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a b s t r a c t

Multistability or coexistence of different attractors for a given set of parameters is one
of the most exciting phenomena in dynamical systems. It can be found in different areas
of science, such as physics, chemistry, biology, economy, and in nature. The final state of
a multistable system depends crucially on the initial conditions. From the viewpoint of
applications, there are two major issues related to the emergence of multistability. On one
hand, this phenomenon often can create inconvenience, as for instance, in the design of a
commercial device with specific characteristics, where multistability needs to be avoided
or the desired state has to be stabilized against a noisy environment, and on the other hand,
the coexistence of different stable states offers a great flexibility in the systemperformance
without major parameter changes, that can be used with the right control strategies to
induce a definite switching between different coexisting states. These two examples alone
illustrate the importance of multistability control in applied nonlinear science. For the last
decade a lot of research has been devoted to the development of control techniques of
multistable systems. These methods cover several strategies, going from feedback control
methods to nonfeedback, such as periodic or stochastic perturbations capable of changing
the coexisting states stability and driving the system from multistability to monostability.
We review themost representative control strategies, discuss their theoretical background
and experimental realization.
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1. Introduction

In dissipative systems, multistability means the coexistence of several possible final stable states (attractors) for a given
set of parameters. The final state to which the system will converge depends crucially on the initial conditions, i.e., the
long-term dynamics corresponding to one of the attractors is defined by the initial conditions. The set of initial conditions
that give rise to a set of trajectories converging towards to the same attractor, called basin of attraction, can have a rather
complicated, fractal structure. There exists a nontrivial relationship between the coexisting asymptotic states and their
complexly interwoven basins of attraction that makes multistable systems extremely sensitive to any perturbation. The
region of coexistence of many stable states is a critical one, because small noise or any other external perturbation may
switch the system from one attractor to any other, adding a new feature to the dynamical behavior.

The phenomenon of multistability has been found in almost all areas of science and nature. The first study, which also
coined the term multistability, was devoted to visual perception [1]. A qualitative hint on the role of multiple basins of
attraction of coexisting states is contained in some experimental observations of hydrodynamic instabilities [2,3]. However,
clear evidence of the coexistence of attractors was manifested by Arecchi and his coworkers, first in electronic circuits [4,5]
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and then in a gas laser [6]. In both cases, multistability was revealed as appearance of a low-frequency spectral component
in the power spectrum due to noise-induced switches between coexisting states.

The phenomenon of multistability has been identified in different classes of systems, such a weakly dissipative systems,
coupled systems, delayed feedback systems, parametrically excited systems, and stochastic systems (cf. [7] and references
therein). Experiments as well as theoretical models have revealed different routes to multistability in the different system
classes. The appearance of a multitude of attractors depends in general on the most important parameters characterizing
a particular system class, such as, the strength of dissipation, the kind and strength of coupling, the value of the time
delay, amplitude and frequency of the parameter perturbation and the noise intensity. However, despite all differences
in mechanisms of the multistability emergence, multistable systems belonging to every system class share the property of
their extreme sensitivity to noise. Additionally, multistable systems offer a great flexibility in different behaviors taking into
account that each attractor represents a different system performance. The control of multistability is a major challenge
for nonlinear sciences due to the high sensitivity of multistable systems to any perturbation. The control should be robust
against noise when a certain system performance is desired. If the coexistence of multiple attractors is undesirable, what is
required for many applications, control strategies to suppress multistability must be developed, by contrast, one may use
multistability as an advantage by applying control techniques to induce switches between some of the coexisting states,
i.e. different system performances.

In the last decade, various approaches to control multistability have been developed (see, e.g. [8] and references therein).
Feedback control for stabilizing attractors via targeting methods to reach certain preselected attractors by applying random
or periodic perturbations to a control parameter or a system variable is a valuable technique. Control strategies are not only
theories that use simple dynamical models as paradigms, but have already been successfully applied in many experiments.

In this Report, we review the most important techniques for controlling multistability in diverse fields of science, such
as electronics, optics, chemistry, and biology in order to give some insight into the current research. To emphasize the
problem omnipresence, we start with an overview of the detection of multistability in various systems. Then, in Section 2
we formulate control goals and illustrate its necessity in different research areas. Nonfeedback control strategies mainly
designed to annihilate certain attractors are discussed in Section 3 in order to turn a multistable system into a monostable
one. Section 4 is devoted to feedback control to reach a preselected performance of the system. The role of noise in the control
problem is examined in Section 5, followed by a discussion of the state of the art in Section 6 that includes the perspectives
for future research.

The development and application of the methods for controlling multistability is far from being complete. Particularly,
during the last decade the number of papers reporting the coexistence of attractors is enormously increasing so that one
can expect a further rapid development of this field during the next decade.

1.1. Multistability: a widespread phenomenon in dynamical systems

Many dissipative nonlinear dynamical systems exhibit the coexistence of several stable states (attractors) for a given
set of parameters. This phenomenon known as multistability has be found in almost all natural sciences, including
electronics [2], optics [9], mechanics [10], and biology [11]. Each attractor possesses its own basin of attraction, i.e. a
well defined set of initial conditions that in a long-term limit will all reach it. The properties of the basins of attraction
are largely determined by the insets and outsets of regular saddles [12]. The knowledge of the systematic organization
of coexisting basins of attraction of multiple states is important to predict the system’s behavior in the long-term run. A
nontrivial relationship between these coexisting asymptotic states and their complexly interwoven basins of attraction
makes multistable systems both, extremely sensitive to any perturbation and crucially dependent on the initial conditions.

When a control parameter is varied and passes through a bifurcation, the system dynamics may drastically change, for
instance, a limit cyclemay change its period or an attractormay change its type, e.g. from stationary to periodic. Additionally,
attractors can be born or die at various bifurcations. Very often, a new attractor is born in a saddle–node bifurcation where
a pair of stable and unstable fixed points or periodic orbits appear. The birth of the attractor comes with the emergence of
its basin of attraction whose boundaries can be either smooth or fractal. While a bistable system having only two coexisting
attractors often possesses smooth boundaries of their respective basins of attraction, amultistable systemhabitually exhibits
fractal basin boundaries.

Next, we will give a brief review of the most important research directions related to multistable systems, going
from perception, following by biological, physical, and chemical systems to ecosystems, neuroscience, climate, and social
dynamics.

1.1.1. Multistability in perception
The perception of visual and auditory signals in the brain was among the first issues discussed in terms of multistability

that has been introduced to provide mechanisms for information processing in biological neural systems. The term
‘‘multistability’’ was first used with respect to visual perception in 1971 [1]. Multistability occurs when a single physical
stimulus produces alternations between different subjective percepts [13]. In vision science, multistable perception
characterizes the wavering percepts that can be brought about by certain visually ambiguous patterns, such as the Necker
cube and Rubin vase, as shown in Fig. 1. Some authors argue, that every pattern is, in a way, an ambiguous multistable
pattern, but that in everyday life we are usually able to resolve and avoid ambiguity by the introduction of additional
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Fig. 1. Examples of bistable visual perception. These are famous optical illusion pictures, which can be seen in one of two different ways. (a) Necker cube.
The isometric perspective of a wire-frame drawing makes the ball perceived plan being in front ambiguous. (b) Rubin vase. The picture can be seen as
either two facing profiles or as a symmetrical vase in the center.

information [14]. When such figures are viewed for an extended time, the two percepts alternate spontaneously, changing
as often as every few seconds. This alternation has been attributed to neural adaptation or satiation [15,16]. Perceptual
multistability can be evoked by visual patterns that are too ambiguous for the human visual system to recognize with one
unique interpretation. Since most of such images lead to an alternation between two mutually exclusive perceptual states,
they are sometimes also referred to as bistable perception [17]. Magnetoencephalographic (MEG) measurements of early
visual cortex activity displayed a good correlation with intermittent switches between face and vase percepts in Rubin’s
face–vase illusion [18].

It is supposed that the biological origin of bistable visual perception lies in noise, inherent to brain neuron cells activity,
which induces switches between different perception states [19,20]. The interpretation of visible images is defined by
previous knowledge and personal experience that act as initial conditions. The switches are stochastic processes according
to a Markov chain [21] and are measured by recording either phase durations or percept frequencies [22]. Mamassian and
Goutcher [23] developed a method to analyze instantaneous measures of dominance and transition between percepts. The
analysis extracts three time-varying probabilities. First, the transient preference represents the probability of perceiving
one interpretation at one instant. Second, the reversal probability is the probability that the current percept will change at
the next evaluation. Finally, the survival probability is the probability that at one instant the current percept will not switch
to the alternative interpretation.

Multistability is also evident in auditory perception, where discontinuous presentation is the rule. Repeated presentation
of an ambiguous word can lead to verbal transformations [24,25], but these often involve multiple alternatives that follow
an irregular progression. A famous example is the tritone paradox [26] which involves pairs of tones that can be perceived
as either ascending or descending in pitch. Although such a pair may be perceived differently in different contexts [27],
repeated presentation of the same pair generally does not lead to a change in perception. Although neural adaptation occurs
in hearing, it seems to take place mainly at a more peripheral level than that of the categorical percept (see, e.g., [28]).

Multistability in metrical interpretation of a melody was studied by Repp et al. [29,30]. They have shown that although
the metrical structure rarely changes spontaneously, it is both multistable and highly susceptible to effects of intention.
While it is similar in some ways to reversible visual figures, it is also very different in other ways. Two striking differences
between visual chimeras and melodies, however, are in the switching rate and in the extent to which the switching is
under intentional control. Visual figures tend to reverse every few seconds, and the viewer’s intentions have only relatively
mild effects on the rate of switching. By contrast, metrical interpretations are stable for minutes before they switch, if
ever they do; furthermore, when they do, it seems unlikely that they will ever switch back spontaneously to the original
interpretation.

Although several attempts have been made to voluntary control multistable perception, this control seems to be limited
[31,32].

1.1.2. Multistability in biological systems
The existence of multiple operating regimes is essential for biological systems since they display functional flexibility

in responding to various stimuli. It was in the context of a metabolic system investigation [33] that multistability was
first discussed in terms of dynamical system theory. Since then, multistability is an important recurring theme in cell
signaling.We believe it will be found very relevant to any biological system that switches between discrete states, generates
oscillatory responses, or ‘‘remembers’’ transitory stimuli [34]. The presence ofmultiple attractors has fundamental biological
significance, notably in cell differentiation and sympatric speciation [35–39].

Biological mechanisms and topological structures leading to multistability have been extensively studied in genetic
oscillators [40–45]. Very simple biochemical systems regulated at the level of gene expression or protein function are capable
of displaying a complex dynamic behavior. Among the various patterns of regulation associated with nonlinear kinetics,
multistability allows a graded signal to be turned into a discontinuous evolution of the system along one of several possible
distinct pathways; this process can be either reversible or irreversible. Multistability plays a significant role in some of the
basic processes of life. Itmight account formaintenance of phenotypic differences in the absence of genetic or environmental
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distinctions, as has been demonstrated experimentally for the regulation of the lactose operon in Escherichia coli, where cell
differentiation was explained by multistability [35].

Multistability has certain unique properties not shared by other mechanisms of integrative control. These features will
prove to play an essential role in living cells and organisms dynamics; multistability has been invoked to explain mitogen-
activated protein kinase cascades in animal cells [46–48], cell cycle regulatory circuits in Xenopus and Saccharomyces
cerevisiae [49,50], the generation of switch-like biochemical responses [46,47,51], and the establishment of cell cycle
oscillations and mutually exclusive cell cycle phases [50,52], among other biological phenomena. On the other hand, there
are also serious doubts that the coexistence of attractors is the dynamical origin of all biological switches [53]. Nevertheless,
it is generally accepted that two paradigmatic gene-regulatory networks in bacteria, the phage switch and the lac operon (at
least when induced by non-metabolizable inducers), do show bistability [34,54,55]. In the former, bistability arises through
a mutually inhibitory double-negative-feedback loop, while in the latter, a positive-feedback loop is responsible for the
bistability.

1.1.3. Multistability in hydrodynamics
Shiau et al. [56] have found the coexistence of two or three periodic regimes in a two-dimensional flow passing to a

square cylinder at low Reynolds numbers. They showed that when the system exhibits the coexistence of the period-1 and
period-3 vortices behind the cylinder, the spatial symmetry is still maintained, however, when the system is tristable, the
period-3 vortex loses spatial symmetry, but the period-1 vortexmaintains the spatial symmetry. The experimental evidence
of multistability in a turbulent flow has been demonstrated by Ravelet et al. [57]. At high Reynolds numbers, because the
global bifurcation between states is highly subcritical, multiple turbulent states that keep a memory of the system history
coexist.

1.1.4. Multistability in optical systems
It was not until the beginning of the 80s, that multistability became a prominent phenomenon in laser physics. Clear

experimental evidence of multistability in physical systems was first shown by Arecchi et al. in a modulated CO2 laser [6].
They referred to the coexistence of oscillatory attractors as generalized multistability in order to distinguish it from the
ordinary coexistence of stationary solutions [58], e.g. optical bistability, where two dc output amplitude values appear for
a single dc driving amplitude [59]. Since then, multistability has been detected in other types of lasers, including a Nd:YAG
(neodymium doped yttrium aluminum garnet) laser with intracavity second harmonic generation [60], semiconductor
[61–64], and fiber [63,64] lasers.

A particular kind of multistability, spatial multistability has also been observed in a laser. This multistability appears in
the transverse spatial patterns due to the interaction of the cavity modes [65]. To describe spatial multistability in optical
patterns, Brambilla et al. [65] established a general connection between laser physics and hydrodynamics by reformulating
the laser dynamical equations in a similar form of a compressible fluid hydrodynamical equations, i.e. themass conservation
law and the Bernoulli equation. Two-dimensional optical patterns can also appear as a consequence of phase-locking of
several wave vectors with different lengths and orientations [66]. Multistability of the patterns is considered to be a very
promising phenomenon for information processing, associative memories, and pattern recognition [67].

1.1.5. Multistability in semiconductor materials
Semiconductor superlattices are known to give rise to a variety of different dynamical regimes related to negative

differential conductivity. The electric field domain formation in weakly coupled superlattices leads to a hysteresis in the
current–voltage phase space that is associated with multistability in the current [68]. Experimentally, when the voltage is
swept in a well-defined manner, coexisting stable current values have been obtained. This phenomenon has already been
simulated by simple theoretical models that give a qualitative accurate description of the effects of electric field domain
formation [69,70]. A THz radiation applied to such a superlattice leads to new regions of photo-inducedmultistability caused
by the interplay of nonlinear properties of the semiconductor superlattice due to the Coulomb interactions and the photon-
assisted channels [71].

It was shown that the negative differential conductivity, by inducing a current flow between a contact in the center
and a circular ring electrode, often gives rise to the formation of multiple current filaments in n-GaAs Corbino disks [72]
which mimic semiconductors without lateral boundaries. Both theoretical and experimental studies have demonstrated
the coexistence of several different filamentary patterns for the same bias voltage [73].

Multistability also appears in nanometer-scale semiconductor heterostructures as differently quantized charge
distributions and can be controlled by external laser pulses [74].

1.1.6. Multistability in chemical reactions
Several chemical reactions exhibit different dynamical behaviors; periodic, quasiperiodic, and chaotic orbits have been

found in continuously stirred tank reactors [75,76], as well as in the transients of batch reactors [77]. Besides, bistability
has been observed in several oxidation reactions [78]. The coexistence of more than two attractors has been reported for
the steady state behavior of a circular and a linear array of three photosensitive biochemical reactor cells connected by
diffusion [79]. In each of the reactors, a nonlinear photo-biochemical reaction takes place where nonlinearity arises from
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two different processes, namely, the consumption of the substrate by the photochemical reaction and the light absorption by
the substrate. The coexistence of several steady states in this reaction has been shown both theoretically and experimentally
in certain parameter ranges. Furthermore, coexisting states have been found in arrays of diffusion coupled flow reactors,
where in each reactor a bistable chemical reaction occurs [80].

Even more complicated behavior has been observed in the chlorite–thiosulfate [81] and chlorite–iodide reactions [82].
Both reactions are characterized by a remarkable irreproducibility in the behavior; despite the experimental care to ensure
the same outcomes, for the same setup and experimental conditions, the long-term behavior varied from trial to trial. This
apparently random behavior is related to uncertain destination dynamics [83] (cf. Section 2.1.5), the possible underlying
mechanism for this irreproducibility may be an extreme sensitivity to initial conditions.

Multistability is not only be found in coupled reactor systems, but also in spatially extended reaction–diffusion systems.
Coexisting spatially inhomogeneous states have been identified in hexagonal and square Turing superlattice patterns [84]
in a photosensitive reaction–diffusion system [85]. This multistability can be employed to create multiple adjacent spatial
domains with diverse geometries and stationary frontiers between them.

1.1.7. Multistability in ecosystems
Several ecosystems have been shown to possess two or more alternative states [86,87]. Studies of the emergence of

such alternatives states and their consequences in terms of possible regime shifts or bifurcations in ecological systems,
ranging from coral reefs [88,89] and deserts [90] to lakes [91] and tidal flats [92,93] have proliferated in the last decade.
Ecological systems are networks of species organized in different trophic levels, where the interplay of species is basically
determined by predator–prey interactions and food competition. Such alimentary webs usually possess a complicated
interaction structure that yields a variety of equilibrium states related to sets of different proportions of coexisting species,
i.e. different species community compositions corresponding to different levels of biodiversity. In the field, states with
low biodiversity are usually considered undesirable and should be avoided. The coexisting species can be characterized
by highly complicated fractal basins of attraction of the various equilibria; a minute perturbation is sufficient to cause a
shift in biodiversity because of a transition to a state where some species have died out [94]. As a result, one has to deal with
a fundamental long-term unpredictability of the species composition in multi-species ecosystems.

Since ecological systems often cannot be considered as spatially homogeneous, one has also to include influences like
landscapes with different environmental conditions leading to heterogeneous forcing, as well as dispersal of the species
in space. The corresponding pattern formation phenomena also lead to multiple patterns which are related to different
relative abundances of the species in space. In some instances, such as biogeochemical models describing the degradation
of organic matter by bacteria in marine sediments [95] or to the emergence of vegetation patterns in semiarid areas [96,97],
inhomogeneous patterns can be explained by Turing instabilities.

1.1.8. Multistability in neuron dynamics
Multistability has been proposed as the basic mechanism for associative content-addressable memory storage and

pattern recognition in both artificial [98] and livingneural systems [99]. The coexisting attractorsmimic different brain states
representing particular objects of perception which can be selected by giving the neural network some input corresponding
to an initial condition. This corresponds to a parameter-independent mode-switching mechanism with fixed parameter
values, as opposed to a parameter-dependent one based on changing parameter values, such as synaptic couplings [100].

Based on the physiology of neural systems, various dynamical concepts, such as time delay [101], phase locking
patterns [102], etc., have been introduced to explain their multistability. Delayed recurrent neural loops has been studied
by Foss et al. [11] as a possible mechanism leading to a multistable behavior. They investigated the dynamics of a recurrent
inhibitory loop consisting of two coupled neurons: an excitatory neuron that transmits a signal to an inhibitory neuron
which in turn inhibits the excitatory neuron firing. This inhibitory effect depends on the delay time τ needed for the signal
to travel along an axon and dendrites. Using both an integrate-and-fire model and a Hodgkin–Huxley type model, different
kinds of multistability corresponding to different firing patterns have been found without a delayed feedback, depending
on the nature of firing (excitatory or permanent firing). An experimental realization of this kind of multistability has been
reported for slowly adapting periodically spiking Aplysiamotoneurons [103].

On the level of a single neuron, multistability is represented by the coexistence of basic firing patterns, like silence,
spiking, regular, and chaotic bursting [104].When noise is imposed, neurons can switch between the different firing patterns
which can be interpreted as a dynamic short-termmemory [105]. A similar behaviorwas observed for coupled entire networks
of integrate-and-fire neurons [106]. The analysis of multistable networks merits a significantly different treatment [107].
Noise-driven switching between oscillatory states with different low and high frequency firing rates has also been found
in a globally coupled (excitatory and inhibitory) FitzHugh–Nagumo oscillators network [108]. The state selection depends
on the external input applied as a forcing. By means of an optimal noise level, the system demonstrates a considerably
improved coherence between the external forcing and themean firing rate similar to the stochastic and coherence resonance
phenomena [109,110].

In neural networks, multistability and particularly bistability play an important role in cell signaling and in neuronal
interactions [34,35,111]. Communication between cells takes place at synaptic contacts, where an arriving action potential
releases a neurotransmitter, thus affecting the post-synaptic potential of the target cell. Typically, each cell receives input
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from thousands of cells mediated by many different neurotransmitters, and consequently modifying the post-synaptic
potential by excitation or inhibition [55]. The role of multiple dynamical regimes in neuronal interactions has also been
examined both theoretically and experimentally [111].

A dynamical model for the pattern of contour detecting neurons in the visual cortex has been developed by Wolf [112],
who introduced a permutation symmetrywhich guarantees the emergence of contour detectors for all stimulus orientations.
The theory predicts a novel discrete multistability of visual cortical pattern formation. It is intimately linked to the
functional requirement of representing all stimulus orientations. This kind of multistability is suspected of having profound
implications for visual development and plasticity. When it is encountered in visual cortical circuits, biological factors, such
as genetic information, spontaneous activity patterns, and visual experience are the elements that help in the selection
of structured orientation representation choosing from a discrete repertoire of stable patterns; this emergent collective
property describes the cortical learning dynamics.

1.1.9. Multistability in climate dynamics
Since the climate is regulated by numerous natural parameters and characterized by various state variables, many

previous studies support the idea of a multistable character of climate dynamics emphasizing that a climate change can
appear as a shift in the preference of some coexisting attractors or climate regimes [113–116]. Transitions between different
dynamical regimes and their corresponding critical thresholds for environmental parameters (sometimes called tipping
points) are of increasing interest in climate studies [117,118]. Coexisting attractors, mostly alternative states related to
bistability, have been obtained in deep ocean convection [119–121], atmosphere variability [122], ice sheet dynamics
[123,124], and Sahara desertification [90]. In each of these phenomena, the sizes of the basins of attraction of the possible
states may vary dramatically; a particular state is determined by initial conditions and may undergo a major change due to
noisy environment, e.g. random fluctuations in wind direction, atmospheric pressure, and temperature.

Multistability with more than two different stable states has been observed in the thermohaline ocean circulation
(THC) model [125–128]. The THC is a large scale circulation around the globe, that is particularly important in the Atlantic
ocean. This circulation driven by density gradients between the Southern and the Northern hemispheres, accounts for the
relatively warm climate in Northern and Western Europe compared to the climate in North America at the same latitude.
The THC is responsible for a considerable heat transport to Northern latitudes. Simulations using a global ocean circulation
model yield different stable states corresponding to different strengths of the overall circulation towards the North Atlantic
[120,128,129]. These states are related to distinct sites in the ocean, where the heat is released into the atmosphere and deep
ocean convection occurs. One of these stable states is associated with a breakdown of the THC, i.e., the interruption of the
heat transfer to Northern latitudes will lead to a dramatic climate change in Europe. This can be regarded as one example of
a multistable system, where at least one of the stable states is undesired and needs to be avoided at all costs.

1.1.10. Multistability in social systems
Nowadays, in the epoch of social networks, the understanding of dynamical processes in social–political systems is

extremely important. Many researchers seek a comprehension of how societies move towards consensus in the adoption
of ideologies, traditions, and attitudes. The dynamics of social networks explains how one individual adopts a new state in
behavior, opinion, or consumption through the influence of others. Since opinions spread through social contacts, competing
states are an intrinsic part of society.

A simple example of bistability in social competition is the naming game [130], where two words compete across an
intermediate state and agents accept both words [131]. Multistability has been introduced in the network model [132],
where the agents represented by vertices are allowed to have one of several opinions each. These opinions are updated by
voter dynamics of the network. Moreover, agents accept connections with other agents provided they have equal opinions.
When links are removed and disconnected agents are assigned to have new opinions randomly, the model has multiple
solutions with a mixed metastable state of the disconnected agents, this corresponds to a dissolved society.

In the model introduced by Sneppen and Mitarai [133], states or species compete and exhibit multistability through
combinations of antagonistic conversions. In the context of a society with antagonistic political fractions, the mixed
metastable statemay be associatedwith a representative democracywithmany balanced interest groups,while the extreme
states correspond to a one-party system.

2. Multistability emergence and control goals

As illustrated in the previous chapter, multistability is a widespread general phenomenon. Accordingly, there is a wide
variety of reasons leading to the coexistence of multiple stable states in a complex system. In the following we will discuss
the most important known mechanisms for multistability emergence in dynamical systems. These are weak dissipation,
homoclinic tangencies, coupling, delayed feedback, and random perturbations. Each of these processes has particular
properties which can partly be used to design a control strategy.

Controlling complexity of dynamical systems is a fascinating challenge that will prove to have many applications. Each
application implies different difficulties to be solved. Before formulating control goals, it would be wise to take a closer look
at the dynamics of multistable systems in reality.
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2.1. Mechanisms for multistability

Though mechanisms for multistability emergence can be rather different, the overall behavior of systems with multiple
coexisting attractors is quite similar. They are characterized by a high degree of complexity in their behavior due to the
‘‘interaction’’ among multiple states. Firstly, the dynamics of a multistable system is extremely sensitive to the initial
condition; because of a large number of different coexisting attractors, very small perturbations in the initial condition may
cause an enormous change in the final state. This final state sensitivity is especially pronouncedwhen the basins of attraction
are complexly interwoven. Secondly, the qualitative behavior of the system sometimes changes dramatically under a small
variation of the systemparameters; the parameter spacewheremultiple states are stable can be so small that a slight change
in a control parameter may cause a huge change in the number of coexisting attractors, i.e., attractors appear and disappear
quickly when a system parameter is varied.

Such a behavior poses particular difficulties for the multistability control. While designing a control strategy, one has
to ensure that the parameter variation due to the control does not drastically change the system, meaning that only small
control impacts are desirable in many cases. On the other hand, the extremely high sensitivity to perturbations possibly
leading to a different state needs a special care when designing an adequate control technique.

2.1.1. Weakly dissipative systems
One of the easiest ways to construct a class of multistable systems is to take a conservative system and add a

small amount of dissipation. Conservative systems are characterized by two types of dynamics: regular motion and
Kolmogorov–Arnold–Moser (KAM) tori in the hierarchy of islands which are embedded in a phase space chaotic sea.
Introducing a small damping ν which turns the islands into sinks and the permanent chaotic motion into transient chaos
[134], one can obtain systems with an arbitrarily large number of coexisting attractors since their number scales roughly
with 1/ν [135]. Dynamics in this system class is dominated by regular motion, i.e., almost all attractors are periodic orbits
with mainly low periods. High-period orbits have very small basins of attraction and therefore it is very difficult to find
them.

One of the simplest systems which exhibits coexistence of attractors is the dissipative standard map of a periodically
kicked rotor without gravity. This map can be considered as a paradigm to explain the emergence of multistability in a
weakly dissipative system. If there is no damping in the pivot of the rotor, this system displays infinitely many marginally
stable periodic orbits. When a small amount of damping is added, the map is described by

xn+1 = xn + yn mod 2π, (1)

yn+1 = (1 − ν)yn + f0 sin(xn + yn), (2)
where x is the phase variable and y is the angular velocity. The map dynamics depends on both the kick strength f0 and
the damping ν. When the damping is introduced, the marginally stable periodic orbits turn into sinks. As a result, though
the number of marginally stable orbits is believed to be infinite in the conservative case, the number of attractors in the
dissipative case is finite [135].

Another intriguing feature of this class of systems is that chaotic attractors are rare because their existence intervals and
their small basins of attraction shrink to zero in the conservative limit along a certain path in parameter space [136]. For
periodic orbits, another path can be found where the same behavior is encountered [137]. For sufficiently small dissipation,
it is possible to obtain the coexistence of a very large number of attractors, which are mainly low-period periodic orbits.
This phenomenon was found in the single and double rotors, optical cavity map, and Hénon map [135,138,139].

The coexisting stable periodic orbits have a complex interwoven structure of their basins of attraction with basin
boundaries permeating most of the state space. In fact, when estimating the box dimension of the union of all basin
boundaries, the result is very close to the state-space dimension, i.e., most of the state space is indeed filled with boundary
points [135]. Although the attractors are mainly periodic orbits and hence correspond to regular motion, this does not
preclude these systems from showing a chaotic behavior. The chaotic component of its dynamicsmanifests itself as transient
chaos because it is found in chaotic saddles embedded in basin boundaries. Due to the complexly interwoven basins of
attraction, such systems are highly sensitive to a small amount of noise [140,141].

In particular, weakly dissipative systems can be considered as an important class of highlymultistable systems occurring
inmanymechanical systems, such as mechanical oscillators [142] and suspension bridges [143]. One can argue that the two
attributes, namely, accessibility to many different states and high sensitivity, are an asset in the sense that they are suitable
for easy control of the complex system. The transition between different stable states poses however a delicate problem in
view of long chaotic transients in the basin boundary. This is the problem of migration between different coexisting states
and their stability [144,145].

2.1.2. Gavrilov–Shilnikov–Newhouse sinks
Another importantmechanism leading tomultistability is the appearance of homoclinic tangencies and their stabilization

by small perturbations or by coupling of systems possessing a large number of unstable invariant sets. Contrary to earlier
conjectures that generic systems might have only finite number of attractors, Gavrilov, Shilnikov [146], and Newhouse
[147–149] have proved that a class of diffeomorphisms in a two-dimensional manifold has infinitely many attracting
periodic orbits (sinks), a result later extended to higher dimensions [150]. Models of such diffeomorphisms have been
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constructed by Gambaudo and Tresser [151]. Later, Wang [152] has proved that the Newhouse set has a positive Hausdorff
measure.

After publication of these results, intense studies have been devoted to the unfolding of homoclinic tangencies and the
essential question arose: whether in addition to infinitelymany sinks, therewould also be infinitelymany strange attractors
near the homoclinic tangencies. The positive answer to this question was given by Colli [153]. Having established the
existence of infinitelymany sinks and infinitelymany strange attractors near homoclinic tangencies, the important practical
problem that presented itself has been the stability of these attractors under small random perturbations. Scientists are still
looking how to give robustness to the system subject to small noise, so that the set of attractors remains infinite.

The complexity of weakly dissipative systems has been studied in detail by Goswami [154], who showed that the
appearance of period-n solutions in a periodically forced system can be explained in terms of harmonic and subharmonic
resonances. This phenomenon is related to the emergence of Gavrilov–Shilnikov–Newhouse sinks in the neighborhood
of homoclinic bifurcations. If a control parameter is varied in the neighborhood of a homoclinic tangency of a first-order
(e.g. period-1) saddle, first-order secondary Newhouse sinks are born. In a similar way, higher-order secondary Newhouse
sinks around the first-order secondary sinks appear. As a result, the whole bifurcation structure exhibits self-similarity in
parameter space [155,156]. Moreover, the basins of attraction of these higher-order Newhouse sinks are organized so that
they are progressively intertwined with the basins of attraction of lower-order sinks.

2.1.3. Coupled systems
Multistability often arises in coupled systems due to an increase in complexity when two or more systems are joined.

The emergence of multistability depends strongly on the kind of coupling (linear or nonlinear, unidirectional ormutual) and
on the coupling strength. As expected from the consideration in Section 2.1.1, coupling of weakly dissipative systems leads
to a very large number of coexisting attractors [135].

Multistability in coupled systems is often accompanied by the loss of synchronization. This was observed in the coupled
logistic maps [157], Hénon maps [158,159], genetic elements [45], mutually coupled semiconductor lasers [160], and
ensembles of coupled oscillatorswhere cluster formationwas demonstrated [161,162]. In the latter, the number of attractors
increases drastically as the number of oscillators increases, resulting in attractors crowding in phase space. In their study of
coupled Josephson junctions and coupled circlemaps,Wiesenfeld and Hadley [163] found out that in both cases the number
of stable limit cycles scales as (N − 1)!, where N is the number of oscillators. The attractor crowding makes these systems
extremely sensitive to noise-driven hopping among many coexisting states.

Multistability is also found in spatially extended coupled systems, including both, dynamical systems containing
diffusively nearest-neighbor coupled identical elements and systemswith global couplingwhere each element is coupled to
any other. A high degree ofmultistability exists even in very simplemodels, namely, coupledmap lattices [164] inwhich the
coupling forms clusters where all elements exhibit the same dynamics, thus resulting in amultitude of coexisting attractors.
The classification of emerging patterns in the globally coupledmap lattice includes coherent, ordered, partially ordered, and
turbulent phases [164] according to the number of clusters and their basins of attraction. It has been shown that the number
of attractors is larger when the coupling strength between the elements in the lattice is small, that is again the consequence
of weak dissipation.

A particular type of multistability, phase multistability, when stable synchronous regimes with different phase
relationships between oscillations coexist, has been found in coupled oscillators. Phase multistability was first observed
for diffusively coupled oscillators which individually follow a period-doubling route to chaos [165,166]. The number
of coexisting regimes at the chaos threshold inside the synchronization region for a weak coupling may be huge. The
coexistence of periodic regimes with different phase shifts has also been found in two coupled Rössler oscillators [167].
Some period-doubling bifurcations are replaced by torus (Neimark–Sacker) bifurcations leading to the emergence of new,
non-symmetric families of attractors [168].

2.1.4. Delayed feedback systems
Multistability often appears in systems with time-delayed feedback. This mechanism predicted by Ikeda [169,170] was

experimentally confirmed, first in an electro-optical bistable device with a computer delay [171], and then in a laser diode-
pumped hybrid bistable system, where a very large number of multistable self-oscillatory modes have been observed at a
long delay time [172]. These systems are commonly described by delay differential equations ẋ = f (x(t), x(t − τ)). While
without delay in the feedback the system ismonostable, the systemwith delayed feedback becomesmultistable. The number
of coexisting attractors, usually periodic orbits, depends on the delay time. The necessary condition for the emergence of
new stable periodic orbits is that the delay time τ has to be larger than the system response time [170,173].

This type of multistability was found in the Rössler oscillator [174], electronic circuits [175], CO2 [176] and
semiconductor [177] lasers, and in neuron models [11]. Multistability induced by delayed feedback was also studied in
discrete-time dynamical systems, such as the logistic and Hénon maps [176,178,179]. Besides, locally coupled maps and
globally coupled systems with time delay also exhibit the coexistence of attractors [180].

2.1.5. Extreme multistability
The phenomenon of extreme multistability or the coexistence of infinitely many attractors for a given set of parameters

has been found in two system classes, namely, in forced systems, where a dissipative system is forced by a conservative
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system [181], and in coupled systems with a specific type of coupling [83,182]. In both cases, multistability does not arise
due to bifurcations, where new attractors are born as a control parameter is varied, but infinitely many attractors appear
suddenly.

To show how one can get a forced system exhibiting infinitely many attractors, Lai and Grebogi [181] considered skew
product dynamical systems in which a conservative (Hamiltonian) system acts as a driver for a dissipative system. They
called such systems Hamiltonian-driven dissipative dynamical systems and showed that in this class of systems an infinite
number of distinct attractors coexist. The attractors can be either quasiperiodic, strange non-chaotic, or chaotic with
different positive Lyapunov exponents. Specifically, they studied the following general class ofN-dimensional discretemaps
in RN :

xn+1 = f(xn),
yn+1 = F(xn, p)G(yn), (3)

where x ∈ S ⊂ RNS , y ∈ T ⊂ RNT , NS ≥ 1, NT ≥ 1, NS + NT = N , and p is a parameter. The conservative dynamics of the
area-preserving map x takes place in the invariant subspace S. Therefore, every initial condition starting in S results in the
trajectory which remains in S forever.

The dynamics of y occurs in the subspace T that is transverse to S. The functions F(xn, p) and G(yn) were chosen so that
themagnitude of the determinant of the Jacobianmatrix

DJy ≡ |∂yn+1/∂yn| is less than one, in some phase–space regions.
Thus, the dynamics in the transverse subspace is dissipative and hence the whole system is also dissipative. The driving
variable x exhibits different kinds of dynamics, e.g. quasiperiodic motion on KAM tori or chaotic motion, so that every initial
condition in x gives rise to a different forcing and, due to the skew product structure, to a different attractor in the full
phase–space. This is a way to obtain a system with infinitely many attractors.

While the observed complexity in the Hamiltonian system is a direct consequence of the Hamiltonian phase–space
structure that typically contains chaotic components and hierarchies of KAM islands, the introduction of dissipation in the
transverse direction gives rise tomuch richer dynamics. The quasiperiodicmotion onKAMsurfaces in the invariant subspace
can lead to quasiperiodic, strange non-chaotic, and chaotic attractors in the full phase space. Moreover, chaotic motion in
the invariant subspace can induce chaotic attractors with different positive Lyapunov exponents.

Another kind of extreme multistability has been discovered by Sun et al. [83] who demonstrated that two identical
coupled systems, e.g. Lorenz systems coupled in a determined way, exhibit an infinite number of coexisting attractors. One
such coupling for the Lorenz systems has been designed as follows

ẋ1 = σ(y1 − x2), (4)
ẏ1 = rx1 − y1 − x1z1, (5)
ż1 = x1y1 − bz1, (6)
ẋ2 = σ(y2 − x2), (7)
ẏ2 = rx1 − y2 − x1z2, (8)
ż2 = x1y2 − bz2. (9)

Note that the x variable from the second system enters the first equation of the first system, while the x variable from the
first system enters both the second and the third equations of the second system. This leads to a somewhat unusual coupling
which gives rise to a rather complicated dynamics.

The two coupled systems exhibit generalized synchronization in the long-term limit in such a way that the y and the z
components are completely synchronized, while the x components of the two oscillators keep a certain distance c. The value
of c is an arbitrary real number which is determined by the initial conditions in an intricate way. The dynamical problem
is better solved in terms of error variables which measure the distance from the synchronization manifold: e1 = x1 − x2,
e2 = y1 − y2, and e3 = z1 − z2. The error dynamics is then written as

ė1 = σ e2, (10)
ė2 = −x1e3 − e2, (11)
ė3 = x1e2 − be3, (12)

where the phase–space trajectory converges to the fixed point (e∗

1, e
∗

2, e
∗

3) = (c, 0, 0), whose stability can be proven using
the Lyapunov function V = e22+e23. To bemore specific, this describes a continuous set of fixed points, depending on the real
value of the constant c. The constant c is a conserved quantity that determines the synchronization manifold in which the
long-term limit dynamics takes place. In fact, as t → ∞ the state space is foliated into infinitely many such synchronization
manifolds, each with at least one attractor. The dynamics of such a system reminds us a lot of the conservative systems
dynamics, where for each value of the conserved quantity, e.g. energy, another behavior appears. However, it is important
to underline a fundamental difference; in the case of extreme multistability this conserved quantity is not given at very
beginning, but does evolve in time as the two systems are synchronized. This kind of complex dynamics is observed in
chemical models [183] and in two coupled autocatalator systems with generalized synchronization [182].

The general approach to designing a coupling which leads to extreme multistability has been recently developed by
Hens et al. [184] who explored two Rössler oscillators. They have shown that extreme multistability is possible in any two
identical chaotic systems with a specific type of coupling.
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2.1.6. Multistability induced by parametric forcing
Another mechanism for multistability emergence is a weak periodic perturbation imposed to one of the system

parameters. This route to multistability can be observed in a wide class of nonlinear driven systems which display a
Feigenbaum cascade to chaos via period-doubling bifurcations. A classical example is the quadratic map xn+1 = λ − x2n (λ
being the map parameter and n = 0, 1, 2, . . .), in which Sanju and Varma [185] demonstrated the appearance of bistability
when the additive forcing ϵ cos(2π j/p) (ϵ being the amplitude of forcing and j = 0, 1, . . . , p − 1) with period p = 2 was
added. Furthermore, they found that the forcing with p > 2 can induce multistability. If the map is in the period n, it will
possess k complementary n/k-period attractors, where k is the highest common factor of p and n.

Dynamical bistability induced by harmonic parametric forcing was demonstrated in the logistic map [186], the Hénon
map [187], and a loss-driven CO2 laser with modulated cavity detuning [188,189]. It was shown that the parameter
modulation stabilizes unstable periodic orbits by shifting period-doubling bifurcation points. The new, shifted positions
of the bifurcation points depend on the parameters of the external modulation or forcing, in particular, on its frequency and
amplitude. Bistability induced by a resonant perturbation at the first subharmonic frequency has been observed in a loss-
modulated CO2 laser [190,191] and in a fiber laser with dual-frequency modulated pumping [192]. Chizhevsky [193] has
shown that in the laser driven at frequency fd, an additional weak modulation at frequencies fd/n (n = 3, 4, 8, 16, . . .)
induces up to n coexisting attractors for certain system parameters. The external periodic forcing increases the system
dimension by one leading to the appearance of multistability. Since the modulated CO2 laser can be considered as a
nonautonomous system with a Toda potential [194], a similar behavior is expected in a large class of periodically forced
asymmetric nonlinear oscillators.

2.1.7. Noise-induced multistability
Some studies demonstrate thatmultistability canbe inducedbynoise. Such an effect has been found in systemsof coupled

oscillators [101] and in a field-dependent relaxationmodel [195,196]. The oscillations created by noise have statistical noise-
dependent properties and can be considered as a motion on a stochastic limit cycle with the corresponding noise-induced
eigenfrequency. In a globally coupled oscillator system, noise with a critical intensity induces a subcritical saddle–node
bifurcation from an asymmetric state to a symmetric state leading to multistability. It was observed [101] that the system
subject to noise with a finite correlation time exhibits not only ordered and disordered phases but also a multistable phase
of ordered and disordered states. The number of transition points for triple transitions, disordered phase → ordered phase
→ multistable phase → disordered phase, increases as both the correlation time and the coupling strength increase.

This phenomenonmaywell awaken a renewed interest linked tomemristive systems, like resistors withmemory, called
memristors, whose resistance varies according to the voltage applied to them or the current flowing through them [197].
The distinctive feature of all memristive systems is the frequency-dependent pinched hysteresis loop. Recent studies show
that such dynamical bistability (stochastic memory) can be induced by white noise of appropriate intensity [198].

Noise-induced bistability has also been found in a system of mutually coupled semiconductor lasers where random
spontaneous emission stabilizes an unstable fixed point which coexists with a chaotic regime [160].

2.2. Why we need to control multistability

Experimental and real-life systems are always subject to different kinds of noise. These random perturbations which are
inevitable can be either intrinsic fluctuations or externally imposed random signals. Due to the noise influence, amultistable
system becomes metastable, because the random perturbations kick the system out of the neighborhood of attractors and
initiate a transition to another coexisting state. This noise-induced attractor hopping leads to an overallmotion of the system
which consists of two phases: a regular one in the neighborhood of attractors and a chaotic one which corresponds to the
transitions between attractors taking place on the chaotic sets embedded in the fractal basin boundaries. The time needed
for the transition depends crucially on the structure of the basin of attraction; in particular, for fractal basins only very small
perturbations are sufficient to initiate a jump to another metastable state. Moreover, in highly multistable systems this
hopping dynamics often includes only a small fraction of all possible attractors [140,141]. The ones with the smaller basins
of attraction are usually ‘‘buried’’ under the noise, i.e., the trajectory will not stay in their neighborhood forever. This high
sensitivity to perturbations enriches the system dynamics and plays an important role in formulating various control aims.

First, for some applications multistability is an undesirable behavior of a system. If the system is designed to remain
at a certain dynamical state, a perturbation-induced jump to a coexisting state may change the performance and spoil the
reproducibility and hence reliability. Furthermore, as previously mentioned, the control problem very often becomes even
more involvedwhen the basin boundaries are fractal [199]. In this case, two control strategies are possible. On the one hand,
a control is needed to stabilize the systemagainst noise and keep it in a particular preselected attractor. On the other hand, an
external forcing can be applied with the aim of making the system monostable with only one global attractor conveniently
chosen in advance.

Second, for a system that has to preform different tasks it is highly advantageous that it possesses a multitude of
coexisting states assuming that each state corresponds to a particular task. In that case, the control aim is to enable the
system, without changing the setup, a well-defined switching between different states (tasks) on demand. Two different
goals, closely relatedwith the problemof attractor switching, can be formulated: (i) attractor selection, i.e. choosing a desired
attractor to which the system should converge, and (ii) attractor avoidance, i.e. the exclusion of certain undesired attractors
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from the dynamics. It should be noted that multiple coexisting attractors can be created or destroyed simultaneously in
multiple choice bifurcations [200]. These bifurcations are so sensitive to noise that the trajectories are unpredictable when
a system parameter is slowly varied through the bifurcation point. This dynamical determination demands an appropriate
control of the system.

Like in any other control theories (e.g. conventional linear and nonlinear control), we can distinguish two types of control:
feedback andnonfeedback control. Also, stochastic control ofmultistabilitywill be considered separately as a particular type.
The control of multistability may have different goals: (i) stabilization of particular attractors in the presence of noise, (ii)
directing a system to a desired attractor (targeting methods) or control of switches between attractors, (iii) destabilization
of undesirable attractors to transform a multistable system into a monostable one (attractor annihilation), (iv) a change in
the attractor character, e.g. converting a fixed point into a periodic orbit with different stability, (v) a change in the attractor
preference, i.e. a change in the volume of basins of attraction of coexisting states or the probability of their appearance
(statistical stability) in the presence of noise.

Next, we outline very briefly some important applications where the control of multistability could be useful.

2.2.1. Laser technology
Fast development of laser technology faces important technological problems which require multistability control. One

famous example is the so-called ‘‘green problem’’ [60] present in the operation of an intracavity frequency-doubled Nd:YAG
laser. Usually, this laser emits infrared light, that can be converted into visible green light by using a nonlinear optical
crystal. The nonlinear coupling between modes in the crystal gives rise to irregular fluctuations in the optical cavity, that
are amplified by the quality factor Q of the laser cavity and by the presence of the laser amplifier media. For practical
applications, this clearly undesirable for the laser performance. The irregular behavior of the intensity of this laser has been
widely investigated and has been associated with the destabilization of relaxation oscillations, always present in this kind
of systems. Such a behavior is attributed to the coexistence of multiple attractors which often appear in a systemwithmany
degrees of freedom. The irregularity in the laser intensity results from involuntary switches between the coexisting states, so
that additional stabilizationmechanisms like a feedback control need to be applied to obtain a stable output [201]. However,
the feedback signal itself induces multistability that has to be tackled by a control strategy to reach monostability.

2.2.2. Optical communication
In modern fiber communication technology, to transmit a signal through a lightwave carrier semiconductor and

fiber lasers are used. These lasers are nonlinear systems which can exhibit multistability when coupled or subject to
external driving [63,64,202–206]. This again is an example, where multistability is undesirable because it hinders efficient
communication and therefore it has to be avoided.

2.2.3. Cardiology
Deterministic nonlinear dynamics approach has entered in various medical disciplines. Particularly, in physiology the

transition from normal cardiac rhythm to arrhythmia has been observed to follow a period-doubling route to chaos [207].
Cardiac alternation of period-1 with period-2 rhythms could be a precursor to arrhythmia and therefore, efforts have been
made to design some kind of control [208]. Indeed, chaos control [209] and tracking technique [210] have been successfully
applied to suppress cardiac alternance and thus stabilize the cardiac rhythm in the period-1 state [211]. Moreover, cardiac
dynamics is known to exhibit multistability in some pathologies. As the cardiac rhythm increases, the probability of
emergence of higher periodic orbits, including a chaotic one, also increases. Notably, under certain circumstances, a stable
period-2 rhythm coexists with a stable period 1 [212]. It is evident that bistability and multistability in cardiac rhythm
are undesirable, in such cases forwarding the trajectory of the cardiac rhythm back to the stable period 1 is an attractive
proposition.

2.2.4. Brain diseases
In diseases like Parkinson and epilepsy, it is quite possible that undesirable dynamical states coexist. If that is so, the

objective in brain medicine would be to switch the brain dynamics from those undesirable sick states to a normal one,
even better would be the avoidance of such undesired states before a crisis happens. Since in biological systems it is hardly
possible to change system parameters, the application of the control techniques using, for instance, short pulses or periodic
forcing may be a good solution. Therefore, we suspect that to control brain multistability only external signals will have to
be used.

Theoretically, a proper change in initial conditions is sufficient to change an attractor. Such a change can be realized, for
example, by the nonfeedback control method of a short external impact proposed by Chizhevsky et al. [213,214] that will
be described in Section 3. However, a direct implementation of this method for medical systems is a dangerous task. The
situation gets worse because the lack of sufficient information about the true nature of brain multistability makes difficult
the construction of a good theoretical model.

2.2.5. Genetics
As outlined in Section 1.1.2 multistability is considered to play an important role in genetic circuits. The capability of

cells to present different stable expression states while maintaining identical genetic content plays a significant role in
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differentiation, signal transduction andmolecular decision-making. These epigenetic phenotypes are partly associated with
changes in genomic structural features, including several types of chromatin and DNA modifications [215]. In some cases
they are induced by the action of underlying genetic regulatory circuits, exhibiting a positive feedback loop configuration.
The molecular circuits with positive feedback can induce two different gene expression states (bistability) under the same
cellular conditions [216,217] and in addition, the circuits display some degree of nonlinearity, i.e. sigmoidality, on their
constituent interactions [55,218,219]. Both the positive feedback and sigmoidality endow these geneticmodules interpreted
as multistable dynamical systems with the possibility to find the system in alternative steady states under conditions in
which all its biochemical parameters are fixed. These different stable expression states are regulated by molecular loops.
The process bywhich the cells take advantage of the coexistence ofmany stable states (attractors) is today largely unknown.
Many such decisions have been directly linked to survival, as the sporulation/competence choice in the bacterium Bacillus
subtilis, and are probably involved in the establishment of developmental programs from pluripotent stem cells. The crucial
question is: How are these decisions controlled at the molecular level?

Small gene networks, either synthetic [216,220] or natural [217,221], with mutual regulation of genes have recently
been studied and shown to be able to generate multiple attractor states. Some attractor states appear to provide an optimal
gene expression program for the cell adaptation to a particular, rare environment, yet no specific signaling pathway to
connects this rare external condition with the appropriate genetic program has been found. Kashiwagi et al. [222] showed
that cells can select the adaptive attractor and proposed that this selection process was a general consequence of the
stochastic nature of gene network dynamics. The challenge is now to understand the control mechanisms of the cells
that switch to the adaptive attractor state of the network to express the appropriate genes in the case of rarely occurring
environmental changes. The external control has to be written in form of some input that would lead to attractor selection
and a defined switching. Even for frequently occurring environmental changes, attractor selection can be beneficial for cells
since it requires no specific signal transduction apparatus. Due to its stochastic nature, attractor selection may prevent
cells from dying in fluctuating environments. Attractor selection may facilitate the design of a network that can robustly
respond in an adaptive manner to unknown environmental changes without requiring a large number of specific sensors
and transducers. It may also be viewed as a sort of Darwinian preadaptation for the evolution of signal-specific transduction
pathways when a particular new environmental condition becomes dominant and hence contributes to evolvability [222].

2.2.6. Ecology
There are also situations when only some of the coexisting states of a system correspond to a desired behavior while

others do not. The latter ones might be harmful or even fatally dangerous, hence they should be avoided under any
circumstances. To exemplify such a situation let us take an ecosystem where different species compete for the same
resources [223], then only a few states or even worse, only one state allows the system to be permanent, i.e., enables all
occurring species to coexist on the resources provided by nature. In most alternative states, some species die out meaning
that these states relate to a lower degree of biodiversity. Any anthropogenicmanipulation of our natural environment should
avoid perturbations leading to such states.

In case that an undesired state has already occurred, the control problem is to switch back to the original state if possible.
Such control strategies have been implemented in the case of shallow lakes exhibiting two states [91]: a clear water state
with large water plants (macrophytes) on the bottom of the lake and a turbid phytoplankton dominated state. Based on a
theoretical investigation of the system feedbacks, a bio-manipulation scheme has been developed and successfully applied
to several lakes in the Netherlands [93].

3. Nonfeedback control of multistability

Several methods have been developed to perform the various control tasks mentioned in Section 2. We start with
nonfeedback control techniques as the simplest approach, since it requires neither a feedback loop nor a permanent tracking
of the phase–space trajectory as feedback control does. Also, nonfeedback control is particularly appealing in systems
where feedback control is not feasible, especially, for biological and chemical systems. In this section, several nonfeedback
control methods will be discussed, namely, pulse control, where short pulses are used to select particular attractors in a
multistable system and parametric forcing leading to annihilation of attractors and thereby turning the multistable system
to a monostable one.

3.1. Attractor selection by short pulses

One of the simplest ways to control multistability is to apply a particular external perturbation to direct the trajectory
from one basin of attraction to another one and wait until the trajectory relaxes to the desired state. Attractor selection by
a short external input has been pursued for both discrete [164,224] and continuous systems [214,225].

3.1.1. Attractor selection in a coupled map lattice
Different types of multistability have been found in a globally coupled map lattice given as [164,224]

xn+1(i) = (1 − ϵ)f (xn(i))+
ϵ

N

N
j=1

f (xn(i)), (13)
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Fig. 2. Time series showing switches among coexisting attractors. The arrows indicate the inputs δ = −0.7 on a site belonging to the +/− cluster. After
each input, the system either changes the attractor or returns to the same attractor, sometimes, after chaotic transients (a), (b), and (c). a = 1.9, ϵ = 0.3,
and N = 50. Nth = 30.
Source: From Ref. [224].

where n is a discrete time step, i is the index of an element (i = 1, 2, . . . ,N), and f (x) is a nonlinear mapping. The model
has been first introduced as a prototype of chaotic spatially extended systems, and then extended to a higher-dimensional
lattice, different functions, and different types of couplings. Kaneko [164] has shown that an input δn(j) applied on a single
site j at a single time step n can result in a system jump from one attracting state to another. This input changes only the
value of element j from xn(j) to xn(j)+ δn(j). After the input, the map is iterated without the input till the system trajectory
is attracted to another or return to the original attractor after transients. If |δ| is small, the system goes back to the same
attractor after a few iterations, otherwise the system jumps from one attractor to the other.

Fig. 2 shows the switches between coexisting clusters in globally coupled logistic maps f (x) = 1 − ax2 for successive
inputs. The switches between attractors is often accompanied by intermittent chaotic transients, after which the system
either come back to the original attractor (a) or goes to another attractor [(b) and (c)]. Thus, the attractors can be controlled
by the input.

Kaneko [164,224] supposed that the switches between attractors can explain biological information processing if a neural
network is considered as a network of globally coupled oscillators. Kaneko’s model equation (13) can capture some of
essential features of neural dynamics.

3.1.2. Attractor selection in a laser
A similar technique for attractor selection in a multistable system has been developed by Chizhevsky and his colleagues

[190,191,213,214,225–228], who proposed to apply a short-pulsed perturbation to a system variable. The short (compared
to characteristic times in the system) perturbation is equivalent to a change in the initial condition, i.e., an external pulse
in the form of a δ-function switches the system off for a very short time and then switches it on again, so that the system
starts from a different initial condition and hence can be sent instantaneously (compared again to the characteristic times)
onto the basin of attraction of another coexisting attractor. The important advantage of this method is that it can be easily
employed for the experimental search of coexisting attractors, because it does not require any preliminary knowledge of the
system’s model. Since the pulse is very short, this technique allows one to switch the attractor without any changes in the
system parameters, so that the global structure of attractors in phase space remains unaltered. Moreover, the short-pulsed
perturbation is a well controllable deterministic process, so that the system’s response is experimentally reproducible with
a very high accuracy.

The experimental setup for the short-pulsed control technique is shown in Fig. 3. It contains a continuous wave (cw)
single-mode CO2 laser, a pulsed Nd:YAG laser, and an acousto-optical loss modulator inside the CO2 laser cavity. The
short-pulsed loss perturbation is caused by absorption of the CO2 laser emission on non-equilibrium charge carriers in a
semiconductor GaAs plate. These carriers are excited by 15-ns pulses of a Q-switched Nd:YAG laser in the impurity band
of the absorption; the rise time of the pulse losses do not exceed the duration of the excitation pulse of the Nd:YAG laser.
The back edge of the induced losses is determined by the lifetime of non-equilibrium charge carriers in GaAs which do not
exceed 300 ns. Both time constants are significantly shorter than the modulation period that is larger than 10 µs.

To meet attractor targeting conditions, two parameters (pulse amplitude and phase) should be matched at the moment
of switching on. The following procedure for the attractor selection is used: for fixed driving and perturbation amplitudes,
the perturbation phase (the instant of switching the pulse on) is varied with respect to the phase of the laser intensity
modulation. The longer the transients duration in the laser response, the closer to a subharmonic attractor the trajectory
approaches. Since this strong correlation between the transients duration and themodulation phase, one can quickly find all
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Fig. 3. Experimental setup for short-pulsed control of multistability. The cw CO2 laser contains an active medium in a laser tube and a cavity formed by a
grating and a totally reflecting mirror (M1). The cavity losses are modulated by a harmonic signal applied from a sine wave generator (SWG) to an acousto-
optical modulator (KRS-5). Switches between coexisting attractors are realized by short pulses of the Nd3+:YAG laser applied to a GaAs plate. M2 and M3
are mirrors, ID is an iris diaphragm, BS are beam splitters, PD are photodetectors, A are optical attenuators, C are calorimeters, ADC is an analog-to-digital
converter, and PS is a computer.

Fig. 4. Experimental switches between coexisting attractors in amultistable loss-modulated CO2 laser. The arrows indicate the instants of the pulse action.

coexisting attractors. Specifically, the phase is fixed to correspond to the maximum transient duration, and then the pulse
amplitude is slowly increased until the system switches to a selected attractor.

In the CO2 laser, four different attractors, namely, period 1 (T), period 3 (3T), period 4 (4T), and period 5 (5T) have been
found to coexist for the same laser parameters. Fig. 4 illustrates the effect of short-pulsed switching between the coexisting
attractors. The efficiency of this type of multistability control is determined by a correct choice of both the phase and the
amplitude of the short-pulsed perturbation. It is important to note, that this method can be used for targeting not only
stable but also unstable orbits. Indeed, using this technique many stable and unstable periodic orbits have been found in a
loss-modulated CO2 laser [190,191,214,225–229].

It should be noted that the method of short-pulsed attractor switching has long been intuitively used in medical practice
for heart defibrillation to initiate a normal heart beating by a high-voltage pulse. However, there is still no known method
to take into account the strong phase dependence of the defibrillation effect, and hence the results are still somewhat
unpredictable, and more research has to be done.
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3.2. Eliminating multiple attractors using a pseudo-periodic forcing

It is old knowledge that identical nonlinear systems driven with the same periodic signal can exhibit the coexistence
of stable periodic orbits with a period n which is a multiple of the period of the driving signal [230–232]. To control
multistability in such systems, Pecora and Carroll [233,234] have suggested to add either chaotic or random components to
the periodic drive. Alternatively, the control can be realized by modulating (chaotically, quasi-periodically, or randomly) a
system parameter. In the following, we will show how this method can be applied to simplify the basin of attraction of a
period-n orbit.

When we change a driving signal v slightly to a new value v′, the dynamical system
·

w = f (w, v) (w and f being
n-dimensional vectors and functions) will evolve according to

∆
·

w ≡
d(w′

− w)

dt
= f (w′, v′)− f (w, v), (14)

which by adding and subtracting f (w, v′) can be rewritten as

∆
·

w = Dwf (w, v′)∆w + B(t), (15)

where Dwf (w, v′) is the Jacobian of the vector field, B(t) = f (w, v′) − f (w, v), and the higher-order terms are dropped.
The solution of the linear equation (15) can be given in terms of transfer function Φ(t, t0) (t0 being the initial time) for the
homogeneous version of Eq. (15):

∆w(t) = Φ(t, t0)∆w(t0)+

 t

t0
Φ(t, τ )B(τ )dτ (16)

and it will have negative Lyapunov exponents if the original system is stable. This means that there are two positive
constants, c1 and c2, such that ∥Φ∥ ≤ c1e−c2t . If B(t) is bounded by a constant b1 > 0, then |∆w(t)| ≤ c1b1/c2 for large

t . For a small deviation∆v ≡

·

v′
−v from the original periodic forcing (b1 is small), the trajectory will always remain close

to the original trajectory and hence multistability will still remain. For a larger ∆v, the above analysis will not be valid for
long times, since the higher-order terms cannot be neglected and b1 will be so large that∆w(t) can become on the order of
the attractor size. Therefore, a threshold value of∆v above which the system behavior will cease to be close to the original
orbit w(t) has to be taken into account, so that∆w will be always small. Above the threshold, the new behavior will likely
resemble the original dynamics if the new motion remains stable with respect to the new driving signal v′ which is still
not too different from the original drive. If v′ has a chaotic component, the periodicity will be lost and the coexistence of
multiple domains may not be possible.

The elimination of multiple domains using pseudo-periodic driving has been tested numerically with the Duffing system
anddemonstrated experimentally using the corresponding electronic circuit [233]. TheUeda version of theDuffing oscillator
is written as

dw1

dt
= w2, (17)

dw2

dt
= −kw2 + w3

1 + αv′
+ β, (18)

where k = 0.05, α = 0.21, β = 0.15. Eq. (18) contains a pseudo-periodic driving v′(t) = cos(t) + εx(t) with a chaotic
component x(t) taken from the Rössler system and an adjustable parameter ε. For ε = 0, the system equations (17) and
(18) exhibit the coexistence of period-1, period-2, and period-3 attractors shown in Fig. 5(a). When the chaotic component
is added for ε = 0.129, the period 3 disappears, while the period 1 remains stable and the period-2 attractor is converted
to a chaotic one, as shown in Fig. 5(b).

For the parameters used in the simulation, the threshold value ε = εc = 0.0154 has been found, above which the period
3 becomes unstable and simultaneously the period-2 orbit is converted into a chaotic attractor, i.e., the addition of only a
small portion of chaos to the harmonic driving eliminates multistability. The threshold behavior indicates that the main
mechanism for the attractor destruction is related to a crisis, similarly to the method of attractor annihilation by periodic
modulation which will be considered in the next section.

We should note that there is a big difference between a pseudo-periodic driven system and a randomly driven system
[235–239]. Although both drives can induce a crisis, the former system is deterministic, while the latter is stochastic and
hence its study requires a probabilistic approach. The methods for stochastic control of multistability will be discussed in
Section 5.

3.3. Attractor destruction by harmonic perturbation

As we already mentioned above, in some practical situations, it is not good if a system has many attractors. A practical
technique allowing attractor annihilation is a slow harmonic modulation applied to a system parameter or a variable. In this
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Fig. 5. Schematic representation of coexisting attractors for (a) periodically and (b) pseudo-periodically driven Duffing system.

case, the important control aim is to destroy undesirable attractors. Themethod of attractor annihilation has been proposed
in Refs. [240,241] and experimentally realized, first in CO2 [240,242] and fiber lasers [243] and later in an electronic circuit
mimicking the Lorenz system [244]. Although the method is powerful, not every attractor can be annihilated by this control
technique. The necessary requirement for the attractor to be destroyed is that it has to be a focus type, i.e., it should possess
complex conjugate eigenvalues [241]. The dynamics in the neighborhood of the attractor is then characterized by damped
relaxation oscillations with a certain frequency fr close to the attractor’s own characteristic frequency (eigenfrequency). For
a fixed point or a periodic orbit (to be annihilated) with more than two eigenvalues, the method works as well if at least one
pair of the eigenvalues is complex conjugate [241,245].

The idea of the annihilation method is the following. Suppose that p is the control parameter governing the bifurcations
which lead to the attractors appearance or disappearance. Then, a modulation of this parameter in form of p = p0 +

pc sin(2π fc t) (pc and fc being the amplitude and the frequency of the control) is applied to the system. We assume that the
amplitude pc is so small that no changes in the qualitative behavior are induced as p = p0±pc . Even though large-amplitude
modulation is also known to produce good results [246], in some applications, for example, in biological or medical systems
only small parameter changes are allowed. Since the parameter modulation with properly chosen frequency leads to
attractors annihilation, the control may be optimized in the sense that the modulation amplitude can be minimized by
adjusting fc to be close to fr of the attractor to be annihilated.

The same approach has been used for attractor annihilation in a multi-attractor system with more than three coexisting
attractors. According to the Gavrilov, Shilnikov and Newhouse (GSN) prediction, the number of coexisting attractors
increases as dissipativity of the system reduces (see, for example, [246] and references therein); these attractors, referred
to as GSN sinks are created in various period n-tupling processes and organized in phase and parameter spaces in a self-
similar order. The main mechanism for attractor annihilation in such systems lies in the destruction of the GSN sinks by a
small-amplitude slow parameter modulation so that the system can be suitably converted again to a controlled monostable
system. Such a control is robust against small noise as well [246].

The underlined process behind this annihilation scenario leading to a system possessing less attractors or even only
one, can be explained in terms of basins of attraction. An additional harmonic perturbation converts periodic attractors
to tori with different stability and different basins of attraction, so that the global basin structure changes [241,246]. Due
to these overall changes in the qualitative behavior, the periodic orbits move towards boundaries of their own basins of
attraction when themodulation amplitude is increased. During this movement they can undergo other bifurcations, such as
a cascade of period-doubling bifurcations leading to chaos, to collide finally with their own basins of attraction boundaries
and disappear in boundary crisis.

The control of multistability by attractor annihilation has been successfully realized in lasers [63]. Since in laser
experiments only one variable (output intensity) is usually available for measurements with no access to any other variable
(inversion population), experimental control of initial conditions is hardly possible. Therefore, one cannot find basins of
attraction of coexisting states to definitely confirm whether or not an attractor completely disappears. Neither one can
study probability properties of basins of attraction in the presence of noise. Nevertheless, the basins of attraction can be
found numerically. The numerical analysis of the phase space structure is crucial to insure that the attractor annihilation
effectively takes place. In the following few pages we will show how small periodic or random modulation applied to a
control parameter modifies basins of attraction of coexisting states in a paradigmatic multistable system.

3.3.1. Attractor annihilation in the multistable Hénon map
As was already shown above, a parameter modulation with properly chosen frequency and amplitude can annihilate

one of coexisting attractors in a bistable system. Under such a modulation, the attractor undergoes a crisis that leads to its
destruction. In this regard, a more global question arises: Is it possible to control attractors selectively in order to annihilate
a particular attractor or simultaneously various attractors thus transforming a multistable system to a monostable one? To
answer this question, we will first consider how multistability emerges in the Hénon map [247], the popular example of a
discrete-time two-dimensional dynamical system. Then, we will demonstrate how multiple attractors can be selectively
destroyed by harmonic parameter modulation. And finally, we will discuss conditions for the best performance of this
method.
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Fig. 6. Bifurcation diagram of x variable of the Hénon map demonstrating the coexistence of period-1 (P1), period-3 (P3), and period-9 (P9) attractors
indicated by the arrows. µ0 = 1.083 is the initial value of the control parameter.

The study using the two-dimensional Hénon map is very important, since the results obtained with this simple discrete
system can be generalized to more complex continuous-time dynamical systems due to the fact that a three-dimensional
flow can be represented as a two-dimensional Poincaré map. Also, a large number of driven nonlinear systems, including
Duffing and Toda oscillators, exhibit qualitative similarity in their bifurcation structures in parameter space [248].

The Hénon map is given as

xn+1 = 1 − µx2n + yn, (19)

yn+1 = −Jxn, (20)

where parameter J is related to dissipation andµ is an externally controllable parameter.Multistability in thismap equations
(19) and (20) occurs due to small dissipation, i.e., when J is close to zero (J > 0) [249]. The fixed points for the period-1
regime of the Hénon map are given by

(x∗

1,2, y
∗

1,2) =

−
J + 1
2µ

±


J + 1
2µ

2

+
1
µ
,−Jx∗

1,2

 . (21)

These two equilibrium points possess four eigenvalues (two real and two complex conjugates):

λ1−4 = −µx∗
±


(µx∗)2 − J. (22)

There is only one stable fixed point (period-1 attractor) x∗ > 0 (x∗
= 0.426 for µ = 1.05). For this attractor there exists a

range of parameter values µ, where λ are complex, i.e., the system undergoes damped oscillations and the corresponding
equilibrium point is a focus.

A similar analysis can be performed for the period-3 attractor. Though the period-3 solution is impossible to obtain
analytically, because the characteristic polynomial is of 8th order, one can find it and analyze its stability only numerically.
The numerical results show that the period-3 orbit is stable within the range 0.915 < µ < 1.171.

Fig. 6 shows the bifurcation diagramof the variable xwithµ as a control parameter at J = 0.9. One can see the coexistence
of as many as three attractors, period 1 (P1), period 3 (P3), and period 9 (P9), in the parameter range of µ ∈ [1.077, 1.089],
whereas only two attractors (P1 and P3) coexist for µ ∈ [0.915, 1.171].

Each coexisting attractor is characterized by different eigenvalues, some of them are complex with different
eigenfrequencies. This means that every attractor i of the focus type has its own relaxation oscillation frequency f (i)r that
depends on µ and can be measured from the time series as a frequency of damped oscillations during transients after a
small disturbance from the equilibrium. Fig. 7 shows how f (i)r depends on µ for every coexisting attractor. One can see that
in the range of the coexistence of three attractors (e.g., at µ = 1.083), the P3 and P9 attractors are foci with relaxation
oscillation frequencies f (3)r = 0.106 and f (9)r = 0.0275, respectively, and the P1 attractor is a node (no damped oscillations
occur).

Next, to control multistability, a slow harmonic modulation is applied to µ as

µ = µ0 + µc sin(2π fcn), (23)

where µc and fc are the control amplitude and frequency and µ0 = 1.083 is the initial value of the control parameter. Let
δµ expresses the dynamical range of µc to be used, so small that no qualitative changes in the asymptotic stability of the
coexisting attractors occur for the uncontrolled case, i.e. when µ is varied adiabatically (t → 0) within the range µ0 ± δµ.
Impressively, such a weak modulation is capable to destroy either P9 or simultaneously both the P9 and P3 attractors.
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Fig. 7. Relaxation oscillation frequencies of period-1 (P1) (dots), period-3 (P3) (squares), and period-9 (P9) attractors (triangles) as a function of µ.

Fig. 8. Temporal evolution of the Hénonmapwith coexisting attractors under control harmonic modulation. Prior to the control (n < n1), three attractors
(P1, P3 and P9) coexist while the system is initially in P9. The control is applied successively at n = n1 (µc = 0.0029 and fc = 0.0275) and n = n2
(µc = 0.023 and fc = 0.106). The arrows show the instant when the control parameters are changed. P9 and P3 are destroyed after some transients.

The effect of the control modulation on the destruction of the coexisting attractors is demonstrated with the time series
in Fig. 8, that illustrates the consecutive annihilation of the coexisting attractors. Initially, prior to the control (n < n1) all
three periodic attractors coexist at µ0 = 1.083. Starting from the initial conditions for P9, the control modulation equation
(23) with µc = 0.0029 and fc = 0.0275 is applied at n = n1.

The mechanism underlying the attractor annihilation is the following. The external harmonic modulation converts the
P9 attractor into a torus, whose stability depends on the modulation parameters. When the control frequency is close to
f (9)r the torus undergoes a period-doubling cascade of bifurcations followed by chaos which disappears in crisis, when the
modulation amplitude is increased. After the P9 attractor destruction, the system goes to P3. Note, the control modulation is
almost invisible in the P3 regime, because f (9)r and f (3)r are very different. Next, to annihilate the P3 attractor one needs either
to shift fc closer to f (3)r or to increase the modulation amplitudeµc . Even if the control modulation presents, the oscillations
in the P1 regime are indistinguishably small because this attractor is of a node type for µ0 = 1.083.

Fig. 9 shows the stability boundaries of the P9 and P3 attractors (annihilation curves) in the space of the control
parametersµc and fc . For the control parameters above the annihilation curve, the corresponding attractor loses its stability.
Basins of attraction. The physical mechanism underlying the annihilation phenomenon can be clearly understood from the
analysis of the basins of attraction of the coexisting states shown in Fig. 10. The dots inside the basins have three different
colors for each attractor: yellow for P1, blue for P3, and gray for P9. The parameter modulation creates invariant curves
in the vicinity of every periodic point, thus forming a quasiperiodic orbit. For the P9 orbit, these are the red lines near the
white triangles in Fig. 10(b)]. One can see that when fc is very different from f (9)r , the amplitude of the system’s response is
relatively small and the corresponding basins of attraction remain almost the same as without modulation. However, when
fc approaches f (9)r or its subharmonics, this frequency gets in resonance with the relaxation oscillations, that makes the
system’s response so strong that the attractor loses its stability. The control modulation may induce a torus-doubling route
to chaos terminated in boundary crisis. Beyond the crisis, the trajectory approaches another attractor along the arrows and
black dots shown in Fig. 10. The modulation amplitude also plays a significant role in the attractor annihilation; it should be
large enough for the resonant trajectory to collide with the boundary of its own basin of attraction.

Of course, the diagram shown in Fig. 10 is a very rough illustration of the dynamical processes responsible for the attractor
annihilation. We recall that the basins shown in Fig. 10 belong to the uncontrolled system. Strictly speaking, the parameter
modulation not only creates quasiperiodic orbits, but also changes whole basins’ structure [241]. However, even though the
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Fig. 9. Annihilation curves for P3 (squares) and P9 (triangles) in space of modulation frequency and amplitude for µ0 = 1.083. The best conditions for
annihilation of P3 and P9 are realized, respectively, for (a) fc = f (3)r = 0.106 or fc = f (3)r /2 = 0.053 and (b) fc = f (9)r = 0.0275. The corresponding
attractor is destroyed for the parameters above the annihilation curve, while below both curves the three attractors coexist. The dashed lines indicate the
maximum control amplitude at which the system changes the attractor when fc → 0.

new attractors created by the parameter modulation have different basins of attraction, the changes in the basins’ volumes
have no effect on general interpretation of the observed phenomenon [245].
Effect of modulation phase. In addition to the control frequency and amplitude, themodulation phase also plays an important
role in attractor annihilation. Egorov and Koronovskii [250] have shown that the structure of the basins of attraction of the
residuary states depends crucially on the initial modulation phaseψ0, that was considered in the followingmodulation form

µ = µ0 + µc sin(2π fcn + ψ0). (24)

The controlmodulation equation (24)with fc = 0.11 andµc = 0.05 applied atµ0 = 1.083 destroys the P3 and P9 attractors.
Although the basins of attraction of the remaining P1 and the infinity attractor are very similar (prima facie) for different
ψ0, a closer inspection of the basins structure revealed riddles in the phase space regions where the P3 attractor was located
prior to its annihilation. Therefore, small changes of the initial phase (or noise) will determine the residuary attractors.

Thus, the method of attractor annihilation can be applied to a multistable dynamical system to selectively control
coexisting attractors of a focus type. The best performance of this kind of control is achieved when the control frequency
is close to the relaxation oscillation frequency of the attractor to be annihilated or its subharmonics. Theoretically, this
method has been verified in the Lorenz system [244], lasers [240,243,251,252], and coupled Duffing oscillators [253,254].
Experimentally, the attractor annihilation has been realized in laser experiments, that we will describe below.

3.3.2. Control of bistability in a CO2 laser by modulating the cavity length
From the experimental point of view, a laser with modulated parameters is a very convenient system for studying

nonlinear dynamics. The advantages of the laser resides in its relative stability under a wide range of operating conditions
and its fast response when compared with other systems, for example, mechanical or fluids. In particular, the first
experimental control of bistability by attractor annihilation using a periodic parameter modulation has been performed
in a laser [240].
Theory. The dynamics of a class-B laser can be described by the simple two-level model [190,240]

·

u = τ−1u [y − k0 − kd sin (2π fdt)] , (25)
·

y = (y0 − y) γ − uy, (26)

where u is proportional to the radiation density, y and y0 are the gain and the unsaturated gain in the active medium,
respectively, τ is half round-trip time of light in a resonator, γ is the gain decay rate, k0 is the constant part of the resonator
loss, and kd and fd are the driving amplitude and frequency of the cavity loss modulation.

The laser equations (25) and (26) exhibit the coexistence of a period-1 and a period-2 stable limit cycles for the following
parameters: τ = 3.5×10−9, γ = 8.5×105, k0 = 0.173, and fd = 160 kHz. The state diagram in the space of the laser gain y0
and the driving amplitude kd is shown in Fig. 11. The minimum kd corresponds to the case when the modulation frequency
is twice the laser relaxation frequency, i.e. fd = 2fr . The period-doubling (PDB) and saddle–node bifurcation (SNB) lines are
marked by squares and dots, respectively. Bistability exists for y0 > 0.1835 and kd > 3× 10−4, i.e. at the right-hand side of
the SNB line.

Fig. 12 shows the bifurcation diagram of the laser radiation density uwith respect to the laser gain y0 for kd = 3× 10−4.
The control modulation affects the laser gain as y′

0 = y0 + yc sin(2π fc t), where y0 is the gain of the uncontrolled laser, and
yc and fc are the amplitude and frequency of the control modulation. It is assumed that this additional modulation is slow
(fc ≪ fd) andweak (yc ≪ y0) and y0 is fixed at 0.1855 (shown by the arrow in Fig. 12) to keep themodulation in the bistable
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Fig. 10. Basins of attraction of P1 (yellow dots), P3 (blue dots), and P9 (gray dots). (a) Annihilation of P3 at µc = 0.023 and fc = 0.106. (b) Enlarged
diagram of the rectangular box showing the annihilation of P9 at µc = 0.0029 and fc = 0.0275. P1, P3, and P9 are shown respectively by the white dot,
red triangles, and white triangles. The P9 torus induced by modulation at µc = 0.0029 and fc = 0.01 are shown by the red lines. The arrows indicate
the directions of the trajectories (black dots) leading to another attractor. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 11. State diagram of loss-modulated CO2 laser equations (25) and (26) in parameter space of driving amplitude kd and laser gain y0 .
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Fig. 12. Bifurcation diagram of laser radiation density versus gain factor demonstrating the coexistence of period-2 and period-1 attractors marked
respectively by open dots and red squares.

Fig. 13. Annihilation of the period-2 attractor in a loss-driven CO2 laser. As an additional weak harmonic modulation is applied to the cavity losses, the
period 2 is destroyed and the trajectory after transients is attracted to the remaining period-1 state.

Fig. 14. Stability boundary of period-2 attractor in (fc/fd, yc ) space for y0 = 0.1855. Region A: period 2 in control frequency. Region B: higher periodic
orbits and chaos in control frequency.

region. Under the control modulation, both P2 and P1 orbits are converted into tori. It is note worthy, that when the laser
initiates in P2, as the control amplitude is increased the P2 torus undergoes a period-doubling route to chaos to be destroyed
in a crisis. As a result, the laser has to jump into the remaining P1 torus, as shown in Fig. 13.

The attractor destruction is observed over a wide range of the control frequency as illustrated in Fig. 14 which shows the
stability (annihilation) curve for the P2 attractor.
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a

b

Fig. 15. Bifurcation diagrams of laser peak intensity with respect to the normalized control frequency fc/fd in the vicinity of the annihilation curve for
different control amplitudes: (a) yc = 5 × 10−4 and (b) yc = 3 × 10−4 . Within the range of 0.030 < fc/fd < 0.036 the period-2 attractor does not exist
anymore.

Active medium AOM

A0 + Ac sin(2πfct)

PZT

Ad sin(2πfdt)

Fig. 16. Experimental setup demonstrating attractor annihilation in a CO2 laser with modulated losses. AOM is an acousto-optical modulator and PZT is a
piezo-transmitter.

Fig. 15 shows typical bifurcation diagrams with fc as a control parameter for different control amplitudes yc . These
diagrams are obtained by sampling the laser intensity at interval 1/fc . In Fig. 15(a) one can see a bubble cascade of period-
doubling bifurcations (period 1 → 2 → 4 . . .chaos. . . → 4 → 2 → 1) in the P2 torus, where the periodicity is related to
the control frequency. The chaotic orbit, in the interior of the cascade, gets destroyed in the range of 4.8 kHz< fc < 5.7 kHz.
Such a destruction is expected due to the collision of the attractor with the regular P2 (with respect to fd) saddle orbit. After
a boundary crisis, the system jumps into the remaining P1 attractor. Evidently, these features are very similar to dynamics
of the Hénon map under harmonic modulation, described in the previous section.

Experimental verification. The method of attractor annihilation has been experimentally verified in a single-mode CO2 laser
with an intracavity acousto-optical modulator. The experimental setup is shown in Fig. 16. The electric driving signal
Vd = Ad sin(2π fdt) with frequency fd = 105 kHz and amplitude Ad is applied to the modulator providing time-dependent
cavity losses. The output laser intensity is detected with a CdxHg1−xTe detector and displayed on a Digital Signal Analyzer.
Bistability in this laser reveals itself via hysteresis observed when the cavity mirror connected with a piezo-transmitter PZT
is moved forth and back changing the cavity length; this resulted in the laser gain contour asymmetry shown in Fig. 17. The
coexistence of two attractors is observed for 30 V< |A0| < 60 V.

The laser intensity is stroboscopically sampled at intervals of 1/fd. The bifurcation diagram of the peak laser intensity in
Fig. 17 is obtained by linearly increasing the bias voltage A0 from negative to positive values with no control (i.e. Ac = 0).
One may notice that the period-2 bubbles at the negative and positive detunings appear at different values of |A0|, that can
be interpreted as evidence of bistable behavior. The electric control signal Vc = A0 + Ac sin(2π fc t) with a constant bias
voltage A0 and modulation amplitude Ac is used to tune the output mirror with PZT in the middle range of bistability, i.e. at
A0 = −45 V and Ac = 5 V. The modulation of cavity detuning leads to appropriate changes in the gain factor. If the small
amplitude of the detuning modulation is not at the line center, the detuning is almost proportional to the gain.
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Fig. 17. Gain contour of a CO2 laser with modulated losses.

a c

b d

Fig. 18. Experimental stroboscopic measurements of laser intensity sampled with a period T = 1/fd driving modulation. (a) Bifurcation diagram without
control with respect to cavity detuning. Period-1 orbit coexists with period-2 orbit for detuning 30 V < A0 < 50 V. The control with Ac = 5 V is applied
at A0 = −45 V. (b) Time series at fc = 200 Hz, (c) 500 Hz, and (d) 2 kHz. The envelope is modulated with fc . The period-2 orbit disappears and only the
period-1 orbit remains.

Fig. 18 illustrates the P2 attractor annihilation by modulating the cavity detuning. While without control the P2 exists
for certain detuning (Fig. 18(a–b)), the control modulation annihilates it (Fig. 18(b–d)). The laser intensity is periodically
modulated with both the carrier fd/2 and the control fc frequencies thus forming a torus. As the control frequency fc is
increased, the torus undergoes a period-doubling bifurcation (Fig. 18(c)). As fc is further increased, the laser jumps to the P1
torus (P1 torus) (Fig. 18(d)). One can see that the experimental results are in a good agreement with the above theory.

Other types of lasers. Attractor annihilation by periodic parameter modulation has also been realized in multistable
semiconductor lasers [251]. The method is particularly suitable for this type of lasers because their oscillations are typically
accompanied by high intensity noise that may cause spontaneous switches between coexisting states.

The technique reported for a semiconductor laser presents some differences with the previously described in the CO2
laser. Whereas in the latter, the driving and the control modulations are applied to distinct parameters (cavity loss and
cavity detuning), in the former the same parameter (pump current) is simultaneously modulated by two frequencies. In the
semiconductor laser, coexisting period-4 and period-3 attractors are destroyed by an additional weak harmonicmodulation
applied to the injection current so that only a period-1 attractor remains. This points out a simpler way to manipulate the
system dynamics that can be more easily realized in practice. Later, the attractor annihilation method using one-parameter
modulation has been successfully realized in an erbium-doped fiber laser [243,252].
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4. Feedback control of multistability

In the previous section we have discussed nonfeedback control strategies which act via an external perturbation such as
a short pulse, a pseudo-periodic and harmonic forcing. Although these methods are in general easy to apply, since they do
not require a knowledge of system dynamics, this control is usually not small in the sense that the amplitude of the external
signal is relatively large. Another very successful way to control multistable systems is a feedback technique, where the
internal state of the system is fed back into the system either instantaneously or with a time delay. In this section, we
consider several feedback methods for controlling multistability.

4.1. Attractor stabilization and controlled switching

When designing a control strategy, the presence of external noise has to be taken into account, because due to the high
sensitivity to perturbations, one has to expect the emergence of an attractor hopping process in which the trajectory is
kicked out of the open neighborhood of the attractor. Therefore, one needs to apply a permanent control for stabilizing the
selected attractor. The strength of this control depends mainly on the size of the open neighborhood. For sake of simplicity,
we suppose that the chosen state is a fixed point x∗ of the map

xk+1 = F(xk), (27)

where x and F are n-dimensional quantities. Sincewithout noise the desired attractor is stable, all eigenvalues of the Jacobian
matrix DF(x∗) evaluated at the fixed point are inside a unit circle. When noise is introduced, the stabilization of this fixed
point can be done by applying a feedback control originally developed by Poon and Grebogi [138]. The control scheme
assumes that the trajectory is already near the desired attractor, so that the system can be linearized as

F(x∗
+ ε) = x∗

+ DF(x∗)ε, (28)

where ε denotes the distance from the fixed point. The influence of noise is modeled by adding noise vector δ to the map

F̃(x) = F(x)+ δ, (29)

assuming the noise is bounded by δ = |δ|. We now define a spherical neighborhood of radius ρ around the attractor. As soon
as the trajectory falls into this neighborhood, the control is switched on to keep the system close to this attractor despite
the noise. Suppose the system enters this ρ-neighborhood at the ith iteration, then xi = x∗

+ ε with |ε| ≤ ρ. After the next
iteration, the system will land at

xi+1 = F̃(xi) = F(xi)+ δ. (30)

Assuming that the ρ-neighborhood is small enough so that the linearization is valid, we can control the trajectory by adding
a control term in the form of

x̂i+1 = xi+1 + Cε. (31)

Since this control scheme canbeused for both stabilization anddestabilization, the controlmatrixCmust reflect the control’s
aim. To stabilize an attractor, a good candidate is the JacobianmatrixDF(x∗) since all its eigenvaluesmoduli are smaller than
1. If one wishes the system to go to another attractor, it is enough to turn the stabilization off and wait until the noise ejects
the trajectory from the original open neighborhood to the desired one. The motion on the complexly interwoven basin
boundaries, more specifically, on the embedded chaotic saddles, brings the trajectory close to the other selected attractor
where the stabilization is again turned on.

In the same line of thought, to destabilize an attractor, but contrary to stabilization, one may use the inverse of the
JacobianmatrixDF−1(x∗) as the controlmatrix [139]. This ensures that all eigenvaluesmoduli are larger than one. Combining
these two control strategies one can perform stabilization as well as destabilization on demand. This yields a controlled
switching between attractors.

However, there is one drawback of the above control scheme, mainly, that one has to wait for the trajectory to reach
an appropriate ρ-neighborhood of the attractor, and the waiting time can be arbitrarily long. Therefore, special targeting
strategies have been developed to allow rapid switching between different regimes [255–257]. Some of these methods will
be described in Section 4.2.

Not only switching between attractors can be achieved using a linear feedback control, but also attractor avoidance. To
avoid a specific attractor, destabilization can be turned on as soon as the trajectory enters the predefined ρ-neighborhood
of the respective attractor.

4.2. Targeting a desired attractor

As outlined in Section 4.1, to keep the control within a certain boundary, the desired state feedback stabilization of
metastable states in a noisy multistable system has to act only in a prescribed neighborhood. We recall that switching from
one state A to another (say, B) relies on the dynamics of the chaotic saddles embedded in the basin boundary. Only when
the trajectory arrives in the predefined neighborhood of the desired attractor, stabilization can be switched on to keep the
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trajectory in the neighborhood of this selected state B. To approach the selected attractor B in a reasonable finite time, three
differentmethods have been proposed. The first one [256] is based on the targeting technique for chaotic systems [258]. The
idea is basically to exploit the inherent exponential sensitivity of the chaotic time evolution on the basin boundaries to small
perturbations to direct the trajectory to some desired accessible state in a shortest possible time. The second method [255]
uses particular perturbations to drive more trajectories to state B, i.e. to enlarge substantially its basin of attraction. The
third method [257] is based on reinforcement learning, also known as neurodynamic programming [259]. While the two
previous approaches are based on the knowledge of the model equations, the reinforcement algorithm does not require
any mathematical model, but relies entirely on data.

4.2.1. Modified targeting method
Before describing how to switch from onemetastable attractor A to another metastable attractor B in a noisy multistable

system, let us recall briefly the basic steps of the targeting algorithm in chaotic systems [258]. Suppose that there is a source
point S and a target point T both located on the basin boundary. Around each point we consider small regions rS and rT ,
respectively. The goal is to get from a point pS ∈ rS to a point pT ∈ rT in a shortest possible time. To find such a pathway, the
region rS is iterated forward in time, while the region rT is iterated backward in time until both iterated regions intersect
each other in point pI in phase space. If such an intersection can be found, there exists a trajectory from pS to pT via pI . The
point pS is then used to design a perturbation that when applied to Swill bring the system to point pS . Then it will follow its
original trajectory to reach pT .

To gear a noisy multistable system from the metastable state A to the metastable state B, Macau & Grebogi [256]
suggested two modifications of this targeting technique and illustrated their efficiency using the dissipative standard map
(cf. Section 2.1.1) as a paradigm. The first modification concerns the computation of the intersection pI using forward and
backward iterations of the regions rA and rB, respectively. xi+1 is calculated as the variable mean value obtained from each
of the n different forward iterations, starting from the same initial condition xi but using n different noise realizations. This
procedure acts like an efficient filter reducing the noise. The second modification in the algorithm is made to arrive at point
pA ∈ rA from where the targeting is started. While in the noiseless chaotic system to brings the trajectory from S to pS it is
sufficient to apply a certain perturbation, in the noisy system a special control technique should be applied. A good solution
is the traditional linear control method, such as the discrete linear quadratic regulator (DLQR) [260].

Thus, the combination of the original targeting procedure with classical control methods enables to switch, on demand,
fromonemetastable state to another in the shortest possible time. This offers a great flexibility in switching between distinct
system performances associated with different coexisting states.

4.2.2. Bush-like paths to a preselected attractor
Another algorithm to steer most trajectories to a desired attractor by using small feedback control has been designed by

Lai [255] who proposed to build a hierarchy of paths towards the desirable attractor and then stabilize a trajectory around
one of the paths. In the case of fractal basin boundaries, the probability for a random trajectory to asymptotically reach the
desirable attractor increases significantly.

To explain how this method works, we again consider a dynamical system with two coexisting attractors, A and B. For
a given region 6 of the phase space that contains a part of the basin boundary, a fraction of initial conditions fA will yield
trajectories that asymptotically go to the attractor A, and the remaining initial conditions, i.e. a fraction of fB = 1 − fA, send
the trajectory towards the attractor B. Suppose, that one of the two attractors yields amuch better system performance than
the other. The goal of this control is to increase substantially the fraction of initial conditions fB that will push the system
to the attractor with better performance. For this purpose, a system parameter p should be delicately adjusted around its
nominal value p0, so that p ∈ [p0 +∆p, p0 −∆p], where∆p/p0 ≪ 1.

Lai’s [255] main idea is to construct a ‘‘tree-like’’ path structure which allows us to reach the desirable attractor. In
particular, if we suppose that B is the desirable attractor, then an initial condition in 6 is randomly chosen to generate a
trajectory to B, referred to as ‘‘root’’ path 1 to B and denoted by X0,X1, . . . ,XB, where XB is a point on B (or a point in
the vicinity of B). We then choose a second trajectory to B from an arbitrary initial condition Y0 in 6. If this second path
approaches B directly without coming close to root path 1, we call it root path 2. It can also happen that a point on this
trajectory Yn falls into a suitably small neighborhood of some point along root path 1 before it comes close to B. In this case,
we store Yn together with the path of n − 1 points leading to Yn. The path Y0, Y1, . . . , Yn is referred to as the secondary
path of the root path 1. This procedure can be repeated for initial conditions chosen on a uniform grid of size δ in 6. With a
suitably chosen δ, a hierarchy of paths to B in 6 can be built with NR root paths. To each root path i, some secondary path
can be attached, to each secondary path, third-order path may be connected, and so forth, giving rise to a path tree B in the
phase space region that contains the basin boundary.

In order to direct a trajectory to the desirable attractor after it comes close to a path on the bush, a targeting feedback
scheme is employed. Let us take, for example, an N-dimensional map xn+1 = F(xn, p). Suppose a trajectory originated from
a random initial condition x 0 falls at some later time n into an ε-neighborhood of a point yn on the bush, i.e. |xn − yn| ≤ ε.
Let yn, yn+1, . . . , yB be the path on the bush that starts at yn and ends at yB which is in the ε-neighborhood of the desirable
attractor. In the vicinity of yn, we have the following linearized dynamics: ∆xn+1 = DF(xn, p)∆xn + (∂F/∂p)∆pn, where
∆xn = xn − yn, ∆pn = pn − p0, and both the Jacobian matrix DF(xn, p) and the vector ∂F/∂p are evaluated at xn − yn
and pn − p0. Choosing a unit vector u in the phase space and letting u · 1xn+1 = 0, we obtain for the required parameter
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perturbation

∆pn =
−u · DF(xn, p) ·∆xn

u · ∂F/∂p
. (32)

The unit vectoru is arbitrarily chosen provided that it is not orthogonal to xn+1, and that the denominator in Eq. (32) does not
approach zero. In practice, the maximummagnitude allowed for the parameter perturbation is∆pmax ∼ ε. If the computed
|∆pn| exceeds ∆pmax, then δpn = 0. This may occasionally cause the control loss, however, as was numerically found, the
robust control can still be achieved because when ∆xn is small, ∆pn is also small, and therefore setting ∆pn = 0 seldom
happens.

The method has been demonstrated through numerical simulations in a two-dimensional map to control both fractal
basin boundaries and riddled basins.

4.2.3. Reinforcement learning
The feedback control outlined in Section 4.1 and the two targeting methods discussed in Section 4.2 are restricted to

relatively low noise levels. In case of larger noise, it is advisable to use the reinforcement learning method [257,261,262] to
steer the trajectory to any selected metastable state. In contrast to the previously discussed techniques, this method does
not require any knowledge on the system model and can be entirely based on data. This offers a much wider applicability
since in many practical situations one encounters various systems for which no model equations available.

The aim of this control is again to drive the system to a particular preselectedmetastable state in a shortest possible time.
Once more, we will use the dissipative standard map as a paradigm to design a discrete control strategy. To do so, a small
state-dependent perturbation un is added to the forcing f0 of the map equation (2):

xn+1 = xn + yn + δx mod 2π, (33)

yn+1 = (1 − ν)yn + (f0 + un) sin(xn + yn)+ δy, (34)

where δx and δy are the components of uniformly distributed noise with

δ2x + δ2y ≤ δ (δ being the noise strength). The

reinforcement learning method [257] considers the learning from interactions of a decision maker, called agent, with a
controlled environment.

At each time step n = 1, 2, . . . the agent gets a representation wn ∈ W of the environment’s state xn ∈ X, where W
is the finite set of all possible state representations, xn = (xn, yn) is the state vector, and X is the state space. Upon the
basis of wn the agent chooses a control un ∈ U from the set of all possible controls U , based on a given control strategy
πn(w, u) defined by the probability distribution of choosing un = u with the conditions that wn = w. At the next time
step n + 1 the agent obtains a reward rn+1 and a new representation wn+1 based on the chosen control un. The goal is to
maximize the rewards. For the specific example of the dissipative standardmap, the possible set of control actions is chosen
as U = (0, umax,−umax), so that the forcing f0 is either increased or diminished by umax or no action is taken. The finite set
W is taken as a finite approximation of the true state space X using a vector quantization technique [263].

This technique leads to a cell form, coarse-grained partitioning of the state space. Each state x of the true state space X
is projected onto one vector w(x) of the reduced space W, in such a way that w is the closest vector according to some (in
general, the Euclidean) norm. The policy is defined by assigning an action Q (w(x), u) to each pair of reduced state w and
allowed control u. The algorithm is then as follows: Whenever the system trajectory is in the state x, the corresponding
vector w is determined and a control u(x) is chosen in agreement with the action Q . The reward is defined by rn+1 = −0.5
if the trajectory is far away from the metastable state one wants to reach, i.e. |xB − xn| > 1 and rn+1 = 1 otherwise. In this
case, the selected fixed point to approach is xB, but this scheme can be applied to reach any of possible metastable fixed
points in the dissipative standard map.

4.3. Trajectory selection by a periodic feedback

The idea of employing a periodic feedback to select a certain attractor was developed by Yu Jiang [264] who considered
the periodically driven Duffing oscillator [239]

d2x
dt2

+ 0.05
dx
dt

+ x3 = a + b cos(t)+ ϵF(x, s) (35)

with a driving force

F(x, s) = s(t)− x(t), (36)

where s(t) stands for a particular trajectory, that one attempts to obtain for an arbitrary initial condition, and ϵ = 0.37
represents a driving strength. The system equation (35) at a = 15 and b = 0.21 exhibits the coexistence of three stable
periodic orbits (period 1, period 2, and period 3); the period 2 and period 3 overlap in the (x,

·

x) subspace.
Suppose that the target trajectory s(t) is the period-2 orbit. Indeed, when the feedback signal equation (36) is applied,

the trajectory x(t), being initially in either the period-1 or period-3 attractor, goes to the target trajectory s(t)which lies in
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the period-2 attractor. This control works when the amplitude strength ϵ exceeds some threshold value, i.e. when ϵ > ϵc .
After the system is in the target trajectory, the feedback F(x, s) vanishes. Since the desired trajectory is stable, the feedback
driving can be removed as soon as the system falls in the basin of attraction of the desired state. Thus, the feedback periodic
driving equation (36) allows the selection of desired attractors in a multistable system.

4.4. Control of multistability in delayed feedback systems

We already mentioned in Section 2.1.4 that coexistence of attractors often appears in systems with time-delayed
feedback, as was predicted by Ikeda [169,170]. In this section we will show how this kind of multistability can be controlled
in order to make the system monostable. The control of multistability can also be used in combination with methods for
controlling chaos. A control techniquewhich combines the Pyragasmethod for chaos control [265] and attractor annihilation
by harmonic modulation was outlined in Refs. [176,178]. In the Pyragas method, the feedback signal, proportional to the
difference between the current variable and its previous value taken at a delay time τ , stabilizes an unstable periodic orbit
embedded in the chaotic attractor; the period of this orbit is equal to τ . At the same time, the delayed feedback can stabilize
other periodic orbits with periods multiple of τ , thus leading to multistability. Although chaos is replaced by a periodic
motion, the system becomesmultistable. To avoid undesirable attractors or tomake the systemmonostable, the application
of attractor annihilation technique is appropriate in this situation. In the following, we will demonstrate how this approach
works on the example of the logistic map and in a laser.

4.4.1. Delayed feedback logistic map
The time-delayed logistic map is one of the simplest systems which displays bistability. It can be described as follows

xn+1 = axn(1 − xn)− ηxn−k, (37)

where xn+1 is measured as time series with x ∈ [0, 1] and a ∈ [1, 4], k is the delay time, and η is the feedback strength. It
was found [176] that short delays (k ≤ 3) induce a new attractor, so that the system becomes bistable for certain values of
the parameters a and η; in particular, a period 3 appears.

Fig. 19 illustrates the changes induced by the delayed feedback in the bifurcation diagrams constructed using a as a
control parameter for four different delays k = 1, 2, 3, 100 and fixed feedback strength η = 0.19. One can see that short
delays induce bistability in the system, while long delays do not. For k = 1 (Fig. 19(a)) the period-2 branch coexists with the
period-3 branch in the parameter range of a ∈ [3.60, 3.65], instead of the chaotic attractor without feedback. Bistability is
also observed for k = 2 (Fig. 19(b)) and k = 3 (Fig. 19(c)) but in the narrower parameter ranges. Instead, very large delays
(e.g. k = 100) do not induce new attractors, and hence only the chaotic attractor remains (Fig. 19(d)).

In the following, we will consider the short delay k = 1 because in this case the parameter range for bistability is
largest. The calculations show that when the feedback strength η is increased, the bistability range enlarges and the original
cascade of period-doubling bifurcations shifts towards larger values of a, while the induced period-3 attractor is located
approximately around the same values of a. The bifurcation diagram with respect to the feedback strength ν for the fixed
parameter a = 3.815 is shown in Fig. 20. As the feedback strength is increased, the map equation (37) undergoes an
inverse cascade of period-doubling bifurcations on the period-2 branch which coexists with the period-3 branch within
ν ∈ [0.04, 0.25].

Next, to controlmultistability in a delayed-feedback system themethod of attractor annihilation can be used. Specifically,
a harmonic modulation can be applied either to a system parameter or to a system variable x. Any of these ways allows
annihilation of coexisting attractors thus making the system monostable. Consider now how these modulation strategies
work with the above example of the logistic map equation (37).

(i) Parameter modulation. The control in form of a harmonic modulation is introduced as

a = a0 − ac sin(2π fc), (38)

where a0 is the initial value of the parameter, and ac and fc are themodulation amplitude and frequency, respectively.While
η = 0.145 and a0 = 3.815 are fixed in the middle range of bistability, where the period-2 and period-3 attractors coexist,
the control modulation equation (38) is applied with ac ≤ 0.0225 to be within the range of bistability.

(ii) Modulation of the feedback strength. In a similar way the control modulation can be applied to the feedback strength
as follows

η = η0 − ηc sin(2π fc), (39)

where η0 and ηc are the initial values of the feedback strength andmodulation amplitude, respectively.While a = 3.815 and
η0 = 0.145 are fixed in the middle range of bistability, the control modulation equation (39) is applied with ηc ≤ 0.1985.

(iii)Modulation of the variable. The delayed-feedback logisticmapwithmodulated variable can bewritten in the following
form

xn+1 = axn(1 − xi)− ηxn−k − δ sin(2π fcn), (40)

where δ is the modulation amplitude. This modulation is equivalent to an external harmonic forcing. As in the above cases,
a = 3.815 and η = 0.145 are fixed and the control modulation equation (40) with δ ≤ 0.025 is applied to be always within
the range of bistability.
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Fig. 19. Bifurcation diagrams of the delayed logistic map with respect to a at η = 0.19 and (a) k = 1, (b) 2, (c) 3, and (d) 100.

x

Fig. 20. Bifurcation diagram of the delayed logistic map with respect to feedback strength η for a = 3.815. The dashed line indicates the initial value of
feedback strength η0 = 0.145 at which the control is applied.

The effect of the control modulation in the case (ii) is illustrated in Fig. 21. Fig. 21(a) shows how the map being in the
period 3 responds to the feedback modulation. When the modulation amplitudes ηc is small, the system response is lineal,
i.e., there are resonances at themapping frequency fc = 1/3 and its subharmonic fc = 1/6. For highηc , additional resonances
appear due to increasing nonlinearity.
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Fig. 21. Alternative amplitude ∆x of system response to control modulation of feedback strength η versus modulation frequency fc and (b) stability
boundary of period-3 attractor in (fc , ηc ) space. Each curve in (a) corresponds to fixed ηc starting from ηc1 = 2 × 10−4 (lowest curve) with interval
∆ηc = 7.5 × 10−4 .

The stability boundary of the period-3 attractor in the parameter space of the modulation frequency and amplitude
is shown in Fig. 21(b). For the parameter values inside the dashed region, two attractors (period 2 and period 3) coexist,
whereas in the blank region the map is monostable, i.e., only period-2 attractor exists. Indeed, the absolute minimum in the
annihilation curve appears at the frequency of damped oscillations f0 ≈ 0.22 when the trajectory approaches the period-3
attractor. The other (local) minima occur at combined frequencies (at f0 − 1/3 ≈ 0.05 and 1/2 − f0 ≈ 0.28).

The attractor annihilation by low-frequency modulation can be easily realized in practice. Slowly increasing the
modulation frequency from zero, one can find the first local maximum in the system response without any preliminary
knowledge of the system dynamics. The comparative analysis of efficiencies of these different types of the control allows
us to conclude that the modulation of the multiplicative parameter is the most efficient way for annihilating attractors in a
bistable system.

4.4.2. CO2 laser with electronic feedback
Next, we will show how multistability can be controlled in a CO2 laser with delayed feedback. The specific property of

this laser is that it displays chaos of Shilnikov type [266]. This chaotic motion is characterized by an erratic behavior when
a parameter is varied towards the homoclinic condition associated with a saddle focus [267]. A specific feature of Shilnikov
chaos is that it existswithin very narrowparameter ranges and the distance between these narrow chaoticwindows changes
exponentially when a control parameter is varied [268,269]. Moreover, it is extremely difficult to find this type of chaos
experimentally due to unavoidable noise and small fluctuations of the system parameters. However, Shilnikov chaos has
been found numerically in a CO2 laser with delayed electronic feedback [268,269].

The model is based on a four-level scheme for the active medium [270] leading to the following six-equation dynamical
model

·

x1 = k0x1

x2 − 1 − k1 sin2 [εx6(θ − T0)+ (1 − ε)x6]


, (41)

·

x2 = −Γ1x2 − 2k0x1x2 + γ x3 + x4 + P0, (42)
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Table 1
Parameter values used in simulations.

Γ1 10.0643 α 32.8767 k0 28.5714 γ 0.05
Γ2 1.0643 β 0.4286 k1 4.5556 P0 0.016

Fig. 22. Time series of chaotic oscillations in a CO2 laser with feedback R = 160, B0 = 0.10315.

·

x3 = −Γ1x3 + x5 + γ x2 + P0, (43)
·

x4 = −Γ2x4 + γ x5 + zx2 + zP0, (44)
·

x5 = −Γ2x5 + zx3 + γ x4 + zP0, (45)
·

x6 = −βx6 + βB − βf (x1), (46)

where f (x1) = Rx1/(1 + αx1) is the feedback function, x1 is the normalized photon number proportional to the laser
intensity, x2 is proportional to the population inversion, x3 is proportional to the sum of the populations on the two resonant
levels, x4 and x5 are proportional, respectively, to difference and sum of the populations of the rotational manifolds coupled
to the lasing levels. It is assumed that eachmanifold contains z = 10 sublevels. The variable x6 is proportional to the feedback
voltage that affects the cavity loss parameter through the relation k0(1 + k1 sin2 x6). θ is the time rescaled to the collision
relaxation rate γr = 7 × 105 s−1, i.e. θ = tγr , where t is the real time. The control parameters B and R are proportional
to the bias voltage and the gain of the feedback, respectively. The parameters Γ1, Γ2, γ , and β represent decay rates, α is a
saturation factor of the feedback loop, and P0 is the pump parameter. The fixed parameter values are collected in Table 1.
They correspond to accurate measurements performed on the experimental system [271].

Eq. (46) contains the delayed variable εx6(θ − T0), where ε is the strength of the delay signal and T0 is the delay time.
The laser without delay (T0 = 0 and ε = 0) operates in a chaotic regime characterized by large and small spikes (Fig. 22)
corresponding to alternative large and small loops forming respectively inward and outward spirals in the phase space in
the vicinity of an unstable saddle focus. This fixed point has two real (λ1 and λ2) and four complex conjugate eigenvalues.
The inward spiral motion is related to a nonstationary solution of the equation model characterized by a stable manifold
with complex eigenvalues (−ρ2 ± iω2). For a homoclinic orbit associated with such a saddle focus Shilnikov showed that, if
|ρ2/λ2| < 1, then a homoclinic orbit is created and the system represents a chaotic behavior of Shilnikov type [267].

Synchronization of Shilnikov chaos by delayed feedback, referred to as delayed self-synchronization, was demonstrated
by Arecchi et al. [272]. However, at certain delay times the delayed feedback induces multiple coexisting attractors, whose
period T is a linear function of the delay time T0. For example, two coexisting periodic attractors appear at ε = 0.25 in
the range of delay times 110 < T0 < 160 (in normalized units of γr ), as shown in Fig. 23(a). At fixed T0 = 140 the
coexisting attractors have periods T1 = 147.3 and T2 = 74.7 (horizontal dashed lines) that are close to T0 and T0/2. The
dependences in Fig. 23 are obtained by calculating the autocorrelation function of the laser intensity and measuring the
correlation period [272]. The chaotic regime yields zero autocorrelation function and hence T = 0 (Fig. 23(c)). Next, we will
show how harmonic modulation to the feedback variable locks one of the coexisting periodic orbits.

In the laser with harmonic modulation of the feedback variable, Eq. (46) becomes

·

x1 = k0x1

x2 − 1 − k1 sin2

[εx6(θ − T0)+ (1 − ε)x6 + ζ sin(2π f θ)]

, (47)

where ζ is themodulation amplitude. The effect of themodulation is strongly dependent on themodulation frequency. One
of the coexisting periodic orbits can be locked when either (i) the modulation frequency is proportional to the reciprocal
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a

b
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Fig. 23. (a) Coexisting stable periodic orbits in a CO2 laser with delayed feedback. (b) Locking of the periodic orbit of period T = T0 when the feedback
variable is modulated with delay-dependent frequency f = 1/T0 or (c) with fixed frequency f = 1/50. ζ = 0.01 and ε = 0.25. The horizontal dashed lines
show the periods T1 = 147.3 and T2 = 74.7 of the coexisting states, which appear when the modulation with T0 = 140 (shown by the vertical dashed
line) is applied.

delay time (f = n/T0, where n = 1, 2, . . .) or (ii) the modulation frequency is fixed (f = const). These cases are illustrated,
respectively, in Fig. 23(b) and (c). Note, that T , T0, f in the text and figures are normalized to γr . In both cases themodulation
amplitude is relatively small (ζ = 0.02) and there are ranges of T0 where only one periodic state exists.

The analysis of these results allows us to reveal the following main features of this kind of control: (i) Time dependent
modulation of the delay variable locks a state whose period is equal to T0, i.e. T = T0 (Fig. 23(b)). (ii) Fixed frequency
modulation locks a periodic orbit multiple of T0, i.e. T = (i/j)T0 (i, j = 1, 2, . . .) (Fig. 23(c)).

Fig. 24 demonstrates the effect of the control modulationwith the time series. The delay time is fixed at T0 = 140 and the
control is switched on at time θ = 2.5 × 104. The left-hand column shows the case when the control is applied to the orbit
with period T1 = 147.3, while the right-hand column to the orbit with T2 = 74.7. One can see that after transients both
attractors are simultaneously destroyed and the trajectory goes to the periodic orbit whose period is equal to the period of
the control modulation.

Fig. 25 shows the stability diagram for the attractor with period T2 = 74.7 in the space of the modulation parameters ζ
and f . The crosses indicate the region in the parameter space where this attractor does not exist. This region forms tongues
whose minima are located at the relaxation oscillation frequency of the attractor, fr ≈ 7.25 × 10−3 and at the frequencies
equal to approximately second and third harmonics of fr . For the parameters inside the tongues (shown by the crosses),
the attractor T2 = 74.7 is destroyed and only attractor T1 = 147.3 remains. Thus, the modulation of the feedback variable
makes the system monostable.

5. Stochastic control of multistability

The interplay between stochasticity and nonlinearity is a current issue in the study of different dynamical systems,
including radio-physical [273], climatic [274,275], populational [276,277], geophysical [278], epidemiological [279], and
optical models [280], as well as in the analysis of medical data [281]. Several experimental and theoretical works
have demonstrated that noise sometimes plays a positive role in multistable systems, e.g., inducing stochastic [282],
coherence [283] and vibrational [284] resonances, preference of attractors [8,140,145,285,286], attractor hopping
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Fig. 24. Time series of CO2 laser intensity when feedback modulation with ζ = 0.02 is applied at time θ = 2.5 × 104 with frequencies (a, b) f = 1/50,
(c, d) 1/T0 and (e, f) fr = 7.25 × 10−3 . The initial states periods are (a, c, e) T1 = 147.3 and (b, d, f) T2 = 74.7.

[287–290], and enhancing multistability [7,291]. The influence of noise on multistability was first investigated by Arecchi
et al. [58,292],who observed noise-induced switches between coexisting states. Later, itwas also found that noise can induce
new attractors. This phenomenon has been demonstrated in a laser system [293] and in coupled oscillators [291]. The role
of stochastic resonance in attractor destruction was discussed with Duffing oscillators [239]. Noise-induced preference of
attractors was also observed in coupled oscillators [145], in the Hénon map [179], and in a multistable fiber laser [294,295].

In general, when discussing the effects of noise in a dynamical system, three different ranges of the noise amplitude can
be distinguished: low, intermediate, and strong noise. While at low noise the phase–space trajectory stays essentially in
the neighborhood of an attractor resulting in small deviations from the deterministic dynamics, an intermediate noise level
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Fig. 25. Stability diagram of the period-74.7 attractor in the CO2 laser with periodic modulation of feedback variable. The crosses indicate the region
where the period 74.7 is annihilated. For other parameters the period 74.7 is stable and coexists with the period-147.3 attractor. The arrow indicates the
relaxation oscillation frequency fr of the period-74.7 orbit.

leads to the characteristic hopping dynamics between the now metastable states, the former deterministic attractors. Due
to a nontrivial relationship between the coexisting states and their basins of attraction, the final state depends crucially
on the initial conditions [140]. Noise a multistable system results in so complex behavior that the overall dynamics can be
divided in two different phases: a rather regularmotion in the neighborhood of attractors and noise-induced jumps between
coexisting metastable states. The dynamics is then characterized by a large number of periodic states ‘‘embedded’’ in a sea
of transient chaos [138]. The time the system spends close to an attracting state corresponds to its ‘‘ordered’’ phase, and the
transient time to its ‘‘random’’ or ‘‘chaotic’’ phase. Strong noise can prevent the system from settling down into any ordered
phase. For the large-amplitude noise most of the former attractors cannot be identified anymore. Instead, the dynamics
corresponds to a diffusion process over the state space. These different effects of noise on the attractors’ structure have
been established experimentally in a fiber laser [290,295,296].

Since any noise, regardless of its amplitude, makes the system dynamics probabilistic, one needs to solve stochastic
equations. For every initial condition, the systemwill follow a trajectory and reach one or another of the coexisting attractors
with a certain probability depending on the noise amplitude. In general, the trajectory will stay only for a certain time span
in the neighborhood of an attractor before it is kicked out and approaches another or again the same attractor. Taking this
hopping dynamics into account, the important concept of the basin of attraction belonging to one attractor only needs to be
interpreted in another way. While a basin of attraction does not exist in noisy dynamical systems in a strict mathematical
sense, one can still consider the basin in a statistical sense. As a first approach, one can look for each initial condition which
of the attractors will be reached first after the iteration is started regardless the fact that it will be kicked out of this attractor
at a later time. As a second approach, one can always start from the same initial condition and change the noise realization
to find the probability with which each of the attractors is reached. This probability again gives some measure of the size
of the basin of attraction under the noise influence. Therefore, in both cases only statistic stability of the attractors can be
measured.

Besides the importance for specific applications, a further motivation to study the dynamics of noisymultistable systems
is their possible role in neural information processing [11], because with adequate noise, the system can rapidly access
different ordered states. The control of such systems under different conditions would then offer the opportunity to utilize
this multistable behavior for information processing and storage, i.e., different ordered states could be identified with
different ‘‘memorized’’ pieces of information. External input can be thought of as triggering a certain control mechanism
that stabilizes a selected ordered state that would be associated with the given input.

The high sensitivity of a multistable system to noise can be used to control multistability. In the following we will
show how noise (i) induces preference for certain attractors [140], (ii) selects desired attractors [145], and (iii) annihilates
attractors in stochastic resonance [179,252,295].

5.1. Noise-induced preference of attractors

Although in a deterministic case the basins of attraction of multiple coexisting attractors can have a very complicated
structure, under random perturbations this structure becomes blurred and particularly close to the deterministic basin
boundaries; the attractor towhich a trajectory, starting for certain initial conditions,will go depends on the noise realization.
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Fig. 26. Bifurcation diagram of the delayed logisticmap equation (49) for a = 3.625 and τ = 1. For η = 0.19 (vertical dashed line) there are two coexisting
stable solutions, P2 and P3, found using different initial conditions.

This effect of blurring basin boundaries leads to the fact that small basins of attraction cannot be discerned anymore when
the noise amplitude becomes too large. These basins become ‘‘buried’’ under the noise and these attractors cannot be found
anymore in the phase space. As a consequence, only the attractors with large basins of attraction in the deterministic case
are preferred in a noisy system, while the attractors with small basins of attraction disappear. In the following sections we
will illustrate this effect called noise-induced preference of attractorswith two examples.

5.1.1. Kicked mechanical rotor
The first example is a periodically kicked mechanical rotor without gravity equations (1) and (2) already considered in

Section 2.1.1. Taking into account that the kicks are only applied at certain discrete times t = 0, T , 2T , . . . and adding noise
to each variable, the rotor is modeled by the following two-dimensional map [140]:

xn+1 = xn + yn + δx mod 2π,

yn+1 = (1 − ν)yn + f0 sin(xn + yn)+ δy, (48)

where δx and δy are the components of the uniformly and independently distributed noisewith a bounded norm

δ2x + δ2y ≤

δ and f0 is the strength of the forcing. For the parameter values f0 = 3.5 and ν = 0.02, Kraut et al. [140] found numerically
111 stable periodic orbits in the noiseless limit. Most of these orbits belong to the period-1 family and some of them have
period 3. Only 0.01% of all found orbits have periods other than 1 and 3, so these orbits do not play an important role.
With noise added, three different types of behavior are observed. For small noise level (δ / 0.05) the trajectory may be
trapped in the open neighborhood of an attractor forever. For intermediate noise (0.05 / δ / 0.1) attracting periodic orbits
could be still identified because the characteristic hopping process between them takes place. However, one cannot find
all the deterministic attractors in this hopping dynamics. Instead, the number of attractors is drastically reduced to only 11
attractors when the noise level is increased to δ = 0.01.

There are two reasons for such a behavior. First, the basins of attraction of many stable periodic orbits shrink
exponentially as the noise level is increased. This shrinking is more pronounced for attractors having small basins of
attraction in the deterministic case [140]. Second, the hopping process is also determined by the structure of the chaotic
saddles embedded in the basin boundaries. Only those states which are accessible by the noisy trajectory can take part in
the hopping process [288]. Changing the noise level in an appropriate way, it is possible to involve more or less states in the
hopping dynamics. Therefore, using noise one can control the number of attractors which can be observed.

5.1.2. Delayed feedback logistic map
The second example is the popular logistic map described in Section 4.4.1. Now we will apply the delayed feedback in

the form used by Pyragas [265] as follows
xn+1 = axn(1 − xn)+ η(xn−τ − xn), (49)

where the strength of delayed feedback η can be either positive (η > 0) or negative (η < 0) [176]. Bistability in the logistic
map equation (49) is observed in the bifurcation diagram in Fig. 26, where the coexisting period-2 (P2) and period-3 (P3)
attractor branches appear within a certain range of η.

Now, we will show that in the presence of additional small noise these attractors remain stable only statistically and the
probability of their emergence can be controlled by noise added at each iteration as follows

xn+1 = axn(1 − xn)+ η(xn−1 − xn)+ Dξn, (50)
where D is the noise amplitude and ξn is a random variable in the interval [−1, 1] with a Gaussian probability distribution.
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Fig. 27. (Left) Probability of period-2 attractor emergence, P2 , in the delayed noisy logistic map equation (50) for different initial conditions x0 and noise
amplitudes D. (Right) Projections on the (x0,D) plane close to x0 = 1 (top) and x0 = 0 (bottom). The color scale denotes the probability with which an
initial condition leads to the period 2. The period-3 attractor does not exist for D > 0.008. a = 3.625, η = 0.19, and τ = 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 27(a) shows the probability to obtain a stable P2 solution (P2) in the space of initial condition x0 and noise amplitude
D. The period 3 exists only within narrow windows of the initial conditions close to x0 = 0 and x0 = 1 (Fig. 27(b) and (c)).
The probabilities P2 and P3 to obtain P2 and P3 complement each other, i.e., when P2 = 1 then P3 = 0. In the noisy map
equation (50), when D is increased, P3 decreases and the P3 attractor disappears at D = 0.008 resulting in monostability.

Since the basins’ volumes (the number of initial conditions leading to the corresponding stable solution) have a
probabilistic character, for every fixed noise amplitude D the basins’ volumes were calculated 1000 times exploring as
many as 105 initial conditions and the probability distribution was measured [297]. Fig. 28 illustrates statistical properties
of the coexisting P2 and P3 attractors under the influence of noise. The probability distributions of the sizes of the basins
of attraction of the two coexisting states are shown in the upper panels of Fig. 28. The lower panel demonstrates how the
most probable basins’ size Nmax (the number of initial conditions leading to the corresponding attractor with maximum
probability) depends on D. While small and large noise amplitudes have no influence on Nmax, an intermediate noise
(0.005 < D < 0.008) changes the basins’ structure increasing the basin of attraction of P2 and decreasing the P3 basin
up to zero, hence giving rise to monostability at D = 0.008. This behavior demonstrates that bistability can be simply
controlled by noise.

5.2. Attractor selection by noise

High-dimensional globally coupled dynamical systems can have a very large number of attractors. Multistability in one
of such systems, globally coupled maps (GCM), was studied by Kaneko et al. [164,298–301] under the influence of noise
[145,302]. They found that a change in the time span during which noise is applied, leads to different final attractors. Hence,
a certain predefined attractor can be reached employing an appropriate noise realization. To explain themechanism for this
controlled selection let us consider GCM expressed as [302]

xin+1 = (1 − ε)f (xin)+
ε

N

N
j=1

g(xjn), (51)

where f (xin) is the local map and g(xjn) is a map applied to the elements coupled to. The subscript n and superscript i indicate
respectively the discrete time and the element, while N is the system size and ε is the coupling constant. It is supposed, for
simplicity, that g(x) = x and that the map is logistic, i.e., f (xn) = xn+1 = 1 − αx2n. As usually done for GCM, elements are
grouped into clusters that oscillate in unison, taking nearly identical x values. In particular, by adding a suitable amount of
noise for some time, one can switch attractors such that the cluster number, i.e. the number of possible coexisting attractors,
is eventually reduced one by one [302]. Conversely, by adding a larger amount of noise, it is possible to desynchronize the
elements and increase the cluster number. Thus, the controlled attractor selection is possible by just changing the noise
amplitude and its duration.
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Fig. 29 shows how the number of coexisting attractors is controlled by noise. Starting from random initial conditions
and allowing for a transient of 105 time steps, a short ‘‘down-level’’ noise burst is applied for ten times every 103 time
steps, and then, starting from time 13 × 103 a short ‘‘up-level’’ noise burst is applied six times. The line marked with the
circles represents the average number of clusters just before and just after applying the noise bursts over 103 runs. The
‘‘down level’’ for the noise is 5% and the ‘‘up level’’ is 9%, while the ‘‘down-burst time’’ is 25 time steps and the ‘‘up-burst
time’’ is 5 steps. The solid line shows a single run with the number of clusters determined at every time step. Again, noise
bursts are applied as for the averaged case, except that the ‘‘burst-up’’ time is five time steps and the ‘‘burst-down time’’ is
two time steps. It is important to note that noise is only required for the switching of the attractors and not for sustaining
them once selected. The observed phenomenon is explained by increasing system stability when a number of elements in a
synchronized cluster increases.

5.3. Robustness of the control to noise

As discussed above, some control strategies have been developed to keep the system in a preselected attractor in spite of
noise. Another control approach has been designed to annihilate undesirable attractors and make the system monostable.
A fundamental problem of this type of multistability control is then its robustness to noise. Is it still possible to drive the
system from multistability to monostability in the presence of noise? Fortunately, recent studies with two paradigmatic
models, namely, the tristable Hénon map and the bistable delayed logistic map, give the positive answer to this question.

5.3.1. Multistable noisy Hénon map
Let us consider the Hénon map subject to both random and periodic modulations as [8]: xn+1 = 1 − µx2n + yn + ξn, and

yn+1 = −Jxn + φn, where ξ and φ are Gaussian white noise of zero mean and identical standard deviation σ . Even without
noise, the dynamics of the Hénonmap is very complex and reveals self-similar organization of multiple attractors, as shown
in Fig. 30.
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Fig. 30. Bifurcation diagram of the Hénon map demonstrating successive appearance of a series of first-order secondary cascades of period 5, 4, and 3
around the period-1 branch. J = 0.98.

Although noise of an adequate strength induces an intermittent transition among basins of attraction of coexisting states,
the system dissipativity always attempts to pull and retain a phase–space trajectory back to the same basin, and as a
consequence, no such a transition may occur. The creation and evolution of the basins of attraction of multiple coexisting
states in the Hénon map are very similar to those in the Toda oscillator [155]. In particular, the basins of higher-order
secondary cascades appear and always remain within the basins of the immediate lower-order secondary cascades. Higher
the order of the cascades, progressively smaller their basins. Consequently, the noise effect is more pronounced for higher-
order secondary cascades, for example, strong enough noise can induce a transition from higher-order to lower-order
secondary cascades.

The bifurcationdiagram in Fig. 31(a) demonstrates the effect ofmoderate noise (σ = 0.001) on theperiod-16 (p16) branch
around the period-4 (p4) branch. For the parameter values just past the crisis point, the period-16 attractor no longer exists.
Since, the p4 basin is much larger then the p16 basin, the p4 attractor can withstand stronger noise. Fig. 31(b) shows the
bifurcation diagram at stronger noise (σ = 0.005), where it is seen that beyond boundary crisis p4 settles in p1.

The combined effect of noise and periodicmodulation applied toµ,µ = µ0(1+η sin(2π ft)), is demonstrated in Fig. 31(c)
and (d). By increasing the modulation amplitude η, the destruction of p16 and consequent transition to p4 are observed
[shown by the arrows in Fig. 31(c)]. Similar destruction is also observed in the case of noisy p12 and p20. Each destruction
is followed by a transition to noisy p4, which can be also destroyed by increasing η and keeping µ0 fixed. Fig. 31(d) shows
a typical destruction of noisy p4 in the presence of relatively strong noise (σ = 0.005). After destruction of p4, the system
jumps (shown by the arrow) to the remaining p1.

The time series in Fig. 32 demonstrate the robustness of attractor annihilation to relatively strong noise which induces a
spontaneous transition between coexisting states. In particular, Fig. 32(a) shows that noise of σ = 0.01 in the system being
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Fig. 31. Bifurcation diagrams demonstrating combined effect of noise and periodic parametermodulation. (a) Destruction of period-16 branch (p16) around
period 4 (p4) by noise with σ = 0.001. Sampling period is four. (b) Destruction of period-4 branch (p4) around period 1 (p1) by noise with σ = 0.005.
(c) Destruction of noisy p16 by parameter modulation with f = 0.005; the system jumps (shown by the arrows) to p4; σ = 0.001 and µ0 = 0.142. (d)
Destruction of noisy p4 by modulation with f = 0.005; the system jumps (shown by the arrow) to period 1; σ = 0.005 and µ0 = 0.12.

initially in p16 induces a transition to p4. Since the period-4 basin of attraction is large enough to deter further transition to
any other basin, the periodic control is added to destroy the lower-order cascades. One can see that the control modulation
with η = 0.04 and f = 0.005 applied at n = 1000 (shown by the arrow) destroys p4 and the system goes to p1 after
transients. Similar behavior occurs when the initial attractor is chosen to be a period 25 (p25). As illustrated in Fig. 32(b),
p25 is destroyed by noise so that the system goes to p5 which is annihilated by periodic modulation.

Thus, if noise is capable of inducing a transition from basins of higher-order secondary cascades to basins of lower-order
secondary cascades, then the controlmodulation is required only to destroy these lower-order secondary cascades and bring
the system to the remaining period-1 attractor.

5.3.2. Bistable noisy logistic map
Now we will demonstrate how noise can enhance multistability control by attractor annihilation. Let us consider again

the delayed logistic map equation (50) described in Section 5.1.2. We apply combined control in form of both periodic and
stochastic modulations [297]:

xn+1 = axn(1 − xn)+ η(xn−1 − xn)− δ sin(2πnf )+ Dξn, (52)
where δ and f are, respectively, the modulation amplitude and frequency. Here, we suppose that the modulation amplitude
δ is so small that no qualitative changes occur in a stationary case, i.e. when f → 0.
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Fig. 32. Time series demonstrating combined effect of noise and parameter modulation in the multistable Hénon map. Noise with σ = 0.01 induces the
transition from period 16 (p16) to period 4 (p4) and the periodic modulation with η = 0.04 and f = 0.005 applied at n = 1000 (shown by the arrow)
destroys p4 so that only period 1 remains. µ0 = 0.142.
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Fig. 33. Time series demonstrating the combined effect of noise and harmonic modulation in the bistable delayed logistic map equation (52). Starting
from the initial condition for P3, harmonic modulation with δ = 0.006 and f = 0.06 applied after 100 iterations is not capable to destroy the attractor,
but noise with D = 0.006 added after 400 iterations does this. x0 = 0.94, a = 3.625, η = 0.19.

The effect of this combined control is illustrated in Fig. 33. First, the bistable logistic map with coexisting P2 and P3
attractors, in the absence of periodic modulation (δ = 0) and without noise (D = 0), is iterated from the initial condition x0
for the P3 attractor, and after 100 iterations a small periodic modulation is applied; then, after 400 iterations noise is added.
Although neither small-amplitude periodic modulation, nor weak noise applied separately is not capable to annihilate P3,
their combination does it.

Fig. 34 shows the state diagrams in the (f , δ) parameter space for three noise amplitudes: D = 0 (Fig. 34(a)), D = 0.002
(Fig. 34(b)), and D = 0.006 (Fig. 34(c)). For each value of the control parameters (f , δ) the probability P2 of the system equa-
tion (52) to be attracted to P2 when starting from an initial condition for P3 is calculated. P2 = 1 (yellow region) means
that every trajectory is only attracted to P2, i.e., the system is monostable. One can see that while without noise (D = 0)
(Fig. 34(a)) the border between the bistable (black) andmonostable (yellow) regions is well defined, noise degrades the bor-
der and shifts it towards lower values of δ. Thus, weak noise facilitates attractor annihilation by slow harmonic modulation.

5.3.3. Multistable fiber laser
In the next example, we will demonstrate how attractor selection by noise is obtained in a multistable erbium-doped

fiber laser described by the following equations [252,294,295]

dP
dt

=
2L
Tr

P {rwα0 [N (ξ1 − ξ2)− 1] − αth} + Psp, (53)

dN
dt

= −
σ12rwP
πr20

(Nξ1 − 1)−
N
τ

+ Ppump, (54)

where P is the intracavity laser power, N = (1/n0L)
 L
0 N2(z)dz is the averaged (over the active fiber length L) population

of the upper lasing level, N2 is the upper level population at the z coordinate, n0 is the refractive index of a ‘‘cold’’ erbium-
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Fig. 34. State diagrams of noisy delayed logistic map under harmonic modulation equation (52) in (f , δ) space for x0 = 0.94, a = 3.625, and η = 0.19.
The color shows the average probability over all initial conditions leading to P2 for three different noise amplitudes: (a) D = 0, (b) D = 0.002, and (c)
D = 0.006. Noise facilitates annihilation of the P3 attractor by harmonic modulation. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

doped fiber core, ξ1 and ξ2 are parameters defined by the relationship between cross sections of ground state absorption
(σ12), return stimulated transition (σ12), and excited state absorption (σ23). Tr is the photon intracavity round-trip time,
α0 is the small-signal absorption of the erbium fiber at the laser wavelength, αth accounts for the intracavity losses on the
threshold, τ is the lifetime of erbium ions in the excited state, r0 is the fiber core radius,w0 is the radius of the fundamental
fiber mode, and rw is the factor addressing a match between the laser fundamental mode and erbium-doped core volumes
inside the active fiber. The spontaneous emission into the fundamental laser mode is derived as

Psp = N
10−3

τTr


λg

w0

2 r20α0L
4π2σ12

, (55)
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where λg is the laser wavelength. The pump power is expressed as

Ppump = Pp
1 − exp [−α0βL (1 − N)]

N0πr20 L
, (56)

where Pp is the pump power at the fiber entrance and β is a dimensionless coefficient. The parameters are chosen to
correspond to real experimental conditions: L = 0.88 m, Tr = 8.7 ns, rw = 0.308, α0 = 40 m−1, ξ1 = 2, ξ2 = 0.4,
αth = 3.92 × 10−2, σ12 = 2.3 × 10−17 m2, r0 = 2.7 × 10−6 m, τ = 10−2 s, λg = 1.65 × 10−6 m, w0 = 3.5 × 10−6 m,
β = 0.5, and N0 = 5.4 × 1025 m−3.

When harmonic modulation and noise are added to the pump parameter as follows

Pp = p [1 − md sin (2π fdt)+ ηζ ] , (57)

where ζ ∈ [−1, 1] is a random number and η is the noise amplitude, the system equations (53)–(54) become stochastic
with probabilistic solutions. For small noise (η < 0.1), the laser’s asymptotic state remains in the vicinity of one of the
coexisting periodic orbits, because small noise does not introduce intermittent switches between the attractors; however it
does change statistical properties of the system giving more preference to some attractors over others. The probability for
each point in phase space to belong to a particular basin of attraction depends on the noise amplitude, i.e., the number of
attracted points for each coexisting attractor (basin’s volume) has a probabilistic character.

In the 3Dplots in Fig. 35, the Renka–Cline griddingmethodwas used to illustrate how theprobability to find certain values
for the volumes of the basins of attraction of the three coexisting states depends on the noise amplitude. These diagrams
were constructed as follows. For each noise amplitude, the basins of attraction in the phase space regionwere computed 100
times, then the number of initial conditions leading to every coexisting attractor was calculated, and finally the probability
distribution of these basins’ volumes was evaluated. For example, for the fixed noise amplitude η = 0.1 and fixed all other
parameters, about 1.3×103 initial conditions were found to be belong to the basin of attraction of P1 with a 30% probability
and about 1.9 × 103 points belong to the same basin but with a 10% probability. In general, the most probable number of
the basins’ points is an almost linear function of noise; as the noise amplitude is increased, the P1 and P3 basins’ volumes
increase while the P4 basin decreases. On the other hand, the probability distribution of the basins’ volumes is not such a
simple function of noise; for certain noise values somemaxima andminima are found. The existence of these extremesmay
be related to a stochastic resonance phenomenon which may occur in basins of attraction of the coexisting states.

Thus, the stochastic control has a noise-dependent probabilistic character displaying a resonance-like behavior in the
basins’ volumes.

5.4. Attractor annihilation in stochastic resonance

The collective effect of noise and periodic modulation gives rise to attractor annihilation through amechanism similar to
stochastic resonance [239,254]. To demonstrate this effect, let us consider two coupled randomly driven oscillators governed
by the following general equation [254]:

··

x+γ
·

x−qξx = −▽V (x), (58)

where x ≡ (x, y) is the system variables, γ is a damping factor, ξ is uniformly distributed noise of level q in the unit
interval [0,1], and V (x) is a two-dimensional anharmonic potential function of coupled oscillators that for symmetric Duffing
oscillators can be expressed as follows [303]:

V (x, y) = (1 − x2)2 + (y2 − a2)2(x − d)+ b(y2 − a2)4, (59)

where a, d, and b > 0 are parameters. It is assumed that one of the coupled subsystems (in the x direction) is noisy. Then, the
system equations (58) and (59) can be written as four first-order differential equations in terms of the dynamical variables

x1 = x, x2 =
·

x, x3 = y, and x4 =
·

y:

·

x1 = x2, (60)
·

x2 = −γ x2 + 4x1(1 − x21)− (x23 − a2)2 + qξx1, (61)
·

x3 = x4, (62)
·

x4 = −γ x4 − 4x3(x23 − a2)(x1 − d)− 8bx3(x23 − a2)3. (63)

The system equations (60)–(63) exhibit different dynamical regimes, from regular states to on–off intermittency, in a wide
range of parameter values [304]. While for γ = 0.04, a = 0.73, b = 0.008, and d = −1.8 two-state on–off intermittency
is observed, at relatively low noise levels (q < 3) one-state and two-state on–off intermittency appear in transients only.
The two-state on–off intermittent attractor is created at relatively strong noise (q ≥ 3) and coexists with two stable steady
states associated with two potential wells.
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Fig. 35. Probability distribution of basins’ volumes of coexisting (a) period-1, (b) period-3, and (c) period-4 attractors in the erbium-doped fiber laser in
the presence of noise applied to diode pump current atmd = 0.8 and fd = 70.2 kHz.

For the purpose of eliminating intermittent chaotic attractors, so that a trajectory initiated froma random initial condition
will remain forever in the vicinity of one of the potential wells, the control modulation is applied to the parameter a as

a = a0[1 − m sin(2π ft)], (64)

where m and f are the modulation depth and frequency and a0 is the initial value of the parameter (a0 = 0.73).
The time series in Fig. 36 illustrate annihilation of the chaotic attractor. The system, prior to the control, is in the chaotic

(intermittency) state. The control modulation applied at t = 5000 destroys the chaotic attractor, so that the trajectory
remains in the vicinity of one of the steady states. Since the harmonic modulation creates a limit cycle around each fixed
point, the final state is a stable periodic orbit. When the modulation amplitude is not large enough to eliminate the chaotic
attractor, the system exhibits the coexistence of five attractors: intermittent switches between two fixed points (two-state
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Fig. 36. Slow parametric modulation in noisy Duffing oscillators leads to annihilation of chaotic (intermittency) attractors. The initial states are (a)
two-state on–off intermittency without modulation (m = 0), and (b) one-state and (c) two-state on–off intermittency with small-amplitude parameter
modulation (m = 0.1). The arrows indicate the instants of time when the control modulation with m = 0.4 and f = 0.01 is applied. The trajectory is
attracted to the created limit cycle in the vicinity of one of the potential wells. This demonstrates the flexibility of the control to select a desirable periodic
orbit.

intermittency) (2I), intermittent jumps out of each fixed point and returns to the same fixed point (two regimes of on–off
intermittency) (1I), and a periodic orbit (PO) in the vicinity of each fixed point. The realization of each of these coexisting
attractor depends on the initial conditions. Fig. 36(b) and (c) show that an increase in the modulation amplitude leads to
annihilation of the intermittent states resulting in the coexistence of two periodic orbits only.

The modulation amplitude required for attractor annihilation depends on both the noise level and the modulation
frequency as shown in Fig. 37. In the presence of the parametricmodulation equation (64), the intermittent attractors appear
only at a certain noise level (q > 1.9 for f = 0.01) (Fig. 37(a)). To eliminate these attractors, the control amplitude should
be larger than a critical value mc , i.e. lie above the bifurcation lines mc shown by the arrows. As seen from Fig. 37(a), for
relatively low noise (1.9 < q < 3), there are two critical values for the modulation amplitude, which correspond to the
onset and offset of on–off intermittency. As seen from Fig. 37(b), the chaotic attractors can be destroyed by slowmodulation
only (f < 0.05) and onlywhenm > mc (inside the striped region). The period of themodulation should be of the same order
of magnitude as the characteristic time a trajectory spends in the vicinity of one invariant subspace before being repelled.
Of course, the duration of the laminar phase depends on the noise level. This suggests that the reason for the control effect
is a resonant interaction of the modulation frequency with the frequency at which the trajectory was repelled from one of
the invariant subspaces.
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Fig. 37. Stability boundary of chaotic attractors in spaces of (a) noise andmodulation amplitudes for f = 0.01 and (b)modulation parameters for q = 3. 1I,
2I and PO are respectively one-state and two-state intermittency and the periodic orbit induced by control modulation. The arrows indicate the bifurcation
lines for the intermittency onset at critical modulation depthmc .

The mechanism for the attractor annihilation can be better understood from Fig. 38 which shows the signal-to-noise
ratio (SNR) versus the noise amplitude for different modulation depthsmc . By comparing Fig. 37(a) with Fig. 38, one can see
that the annihilation curve, i.e. the minimummodulation amplitudemc needed for the chaotic attractor destruction (shown
by the arrow in Fig. 37(a)), is linked with the maxima (SR) of the SNR curves for the corresponding values ofm and q. These
results confirm that the mechanism for the attractor annihilation is related to the stochastic resonance phenomenon.

6. New challenges and perspectives

During the last decade a lot of progress has been made to control multistable systems. As outlined above, various
control strategies have been developed theoretically and implemented experimentally. However, there are still many open
problems in the field of multistability which need to be understood in future. Here we mention only some of them.
Green problem. One crucial issue is connected with the important ‘‘green’’ problem in nonlinear optics, where irregular
intensity fluctuations appear in second harmonic generation (SHG) when a SHG crystal is located inside the laser cavity.
These fluctuations are amplified from the beginning by the quality factor Q of the laser cavity and by the presence of
the laser amplifier media. Strong fluctuations arise then in the laser intensity. This is clearly a undesirable situation for
practical applications. To give an example of what discussed above, the green light generated in a diode-pumped intracavity
doubled Nd:YAG laser (1.06 µm) [60] is normally accompanied with strong intensity fluctuations. This irregular behavior
was largely investigated and attributed to the destabilization of relaxation oscillations, always present in this kind of lasers
due to nonlinear coupling of longitudinal modes. Another reason of such a behavior is the coexistence of multiple attractors
which often appear in a systemwithmany degrees of freedom. The irregularity in the laser intensity results from involuntary
switches between the coexisting states induced by noise or any external interference. A possible approach to controlling this
kind of irregular laser behavior would be annihilation of undesirable coexisting attractors.
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Fig. 38. Signal-to-noise ratio versus noise amplitude for different modulation amplitudesm at f = 0.01. The maxima for everymmarked by the gray dots
(SR) are connected by the blue curve which has a similar shape as the annihilation curve in Fig. 37(a).

Synchronization. A second challenge for future research is synchronization of multistable systems. We believe that further
investigation in this direction will help to gain significant insight to many natural phenomena, because this topic is of great
interest in diverse areas of science and can have various applications. In this context, the question would be interesting
to study, how multistable systems synchronize and how to control them. Which of the attractors would be chosen when
multistable systems are coupled and can one design control algorithms to choose particular attractors on demand? A first
attempt to tackle this problem has been already done by studying synchronization of two bistable uni-directionally coupled
Rössler-like oscillators with coexistence of two different chaotic attractors [305]. Many interesting nonlinear regimes have
been found, including anticipated intermittent phase synchronization, period-doubling synchronization, and intermittent
switches between coexisting states exhibiting type-I and on–off intermittency [306,307].

Communication. Some types of lasers, e.g. semiconductor lasers with external cavity, exhibit complex dynamics which
allowsmultistability, i.e. coexistence of steady-state, periodic, and chaotic attractors. Synchronization of coupledmultistable
semiconductor lasers with external cavities [206] might be of interest for optical communication if information could be
encrypted in switches between different coexisting states. We believe that special efforts will be made to find out general
relationships in control methods described in this Report and their applications in secure communications.

Complex networks. Special attention should be given to studying and controlling multistability in complex networks [308].
Recently, not only nearest neighbor interactions, like diffusion or globally coupled systems, have been studied, but general
networks possessing identical or almost identical nodes on which some nonlinear phenomena take place. These nodes are
interconnected to formanetworkwith some given topology or evenwith adjusting topology [309,310]. Of particular interest
is thereby the relation between dynamics on the nodes and the network topology. If the dynamics on the nodes is assumed
to be multistable, then a complicated network dynamics should emerge.

Fractional systems. In recent years, many scientists have become aware of a potential use of fractional-order calculus and
their application to various fields, including physics, engineering, and biology. The dynamics of fractional-order systems
have attracted increasing attention because generalization of differential equations using fractional derivatives proved to
be more accurate from various interdisciplinary areas. It has been shown that these systems can behave chaotically [311].
Coexistence ofmultiple attractors have also been found in fractional-order systems [312–314]. Oneof themain advantages of
fractional-order systems over classical integer-ordermodels is that the former systems are characterized by infinitememory
that provides a good tool for description of hereditary properties of neural networks [314]. On the other hand, the dynamical
behavior of multistable fractional systems is still needing pay more attention. In particular, control of multistability in such
systems has not yet been applied.

Genetic oscillators. The existence of multiple operating regimes is essential for biological systems, because they provide
functional flexibility in responding to external stimuli [34]. This subject has been largely investigated in relation to genetic
oscillators [40,42,44], with strong emphasis on biological mechanisms and topological structures leading to multistability
[41,43]. It was found that synthetic gene networks are able to generate various dynamical regimes in relation to the topology
of their interactions. Furthermore, the coexistence of multiple final frustration states has been recently found in collective
dynamics of oscillator networks with phase-repulsive coupling [315]. The role of multiple dynamical regimes was also
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examined in neuronal interactions [111]. The proper control of multistability in these networks could lead to a new insight
in the interplay between topology and functioning of genetic and neuronal networks.
Climate. The coexistence of different stable states is a topic of a growing interest in environmental sciences and climate
research, sincemanyprocesses in the ocean, atmosphere, and ecosystems revealmultiple states. For example, one of possible
mechanisms for the emergence of rogue waves in the ocean is the interaction of deterministic and random processes in a
multistable environment [294,295].We believe that a deep study of this interactionwill bring up new challenging questions
for future theoretical and experimental work on controlling multistability in these very complex systems.
Extreme multistability. Lastly, the exciting phenomenon of extreme multistability recently discovered in coupled systems
with a specially designed coupling [184] is still not completely understood. An infinite number of attractors would have
diverse applications if a proper control of this kind ofmultistability could be realized. However, an experimental verification
of this type of multistability has not been realized so far due to its high sensitivity to noise. This is another challenge for
designing control strategies to make the coexistence of a very large number of attractors possible.
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