing

in this way the fabrication of chirped gratings. In general, both techniques above described

are considered expensive [24].

1.3.2 Irradiation by a carbon-dioxide laser

LPFG formation by exposure to a CO2 laser beam was first investigated by Davis et al in

order to determine if it is indeed necessary to use UV light for altering the core refractive

index [25]. Once it appeared possible to write gratings using a CO2 laser beam in standard

fibers without the need for prior photosensitization, this became a beneficial alternative be-

cause LPFGs manufactured with this method require no pre-treatment (photosensitization,

for example by hydrogen loading) or post-treatment (annealing or thermal stabilization)

[26]. Furthermore, the silica has a strong absorption band corresponding to the wavelength

of these laser beams, and CO2 lasers are relatively inexpensive [27]. The versatility of this

technique was revealed when LPFGs were fabricated in photonic crystal fibers by exposing

periodically certain points to a CO2 laser beam, which caused localized collapse of the holey

structure due to the heat generated in the fiber [6]. As it is mentioned, this method also

imply a permanent modification of the refractive index of the fiber.

Fabrication of LPFGs by CO2 laser occurs in a point-by-point writing method that is

achieved by moving the fiber along a stage and creating the index modulation at specific

points as it is shown in Figure (1.14). The opening of a shutter allows the focused laser

beam to illuminate the fiber at a specific pulse rate [25, 27]. The LPFG period can then

be controlled by the translation of the fiber, and the grating strength is determined by the

pulse duration and laser output power respectively [25]. The mechanisms responsible for

the grating formation are not due to photo-excitation, in this case (since the exposure is
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Figure 1.14: CO2 irradiation using a point by point technique for LPFG manu-
facture in optical fibers.

not in the UV range), or removal of the fiber material (if no photo-ablation occurs). Then,

authors of Ref. [26] suggest that the index modulation is caused by relaxation of the fiber’s

internal residual stresses [25, 27].

1.3.3 Exposure to electric arc discharge

The continued investigation of methods for LPFG manufacture that do not require pho-

tosensitization and UV irradiation has led the use of electric arcs from a commercial fiber

fusion splice machine [28]. One advantage of this method is the simplicity of the procedure

where not expensive laser equipment is needed. Furthermore, any type of fiber can be used

for writing gratings in this way (including photonic crystal fibers) without prior photosen-

sitization, since it is predominantly the local heating of silica that creates the modulation

in the fiber.

The fabrication process is based on the following way: the polymer coating of the fiber

is removed before fixing it to a translation stage controlled by a motor. This motor allows

the fiber to move between the electrodes of a fusion splicer at predetermined intervals as
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it is shown in Figure 1.15. These motion in intervals stipulates the grating period [29].

An electric arc discharge is applied to the fiber situated between both electrodes, and the

electric current (which determines the intensity of the discharge) and the duration of the

exposure are defined by the user, or a computer respectively [28, 29]. Point by point writing

occurs by advancing the fiber after each discharge has occurred, and the strength of the

grating is increased to its desired level by repeating the entire process a specific number of

times.

Figure 1.15: Electric arc irradiation using a point by point technique for LPFG
manufacture in optical fibers.

Certain experimental setups similar to Figure 1.15 require constant tension applied along

the fiber using a mass piece attached to the end of the fiber. The effect of this tension is

to cause a periodic tapering where discharges have occurred, but this phenomenon plays a

minor role in the grating quality and is not necessary for LPFG manufacture [30]. Adding

tension to the fiber tends to increase insertion loss, but it was also found to be beneficial

due to that fewer discharges are required during the LPFG manufacture [30]. This method
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also imply a permanent modification of the refractive index of the fiber.

1.3.4 Mechanically induced LPFGs

Because the index modulation period in a LPFG can be as large as hundreds of microme-

ters, it is possible to induce it mechanically, for example, by pressing the fiber between a

periodically grooved plate and a flat plate as is shown in Figure (1.16). Via the photoelastic

effect, the pressure points induce a periodic index modulation [31].

fiber grooved plate

Figure 1.16: Side and Top view of a mechanically induced LPFG setup based on
the photoelastic effect of the mechanical pressure on the fiber [32].

An advantageous feature of this design is that one can adjust the grating period Λ,

and thus the positions of the notches, by changing the angle α between the fiber and the

grooves as is shown in the top view of Figure (1.16). Similarly, the length of the fiber under

pressure, which controls the line widths of the notches, can easily be changed. Finally, one

can tune the depth of the notches by adjusting the pressure. When the perturbation is

removed, the transmission of the fiber returns to its initial spectrum. Thus, a wide range
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of filter functions can be generated with the same grooved plate and fiber.

Different techniques of mechanically induced tunable LPFGs have been reported in

standard fibers and microstructured fibers, where corrugated plates, strings, and springs

have been used to apply periodic mechanical stress on the optical fiber in order to induce

the effective index modulation to obtain the coupling of light from the fundamental mode

to LP cladding modes [32, 33, 34]. One of the most relevant characteristics that share

these techniques is their tunability by simple adjustment of the mechanical stress period.

Under this concept, mechanically induced LPFGs offer a tuning range at least one order of

magnitude wider than other methods reported in tunable permanent recorded LPFGs with

similar isolation loss and linewidth [35, 36, 37].

In summary, the main advantages of mechanically induced LPFGs are the wide tuning

range and bandwidth control, and that they are erasable and reconfigurable. These char-

acteristics make mechanically induced LPFGs an attractive option when a broadly tunable

nonreflecting band-rejection filter is required for applications such as the elimination of

communication channels, or to remove Stokes orders in cascaded Raman-based lasers and

modulators. Furthermore, they can be used as dynamic gain equalizers in fiber amplifiers

or lasers [38], as well as key components in tunable and reconfigurable cascaded LPFGs

in multiwavelength Raman lasers, all-fiber Mach-Zehnder interferometers, and wideband

polarization-dependent loss compensators [39, 40, 41]. Additionally, mechanically induced

tunable LPFGs could find applications in the fiber sensor field [42]. Then, for all these appli-

cations it would be useful to develop simple and inexpensive flexible mechanically induced

tunable LPFGs.
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In following sections a description of the different classes of photonic crystal fibers and their

principal properties are presented. In a similar way, a brief review of different numerical

methods used for their modelling are described giving special attention to the Fast-Fourier-

Transform (FFT) mode solver used in this work.

2.1 Introduction

Photonic crystal fibers (PCFs) are a new class of optical fibers, which guide light inside their

microstructured cladding [43, 2]. The most common type of PCF is the microstructured

fiber (MF), which consist of a pure-silica core surrounded by a periodic array of air holes

that constitute the cladding. The air holes reduce the effective refractive index of the

cladding allowing in this way the propagation of light in the core. The microstructure of

the cladding can be varied in order to tailor and control the optical properties of the fiber

[3, 44]. As a example, several microstructured fiber have been developed, such as highly

nonlinear [45], highly birefringent [4], large-mode field area [46, 47] and high numerical

aperture MFs [48]. On the other hand, photonic bandgap fibers (PBFs) are a special class

of PCF, that confine light due to a photonic bandgap of the cladding allowing the guidance

of light in the low-index core of the fiber [49, 50].

PCFs exhibit some unique features in comparison to all glass standard optical fibers. For

instance, PCFs can be designed to guide light in a single transverse mode in the near-UV to

33
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near-infrared wavelength range with variable core sizes [51, 52, 53]. Besides, the arrangement

and size of air holes allow the tailoring of the waveguide dispersion of PCFs. Thus, the zero-

dispersion wavelength can be shifted into the visible region of the optical spectrum [52]. It

is also possible to manufacture PCFs that exhibit very low absolute dispersion values over

a broad wavelength range [5]. Furthermore, mechanically robust PCFs can be fabricated

with extremely small core < 1 µm [52], thus enhancing considerably the nonlinear optical

processes along the fiber [51, 45]. Large core single-mode PCFs can also be manufactured for

reducing the nonlinear effects [51, 53, 5]. Moreover, high birefringence can be induced in the

core to maintain the polarization of light traveling along the fiber [54, 55]. Nevertheless,

propagation losses of PCFs are an order of magnitude larger than that of conventional

optical fibers [56, 57].

2.2 Classes of photonic crystal fibers

Photonic crystal fibers can be classified in two categories according to their guiding principle:

index-guiding microstructured fibers (MF) which guide light in the same way as standard

optical fibers, and photonic bandgap fibers (PBF) where the light is confined through the

bandgap effect [49, 58]. The transversal sections of these fibers are shown in Figure (2.1).

a) b)

Figure 2.1: Scheme of the cross-section of a) a microstructured fiber (MF), and
b) a photonic bandgap fiber (PBF) [63].
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a)

b)

Figure 2.2: Guidance principle in a) a microstructured fiber (MF), and b) a pho-
tonic bandgap fiber (PBF) [63].

2.2.1 Microstructured fibers

The core of a microstructured fiber is of fused silica and the cladding is formed by air holes

running along the entire length of the fiber. These air holes lower the effective refractive

index of the cladding with respect to the core, allowing the guiding of light inside the core

by total internal reflection as is indicated in Figure (2.2)a. In such fibers, often referred to

as index-guiding MFs or holey fibers, a small fraction of light propagates in the air holes

as evanescent fields. Microstructured fibers exhibit unique optical properties compared to

standard fibers. For instance, for certain sizes and arrangements of the air holes, MFs can

confine the guided light to one single mode for all wavelengths in the visible and infrared

[59]. Varying the air hole size, arrangement and symmetry also makes it possible to tai-

lor the group-delay and thereby the dispersion properties of the fiber [60]. Narrow-core

MFs have been widely applied in nonlinear optics, e.g., in supercontinuum generation and

parametric amplification, due to their enhanced nonlinearity [61, 62, 63]. Large-core, end-

lessly single-mode MFs with high numerical aperture have been developed for applications
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in telecommunications and for high power delivery [64]. In particular, recent experiments

have shown that it is possible to manufacture a large mode-area MF with an extremely

uniform structure [65]. On the other hand, the structure can be made asymmetric in order

to substantially increase the birefringence of the fiber. Highly asymmetric MFs have the

advantage of maintaining the polarization state of light along propagation [4]. Several re-

ports have also been published on fiber lasers and amplifiers that include a doped-core large

mode-area microstructured fiber (LMA-MF) [66]. With this type of design, output powers

of several hundreds of watts from MF-based fiber lasers have been demonstrated.

2.2.2 Photonic bandgap fibers

Photonic bandgap fibers (PBFs) differ from MFs by its hollow core. In such structures,

the index guiding is prohibited due to the lower refractive index of the core, and, therefore,

PBFs guide light by consecutive constructive interferences of reflections from the several air-

silica interfaces as it can be seen in Figure (2.2)b. Such periodic air-silica cladding exhibits

a bandgap for photons in the radial direction, forcing the photons to propagate inside the

core [49]. The large overlap of the propagating mode with the air core considerably reduces

the nonlinearity of the fiber allowing the propagation of light with extremely large power

levels. These fibers are also used for sensing applications [50], and can be used for dispersion

compensation [5]. Also, if we fill the central hole of the PBF with, e.g., liquid crystal, we

can form new types of optical components, which can be used for optical switching in

communications systems [58].

2.3 Properties of index-guiding microstructured fibers

Due to that the photonic cristal fibers used in this thesis correspond to index-guiding

microstructured fibers, only the fundamental properties of this type of fiber will be reviewed

in the next sections.
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2.3.1 Modal behavior

The number of modes supported by a MF depends strongly on the hole diameter d, the

lattice pitch Λ of the periodic hole distribution, and the wavelength λ, respectively. In a

similar way to standard fibers, one can use an analogy with the step index fiber model in

order to define the V-parameter of MFs, known as the normalized frequency of the fiber,

V =
2πr

λ

√
n21 − n22, (2.1)

where n1 and n2 are the effective index of the core and the microstructured cladding, and r

is the effective core radius. The effective core radius of the MF is commonly approximated

to be 0.5 times the lattice pitch Λ [49]. The refractive index of the core corresponds to

the silica, and the index of the cladding is the effective index of the space-filling mode [49].

The V-parameter relates the number of modes supported by the core fiber. In particular,

for values of V < 4.2, only the fundamental mode will be propagated in the MF, which

is often desired in telecommunication applications [67] (remember that in standard fibers

the single-mode cutoff is V ≤ 2.405). Examples of V -parameters calculated for MFs as a

function of the normalized wavelength Λ/λ are illustrated in Figure (2.3) for different values

of d/Λ.

Figure 2.3: V-parameter of microstructured fibers as a function of Λ/λ for different
values of d/Λ. Λ = 7 µm. The dashed horizontal line indicates the first higher-order
mode cutoff [62].
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For MFs with a relative air-hole diameter d/Λ ≤ 0.4, the V -parameter can not reach

the cutoff for the first higher-order mode as it is shown in Fig. (2.3), and there is always

a single-mode propagation from 400 to 1600 nm. Such MFs are commonly referred to as

endlessly single-mode fibers [67]. Microstructured fibers with the relative air-hole diameter

larger than ∼ 0.4 are multimode. In this case, the distribution of the input light into the

modes of the MF is determined by the input coupling conditions. Examples of simulated

intensity profiles of the fundamental and higher-order modes propagating in a multimode

MF (d = 6.6 µm, Λ = 7 µm, d/Λ = 0.9) for λ = 1.5 µm are shown in Figure (2.4).

a) b)

c)

Figure 2.4: Intensity profile of the a) fundamental, and b)-c) first and second
higher-order core modes of a MF with d = 6.6 µm and Λ = 7 µm simulated using
the FFT-mode solver developed in this work. λ = 1.5 µm.
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2.3.2 Dispersion

The frequency dependence of the refractive index of silica, i.e., the dependence of the

propagation velocity on frequency, is commonly referred to as material dispersion. The

difference in the refractive index between the core and cladding induces another type of

dispersion known as waveguide dispersion. The total dispersion of the fiber is the sum of

the material and waveguide dispersion [67]. The effects of dispersion on pulse propagation

in optical fibers are typically analyzed by expanding the propagation constant β into a

power series around the carrier frequency ω0 of the pulse:

β(ω) =
+∞∑
m=1

βm(ω − ω0)
m

m!
, (2.2)

where βm =
[
dmβ
dωm

]
ω=ω0

. In Equation (2.2) the coefficient β1 indicates the group delay

(GD) and its inverse β−1
1 the group velocity (GV) of the pulse, i.e., the propagation speed

of the pulse envelope inside the fiber. The group-velocity dispersion (GVD) parameter β2

expresses that different frequency components of the pulse propagate at different speeds.

This effect is responsible for the broadening of the time intensity profile of a pulse during

its propagation along the fiber. Depending on its sign the GVD in optical fibers can be

divided into two categories: it is called normal when β2 > 0, and anomalous when β2 < 0.

The wavelength at which β2 = 0 is referred to as the zero dispersion wavelength λZD

(λZD ≈ 1.3 µm for conventional optical fibers). In the anomalous dispersion region, shorter

wavelengths travel faster than longer wavelengths, and viceversa in the region of normal

dispersion. Another common parameter used to describe the effects of dispersion in optical

fibers is the dispersion parameter D defined as,

D = −
(
2πc

λ2

)
β2, (2.3)

where λ is the wavelength and c the speed of light in vacuum. The value of D is often given

in units of ps/(nm · km).
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In MFs, varying the values of d and Λ of the fiber, one can tailor the waveguide dispersion

in a wide range in such way that one can obtain different flattened behaviors of the dispersion

parameterD [5]. As a example, Figure (2.5) shows the ultra flattened dispersion behavior for

three different PCF configurations near the communication window with: positive dispersion

(a = 0.4 µm and Λ = 3.12 µm); nearly-zero dispersion (a = 0.316 µm and Λ = 2.62 µm);

and negative dispersion (a = 0.27 µm and Λ = 2.19 µm).

Figure 2.5: Ultra flattened dispersion behavior with: a) positive dispersion, b)
nearly-zero dispersion, and c) negative dispersion [5].

2.3.3 Attenuation

The wavelength attenuation range of MFs is limited, in similar way to standard fibers,

by both the intrinsic material losses and micro/macro-bending losses of the fiber. The

main loss mechanisms in MFs are originated from scattering and absorption [64]. Rayleigh

scattering is the main loss mechanism in the wavelength range of 500-1600 nm, whereas

below 500 nm the ultraviolet absorption of silica becomes dominant. At wavelengths above

1600 nm, the transmission of the fiber is limited by the strong infrared absorption of silica.

Additionally, a strong absorption peak can be located at around 1400 nm resulting from
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vibrational resonance of the OH-molecules that remain in the fiber after the manufacturing

process.

In addition to scattering and absorption, the transmission bandwidth of MFs is also

limited by micro-and macro-bending losses. Macro-bending losses in MFs are induced by

bending of the fiber to small diameters [68]. In addition, microdeformation induced losses

are caused by scattering from interfaces of small irregularities of the fiber or by residual

stress of the coating [69]. These two loss mechanisms severely limit the bandwidth to a few

hundred nanometers for fibers with small values of the relative air hole diameter.

In Mfs, it is necessary to consider another contribution to the losses, that is the leakage

or confinement losses. these are due to the finite number of air holes in the fiber cross-

section. The ratio between the air hole diameter d and the lattice pitch Λ must be designed

to be large enough to confine light into the core and to reduce the confinement losses. Also,

It has been demonstrated a strong dependence of the confinement losses on the number of

the air hole rings. In particular, leakage losses can be significantly reduced by increasing

the ring number in the microstructured profile [11].

2.3.4 Nonlinearities

The nonlinearity of the fiber is inversely proportional to the effective area of the mode.

Therefore, nonlinear MFs have very narrow cores, and thus, small values of the mode field

diameter (MFD). The MFD of MFs is strongly dependent on the relative air-hole diameter

as it is shown in Figure (2.6) for a fundamental mode of a triangular lattice of circular holes

at λ = 1500 nm [70]. The tendency of the MFD to increase for small values of Λ and d/Λ

can be explained if we consider that a portion of the mode field can radiate through the

silica bridges in the cladding microstructure. For this reason, most fibers designed to have

small MFD have very high values of d/Λ. In particular, these fibers are multimode, but

with careful coupling of the pump light into the fiber single-mode guidance may be obtained

for short lengths of fiber.
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Fibers with a core diameter ranging from 1 to 50 µm have been demonstrated [51, 45],

and contrary to conventional optical fibers, MFs offer the possibility of scaling the nonlinea-

rities experienced by the propagating mode [20]. Additionally, the area of the propagating

mode determined by the MFD parameter also depends on the wavelength. This behavior

can be described in Figure (2.7) where a typical dependence of the effective mode area on

the wavelength for a 1 µm core MF is shown.

Figure 2.6: Plot of MFD as function of the pitch for MFs with a triangular array
of circular holes for different values of d/Λ. λ = 1.5 µm. [62]

Figure 2.7: Effective mode area as a function of wavelength for a 1 µm core MF.
Λ = 1.22 µm [63].
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2.4 Modeling methods

The simple structure of standard fibers allows the analytical solutions of the propagating

field by solving a simple eigenvalue equation such as it is described in Chapter 1. The

microstructured cladding of PCFs complicates the analysis significantly. The large refractive

index contrast and strong contribution of the cladding to the waveguide properties difficult

the obtention of an analytical expression for the propagating mode field. Therefore, in most

cases, the mode field and properties of PCFs are analyzed through numerical simulations.

In order to make calculations of the microstructured fibers, one must be able to calculate

the characteristics of the guided core modes and cladding modes. Many methods have been

developed in order to calculate the field distribution of the core and cladding modes, the

propagation constant β, and the effective area Aeff . Between them, one can find the effec-

tive index method [49, 71] where the microstructured fiber is treated as a step index fiber;

the localized function method [72] where the electromagnetic field is expanded in localized

basis functions such as Hermite-Gaussian functions; the plane wave method [73] which is

similar to the previous method with wave planes as basis functions; the multipole method

[74] where the field solution is obtained from the boundary conditions on the hole surfaces;

the finite element method [75] where a complex and reliable discretization is applied, and

the FFT-mode solver [76, 77] which solves the wave equation by moving the fields from

the spatial domain to the spectral domain via the FFT algorithm. In the following sec-

tions, these numerical methods are briefly described , focusing principally in the FFT-mode

solver which is developed in this thesis. As a first step, the principal characteristics of these

methods are given in Table (2.1).

2.4.1 Effective index method

In the effective-index method, index-guiding MFs are modeled as step-index fibers as it is

shown in Figure (2.8). In this case, the refractive index of the equivalent step-index core
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Table 2.1: Characteristics of various methods employed for modeling MFs. The
information is based on Refs. [65,76]. MFD: mode-field diameter, β: propagation
constant, Aeff : effective area, λ: wavelength.

Method Modeled
properties

Model
accuracy

Limitations Computational
effort

Effective
index

MFD, β Inaccurate at
longer λ

Polarization
analysis

impossible

Low

Localized
function
expansion

MFD, β, Aeff Accurate Relatively
complex

Almost Intensive

Plane wave
expansion

MFD, β, Aeff Fair Infinite
cladding

assumption

Intensive

Multipole
expansion

MFD, β, Aeff Reliable Symmetric
structures

Intensive

Finite
Element

MFD, β, Aeff Reliable Relatively
complex

Very Intensive

FFT mode
solver

MFD, β, Aeff Fair Infinite
cladding

assumption

Intensive

fiber is composed of pure silica, and the index of the cladding is determined from the effective

index of the so-called space-filling modes [49]. The index of the space filling mode is found

by solving the mode that propagates if the defect is removed, i.e., if the microstructured

cladding is assumed to be continuous and infinite. Knowing the propagation constant βSFM

associated with the space-filling mode, the effective refractive index of the cladding of the

equivalent fiber can be deduced from,

neff (ω) =
βSFM (ω)

k
, (2.4)

where k = ω/c, and ω is the angular frequency of the wave in free space. The MF can

then be treated as an ordinary step-index fiber. In general, the core radii of the equivalent

fiber is considered 0.5Λ [49, 71]. It is important to mention that the effective index method

is fairly accurate only when the fundamental mode is well confined inside the core of the
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fiber. Nevertheless, the method permits to obtain a quick estimation of the waveguiding

properties of the fiber.

Figure 2.8: A microstructured fiber with air holes on a triangular cladding struc-
ture, and a solid core-region created by the omission of the central air hole. It
resembles a step-index fiber with a wavelength dependent cladding index [69].

2.4.2 Localized function method

The most accurate way of simulating light field distribution in a waveguide is to directly

apply Maxwell’s equations. In order to simplify the calculations, the structure or the field

is often expanded into a sum of periodic functions, for which Maxwell’s equations are

solved. The localized functions expansion method developed for analyzing PCFs consists in

expanding the electromagnetic field and the structure of the fiber into a specific number of

Hermite polynomials [72, 78]. For such field, the Maxwell’s equations reduce to an algebraic

eigenvalue problem, which can be solved analytically by standard algorithms. The accuracy

of the technique scales with the accuracy of the description of the refractive index profile.

For this purpose, it may be necessary to use a large number of polynomials, which drastically

increases the computational demands, particularly for larger and more complex structures.

2.4.3 Plane wave method

On the other hand, the plane-wave expansion method, which is widely used to simulate

photonic crystal structures, consists in solving the vectorial wave equation in the reciprocal
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space of the periodic cladding structure. Basically, in this method the electromagnetic field

is expanded using plane waves according to the Bloch’s theorem [73, 78]. Also, the complex

periodic permittivity (dielectric constant) is expanded using plane waves. In order to treat

a spatial defect such as a core region, a super periodicity including the defect is introduced

where the defect is also periodically repeated. This supercell approximation can accurately

determine the properties of the core region if the supercell is large enough to ensure that

neighboring defects are uncoupled. The modal fields and their propagation constants may

be found by solving a matrix eigenvalue problem that is derived from a variational method.

Additionally, the plane wave expansion method can be applied not only to index-guiding

MFs but also to PBFs.

2.4.4 Multipole method

In the multipole expansion method, the electric field is expressed as a sum of Fourier expan-

sions around the individual holes of the structure [74, 78]. The actual field is obtained from

the boundary conditions on the hole surfaces. The mathematical solution of the problem is

then found by solving a set of matrix equations, which limits the type of structures that can

be simulated. Without symmetry, the computation time approaches infinity. Nevertheless,

for symmetrical structures, the method is reasonably fast for a small number in terms of

the Fourier-expansions. If more terms are needed, the method becomes computationally

intensive.

2.4.5 The Finite element method

In the finite element method (FEM) [75, 78], instead of solving directly the wave equation,

an alternative functional equation obtained with variational methods is analyzed. In this

method, the fiber cross section is divided into the so-called elements, an equivalent dis-

cretized model for each element is constructed, and then all the element contributions to

the whole fiber cross section are assembled, resulting in a matrix eigenvalue problem with
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nodal variables as unknowns. In contrast to the basis-function expansion methods described

above, the FEM takes the expansion coefficients as unknowns. As a result, the matrices

derived from the FEM and the basis-function expansion approach become sparse and dense

respectively.

2.4.6 FFT-mode solver

In this method, the wave equation is solved by moving the fields from the spatial domain

to the spectral domain via the FFT algorithm [76, 77]. To describe this method, we first

consider the vector wave equation that governs the propagation of the transverse compo-

nents of the electric or magnetic fields given previously in Equations (1.9) and (1.10). If we

analyze only the trasnversal electric field Et, one can identify that equation (1.9) is divided

in two equations for each component Ex and Ey respectively. Thus, these equations can be

written as follows,


∂2Ex
∂y2

+ ∂
∂x

[
1
n2

∂
∂x(n

2Ex)
]
+ k2n2Ex +

∂
∂x

[
1
n2

∂
∂y (n

2Ey)
]
− ∂2Ey

∂y∂x = β2Ex

∂2Ey

∂x2 + ∂
∂y

[
1
n2

∂
∂y (n

2Ey)
]
+ k2n2Ey +

∂
∂y

[
1
n2

∂
∂x(n

2Ex)
]
− ∂2Ex

∂x∂y = β2Ey

(2.5)

where k is the free space propagation constant, n(x, y) is the transversal refractive index

profile of the fiber, and Ex(x, y) and Ey(x, y) are the transversal field components. Both

equations given in (2.5) are coupled and can be expressed as follows,

 Lxx Lxy

Lyx Lyy

 ·

 Ex

Ey

 = β2

 Ex

Ey

 , (2.6)

where Lpp and Lpq are linear operators defined as,

LppEp =
∂

∂p

[
1

n2
∂

∂p
(n2Ep)

]
+
∂2Ep

∂q2
+ k2n2Ep, (2.7)
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LpqEp =
∂

∂p

[
1

n2
∂

∂q
(n2Eq)

]
+

∂

∂q

[
∂

∂p
(Ep)

]
. (2.8)

In these equations, p = x, y and q = x, y respectively. Equation (2.6) represents the matrix

eigenvalue equation for Ex and Ey. Now, Equation (2.6) is discretized in the following way:

first, both Ex and Ey components are expanded into a two-dimensional Fourier series,

Ex(x, y) =

Nx/2∑
m=−Nx/2

Ny/2∑
n=−Ny/2

cxmne
j(m 2π

X0
x+n 2π

Y0
y)
, (2.9)

Ey(x, y) =

Nx/2∑
m=−Nx/2

Ny/2∑
n=−Ny/2

cymne
j(m 2π

X0
x+n 2π

Y0
y)
, (2.10)

where cxmn and cymn are their respective Fourier series coefficients, Nx and Ny are the number

of harmonics in each direction, and (X0,Y0) is the size of the computational window. At

this point, we can follow two ways to solve Equation (2.6). The first one is introducing the

Fourier series expansion given in equations (2.9) and (2.10) into equation (2.6) and then,

apply the Galerkin method [76]. In this way, we can obtain the following equation system,

 Axx Axy

Ayx Ayy

 ·

 cxmn

cymn

 = β2

 cxmn

cymn

 , (2.11)

At this point cxmn and cymn are unknown. As it can be seen, each of the coefficient vectors

cxmn and cymn have (m × n) elements. If we consider all possible values that m and n can

have according to Equations (2.9) and (2.10), we can deduce that the size of each vector

coefficient cxmn and cymn is N = (Nx + 1)× (Ny + 1). Additionally, in Equation (2.11), new

operators Axx, Axy, Ayx, and Ayy have been defined. These operators are dense square

matrices that result from the Galerkin method [76]. To solve this equation, first one have

to calculate the new operators Apq which is usually not an easy task, and then diagonalize
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numerically the matrix of the left side of Equation (2.11) by any standard routine. In this

way, one can obtain the eigenvalues β with their corresponding eigenvectors.

Nevertheless, there is a second way to solve Equation (2.6) which is used in this work.

It consists in the discretization of the field components Ex and Ey in the coordinates (x, y)

in such a way that it coincides with the discretization of the Fourier expansion realized

in Equations (2.9) and (2.10). Then, we multiply the operator matrix and the E field

vector found in the left side of Equation (2.6), as is indicated in equations (2.7) and (2.8)

respectively, in such a way that the following properties are applied:

• For the terms, where there is a derivative,
∂Ep

∂p or
∂Ep

∂q , the Fourier transform of Ep

is applied by means of the Fast-Fourier-Transform (FFT) algorithm, and then, the

result is multiplied with the derivative in the spectral domain given by jωp or jωq.

Therefore, once this product is obtained, an inverse Fast-Fourier-Transform (IFFT)

is applied in order to return to the space of coordinates (x, y).

• For the terms where there is a derivative ∂
∂i(n

2Ei), a FFT transform is applied to the

product n2Ei and the same procedure is done.

Then, the resulting matrix of the product in the left side of Equation (2.6) is diagonalized,

and the eigenvalues β with their corresponding eigenvectors are obtained.

In summary, with the latter option, the derivatives and products by a function are

directly computed either in the frequency and in the spactial domain, in which they are di-

agonal operators. We move efficiently from one domain to the other via the FFT algorithm.

Following this strategy, two benefits are already achieved. First, memory requirements are

drastically reduced, since it is not necessary to explicitly calculate the dense operator given

by the application of the Galerkin method. Second, computation time is reduced because, in

the iterative diagonalization solver, the matrix-vector products are efficiently evaluated with

the help of the FFT algorithm. This fact allows an increment in the number of harmonics

Nx and Ny that can be used in the simulation [77].
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2.5 FFT-mode solver implementation in PCFs

As it was mentioned above, the FFT-mode solver is the numerical method used in this

work. This method is choosen due to its flexibility to be applied in different transversal

structures of the microstructured cladding, i.e. in periodic or aperiodic distribution of holes

using either circular or elliptic air holes respectively. Additionally, the implementation of

this method is easier than others. Nevertheless, in the FFT-mode solver the numerical error

for the calculated effective index neff of each mode is around 1x10−6 which is 1 magnitude

order higher than that shown in other methods. This is an important characteristic to

consider, because a high precision is required in order to distinguish the degenerated modes

that are guided in PCFs [79]. For example, in the case of PCFs with circular air holes and a

perfect hexagonal arrangement of holes, the degenerated solutions of the fundamental mode

have effective index differences around 1x10−7, while for higher order modes this difference

is 1x10−6. However if the PCF shows a slight imperfection in its hexagonal structure, which

is frequently observed in manufactured PCFs with non exactly circular holes, the effective

index differences of the almost degenerated modes increases up to 1x10−6. In some specific

cases, the FFT-mode solver can reach precisions around 1x10−7 only if the discretization

number of the E field is highly increased. In particular, for the analysis of mode couplings

in LPFGs, the precision of 1x10−6 in the effective index value is sufficient in this work.

According to the phase matching condition given in Equation (1.23) to simulate the

mode coupling in LPFGs, it is necessary to calculate the effective index of the modes in the

PCF. These modes are guided linearly in the fiber according to Equations (1.9) and (1.10).

Additionally, the fiber can also guide modes in the nonlinear regime which corresponds to

the case where the refractive index of the fiber core responds in nonlinear way with the

intensity of the incident wave. In this case, the refractive index n of Equations (1.9) and

(1.10) depends on the calculated field. These equations can be solved in the nonlinear regime

using an iterative self-consistent technique combined with a linear method similar to those

described in Section 2.4 [80]. One method suggested to calculate these nonlinear modes is
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the FFT-mode solver. In this case, the nonlinear guided modes are not degenerated and

no problem with respect to the method precision is presented. Initially, the calculation of

nonlinear guided modes in PCFs was performed using the scalar wave Equation (1.8) which

has allowed the study of spatial solitons and higher-order vortex properties in PCFs [81, 82].

Nevertheless, a vectorial calculation is required in order to describe completely the nonlinear

modes in PCFs, where vectorial terms are important. Until now, only two methods have

been modified to incorporate calculations of nonlinear modes in vectorial way: the Finite

element method [83], and the FFT-mode solver performed in this work. Examples of the

implementation of the FFT-mode solver in the linear and nonlinear regime are presented

in the following sections.

2.5.1 Linear regime

In this section, the numerical mode solution of three different PCFs using the FFT-mode

solver is presented. The PCFs used in this work are shown in Figure (2.9). The holey fiber

called 1 is a polarization-maintaining holey fiber (commercialized by Blaze photonics) with

d = 2.2 µm, Λ = 4.5 µm (d/Λ = 0.488), and two holes with d = 4.2 µm; the holey fiber

called 2 is a microstructured fiber fabricated by Dr. Ismael Torres in Virginia Tech with

d = 5 µm and Λ = 11 µm (d/Λ = 0.45), and the holey fiber called 3 is a microstructured

fiber (commercialized by Crystal Fiber) with d = 3.4 µm and Λ = 6.8 µm (d/Λ = 0.5).

One can observe that holey fiber 1 shows an elliptical core, while the holey fiber 2 shows

an asymmetric cladding structure. The holey fiber 3, on the other hand, shows an almost

hexagonal structure of its air holes in the cladding.

According to Section 3.2.1, for d/Λ < 0.4, the PCF has a monomodal behavior. Then,

the holey fibers used in this work are multimode and lead to the propagation of the fun-

damental LP01 core mode and higher-order LP core modes. The implementation of the

FFT-mode solver to each holey fiber shown in Figure (2.9) gives as a result the intensity

distributions of the fundamental core mode LP01, and the even and odd LP11 core modes
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shown in Figures (2.10), (2.11), and (2.12) respectively. These intensity distributions are

composed by two components Ex and Ey. From these figures, one can observe that the be-

havior of the LP11 modes is similar to those of in standard step-index fibers with elliptical

core as it is mentioned at the end of Section 1.1. It is also very interesting to observe that

the elliptical form of the fundamental core mode is less evident from fiber 1 to 3. It is due

to the shape of their effective fiber cores respectively.

Figure 2.9: Transversal structure of the refractive index profile of three microstruc-
tured fibers called holey fiber: a) 1, b) 2, and c) 3 respectively.

a) b) c)

Figure 2.10: Calculated intensity distributions of the fundamental LP01 core mode
for holey fibers shown in Figure 2.9, a) 1, b) 2, and c) 3 respectively.
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a) b) c)

Figure 2.11: Calculated intensity distributions of the higher-order even LP11 core
mode for holey fibers shown in Figure 2.9, a) 1, b) 2, and c) 3 respectively.

a) b) c)

Figure 2.12: Calculated intensity distributions of the higher-order odd LP11 core
mode for holey fibers shown in Figure 2.9, a) 1, b) 2, and c) 3 respectively.

The corresponding effective index values of the LP core modes for each holey fiber

analyzed in this section is shown in Figure (2.13). As it can be seen, the effective index

curves that correspond to the even and odd LP11 core modes are more separated as the

shape of the fiber core is more elliptic. For holey fiber 3 (which shows an almost perfect

hexagonal structure), these curves are very close. It means that the core of holey fiber 3

can be interpreted as circular, and consequently, the even and odd LP11 core modes are

almost degenerated. Also, it is worth mentioning that each curve observed in Figure (2.13)

is composed by the superposition of two curves which represent the effective index of both
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components Ex and Ey of each LP mode respectively.

LP01

even LP11

odd LP11

LP01

even LP11

odd LP11

LP01

even LP11

odd LP11

a) b)

c)

Figure 2.13: Effective index curves of the fundamental LP01 core mode, and the
even and odd LP11 higher order modes for holey fibers: a) 1, b) 2, and c) 3.

If we consider again the phase matching condition given in Equation (1.23), one can

obtain the LPFG resonances for each holey fiber by means of their corresponding effective

index curves given in Figure (2.13). In these cases, only two resonances that correspond

to couplings between the LP01 core mode and the even and odd LP11 core mode can be

obtained. The results are shown in Figure (2.14) respectively. It is also worth mentioning

that the mechanically induced LPFGs manufactured in this work have grating periods

Λ > 450 µm. Then, according to Figure (2.14), we only can access to mode couplings of

holey fibers 2 and 3. The behavior of these couplings will be characterized in Chapter 3.
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Fiber 1
Fiber 2

Fiber 3

Figure 2.14: Plot of the grating period, Λ, as a function of resonance wavelength
λ (LPFG resonances) for holey fibers 1, 2 and 3 shown in Figure 2.9.

2.5.2 Nonlinear regime

As it was mentioned above, the PCFs can guide nonlinear spatial modes. It occurs when

the refractive index of the fiber core responds in nonlinear way respect to the intensity of

the incident wave. In particular, we analyze the third order nonlinearity of the refractive

index (usually called Kerr nonlinearity) which is given as follows [81],

n = n0 + γ(|Ex|2 + |Ey|2), (2.12)

where n0 is the linear refractive index of the core, and γ is the nonlinear coefficient. To

calculate the nonlinear modes, we have to use an iterative self-consistent algorithm [80]

which is described as follows: first, we choose an initial E field to construct the nonlinear

refractive index nNL, and then we solve Equation (2.5) using nNL by means of the FFT-

mode solver. After that, a group of solutions is found. At this point, we choose the most

adequate solution to be used as a new initial E field. Once the correct partial solution is

chosen, it is substituted again in Equation (2.12) to obtain a new expression of nNL, and the
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process described above is repeated. The iterative algorithm stops when the new obtained

partial solution does not change with respect to the previous one. The critical point in this

methodology is to select the correct partial solution in each step of the iterative method. It

is due to the fact that after each diagonalization of the FFT-mode solver, there is a group of

mode solutions that obey different symmetries (for example, the fundamental spatial soliton

and the higher-order vortex solitons). Then, if we want to analyze only a specific mode, we

have to choose between these partial solutions adequately. In this case, we always choose a

mode with the highest effective index which corresponds to the spatial fundamental soliton

respectively. The results are shown in Figure (2.15), where one can observe the intensity

distributions of each component Ex and Ey of the spatial fundamental soliton.

Figure 2.15: Intensity distributions of the components Ex and Ey for a fundamen-
tal core mode in the lineal case with γ = 0, and for a spatial fundamental soliton in
the nonlinear case with (γ = 2). The PCF parameters are: d = 6 µm, Λ = 7 µm,
and λ = 1.5 µm. The calculations were obtained by using the FFT-mode solver
performed in this work.

Up to now, the nonlinear modal solutions in PCFs have been calculated using the scalar

wave equation in a self-consistent algorithm [81, 82]. Nevertheless, this scalar approximation
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should not be used in PCFs where the vectorial terms of equation (2.5) are not negligible.

This characteristic can be observed in Figure (2.16) where a comparison of the effective index

calculation of the spatial fundamental soliton in vectorial and scalar regime is plotted. On

the other hand, it is worth mentioning that the nonlinear modal solutions in waveguides

could no be stable [80]. Then, to prove the stability of the nonlinear solutions above

calculated, we have to analyze its propagation along the PCF by perturbation methods,

although this analysis will be performed in future works.

Figure 2.16: Effective index of the spatial fundamental soliton as a function of
the nonlinear coefficient γ in a PCF calculated in the scalar and vectorial regime
for different nonlinear coefficients γ.
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3 Characterization of LPFGs in PCFs

In this Chapter, a series of experiments and results are described by means of three works.

These works were done in order to characterize the response of LPFGs induced mechanically

in PCFs. The PCFs used in these works were described in Chapter 2.

3.1 Widely tunable LPFG in a PCF

In this section, a novel widely tunable long-period holey-fiber grating obtained by the use

of mechanical pressure is presented. The experimental results show a tuning range of

the LPFG attenuation bands over 600 nm, with depth notches of 12 dB, and adjustable

bandwidth from 10 to 40 nm. These characteristics and its simple implementation make

it an attractive widely tunable mechanically induced long-period holey-fiber grating with

potential applications in optical fiber communications, tunable fiber lasers, and all-fiber

devices.

3.1.1 Experiment and results

In this proposal, the mechanically-induced tunable long-period holey-fiber grating (LPHFG)

is obtained by pressing an adjustable half-semicircular section of a single-mode holey fiber

that lies on a radial corrugated grooved plate (CGP) with the use of a flat plate as it

is shown in Figure (3.1)a. This simple radial design permits to select the period (Λ) by

adjusting the bending radius R. Thus a continuous tunability of the long-period holey-fiber

59
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grating from near-infrared to visible is obtained. Figure (3.1)b shows a photograph of the

transversal section of the fiber used in this experiment which correspond to holey fiber 2

analyzed in Section 2.5.1. This fiber has a 11 µm core and 125µm cladding diameter with

5µm hole diameter and lattice pitch of 11µm.

Figure 3.1: (a) Scheme of the experimental mechanically induced LPHFG setup.
(b) Cross-sectional image of the holey fiber 2.

The novel corrugated metallic plate was fabricated with a radial step grooved pattern,

which contains 60 step grooves, and each one has 360 µm diameter and 900 µm depth. The

CGP design allows one to change continuously the period (Λ) by adjusting the bending

radius R, according to the expression Λ = (π/120)R. For this particular design, the period

Λ varies from 393 to 1308 µm. The dimensions of the CGP and the cover flat plate are 50

mm long and 50 mm wide, and the half-semicircular grooved sector in the corrugated plate

has internal and external radii of 15 mm and 50 mm, respectively.
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For the spectral characterization of the LPHFG, a signal from an unpolarized white

light source (WLS) was launched into one end of the HF through a fiber connector (FC),

while the other end was coupled to the optical spectral analyzer (OSA). Then, the fiber

was laid in half semicircular form on the grooved plate employing two x-y translation stages

(PXY ), and a simple manual press system was used to push the cover flat plate on the CGP.

The transmission spectra of the long-period holey-fiber grating for different values of the

grating period Λ is plotted in Figure (3.2)a-c, where we can observe a tunable range, of at

least 600 nm, from 970 to 1580 nm and depth notches from 12 to 16 dB. In all cases, the

out-of-band loss was less than 0.75 dB. The entire transmission spectrum was separated

in three sections. In Figure (3.2)b, one can observe an absorption band at λ = 1382 nm

that corresponds to the absorption of remnant water in the holey fiber. Figure (3.2)d

shows the central resonance wavelength of the LPHFG as a function of the period, where

we can observe the typical red-shift of the resonance wavelength as the period grating is

increased. We have found from the experimental data that the dependence of the center

wavelength on the grating period can be approximately fitted by a third-order polynomial,

i.e., λcenter =
∑4

i=1 ciΛ
i−1, where Λ is the grating period and the coefficients ci are given

by c1 = 4095.08, c2 = 7870.59, c3 = 4082.77, and c4 = 1149.82. On other hand, we did

not find any limitation in the bending radius to reach the L communication band. In this

region, a bending radius of 16 mm was necessary to have a resonance peak at 1591 nm,

which is larger than the critical bending radius for holey fibers [68].

The bandwidth (∆λ0) of the LPHFG keeps approximately constant in the tuning range,

as it can be observed in Figure (3.2)a-c; however, the bandwidth control of the LPHFG

can be realized by changing the number of the periods (N) in the grating according to

∆λ0/λ = 0.8/N . Figure (3.3)a illustrates the transmission spectra bandwidth variation for

different numbers of periods at λ = 1288.2 nm and Λ = 0.514 mm. In this figure one can

observe a wider bandwidth when we decrease the number of periods, which is accompanied

by a reduction in the notch depth. Figure (3.3)b shows the behavior of the bandwidth as

a function of the number of periods. The notch depth depends directly on the pressure
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a)

c)

b)

d)

Figure 3.2: (a-c) Transmitted spectra of the LPHFG for different periods. (d)
Central peak shift with period variation.

exerted over the fiber by the flat plate; however, if the pressure is increased excessively, we

observe a reduction of the notch depth. Also the bandwidth of the LPHFG can be adjusted

by introducing a chirp in the periodic perturbation of the LPHFG. For N = 40 and a small

monotonically variation in the period, the bandwidth was almost constant, but for a linear

change of 12 µm, we found that the bandwidth could increase from 15 to 20 nm, although

the depth of the attenuation band decreased to 8 dB. Finally, it was not possible to test

the polarization dependence of the proposed LPHFG. However, since the pressure in one

direction induces asymmetrical stress and deformation on the fiber structure, which results

in induced linear birefringence, we can predict that the change in input polarization states

in the mechanically induced LPHFG indeed results in distinctive resonance wavelength for
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each eigenpolarization state, as reported by D. Lee et al. [84].

Figure 3.3: (a) Transmitted spectra notch as a function of the number of the
periods in the grating (N = 20, 30, 40, 60 and Λ = 0.514 mm). (b) Bandwidth
notch at λ = 1288 nm and with Λ = 0.514 mm.

3.1.2 Discussion

According to these results, the proposed long-period holey-fiber grating offers a wide tunable

range from visible to near-infrared with simple selective resonance wavelength center and

bandwidth control. Mechanical tests on the fatigue of the holey fiber were not realized. But

the experimental results showed that the same fiber can be used under many repetitive cycles

of pressure without loss of mechanical fiber integrity. Also, the engraved gratings preserve

their transmission spectra for days. One technical drawback of this mechanically induced
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LPHFG, for several specific applications, is its tunability in real time, since it is limited

by the response time of the mechanical system involved in the bending fiber adjustment

and the pressing rig. Nevertheless, in spite of these limitations, the proposal configuration

promises to be very useful for diverse applications in the development of all-fiber devices.

3.1.3 Conclusions

In summary, a simple ultra-widely tunable long-period holey-fiber grating induced by a

mechanical method was proposed. The long-period holey-fiber grating shows a continuous

tuning range over 600 nm with simple selective center wavelength, and more than 12 dB

depth notches, with less than 0.75 dB out-of-band loss. Additionally, the configuration

offers to be erasable and reconfigurable in the fiber and low-cost implementation.

3.2 Higher-order core mode resonances in LPFGs

As it was mentioned above, an important element to consider in a mechanically induced

LPFG is the type of optical fiber used. In this matter, holey fibers have been demonstrated

to be an adequate medium to implement LPFGs [85, 86, 87]. One of the principal features

observed in holey fibers is that when they show a perfect hexagonal arrangement of holes,

the first higher order core modes TM01, TE01, and HE21 are degenerated and resemble the

LP11 core modes observed in standard communications fibers [88, 79]. Nevertheless, any

slight disorder in the inner air hole lattice can make them split into the odd- and even-

LP11 modes [89, 90]. These modal changes can modify the behavior of the resonances in

a mechanical LPFG. As a result, multiple peaks can appear or disappear in the spectral

transmission of the grating modifying its resonance wavelength range. The control of these

spectral characteristics is of great importance in the design of all holey-fiber devices based

on mechanical LPFGs. In this case, a characterization of the higher-order LP11 core mode

resonances in these kind of gratings is required, principally in holey fibers that do not show
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a perfect arrangement of holes, which is the case of the great majority of microstructure

fibers.

In this section, the higher-order core modes resonances in a mechanically induced long-

period holey fiber grating (LPHFG) are characterized. Calculations based on a Fast-Fourier

Transform (FFT) mode solver indicate that the resonances obtained in this work correspond

to the odd- and even-LP11 higher-order core modes. On the other hand, the experimental

results show that the resonances of these modes have a strong fiber-orientation dependency,

which can be used to modulate the amplitude of the odd- and even-LP11 resonances ac-

cording to the initial orientation of the holey fiber on the mechanical LPFG. In addition,

an analysis of the twist response of both mode resonances is realized. Finally, the results

obtained in this work can be generalized to other holey fibers that allow the coupling of the

odd- and even-LP11 core modes in mechanically induced LPFGs.

3.2.1 Experiment and results

The experimental configuration shown in Figure (3.4) was used to produce the LPHFG. The

grating was formed by pressing a section of a holey fiber between two corrugated grooved

plates (CGPs). The dimensions of both grooved plates were 70 mm long and 24 mm wide

and each one had a square groove pattern with 460 mm of period (Λ). The holey fiber was

placed between the CGPs by two rotational holders H1 and H2. Both holders can be turned

clockwise or anticlockwise, and their separation (Lτ ) was 22.5 mm. When both holders are

simultaneously turned in the same direction the holey fiber is rotated by an angle (θ) from

a relative initial position with respect to the lateral stress axis generated by the CGPs.

Additionally, the holey fiber can be twisted an angle (τ) if holder H1 is fixed and holder H2

is turned in a clockwise or counterclockwise direction, whereas the resonance wavelengths

can be tuned changing the period (Λ) of the LPHFG by adjusting the angle (α) of the z-axis

of the CGP with respect to the fiber axis as it is shown in Figure (3.4). A white light source

(WLS) and an optical spectral analyzer (OSA) were used for the spectral measurements.
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The inset in Figure (3.4) shows a photograph of the studied holey fiber which is the same

as that used in the experiment described previously in Section 3.1. It is important to note

that this fiber shows an imperfect hexagonal cladding structure.

Figure 3.4: Scheme of the experimental mechanically induced long-period fiber
grating setup.

In the experiment, we adjusted the period of the grating to 482 µm. Two rejection

bands were obtained at 1121 and 1527 nm as it is shown in Figure (3.5). In this part,

the holey fiber was rotated at different angles and, for each selected angle, it was pressed

between both corrugated grooved plates. As it can be seen, both rejection bands depend

strongly on the rotation angle of the fiber. In this experimental stage, we chose the initial

position (θ = 00) wherein only the rejection band at 1527 nm is observed. To analyze the

tuning of the LPHFG, both rejection bands are plotted in Figure (3.6) for different values

of Λ maintaining θ = 450. In this case we always observed simultaneously both rejection

bands over a tuning range of 100 nm, meaning that the grating period does not affect the

behavior of the two mode couplings in the LPHFG.
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Figure 3.5: Transmission spectra of the LPHFG for different rotation angles θ at
Λ = 482 µm.

Figure 3.6: Tuning of the LPHFG rejection bands by adjusting the period Λ at
θ = 450.
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To describe the modes associated with both rejection bands, a numerical simulation was

performed. Figure (3.7) shows the resonance curves of the LPHFG obtained by simulation

based on a FFT-mode solver [76, 77]. The solid lines are the theoretical resonant wave-

length behaviors for the odd- and even-LP11 core modes according to the calculation of the

effective index of the modes, while the circles are experimental data that correspond to the

resonance wavelength tuning of each rejection band shown in Figure (3.6). According to

these results, the modal coupling of the LP01 fundamental mode with the odd- and even-

LP11 core modes of the holey fiber correspond to both rejection bands obtained at 1121

and 1527 nm, respectively. As it is mentioned above, the even- and odd-LP11 modes can

be guided in holey fibers with low hexagonal symmetry. Figure (3.8) depicts the electric

field and intensity distributions of the LP01 mode and the LP11 modes. In this figure, each

LP mode has two eigen-polarization states and a birefringence with a numerical error of

1 × 10−6. Additionally, one can observe that the LP11 modes have a set of symmetrical

axes called optical eigen-axes [89] which are indicated by dashed lines in Figures (3.8)b and

(3.8)c. The presence of these eigen-axes explains the behavior of the two rejection bands

shown in Figure (3.5). According to this figure, we can obtain only one or simultaneously

both rejection bands if the eigen-axes are or are not aligned with the pressing direction of

the grooved plates.

Figure 3.7: Calculated and measured resonant wavelengths of the mode coupling
between the fundamental LP01 mode and odd-LP11 or even-LP11 core modes. Solid
lines correspond to calculated curves and circles indicate measured data.
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Figure 3.8: Calculated electric field distributions and birefringence ∆n of (a) the
LP01, (b) the even-LP11, and (c) the odd-LP11 core modes. Dashed lines indicate
the eigen-axes of the LP11 modes.

Once the modal characterization of both rejection bands was realized, the twist effect

in the spectral transmission of the LPHFG was analyzed. In this case, the holey fiber was

first placed at θ = 00 in such way that only the resonant peak at 1527 nm is obtained as

is indicated in Figure (3.5) with θ = 00. Then, the holey fiber was clockwise twisted along

22.5 cm length and was pressed between both corrugated grooved plates. This process was

repeated for different values of twist: τ = 1, 5, and 9 turns. The result is the spectral

transmission illustrated in Figure (3.9). One can observe that under twist both rejection

bands at 1121 and 1527 nm are always obtained. These results indicate that the effect of

the fiber rotation angle is reduced. This behavior is due to the fact that when the holey

fiber is under twist there is not a preferential orientation of the fiber with respect to the
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pressure direction of both grooved plates. Also, one can observe that, after τ = 1 turn, both

rejection bands split into two shifted peaks that move symmetrically further apart as the

twist is increased. This result does not depend on whether the fiber is twisted in a clockwise

or counterclockwise direction. For higher values of twist no further measurements were made

since the fiber was usually broken. Additionally, the pressure between the corrugated plates

did not affect the splitting observed in Figure (3.9). The coupling strength was reduced

or increased when a lower or higher pressure was applied and the rejection bands only

decreased or increased in depth. Therefore, the twist is the origin of the splitting.

Figure 3.9: Splitting evolution for both rejection bands centered at 1121 and 1527
nm with τ = 1, 2, and 3 turns per 22.5 cm.

Figure (3.10) shows the resonance wavelength evolution under twist from τ = 0 to 9

turns for each rejection band observed in Figure (3.5) with θ = 450. One can observe that

with a twisting angle between 0 and 1 turn both rejection bands are obtained practically

without change, and after 1 turn each band is split into two resonant peaks. For values of

twist lower than 1 turn, not splitting of the resonant peaks is observed within the resolution

of the OSA. In this case, the twist perturbation is not sufficient to clearly split each rejection

band. These results change slightly for different values of θ. The upper and lower resonance
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wavelengths of the split resonance peak at 1527 nm show wavelength shift rates of 3.8

and −3.3 nm/turn. On the other hand, wavelength shift rates of 2.4 and −2.6 nm/turn

were obtained for the split resonance peak at 1121 nm. These wavelength shift rates were

calculated by linear regression of the data points shown in Figure (3.10). In this figure one

can observe that the wavelength shift of both peaks of the split rejection band at 1527 nm

show higher shift values that those in the split rejection band at 1121 nm. These differences

are attributed principally to the fact that the odd- and even-LP11 modes associated with

both split resonant peaks have different field distribution in the transverse direction of the

holey fiber and they respond in different forms with respect to the twist perturbation.

Figure 3.10: Wavelength shift of each resonant peak of the LPHFG under twist.
Solid circles indicate measured data and solid lines are linear fitting.

Finally, to characterize the polarization response of the grating peaks, the rejection band

of the LPHFG tuned at 1555 nm that corresponds to the even-LP11 mode resonance was

analyzed. In this part, the white light source in the setup of Figure (3.4) was changed

by a polarized light source. A polarimeter-synthesizer that works in the 1500 − 1600 nm

wavelength range was used. The spectral transmission of the LPHFG for both vertical and

horizontal polarized inputs is shown in Figure (3.11)a, where one can observe that due to
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Figure 3.11: Polarization response of the even-LP11 resonance: (a) without twist,
and (b) under twist.

the polarization dependence of the grating without twist, the localization of the resonant

peak is changed 1 nm. Also, the polarization response of the rejection band under twist

was measured. In this case, the holey fiber was twisted 5 turns in 22.5 cm length. In Figure

(3.11)b, it can be observed that the localization of the two peaks of the split rejection

band is changed 1 and 1.2 nm, respectively. These values are modified slightly for different

values of twist. According to the birefringence of the LP modes obtained by simulation, we

can expect wavelength shift values between 3 and 6 nm. These results do not agree with

the measurements. In this case, the circular birefringence induced by twist and the linear

birefringence caused by the directional mechanical pressure have to be considered.

3.2.2 Discussion

The analysis of higher-order core mode resonances in a LPHFG induced mechanically in an

asymmetric holey fiber was presented. These higher-order core mode resonances are similar

to those obtained in LPHFGs inscribed with electric arc [87]. The mode resonances obtained
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in this work correspond to the odd- and even-LP11 core modes. According to simulations

based on a FFT-mode solver, these core modes can be propagated in the imperfect hexagonal

structure of the holey fiber used in the experiment. One principal feature of these modes

is that they show two perpendicular optical eigen-axes as it is indicated in Figure (3.8).

These eigen-axes modify the resonance behavior of the LPHFG according to the rotation

angle of the holey fiber with respect to the lateral stress axis. In this case, only one

rejection band corresponding to the odd- or even-LP11 mode can be obtained if the eigen-

axes of the odd- or even-LP11 mode is aligned with the pressure direction of the grooved

plates, respectively. On the other hand, if the holey fiber is rotated 45 degrees from the

above position, both mode resonances with similar depth can be obtained simultaneously.

This behavior is attributed to the fact that the effective pressure of the grooved plates

is distributed equally in both eigen-axes of the LP11 core modes. These characteristics

are of great utility in the alignment of fiber devices; for example, the odd- and even-LP11

core modes can also propagate in polarization-maintaining holey fibers (PMHFs). In these

fibers it is very important to know the direction of the birefringence axes. These axes can

be associated with the eigen-axes of the odd- and even-LP11 modes. In this way, if one

uses a mechanical LPHFG with an adequate grating period, one can determine according

to the presence of the odd- or even-LP11 mode resonances whether the axes are aligned or

not with respect to the pressure direction of both grooved plates. This scheme to determine

the orientation of the birefringence axes of a holey fiber using a mechanical LPHFG is of

great interest due to the simplicity and low cost of the device.

Additionally, it has been found that when the holey fiber is twisted slightly prior pressu-

re application in the LPHFG, the odd- and even- LP11 mode resonances were obtained

simultaneously. This behavior is attributed to the fact that when the holey fiber is twisted,

there is not a preferential orientation of the fiber with respect to the pressure direction

of the two grooved plates. In this way, the fiber rotation angle dependency of the LP11

mode resonances is reduced. However, for large values of twist, both LP11 mode resonances

split in two peaks that move symmetrically further apart as the twist is increased. Also, the
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polarization response of the even-LP11 mode resonance under twist has been measured. The

results show that both peaks of the split rejection band are shifted in the same direction for

vertical and horizontal polarized inputs maintaining the splitting of the mode resonance. It

is worth to mention that the splitting observed in both rejection bands shows a near linear

behavior within a wide range of twist and it does not depend on the induced pressure. These

splitting characteristics of the odd- and even-LP11 core mode resonances are of great interest

in the design of band-pass filters with high tunability [91]. With these devices, one can

modify the gain spectrum of an Ytterbium doped fiber in order to improve the generation

of three-wavelength Raman fiber lasers. Additionally, these characteristics can be used to

sense twist deformations in material structures based on LPHFGs induced mechanically in

holey fibers [92].

3.2.3 Conclusions

A theoretical and experimental study of higher-order LP11 core mode resonances in a

mechanically-induced long-period holey-fiber grating is presented. It has been found that

these resonances depend strongly on the fiber rotation angle with respect to the lateral press-

direction of the mechanical LPHFG. This dependency disappears when the holey fiber is

slightly twisted because the effective pressure of the grooved plates is distributed in both

directions of the eigen-axes of the odd- and even-LP11 modes. However, for large values of

twist a splitting of both mode resonances is presented. This splitting is nearly linear within

a wide twist range and does not depend on the twist direction or the initial orientation

of the holey fiber. The splitting of both rejection bands is generated by removal of modal

degeneracy. Also, higher values of splitting are obtained for the odd-LP11 mode resonance.

These results are of great importance in the design of new all-fiber optical devices that

involve couplings of odd- and even-LP11 core modes in asymmetric holey fibers.
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3.3 Torsion sensing characteristics in LPFGs

As it was described in section 3.2, the twist effect in LPFGs inscribed in holey fibers could

offer novel transmission characteristics such as the splitting of rejection bands. Nevertheless,

a complete characterization of this novel spectral behavior in different holey fibers is required

in order to improve their structural design for sensing applications based in long-period

holey-fiber gratings.

In this section, the spectral transmission of a long-period holey-fiber grating induced

mechanically in two different holey fibers is characterized. In the experiment, the twist

sensitivity and tuning of the grating as well as its polarization response were analyzed.

The holey fibers used in the experiment present different quality cladding structures; one

with high uniform lattice in the cladding and another one with an asymmetrical lattice. In

both cases, the results show that the rejection bands of the grating split when each holey

fiber is twisted prior pressure application and the splitting observed grows linearly with

the increment of the twist. Additionally, the results show that the shift sensitivity in the

splitting depends directly of the holey-fiber structure.

3.3.1 Experiment and results

Two long-period holey-fiber gratings (LPHFGs) were formed using two different holey fibers.

The LPHFG was induced similarly as it was described in Section 3.2.1 by pressing a section

of holey fiber (HF) between two corrugated grooved plates (CGPs). In the same way, the

dimensions of both grooved plates were 70 mm long and 24 mm wide and each one had

a square groove pattern with 460 mm of period (Λ). The holey fiber was placed between

the CGP by a fixed and rotational holder. In this way, the fiber can be twisted when

the rotational holder is turned by an angle (θ). The separation between both holders is

22.5 cm. The resonance wavelengths can be tuned by adjusting the angle (α) of the fiber

with respect to the z-axis of the CGP as it is shown in the top view of Figure (3.12). A

white light source (WLS) and an optical spectral analyzer (OSA) were used for the spectral
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measurements. Additionally, a linear polarizing plate and the fluorescence of an ytterbium

fiber laser (YFL) were included for the polarization spectra measurements. The photos in

Figure (3.12) show the transversal structures of both holey fibers used in the experiment.

The holey fiber called 2 is the same fiber used in Section 3.1 and 3.2 with a core/cladding

diameter of 11/125 µm, with 5 µm hole diameter and lattice pitch of 11 µm. This fiber

shows an asymmetry in its cladding structure. The holey fiber called 3 is a commercial

holey fiber F-SM10 that has a core/cladding diameter of 10/125 µm, with 3.5 µm hole

diameter and lattice pitch of 3 µm and shows an almost perfect hexagonal arrangement of

holes without asymmetry in its cladding.

2 3

Figure 3.12: Scheme of the experimental mechanically induced LPHFG set up
under torsion.

In the experiment, the rejection bands of the LPHFG inscribed in fiber 2 were first

analyzed. In this case, the period was adjusted to 482 µm. Two rejection bands were

obtained at 1121 and 1527 nm as it is shown in Figure (3.13)a. To characterize the twist

effect in the LPHFG, the holey fiber was clockwise twisted in 22.5 cm length and then, it

was pressed between both corrugated grooved plates. This process is repeated for different
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values of twist from 2 to 9 turns. The result is the spectral transmission illustrated in

Figures (3.13)b-i. The same experiment process is repeated with the LPHFG inscribed in

fiber 3. In this case, the period was adjusted to 460 µm and one rejection band at 1103 nm

was obtained as is shown in Figure (3.14)a. The results of the spectral characterization for

different values of twist from 9 to 16 turns are illustrated in Figures (3.14)b-i. For higher

values of twist no more measurements were made due to that both holey fibers are usually

broken. One can observe in Figures (3.13) and (3.14) that all rejection bands split in two

shifted rejection bands that move symmetrically further apart as the twist is increased.

Additionally, for both holey fibers, a clear splitting of rejection bands is observed after a

specific amount of turns: after 1 turn for fiber 2 and after 9 turns for fiber 3. For lower

values of turns, the twist perturbation is not sufficient to split each rejection band more

than 0.1 nm which corresponds to the wavelength resolution of the OSA. In similar way to

Section 3.2, the twist is the origin of the splitting.

Figure 3.13: Splitting evolution for both rejection bands centered at 1121 and
1527 nm associated to fiber 2 and with a) 0, b) 2, c) 3, d) 4, e) 5, f) 6, g) 7, h) 8,
and i) 9 turns per 22.5 cm.
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Figure 3.14: Splitting evolution for the rejection band centered at 1103 nm asso-
ciated to fiber 3 and with a) 0, b) 9, c) 10, d) 11, e) 12, f) 13, g) 14, h) 15 and i)
16 turns per 22.5 cm.

Figure (3.15) shows a plot of the splitting as a function of the twist for each rejection

band obtained with both holey fibers 2 and 3. The splitting values were obtained considering

the wavelength separation of each rejection band observed in Figures (3.13) and (3.14).

One can observe with more clarity that the splitting response of all rejection bands is near

linear within the twist values used in the experiment and each one exhibits different twist

sensitivity. In the case of fiber 2, the differences observed in the rejection bands localized

at 1527 and 1121 nm are attributed to the different modes coupled in these resonance

wavelengths. On the other hand, the different twist sensitivities observed in the rejection

bands associated to each holey fiber are attributed principally to the different transversal

structures of fibers 2 and 3 respectively. According to our results, for fiber 2 we can obtain a

splitting of 62.5 nm corresponding to a maximum twist of 9 turns (twist rate of 2.5 rad/cm)

and, for fiber 3 we can obtain a splitting of 22.5 nm for a maximum twist of 16 turns (twist
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rate of 4.5 rad/cm). These splitting values are higher than those reported in other works for

LPHFGs induced mechanically in standard fibers where splits of 10 − 20 nm are obtained

for a twist rate of 10 rad/cm [93, 94].

Twist (turns)

Figure 3.15: Splitting of rejection bands localized at 1527 and 1121 nm for fiber
2 and at 1103 nm for fiber 3. Solid symbols indicate measured data and solid lines
are fitting lines.

To analyze the tuning of the LPHFG under twist, the split rejection bands of the grating

inscribed in fibers 2 and 3 for different values of the grating period are plotted in Figures

(3.16) and (3.17). For fibers 2 and 3, a twist of 7 and 16 turns are kept respectively. In

these figures, one can observe that the splitting is not modified by tuning. It means that

for both holey fibers the splitting does not depend of the grating period at least over a

tuning range of 100 nm. This behavior is also observed for different values of twist. All

these tuning characteristics are of great interest in the design of tunable band-pass filters,

optical fiber switches and torsion fiber sensors.



80 Chapter 3. Characterization of LPFGs in PCFs

Figure 3.16: Tunable rejection bands of fiber 2 with 7 turns of twist at different
grating periods: a) 0.465, b) 0.470, c) 0.475, d) 0.480, e) 0.485, f) 0.495, g) 0.505,
h) 0.515 and i) 0.525 mm.

Finally, the polarization response of the mechanically-induced LPHFG was characteri-

zed. The rejection bands tuned at 1080 for fibers 2 and 3 were analyzed respectively. In this

experimental part, the white light source in the setup of Figure (3.12) was replaced by the

fluorescence of an ytterbium fiber laser. The polarization response of the rejection bands

in both holey fibers without twist is shown in Figures (3.18)a and b. In these figures it

is observed that when the input polarization is changed from vertical (V), which coincides

with the pressure direction of the grooved plates, to horizontal (H), each resonant peak is

shifted 1.3 and 0.6 nm for fibers 2 and 3. On the other hand, Figures (3.19)a and b show

the polarization response of each split rejection band for fibers 2 and 3 maintaining a twist

of 4 and 15 turns in each holey fiber respectively. In these figures, one can observe that

both peaks of each split rejection band are shifted 1.2− 1.3 nm for fiber 2 and 0.8− 0.7 nm
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Figure 3.17: Tunable rejection band of fiber 3 with 16 turns of twist at different
grating periods: a) 0.460, b) 0.465, c) 0.470, d) 0.475, e) 0.480, f) 0.485, g) 0.490,
h) 0.495 and i) 0.500 mm.

for fiber 3. In all cases, the rejection bands obtained with fiber 2 show higher polarization

response. It is worth to mention that both peaks of each split rejection band shown in

Figures (3.19)a and b are shifted in different way. In Figure (3.19)a, both peaks are shifted

in the same direction while, in Figure (3.19)b those peaks are shifted in opposite directions.

This behavior can be attributed to a combination of the intrinsic linear birefringence of

each holey fiber, the circular birefringence induced by twist and the linear birefringence

generated by the pressure of both grooved plates. Nevertheless, due to its complexity, these

parameters will be analyzed in a future work.
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Figure 3.18: Polarization response of the rejection bands in: a) fiber 2 and b)
fiber 3 with zero turns of twist.

Figure 3.19: Polarization response of the rejection bands in: a) fiber 2 with 4
turns and b) fiber 3 with 15 turns of twist respectively.
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3.3.2 Discussion

As presented above, the introduction of certain level of twist in two different holey fibers

prior pressure application in a mechanically induced long-period holey-fiber grating genera-

tes the splitting of the usual rejection bands in two shifted bands that move symmetrically

further apart as the twist is increased. The splitting can be explained if we consider that

the coupled modes of the rejection bands in a mechanically induced LPHFG correspond

to the LP01 core mode and the LP1n cladding modes (where n is an integer number).

The LP01 fundamental mode is degenerated by two circularly polarized modes (HE±11)

whereas the LP1n mode is degenerated by two circularly and one linearly polarized modes

(HE±21, TM0n or TE0n). In this nomenclature, the sign ± in the azimuthal numbers

indicates the right and left directions of the circularly polarized HE modes. Additionally,

if a certain value of twist is applied to the fiber, a circular birefringence is induced. This

birefringence shows opposite signs for both right- and left- circularly polarized HE modes

[94]. Therefore, both right- and left- HE modes will have different propagation constants

and the modal degeneration of the HE, TM and TE modes will be broken. As a result,

the mode coupling between the fundamental core mode and the LP1n cladding modes is

modified. If one considers only the positive sign of the azimuthal number of the HE modes,

one can infer that the HE+11 core mode is coupled with the HE+2n cladding mode (which

has the same circular polarization) and with the linear polarized cladding mode (TM or

TE). Then, two mode couplings are formed instead of one. This behavior is also followed

by the HE modes with negative azimuthal numbers; nevertheless, an overlapping with the

previous case is presented and only two peaks corresponding to both mode couplings are

observed.

On the other hand, the results show that the splitting observed in Figures (3.13) and

(3.14) does not depend on the induced pressure. This independence indicates that the

splitting is not result of the combined effects between microbending and twist perturbation.

Therefore, the only origin of the splitting is the induced twist. Additionally, in Figure (3.15),

the graphs show a linear behavior of the splitting within a wide twist range and it does
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not depend on the holey fiber used in the experiment. Also, if we consider the transversal

structure of the holey fiber, one can infer qualitatively that the different twist sensitivities

shown in Figure (3.15) for fibers 2 and 3 are attributed to the fact that in fiber 2 the modes

are almost degenerated because it shows an imperfect hexagonal arrangement of holes [79]

and, in this case, it is easier to remove the quasi-degeneracy by twist. Therefore, the fiber

2 can show higher twist sensitivity than that in fiber 3 or standard single mode fibers. On

the other hand, in Figures (3.16) and (3.17), one can observe that the split resonant peaks

can be tuned in a wavelength range of at least 100 nm for both holey fibers with negligible

changes in their wavelength separation. It confirms that the splitting does not have a strong

dependence with wavelength within this tuning range.

According to the splitting results shown in Figure (3.15), the maximum shift of the

peaks at 1527 nm in the fiber 2 was 31 nm for a twist rate of 2.5 rad/cm. It corresponds to

a twist sensitivity of 12.4 nm/(rad/cm). This sensitivity is between 3 to 5 times higher than

that obtained in LPFGs induced in standard fibers by mechanical pressure, CO2, UV and

arc electric [95, 24, 96, 97, 93]. In these works, twist sensitivities of 1−5 nm/(rad/cm) have

been reported. On the other hand, if one considers corrugated LPFGs in standard fibers,

the twist sensitivity of these gratings can be 10 times higher than that obtained in this work

[98]. Nevertheless, as it is shown in Figure (3.15), an irregular cladding structure like the

holey fiber 2 can increase the twist sensitivity of the LPHFG more than 10 times respect

to fiber 3 with almost perfect cladding structure. Therefore, if an optimization process

of the cladding structure is realized in order to obtain a higher value of twist sensitivity,

one can expect to obtain similar values than those reported in corrugated LPFGs with the

additional advantage of offering a more robust configuration.

Finally, the polarization response of the grating inscribed in both holey fibers were

measured. The results in Figures (3.18) and (3.19) shows that the rejection bands in fiber

2 have higher polarization dependence than that in fiber 3. This behavior varies slightly

for different values of twist and it does not depend on either if the fiber is twisted in

clock- or anticlok-wise. This result agrees with the fact that the transversal structure of
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the fiber 2 shows an asymmetric microstructure cladding and, consequently, a higher linear

intrinsic birefringence. On the other hand, it is worth to mention that, in some applications,

this polarization dependence is not attractive in devices based in LPFGs; nevertheless, it is

possible to find alternative experimental setups that can reduce or eliminate this polarization

response [99].

3.3.3 Conclusions

The spectral behavior of two LPHFGs induced mechanically in different twisted holey fibers

were analyzed. The results show a splitting of the rejection bands that grows linearly with

the twist ratio. The splitting does not depend on the twist direction, the mechanical pressure

and modifications of the grating period. This splitting is attributed to the removal of modal

degeneracy by twist perturbation in both holey fibers. Additionally, the grating inscribed in

fiber 2 shows higher twist sensitivity and polarization response than that of fiber 3 and it is

caused by the asymmetry of its cladding structure. Moreover, the values of twist sensitivity

obtained with fiber 2 is higher than that obtained with LPFGs induced in standard fibers

by mechanical pressure, CO2, UV radiation, and electric arc. These results are of great

interest in the design of new torsion sensors based in long-period holey-fiber gratings.
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4 Applications

In this Chapter, direct applications of the results described in Chapter 3 are given by means

of three works. In these works, new schemes to perform fiber lasers and all-fiber devices

are proposed. First, a bandpass filter with adjustable bandwidth is described, then, the

performance of a tunable fiber laser and a simultaneous three-wavelength fiber laser are

presented.

4.1 Band-pass filters with adjustable bandwidth

In this section, a bandpass filter with adjustable bandwidth based on a press-induced long-

period grating in a twisted holey fiber is presented. By twisting the holey fiber prior to the

application of spatial periodic pressure, each rejection band of the non-twisted induced long-

period grating is split into two shifted rejection bands that move further apart as the twist

ratio increases. This feature results in a wide bandpass filter with controllable bandwidth.

A bandpass filter at 1523 nm with adjustable bandwidth from 15 to 65 nm with near-linear

response and insertion loss lower than 0.7 dB is demonstrated. Additionally, the bandpass

filter can be tuned over 100 nm.

4.1.1 Introduction

All-fiber bandpass filters are devices required in applications for spectral equalization or

shaping [100, 101]. So far, two typical configurations have been demonstrated to obtain

87
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bandpass filters based on long period fiber gratings (LPFGs). One approach uses a pair of

LPFGs in cascade with a core blocker between them; the first LPFG couples the light from

the core to the cladding, and the second couples light back to the core; meanwhile, the core

blocker intercepts the core mode transmission and ensures that the core signal after the

cascade comes totally from the recoupled cladding modes [101, 102, 103]. The other option

is the π-phase method, in which a π-phase shift is introduced during the LPFG periodicity

inscription so that the destructive mode coupling is converted into constructive mode cou-

pling and a bandpass filter is obtained [104]. The main limitation of the first proposal is

the relative high insertion loss (> 1 dB); meanwhile, the other one has simple fabrication

but shows poor flexibility in the bandpass filter parameters. To obtain flexible bandpass

filters based on LPFGs it is important to explore and propose other novel configurations.

Under this concept, a bandpass filter with controllable bandwidth based on a press-induced

long-period holey fiber grating (LPHFG) is presented.

4.1.2 Experimental setup

A schematic diagram of the bandpass filter based on the press-induced long-period twisted

holey-fiber (HF) grating is shown in Figure (4.1). This setup is similar to that described

in Section 3.2. Two identical metallic corrugated plates of 70 mm × 25 mm × 10 mm

(length × width × thickness) with a grooved pattern were used to generate the periodic

index modulation over the twisted HF by pressure (P). The grooved pattern has a period of

Λ = 460±10 µm, a duty circle of 48%, and a depth of 400±10 µm. The period of the grating

may be adjusted by the rotary stage (RS) according to the expression Λ = (460±10)/cos(ϕ),

where ϕ is the rotational angle of the grooved plates with respect to the fiber, while the

length of the grating is determined by the interaction length of the plates. The HF under

test was fixed to one side by a fixed fiber fastener (FFF), and the other fiber side was fixed

to a rotational fiber fastener (RFF) with a separation length (Lτ ), of 22 cm, where the

HF can be twisted by turning the RFF. The inset in Figure (4.1) shows a photograph of

the transversal structure of the HF used in the experiment which corresponds to the holey
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fiber 2 shown in Figure (2.9). To measure the transmission spectrum of the press-induced

LPHFG under controlled twist, a white light source (WLS) and an optical spectral analyzer

(OSA) were used.

Figure 4.1: Experimental setup of the press-induced LPHFG under twist. Abbre-
viations defined in text.

Figure 4.2: Transmission spectra of the rejection filter (dotted curve) and the
bandpass filter (solid curve) induced by twist.
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4.1.3 Results and discussion

First, the HF was placed between the plates and fixed with the fiber fasteners, and then

a 485µm period was selected and the pressure between the metallic plates was adjusted

until a rejection band filter at 1523 nm, with 15 dB notch depth and a bandwidth of 9 nm,

was obtained (dotted curve in Figure (4.2)). Then, without applied pressure the HF was

twisted 4 turns clockwise, and pressure was gently applied again. Afterwards, the normal

rejection band filter was split into two symmetrically shifted rejection bands, which results

in a bandpass filter with an insertion loss of 1.8 dB (solid curve in Figure (4.2)). It is

worth mentioning that for a twist less than 3 turns, the separation between the shifted

rejection bands was not enough to obtain a bandpass filter with insertion loss lower than 3

dB. This proof was repeated for a twist of 4 turns, and negligible differences in the split of

the rejection band and wavelength separation of the shifted rejection bands were observed.

In the same way, the other rejection band simultaneously obtained at 1118 nm exhibited

similar splitting behavior as described above.

Figure (4.3) shows the evolution of the transmission spectrum of the bandpass filter

when the twist ratio increases from 4 to 12 turns. The bandpass filter shows a broadening

of the bandwidth and a reduction of the insertion loss as the twist ratio increases. The inset

in Figure (4.3) shows a plot of the bandwidth broadening of the transmission bandpass as a

function of the twist ratio, where we can observe a near-linear dependence. The bandwidth

of the bandpass filter rises from 15 nm at 4 turns to 65 nm at 12 turns; meanwhile, the

insertion loss decreases from 1.8 to 0.7 dB after 6 turns. For more than 12 turns the HF

was regularly broken, and we cannot increase the bandwidth more than 65 nm. Moreover,

the bandpass filter can be tuned by changing the period of the index modulation over the

twisted HF, as it is shown in Figure (4.4), where the bandpass filter is tuned from 1565

to 1465 nm. Also, the transmission amplitude of the bandpass filter shown in Figure (4.5)

can be controlled by adjusting the broadening of the shifted resonance bands by means of

the interaction length of the grooved plates over the twisted HF. Figure (4.5) shows the

attenuation of the transmission amplitude of the bandpass filter when the interaction length
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Figure 4.3: Spectral evolution of the bandpass filter for different twist ratios of
the LPHFG.

decreases from 63.5 to 43 mm. The amplitude of the bandpass filter can be adjusted by this

method; meanwhile, the bandwidth of the bandpass filter stays lower than two times the

bandwidth of the split rejection bands. The inset in Figure (4.5) shows the transmission

amplitude as a function of the length of the plates over the HF.

Experimental reports on corrugated and CO2-impressed long-period gratings (LPGs)

in standard fiber under slight twist (< 0.2 rad/cm) have shown that their cladding mode

resonances shift linearly to shorter or longer wavelengths depending of the twist direction

[105, 106]. Recently, unexpected effects have been observed when the mechanically induced

LPGs are under twist. The simultaneous application of lateral press and twist results in

the shift of the cladding mode resonances to shorter wavelengths and after a certain level
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Figure 4.4: Wide tuning range of the bandpass filter for different grating periods
of the LPFG.

of twist (> 5 rad/cm) a split of the cladding mode resonances is observed [93]. In contrast,

we have found that mechanically induced LPGs in the HF under twist exhibit a split of the

cladding mode resonances for twist ratios < 2 rad/cm, where the value of the split has a

near linear dependence on the twist ratio applied to the HF.

Based on the coupling mode theory, Ivanov [94] demonstrated that the twist applied

in LPGs in standard fiber removes the degeneracy of the hybrid modes of the long-period

modes, and consequently splitting of the mode resonances is observed. The calculated and

experimental split sensitivities to twist for standard single mode fibers are of the order of

12 nm/(rad/cm) [93, 94], while in our case the split sensitivity is ∼ 18 nm/(rad/cm), i.e.,

∼ 10 times larger than in standard fibers. This significant difference is expected since the

magnitudes of the effective index changes in the core and the air silica microstructured

cladding are different. In the case of LPGs based on standard fiber, under a slight twist,

the index changes of the core and the cladding are approximately similar, and it is not

enough to break the degeneracy of the hybrid mode of the corresponding cladding mode

resonances so that only the wavelength shift is observed. Hence, the standard fiber requires

a larger twist ratio to break the hybrid mode degeneracy and bring about the onset of mode
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Figure 4.5: Transmission amplitude as a function of the wavelength for the fol-
lowing interaction length of the press-induced LPHFG: (a) 63.5, (b) 51.5, (c) 45.5,
(d) 44.5, (e) 44, (f) 43 mm.

splitting. In addition, the HF presents irregularities in the photonic crystal structure that

contribute to the reduction of the degeneracy of the hybrid modes.

4.1.4 Conclusions

In summary, a novel bandpass filter with adjustable bandwidth was presented based on

the split of a rejection band of a press-induced LPFG over holey fiber when the fiber is

subjected to controlled twist. We have demonstrated a bandpass filter with insertion loss

less than 0.7 dB and adjustable transmission bandwidth from 15 to 65 nm that is tunable

over a range of 100 nm. An important advantage of the proposed bandpass filter compared



94 Chapter 4. Applications

with other methods is the flexibility to independently adjust the bandwidth, the tunable

range, and the transmission amplitude with relative low insertion loss.

4.2 Tunable Ytterbium-doped fiber laser

In this section, a tunable double-clad Ytterbium-doped fiber laser is described. It is based

on a long-period fiber grating mechanically-induced in a section of a single mode holey fiber

inserted into the laser cavity. The mechanically-induced long-period holey fiber grating acts

as a wavelength-selective fiber filter whose central wavelength, linewidth, and strength can

be tuned by changing the period, the length of the grating, and the applied pressure. This

work was performed in collaboration with Dr. Gilberto Anzueto Sánchez during his PhD

studies at CIO.

4.2.1 Introduction

The search for simple and cost effective techniques for wavelength tuning of fiber lasers is a

subject of continued interest. Fiber lasers offer broad absorption and emission wavelengths,

and the possibility of obtaining high output laser power when a double clad geometry is

used. The wavelength tuning in fiber lasers can be realized by external dispersive bulk

elements [107, 108], or in-line fiber elements [109, 110]. Tunable fiber lasers based on bulk

elements require complicated arrangements which require expensive devices. Consequently,

all-fiber systems are advantageous since they do not require free-space components. One

of the techniques used for all-fiber wavelength tuning is based on the insertion of in-line

band-rejection filters into the laser cavity. In this case, the position of the stop band is

selected such that it precludes oscillation at that particular wavelength range, modifying

the overall gain spectrum of the laser cavity and allowing lasing at the resultant preferential

wavelength. On the other hand, long-period fiber gratings (LPFGs) have demonstrated their

versatility as wavelength optical filters for applications where the equalization of the gain

spectrum of doped fibers is required [111, 112]. Mechanically induced LPFGs that offer
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the advantages of broad tuning and the capability of being erased and reconfigured [113],

are particularly useful for these applications. Several techniques of mechanically induced

tunable LPFGs have been reported in standard communication fibers and holey fibers, where

grooved plates (GPs), strings, and springs have been used to apply periodical mechanical

stress on the optical single mode fiber to induce an effective index modulation [114, 115].

In this respect, holey fibers have shown an enhanced sensitivity to mechanical pressure that

makes them suitable for implementation in tunable LPFGs. Consequently, a tunable double

clad Ytterbium-doped fiber (DCYDF) laser is presented, where a mechanically induced band

rejection filter in a holey fiber is inserted into the laser cavity as the wavelength selective

element. The adjustment of the grating period allows a change in the spectral position of

the notch, while the pressure variation provides control of the strength of the notch. By

adjusting the period of the mechanical pattern and the applied pressure on the holey fiber

respectively.

4.2.2 Experimental setup

Figure (4.6) shows the experimental setup of the tunable fiber laser. It consists of 30-

m-long DCYDF with core/cladding dimensions of 6/125 mm, and 0.14/0.45 of numerical

aperture, and absorbtion of 0.2 dB/m at 915 nm . Figure (4.7) shows the cross section of

the DCYDF. This fiber is end-pumped by a 915 nm pigtailed diode laser connected to a

fiber collimator via an SMA (SubMiniature version A) adapter. The collimated pump is

coupled to the input end of the DCYDF by an aspheric lens. Between the fiber collimator

and the aspheric lens there is a 450 dichroic mirror with a high transmission at the pump

wavelength and a high reflection from ∼ 1050 to 1100 nm, which prevents back reflection

to the pump diode and serves as output coupler for the laser signal. The other end of the

DCYDF is spliced to a 60-cm-length single mode holey fiber which has a core/cladding

diameter of 11/125 mm. The holey fiber and the LPHFG setup used in this work are the

same described in Figure (3.1) of Section 3.1. According to the LPHFG design described in

Section 3.1, it allows the change of the grating period (Λ) by adjusting the circular bending
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radius (R) of the holey fiber. Therefore, the center wavelength of the notch is adjusted

by changing the period of the LPHFG and the depth of the notch depends directly on the

pressure of the flat plate. In this way, the fiber laser cavity is defined by the DCYDF, the

spliced holey fiber, and each of the two perpendicular cleaved ends at the sides of the cavity

gives ∼ 4% of Fresnel reflection. The output laser light is detected from the output end of

the holey fiber and the reflected light at the dichroic mirror.

Figure 4.6: Experimental setup of the tunable laser based on a LPFG induced
mechanically in a PCF.

Figure 4.7: Cross-section of the double-clad Ytterbium-doped fiber used in the
experiment. This fiber was fabricated with the participation of Dr. Alejandro
Mart́ınez in Lasersharp Inc.
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4.2.3 Results and discussion

Figure (4.8) shows the experimental white light transmission spectra of the LPHFG at three

different center wavelengths, 1080.6 (solid curve), 1084.8 (dashed curve), and 1091.4 nm

(dotted curve), which corresponds to grating periods of approximately 603, 600, and 595

µm, respectively. As it was mentioned, the center wavelength of the notch is reduced as the

grating period is increased, while a change in the number of periods varies the bandwidth

of the notch and variation of the applied pressure changes the depth.

Figure 4.8: White light transmission spectra of the LPHFG for three different
grating periods.

The fiber laser was first operated as a free-running fiber laser without the holey fiber

spliced to the DCYDF. Under these conditions the laser operated at a wavelength of 1089

nm with a threshold pump power of 131 mW and 61.52% of slope efficiency with respect

to the launched pump power. When we spliced the piece of holey fiber to the DCYDF,

the threshold pump power increased up to 324 mW , while the slope efficiency decreased to

27.1%. From these data, we estimated the splice loss between the DCYDF and the holey

fiber plus the intrinsic holey fiber losses as ≈ 3.97 dB. As we will see, when the holey fiber

is under pressure, there is an increase in the loss which further reduces the laser efficiency.
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The dotted line in Figure (4.9) shows the transmission spectrum of the LPHFG when the

center wavelength and the depth of the notch are 1089.6 nm and 16 dB, respectively. As

it can be observed, the effect of the LPHFG is to introduce an excess loss around the peak

fluorescence, thus modifying the original spectrum (dashed line in Figure (4.9)), so that the

wavelength at which the gain is maximum is altered. This results in a different free-running

laser wavelength. By varying slightly the position of the center wavelength of the notch, we

were able to tune the fiber laser in a range of 12.6 nm, from 1079.4 to 1092 nm.

LPFG

spectra

spectra

spectra

Figure 4.9: Modification in the fluorescence spectrum of the DCYDF laser induced
by the LPFG spliced to the laser cavity.

Figure (4.10) shows the output laser spectra at four different wavelengths obtained

by tuning the mechanically induced LPHFG, namely at 1079.4, 1084.8, 1087.8, and 1092

nm. It is worth mentioning that under certain conditions the laser can operate at multiple

wavelengths where the laser is clearly unstable, mainly due to problems of mechanical

stability of the device and to nonuniform pressure that results in slight variations in the

position of the center wavelength of the notch that causes gain competition between different

lasing lines due to homogeneous broadening. We have designed a mechanical fixture that in
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Figure 4.10: Output laser spectra at four different wavelengths tuned by the
mechanically induced LPFG.

principle can improve the mechanical stability of our device and can provide a more uniform

pressure on the holey fiber.

Figure (4.11) shows the total output laser power as a function of the launched pump

power for the four laser wavelengths referred above. Their respective slope efficiencies are,

18.77, 21.52, 23.78, and 26.31%. As we approach to longer wavelengths, the slope efficiency

increases, which can be explained by the fact that, without pressure on the microstructured

fiber, the laser operates at 1089 nm. Further improvements in the laser efficiency can be

obtained by inserting a low-loss microstructured fiber, and optimization of the splice loss

between the DCYDF and the microstructured fiber through mode matching techniques.
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Figure 4.11: Output laser power as a function of the pump power for four different
wavelengths.

4.2.4 Conclusions

In conclusion, we have reported a simple method for wavelength tuning of fiber lasers based

on the use of a tunable mechanically-induced LPFG in a holey fiber. The center wavelength

and depth of the notch are adjusted by changing the period and the applied pressure on the

holey fiber. Using this approach, we have demonstrated a wavelength tuning range from

1079.4 to 1092 nm. In this wavelength range, slope efficiencies in the range of 18.7− 26.3%

are obtained. The main advantage of this scheme for wavelength tuning of fiber lasers is

the simplicity and low cost of the device.

4.3 Simultaneous three-wavelength Yb-doped fiber laser

In this section, a three-wavelength Ytterbium-doped fiber laser based on a long-period fiber

grating (LPFG) induced mechanically in a twisted holey fiber is proposed and demonstrated.

The scheme used to perform this fiber laser is a modification of the scheme shown previously

in Section 4.2 where the LPFG is not under twist. The LPFG is inserted into the laser cavity
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to introduce inhomogeneous loss in order to obtain up to three output laser wavelengths

at room temperature. The lasing wavelengths are localized at 1081.5 nm, 1090.5 nm, and

1100.7 nm with an average wavelength separation of 9.6 nm which can be slightly modified

by changing the twist rate of the holey fiber into the laser cavity.

4.3.1 Introduction

Multiwavelength fiber lasers are being subject of continuous interest as an alternative source

for applications in wavelength division multiplexed (WDM) optical fiber communications

systems, optical instruments, spectroscopy, microwave signal processing, fiber sensors, op-

tical instrument testing, microwave photonic systems and so on. Several approaches have

been used to obtain a stable multiwavelength oscillation [116, 117]. The main limitation to

obtain multiwavelength laser generation in fiber lasers is the homogeneous gain broaden-

ing of the rare-earth dopants which leads strong unstable mode competition and cross-gain

saturation. For instance, in Ref. [118] a section of a highly-nonlinear photonic crystal fiber

is inserted into the cavity to provide the gain inhomogeneity via four wave mixing between

the generated wavelengths, while in Ref. [119] the gain inhomogeneity is induced via stim-

ulated Brillouin scattering in a loop mirror fiber. Other approaches include the utilization

of a Fiber Bragg Grating (FBG) as one of the cavity mirrors to increase the number of

Brillouin-Stokes lines in a laser cavity [120], cascaded FBGs as a wavelength selection filter

[121], wavelength-dependent polarization rotation mechanism with a phase modulator [122],

and by controlling the effective length of a polarization maintaining fiber in an intracavity

filter [123]. On the other hand, LPFG’s have demonstrated their utility in the generation

of multiwavelength lasing in rare-earth doped-fiber lasers [124, 125, 126]. LPFGs have been

used as band-rejection filters and several applications including gain flattening, variable

attenuators, and strain sensors have been explored [18, 127]. In particular, LPFGs induced

in holey fibers can lead different behaviors than those observed in conventional fibers, for

example, the resonant wavelength can be decreased by increasing the period of the LPFG

or they can offer a major power transfer from the core to the cladding modes. LPFGs
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induced in holey fibers have been reported using corrugated plates, strings and springs.

These mechanical methods produce a stress on the optical fiber that induces the periodical

index modulation required in order to produce the grating. Recently, it has been demon-

strated that the introduction of a certain value of twist in a press-induced long-period holey

fiber grating (LPHFG) can be used in order to split any rejection band of the grating in

two shifted rejection bands that move symmetrically further apart as the twist is increased

[128]. With this method, a band pass filter with controllable bandwidth and low insertion

loss is generated. This behavior is unique in LPFGs induced in holey fibers and the twist

sensitivity varies according to the holey fiber used in the experiment [92]. Additional char-

acteristics of the LPFG under torsion like the change of the spectral position of the rejection

band by the adjustment of the grating period and the control of the depth of the rejection

bands by the pressure variation can be exploited in order to obtain a multiwavelength lasing

in a Yb-doped fiber laser. Under this concept, a new design that allows generating up to

three lasing wavelengths is presented. The design is based on the insertion of a tunable

and erasable long-period grating mechanically induced in a section of a twisted holey fiber

spliced to a double-clad Yb-doped fiber (DCYDF). The LPFG under torsion acts as an

intracavity band-pass filter which spectrum can be modified by changing the twist rate of

the holey fiber. The LPFG under torsion modifies the overall gain spectrum of the laser

cavity in such way that three controllable peaks on the gain can be obtained. In this way, as

the pump is increased, three stable lasing wavelengths are generated. The main advantage

of the proposed design is the simplicity and low cost of the device due to that only a single

LPFG is used. Also, this scheme offers the possibility to manipulate the separation of the

lasing wavelengths controlling the twist rate of the holey fiber.

4.3.2 Experimental setup

Figure (4.12) shows schematically the experimental setup of the three-wavelength fiber

laser. It consists of ∼ 30 m long DCYDF with a core/cladding diameter of 6/125 µm and

a 0.14/0.45 numerical aperture. This fiber is the same used in section 4.1. The DCYDF
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Figure 4.12: Experimental setup of the three-wavelength fiber laser based in a
mechanically induced LPHFG.

is end-pumped by a 915 nm pigtailed diode laser connected to a fiber collimator via a

SMA adapter. The collimated pump is coupled to the cleaved input end of the DCYDF

by a focusing aspheric lens. A 450 dichroic mirror DM1 between the aspheric lenses and

the SMA adapter protects the pump diode laser from back reflection and serves as output

coupler for the laser signal. The another end of the DCYDF is spliced to 30 cm long of

a holey fiber where the mechanical LPHFG is induced. Additionally, another 450 dichroic

mirror DM2 was placed against the distal end of the holey fiber. The fiber laser cavity is

defined by the DCYDF, the spliced holey fiber, and each of the two perpendicular cleaved

ends at the sides of the cavity which give 4% of Fresnel reflection allowing a free running

operation. The output laser light is detected from the reflected light of both dichroic mirrors.

On the other hand, a schematic diagram of the band-pass filter based on a press induced

LPHFG under torsion is shown in Figure (4.13) which is similar to setup of Section 3.2 but

with another holey fiber. In this setup, the LPHFG was induced by pressing a section of

twisted holey fiber (HF) between two corrugated grooved plates (CGPs). The dimensions

of both grooved plates were 70 mm long and 24 mm wide and each one had a square groove

pattern with 460 µm of period (Λ). The holey fiber was placed between the CGP by a

fixed and rotational holder (H1 and H2). In this way, the fiber can be twisted when the
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Figure 4.13: Sketch of the device used to mechanically induce the LPHFG in the
twisted holey fiber.

rotational holder is turned by an angle (θ). The separation between both holders (Lτ ) is

12.5 cm. Once the holey fiber is twisted, the holey fiber is pressed between both CGPs

and the band-pass filter is generated. The inset in Figure (4.13) shows a photograph of

the holey fiber transverse section which correspond to the holey fiber 3 analyzed in Section

2.5.1. This fiber has a core/cladding diameter of 10/125 µm.

4.3.3 Results and discussion

The first step in the implementation of the fiber laser was the characterization of the LPHFG

under torsion using only the piece of holey fiber. In this part, the fluorescence of the Yb-

doped fiber was used as a light source and an optical spectral analyzer (OSA) was used for

the spectrum measurements. A section of the holey fiber was twisted in 12.5 cm of length

and then, it was pressed between both corrugated grooved plates. This process is repeated

for different values of twist: 0, 4 and 5 turns which correspond to values of twist rate (τ) of

0, 0.4 and 0.5 rad/cm respectively. The result is the spectrum transmission illustrated in

Figure (4.14) where one can observe that the single rejection band obtained without twist
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splits in two shifted rejection bands that move symmetrically further apart as the twist is

increased. In this way, different band-pass filters with controllable bandwidth are obtained.

This result does not depend if the fiber is twisted in clock- or anticlockwise.

Twist rate

Figure 4.14: Transmission spectra of the LPHFG for different twist rates of the
holey fiber.

Once the twist behavior of the LPHFG is controlled, we characterized the fiber laser

as a free running fiber laser without the holey fiber spliced to the DCYDF. Under these

conditions the laser operated at a wavelength of 1090.5 nm with a threshold pump power

of 192 mW and 67% of slope efficiency with respect to the launched pump power. When

we spliced the piece of holey fiber to the DCYDF, the threshold pump power increased up

to 468 mW , while the slope efficiency decreased to 15%. From these data, the splice loss

between the DCYDF and the holey fiber plus the intrinsic holey fiber loss is estimated as

∼ 4 dB. The next step was to generate the press-induced LPHFG in the piece of holey fiber

spliced to the DCYDF. Once the grating is produced, we modified the gain spectrum of the

laser cavity as is it shown in Figures (4.15) and (4.16) where the holey fiber is untwisted

and twisted five turns respectively. In Figure (4.15), one can observe that if the single

rejection band is tuned adequately, the gain spectrum can be modified in such way that two
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lasing wavelengths at 1085.2 nm and 1098.2 nm are obtained. On the other hand, when

a certain value of twist is applied to the holey fiber, a band-pass filter is formed as it is

shown in Figure (4.16), and three controllable peaks on the gain spectrum can be observed.

Consequently, as the pump is increased, three lasing wavelengths are generated. The lasing

wavelengths are localized at 1081.5 nm, 1090.5 nm, and 1100.7 nm respectively. In this

case, the average wavelength separation between lasing wavelengths is 9.6 nm and can be

slightly modified ±1.5 nm by changing the twist rate of the holey fiber ±0.04 rad/cm. If

we exceed this value of twist, the three wavelength laser emission disappears. It is due to

the fact that the gain spectrum of the laser cavity is not flat. For example, if the peaks of

the gain spectrum shown in Figure (4.16) are separated by increasing the distance between

rejection bands in the band-pass filter, these peaks will not have the same gain and only the

central peak on the gain spectrum will lead the generation of a wavelength lasing. In this

case, only a single wavelength laser emission is obtained. On the other hand, the opposite

situation which corresponds to the reduction of the peak separation generates a different

result. In this case, the lateral peaks in the gain spectrum will have a higher gain than that

in the central peak and only two-wavelength laser emission can be generated.

Figure (4.17) shows the total output laser power as a function of the launched pump

power for the laser cavity in the following cases: 1) without LPHFG where only one wave-

length lasing at 1090.5 nm is obtained, 2) using the LPHFG without twist which corresponds

to the dual wavelength lasing shown in Figure (4.15), and 3) using the LPHFG under twist

which corresponds to the three-wavelength lasing observed in Figure (4.16). The output

laser power for different wavelength lasing were measured together. In Figure (4.17) one

can observe that the slope efficiency decreases as the LPHFG is induced on the holey fiber

without twist and under twist respectively. These results can be inferred if we consider

that when the holey fiber is twisted or under pressure, there is an increase in the loss which

reduces the laser efficiency. Additionally, in the case of the LPHFG under twist, we have

the presence of two rejection bands on the gain spectrum. These simultaneous bands reduce

the level of the gain spectrum to a value lower than that when only one rejection band is
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used. Then, there is an increment of the loss when a band-pass filter is generated. This

characteristic is one of the reasons why the efficiency of the three-wavelength lasing is lower

than that of the case of a dual wavelength lasing. It is also important to mention that in a

similar way to Section 4.2, further improvements in the laser efficiency can be obtained by

inserting a low-loss microstructure fiber into the laser cavity and optimizing the splice loss

between the DCYDF and the microstructure fiber through mode matching techniques.

LPHFG spectra

Figure 4.15: Dual-wavelength lasing induced by the LPHFG without twist spliced
to the laser cavity.

On the other hand, we observed that the lasing wavelengths are always conditioned to

the localization of the peaks formed in the gain spectrum in such way that the laser does

not operate at multiple aleatory wavelengths. Nevertheless, the laser emission generated in

each one of these peaks is not stable due to the fact there is a gain-competition between

the three laser emissions observed in Figure (4.16). Also, the pressure of the mechanical

device is non-uniform resulting in slight variations in the LPFG spectra. In similar way to

section 4.2, further improvements of the mechanical device have to be performed in order

to provide a more uniform pressure on the holey fiber, and in this way to obtain a laser

stability.
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LPHFG spectra

Figure 4.16: Three-wavelength lasing induced by the LPHFG with twist spliced
to the laser cavity.

Figure 4.17: Output laser power (P1, P2, P3) as a function of the pump power
(PP ) for three different cavity cases: 1) without LPHFG, 2) using LPHFG without
twist, and 3) using LPHFG with twist.
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4.3.4 Conclusions

We have reported a new method in order to obtain a simultaneous three-wavelength Yb-

doped fiber laser based on a single long period fiber grating induced mechanically in a

twisted holey fiber. The lasing wavelengths were obtained at 1081.5 nm, 1090.5 nm, and

1100.7 nm with an average wavelength separation of 9.6 nm. Additionally, with this design,

one can choose between a dual- or three-wavelength laser operation depending on if the

holey fiber is twisted or not into the laser cavity. The main advantage of the proposed

design is the simplicity and low cost of the device due to that only a single LPFG is used.

Additionally, this scheme offers the possibility to manipulate slightly the separation of the

lasing wavelengths controlling the twist rate of the holey fiber.
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5 Conclusions

In this thesis, a characterization of three different schemes based in a mechanically-induced

long-period fiber grating (LPFG) inscribed in a photonic criystal fiber was presented. These

schemes allow the obtention of novel LPFG properties not reported, to our knowledge in

the literature. These properties can be summarized as follows,

• The tuning range of mechanically induced LPFGs in PCFs has been improved. This

improvement was obtained by considering a mechanical setup with radial grooved

plates. In this way, varying the bend of the holey fiber, the grating period can be

modified in a more extended range compared with other mechanical methods. An

interesting characteristic observed in this setup was the fact that the bend radius does

not modify the typical behavior of the attenuation bands in LPFGs. As an example,

the modification of the bandwidth with respect to the number, N , of grooved plates

follows the typical behavior, 1/N , and the tuning measurements of the LPFG show

the typical redshift of the resonance wavelength as the grating period is increased.

• The couplings of the fundamental LP01 core mode and the even and odd LP11 higher-

order core modes have been reported and analyzed, to our knowledge for first time in

mechanically-induced LPFGs in PCFs. These couplings occur due to the fact that the

asymmetry in the cladding structure of the holey fiber allows the propagation of the

even- and odd-LP11 higher-order core modes. Additionally, the attenuation bands of

these couplings depend strongly on the fiber orientation with respect to the pressure

direction of the mechanical setup. This dependency is very useful in the design of

111
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all-fiber devices based on LPFGs that involves couplings of even and odd LP11 core

modes.

• The analysis of the twist effect in mechanically induced LPFGs in PCFs was reported

to our knowledge for first time. The results show that the rejection bands for each

holey fiber split in two shifted rejection bands that move symmetrically further apart

as the twist is increased. The LPFG shows higher twist sensitivity if the holey fiber

presents a higher imperfect cladding structure. Also, the splitting of the rejection

bands shows a linear behavior within an extended twist range which is ideal for the

design of torsion fiber sensors. Additionally, the twist sensitivities reported in this

work show higher values than those reported in literature where other types of LPFGs

in standard optical fibers are used.

With these properties, three direct applications have been performed. These applications

consist in new schemes to obtain tunable Ytterbium-doped fiber lasers, new band-pass

filters, and simultaneously generation of three-wavelength Yb-doped fiber lasers respectively.

The principal results of these applications can be summarized as follows:

• A new scheme to tune a Ytterbium-doped fiber laser based in a mechanically induced

LPFG in a PCF is suggested and demonstrated. The main advantage of this scheme

is the simplicity and low cost of the device. With this method, a tuning range from

1079.4 to 1092 nm, with slope efficiencies of 18.7-26.3% with respect to the launched

pump power is obtained.

• A new efficient method to perform a band-pass filter based in a mechanically induced

LPFG is reported. The band-pass filter is generated due to the splitting of the atte-

nuation bands of a LPFG induced in a PCF under twist. According to the twist

applied to the fiber and the interaction length of the grooved plates, one can control

the bandwidth of the band-pass filter. With this scheme, one can obtain a higher

flexibility in the band-pass filter parameters than that shown in band-pass filters

generated with other methods.
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• A new method to obtain a simultaneous three-wavelength Ytterbium-doped fiber laser

based on a LPFG induced mechanically in a PCF is reported. A long-period grating

induced mechanically in a PCF under twist is inserted into the laser cavity to introduce

inhomogeneous loss in order to obtain up to three output laser wavelengths at room

temperature. The lasing wavelengths are localized at 1081.5 nm, 1090.5 nm, and

1100.7 nm with an average wavelength separation of 9.6 nm. With this design, one

can choose between a dual- or three-wavelength laser operation depending if either

the PCF is twisted or not into the laser cavity. The main advantage of the proposed

design is the simplicity and low cost of the device since only a single LPFG is used.

Additionally, this scheme offers the possibility to manipulate slightly the separation

of the lasing wavelengths controlling the twist rate of the holey fiber.

Additionally, according to the numerical method performed in this thesis, the following

results can be summarized,

• A FFT-mode solver method to modelate PCFs is generated. With this method, one

can modelate different transversal structures of the microstructured cladding with pe-

riodic or aperiodic distribution of holes using circular or elliptic air holes respectively.

The precision of this method in the calculations of the effective index value is around

1× 10−6, although further improvements can be realized in order to obtain precision

values around 1× 10−7.

• The FFT-mode solver implemented in this work, can modelate photonic crystal fibers

with no perfect arrangement of holes in their cladding structure. These characteristics

are typical in the majority of microstructured fibers.

• Besides, the FFT-mode solver can be used to design PCFs with specific properties. As

an example, PCFs with flat dispersion or shifted zero dispersion for supercontinuum

applications can be studied.
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• Finally, the FFT-mode solver performed in this work can modelate the mode solu-

tions of PCFs in the linear and the nonlinear regime. In the nonlinear regime, a

Kerr-nonlinearity is considered and also a self-consistent method is added to the algo-

rithm. Nevertheless, to solve completely the nonlinear modes in PCFs, a propagation

algorithm based on perturbative methods have to be performed in order to study the

stability of these solutions.

5.1 Future work

Additional properties of LPFG in PCFs have to be analyzed in future work; for example,

a systematic study of polarization in LPFGs induced mechanically in twisted PCFs. In

this case, the linear birefringence of the fiber caused by the mechanical setup and the

circular birefringence induced by twist have to be considered. In a similar way, the same

systematic study for LPFGs induced in PCFs under bending have to be analyzed. Also,

the characterization of LPFGs realized in this work can be extended to LPFGs induced in

PCFs with other fabrication methods. For example, with electric-arc discharges.

In general, the tools and skills developed in this work have given a platform to design new

all-fiber devices based on photonic crystal fibers. This platform also allows the beginning of

other research lines in the future, for example, the modelling of PCFs for supercontinuum

applications, the performance of three-wavelength Raman fiber lasers, and the modelling

of advanced systems such as the propagation of solitons in PCFs and its interactions with

plasmons respectively.



A FFT-mode solver algorithm

In order to modelate the photonic crystal fibers shown in Figure (2.9), first we have to

modify their images in order to obtain a binary version of them. As example, in Figure

(A.1) the modified binary image of holey fiber 2 is shown respectively.

Figure A.1: Binary image of the transversal refractive index profile of the mi-
crostructured holey fiber 2 of Figure (2.9)b.

Once the PCF image is modified, this is introduced to the FFT-mode solver algorithm

coded in Matlab. This algorithm is given in Figures (A.2)-(A.6).
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Figure A.2: Part 1. FFT-mode solver algorithm. This part corresponds to the
product of the left side of equation (2.6) respectively.
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Figure A.3: Part 2. FFT-mode solver algorithm. This part corresponds to the
solution of eigenvalues and eigenvectors of the holey fiber 2.
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Figure A.4: Part 3. FFT-mode solver algorithm. Continuation of the solution of
eigenvalues and eigenvectors of the holey fiber 2.
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Figure A.5: Part 4. FFT-mode solver algorithm. Continuation of the solution of
eigenvalues and eigenvectors of the holey fiber 2.
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Figure A.6: Part 5. FFT-mode solver algorithm. Continuation of the solution of
eigenvalues and eigenvectors of the holey fiber 2.
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