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1. INTRODUCTION

The synchronization phenomenon [1–3] plays a
key role in processing of signals and information in
neural brain systems [4, 5]. Partial synchronization of
neuronal ensembles underlies the formation of popu�
lation rhythms of the brain (alpha, theta, and gamma
oscillations) [6–8]. The synchronous activity of large
ensembles of brain neurons is associated with patho�
logic processes, in particular, with epileptiform activ�
ity [9]. On the local dynamic level, the synchronous
activation of a pair of neural oscillators with a small
phase shift between the interacting neurons is respon�
sible for long�term changes in the efficiency of signal
transmission between them [10, 11]. This phenome�
non in neurobiology is called synaptic plasticity. Syn�
aptic plasticity is thought to underlie learning and cog�
nitive functions in the brain. It is noteworthy that the
plasticity effect can have phase�selective properties
(spike timing dependent plasticity), which means the
dependence of the parameters of a neural network on
the relative phase of spikes [12].

In the classical works on the interaction of neural
oscillators [3, 13–15], the investigation of synchroni�
zation is reduced to analysis of simple phase equations
[3, 13–15]. In particular, the calculation of the phase
response curve for various external actions made it
possible to reveal stable phase locking regimes [15] and
to establish their relation with the type of bifurcation
in the oscillator model [16, 17] and with the presence
of resonance [18, 2]. The coupling strength between
neurons determining the appearance of certain collec�
tive dynamic regimes, is the main control parameter in

most works. The depolarization level determining the
neuron excitation threshold and the frequency of pulse
activity is another important parameter. This parame�
ter specifies the position of the working point of a neu�
ron self�sustained oscillator. It is also worth noting that
the level of neural depolarization in neurobiology can
be controlled both by its own cellular dynamics and by
extracellular factors whose role has been actively stud�
ied in recent years [12, 19–22].

In this work, we propose a model of a pair of synap�
tically coupled biological spiking neural oscillators
capable to establish a stable phase locking regime with
various phase shifts. A representative feature of this
model is the dependence of the steady�state phase on
the applied current determining the neuron depolar�
ization level, which can be controlled in biological
neurons by means of, e.g., extracellular signals. In this
case, the relative phase is independent of the coupling
strength between the neural oscillators. Furthermore,
an anticipated synchronization regime is possible in
the model under certain conditions. In this regime,
the phase of the slave oscillator aticipates the phase of
the master oscillator, predicting the beginning time of
the next period [23]. We note that the classical
approach in works on anticipated synchronization
[24] implies the existence of a negative feedback loop
with the delay of the slave oscillator to itself. In our
case, the anticipated synchronization regime is
possible in oscillators with various depolarization
parameters.
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2. MODEL

We consider a system of two Hodgkin–Huxley
neurons [25] coupled by an excitatory unidirectional
nonlinear connection describing the kinetics of chem�
ical synapse:

(1)

Here, subscripts 1 and 2 mark the master (presynaptic)
and slave (postsynaptic) neurons, respectively; C is the
specific membrane capacitance; V1 and V2 are the
membrane potentials; and t is the time. The dynamics
of the membrane potential of each neuron is deter�
mined by three ion currents Iion, sodium, potassium,
and ohmic leakage, as well as by direct depolarizing
current. The instantaneous active ion currents depend
on the state of gate variables whose dynamic equations
are not presented here for the sake of brevity (see, e.g.,
[25, 26]). The action of the master neuron on the slave
one is described by the synaptic current Isyn in the
equation for the potential of the slave neuron. The
reversal synaptic potential for the excitatory connec�
tion is Vsyn = 0. This means that the postsynaptic neu�
ron in the resting state (V2 ≈ –70 mV) acquires a neg�
ative synaptic current. This gains the rate of increase in
the membrane potential and, therefore, the spike gen�
eration probability. The choice of the parameters of
the threshold synaptic function specifying its shift
(θsyn = 0) and steepness (ksyn = 0.2 mV) ensures the
short�term response of the postsynaptic neuron only
to the top of the presynaptic pulse. The action of the
subthreshold fluctuations of the membrane potential
of the master neuron is cut off.

The applied currents Iapp, i are constant and deter�
mine the depolarization level of neurons, as well as the
dynamic regime (excitable, oscillatory, or bistable) [2,
27, 28]. The applied current unambiguously deter�
mines the spike generation frequency in the oscillatory
and bistable regimes. For the set of parameters used in
this work, a neuron is in the bistable regime at 5.5 <
Iapp < 8.7 and in the oscillatory regime at Iapp > 8.7 [28].
The parameters of the applied current in both oscillators
corresponding to the ocillatory regime were chosen.

The relative phase in the case of coupled spiking
oscillators is defined as the difference between the tim�
ings of spike generation by two oscillators divided by
the period [2, 28, 29]:

(2)

C
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Figure 1 shows examples of (left panels) oscillo�
grams of the membrane potentials of the system spec�
ified by Eqs. (1) and (middle panels) the correspond�
ing dynamics of the phase calculated by Eq. (2). It can
be seen that both the anti�phase synchronization
regime (Fig. 1a) and in�phase oscillations (Fig. 1b)
occur in the model depending on the parameters. Fur�
thermore, the steady�state phase can be close to unity
(Fig. 1c), which can be treated as anticipated synchro�
nization. It is noteworthy that the anti�phase locking
regime is atypical for the excitatory connection. Simi�
lar results were obtained for the Rowat–Selverston
model [30] in [31, 32]. The fundamental feature of the
result obtained in this work is the possibility of con�
trolling the relative phase by means of variation of the
depolarization parameter. We also note that a periodic
excitatory action in this case reduces the frequency of
the slave neuron. This counterintuitive effect was also
observed in similar systems of coupled spiking oscilla�
tors [15]. Below, we examine the mechanism of con�
trol of the phase in a pair of pulse�coupled neural
oscillators.

3. PHASE MAP

To test the stability of phase locking regimes dem�
onstrated in Fig. 1, the phase dynamics of system (1)
can be studied with the use of phase maps [29]. Briefly
speaking, the phase difference ϕn between presynaptic
and postsynaptic spikes is specified by means of the
choice of the initial conditions for the slave oscillator
at the limit cycle with the shift with respect to the con�
ditionally chosen point of the beginning of the oscilla�
tion period, which corresponds to the maximum of the
potential V. The phase of oscillations of the master
neuron is chosen to be zero (at the point of the maxi�
mum of the potential). After the generation of the next
pair of spikes, the phase difference ϕn + 1 calculated by
Eq. (2) is renewed. This procedure is repeated for all
values ϕn ∈ [0, 1]. The right panels in Fig. 1 exemplify
the phase maps corresponding to the in�phase and
anti�phase synchronization regimes. The intersections
of the phase map curve with the diagonal specify the
fixed points whose stability depends on the multiplier.
It can be seen that one stable fixed point correspond�
ing to the steady relative phase exists in each case. The
phase map can be represented in the form

(3)

where T1 and T2 are the periods of the oscillations of
the master and slave oscillators, respectively, and F is
the phase rearrangement function [33]. In view of
Eq. (2), F can be represented in the form

(4)

where PRC is the phase response curve of the slave
neuron, which is determined by the dynamics of the
neuron itself (by the type of the bifurcation of the limit

ϕ n 1+( ) ϕ n( ) F ϕ n( ) T1 T2 gsyn, , ,[ ],+=

F T2 T1– PRC ϕ n( ) gsyn,[ ],+=
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cycle appearing) and by the existence of subthreshold
resonance properties [2, 16, 18]. In particular, the
transition to the oscillatory regime in the Hodgkin–
Huxley model occurs through the Andronov–Hopf
bifurcation. Therefore, this oscillator has a second�
type phase response curve. Theoretical results indicate
that the phase response curve is a linear function of the
coupling strength [3, 15]

(5)

This is also confirmed in neurobiological experi�
ments [34]. Moreover, the phase response curve at
weak interaction certainly determines the next phase
value at the periodic action of the master oscillator
[35]. Otherwise, it is necessary to take into account
phase permutations induced by not the last, but several
preceding spikes [36]. At the same time, the experi�
mental results indicate that the contribution of pre�

PRC ϕ n( ) gsyn,[ ] gsyn f ϕ n( )[ ].=

ceding spikes to the phase shift is insignificant [37].
Thus, the form of the phase map is determined by the
phase response curve with the gain equal to the cou�
pling strength and the linear shift equal to the differ�
ence between the periods of the slave and master oscil�
lators, which determines the frequency detuning. This
fact is illustrated in Fig. 2, which shows the function F
plotted numerically for model (1) at various detuning
values and coupling strengths.

It can be seen that the vertical shift of the phase
rearrangement curve is a linear function of detuning.
The establishment of a stable phase locking regime
with a value corresponding to an increasing segment of
the phase response curve is impossible. The other val�
ues of the phase

(6)ϕ* f 1– T1 T2–
gsyn

��������������⎝ ⎠
⎛ ⎞=

Fig. 1. Examples of the synchronization regimes in the model of a pair of synaptically coupled spiking neural oscillators specified
by Eqs. (1): (a) anti�phase regime (Iapp, 1 = –8 µA/cm2, Iapp, 2 = –8.24 µA/cm2, gsyn = 0.025 mCm/cm2), (b) in�phase regime

with delay (Iapp, 1 = –8 µA/cm2, Iapp, 2 = –7.8 µA/cm2, gsyn = 0.025 mS/cm2), and (c) in�phase anticipated regime (Iapp, 1 =

⎯8 µA/cm2, Iapp, 2 = –8.02 µA/cm2, gsyn = 0.025 mS/cm2). The left panels are the oscillograms of the membrane potentials after
transient processes for the (dashed lines) master neuron and (solid lines) slave neuron. The middle panels show the time depen�
dence of the relative phase. The right panels are the phase maps, where the closed and open circles are the stable and unstable
fixed points, respectively.
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can be obtained by choosing the corresponding depo�
larization level. The inverse function f–1 is defined
only in decreasing segments of f in Eq. (5) and, conse�
quently, is single�valued and piecewise continuous. It
is noteworthy that detuning was specified by means of
change in the frequency of the slave neuron. However,
a similar result can be obtained by means of the tuning
of the frequency of the master neuron.

The possibility of obtaining stable locking regimes
with various phases is demonstrated in Fig. 3. For each
depolarization level (Fig. 3a) and each coupling
strength (Fig. 3b), we calculated the phase map and
found the coordinate of a stable fixed point as the
point of intersection of the diagonal of the phase map
curve from top to bottom. In the case of the intersec�
tion of ϕ(n + 1) and ϕ(n) at small angles (the multi�
plier is close to unity), we additionally calculated the
traces of the membrane potentials until the achieve�
ment of the stable phase locking regime. Stability was
tested by introducing small phase shifts in both direc�
tions. According to Fig. 3, the key parameter respon�
sible for the stable phase value is the depolarization

level rather than the coupling strength. Figure 3a
includes the phase interval where there is no stable
locking regime (in other words, ϕ* is piecewise con�
tinuous), as was found analytically (6).

However, in the case of strong connections, the
function F itself can become piecewise continuous, as
is shown in Fig. 2b for gsyn = 0.3. In the classical theory
of phase synchronization of coupled oscillators, this
discontinuity appears at a significant increase in the
coupling strength. In this case, the phase response
curve becomes descending in both segments [2, 18];
hence, an arbitrary stable phase can be established by
means of the choice of detuning. The form of the limit
cycle in the case of Hodgkin–Huxley biological neural
oscillators significantly differs from a circle and isoch�
rones are complex trajectories in four�dimensional
space. This explains the presence of a small increasing
segment in front of the break in line F at large coupling
constants (see Fig. 2b, gsyn = 0.3). Nevertheless, an
increase in the coupling strength can completely fill
the phase range that cannot be reached only by the
control of the depolarization level.

Fig. 2. Phase rearrangement curves at various (a) depolarization levels of the master neuron determining detuning (Iapp, 1 =

8 µA/cm2, Iapp, 2 = 7.3, 8, and 8.7 µA/cm2 for the upper, middle, and lower plots, respectively, at gsyn = 0.025 mS/cm2) and (b)

coupling constants for gsyn = 0.01, 0.03, and 0.3 mS/cm2 and Iapp, 1 = Iapp, 2 = 8 µA/cm2.

Fig. 3. Coordinate of the stable fixed point versus (a) the depolarization level and (b) the coupling strength at various depolariza�
tion levels Iapp, 2.
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4. DISCUSSION

To summarize, we have presented a model of a pair
of spiking Hodgkin–Huxley neuronal oscillators cou�
pled by a unidirectional spiking chemical connection
which simulates synaptic input. The mechanisms of
spike phase locking of the slave neuron have been ana�
lyzed by the method of point maps. It has been shown
analytically and numerically that, at weak interaction,
a stable locking regime is established with various rel�
ative phases depending on the frequency detuning of
the oscillators, which is specified by the external
applied current. The steady�state relative phase in this
case is independent of the coupling strength, which is
an additional control parameter expanding the
allowed phase range.

First of all, this effect is of interest as a fundamental
nonlinear dynamic phenomenon in the synchroniza�
tion theory consisting of the control of the phase shift
in the stable phase locking regime owing to the depo�
larization�parameter�controlled tuning of the differ�
ence between the frequencies of the oscillators. This
corresponds both to the classical concept of the phase
dynamics of coupled oscillators and to modern studies
of synaptically coupled spiking neurons [12, 38, 39].

Phase synchronization of two neural oscillators
with an arbitrary phase shift can play an important role
in the generation and propagation of information sig�
nals in living neuronal networks of the brain. In partic�
ular, two pacemakers can establish both negative
(anticipated synchronization) and positive (synchro�
nization with phase delay) phase shift. This phenome�
non is of potential importance for large networks with
numerous synchronized pairs controlling switching
between signal propagation paths through the initia�
tion of synaptic rearrangements [10, 11] owing to the
adjustment of their depolarization levels. The result
obtained in this work confirms the hypothesis of the
possible effect of the active extracellular medium of
the brain on the signal transmission process. The
inclusion of extracellular factors, in particular, the
dynamics of glial cells and extracellular matrix, results
in the appearance of slow fluctuations of neuron depo�
larization levels. This in turn leads to fluctuations of
phase relations.

Finally, we have shown that anticipated synchroni�
zation (Fig. 1c) is one of the stable phase locking
regimes in a pair of neural oscillators coupled by a uni�
directional synaptic connection. This phenomenon in
neural networks of the brain can underlie the anticipa�
tion of key events in the environment at the formation
of reflector sensorimotor reactions.
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