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ABSTRACT 

We demonstrate the cnoidal wave formation in a two-laser system with a saturable 

absorber inside the cavity of one of the lasers. The other laser is used to activate the 

saturable absorber in order to control the pulse shape, width, intensity and frequency. 

The direct modulation enables to control when and how the pulse train coming from the 

saturable absorber is released. Using a three-level laser model rate equations based on 

the Statz – de Mars model, we show that for any value of saturable absorber parameter 

there exist a certain modulation frequency for which the pulse shape is very close to a 

soliton shape with less than 5% error at the pulse base. Such a device may be prominent 

for optical communication and laser engineering applications.  

RESUMEN 

Demostramos la formación de ondas cnoidales en un sistema de dos láseres con un 

absorbedor saturable dentro de la cavidad de uno de ellos. El otro láser es utilizado para 

activar al absorbedor saturable y así poder controlar la forma, el ancho, la intensidad y 

la frecuencia de los pulsos generados. La modulación directa permite controlar cuándo 

y cómo se libera el tren de pulsos que proviene del absorbedor saturable. Usando un 

modelo de ecuaciones de balance para un láser de tres niveles basados en el modelo de 

Statz – de Mars, demostramos que para cualquier valor de parámetro del absorbedor 

saturable existe cierta frecuencia de modulación con la que la forma del pulso generado 

es muy cercana a la forma de un solitón con menos del 5% de error en la base del pulso. 

Dicho dispositivo puede ser prominente para comunicaciones ópticas y aplicaciones de 

ingeniería láser. 
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THESIS GENERAL OVERVIEW 

 

This thesis presents the study of a laser with an active saturable absorber by means of 

the rate equations; the main objective is to produce cnoidal waves through controlling 

the laser dynamics. 

The thesis is composed by three chapters that are organized as follows 

Chapter 1:  Preliminaries 

  In this chapter the elemental concepts needed to have a better understanding 

of the work are boarded. The chapter contemplates subjects as solitons, elliptic 

functions, rate equations, cnoidal waves and saturable absorbers.  

 Chapter 2: Theoretical model 

  In this chapter, the experiment proposal is presented, with the aid of the rate 

equations. A model for the experiment is proposed and its linear stability analysis is 

done in order to know the fixed points of the system and its stability. 

 Chapter 3: Results and conclusions 

  In this part of the thesis, the obtained results are presented; the chapter 

contains the dynamics control and the cnoidal waves observation. At the end of the 
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chapter, the conclusions are followed by a future work proposal (some preliminaries 

results have been obtained). 

As an appendix there is a list of publications made during the doctoral studies. 
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CHAPTER 1 

 

PRELIMINARIES 

 

1.0.INTRODUCTION 

In this chapter a basic introduction to the matters dealt in this dissertation are presented 

in order to have a better understanding of the results discussed in this dissertation.   

1.1. SOLITONS 

The first natural definition that comes to mind when the word soliton is heard reefers to 

a self-reinforcing solitary wave that does not have variation on its shape while it is 

traveling along a media at a constant speed. 

These kinds of waves are caused by compensation (cancellation) between the nonlinear 

(e.g. Kerr and Raman effects in fiber optics) and the dispersive effects of the 

propagating medium. Solitons exist as a solution of many weakly nonlinear dispersive 

partial differential equations, used to describe different physical phenomena [1]. 

In 1844, John Scott Russell reported the observation of a solitary wave [2] in the Union 

Canal, Scotland, while he was doing some experiments to determine the most efficient 

design for canal boats. He called that phenomenon wave of translation, and by his own 

words it was described as follows: 
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―I was observing the motion of a boat which was rapidly drawn along a narrow 

channel by a pair of horses, when the boat suddenly stopped—not so the mass of 

water in the channel which it had put in motion; it accumulated round the prow of 

the vessel in a state of violent agitation, then suddenly leaving it behind, rolled 

forward with great velocity, assuming the form of a large solitary elevation, a 

rounded, smooth and well-defined heap of water, which continued its course along 

the channel apparently without change of form or diminution of speed. I followed it 

on horseback, and overtook it still rolling on at a rate of some eight or nine miles an 

hour [14 km/h], preserving its original figure some thirty feet [9 m] long and a foot 

to a foot and a half [300−450 mm] in height. Its height gradually diminished, and 

after a chase of one or two miles [2–3 km] I lost it in the windings of the channel. 

Such, in the month of August 1834, was my first chance interview with that singular 

and beautiful phenomenon which I have called the Wave of Translation.‖ 

 

Russell spent a lot of time trying to repeat and understand these kinds of waves (see 

Fig. 1); after several tries he found some properties: 

- The waves are stable in long distances. 

- The speed depends on the wave’s amplitude and the wave’s width on the deepness 

of the water. 

- They never merge between them. 

- If the medium can’t contain a big wave due the water depth, the wave splits into 

two, one bigger than the other. 

Despite of Russell’s founds, the scientific community didn’t accept his discoveries due 

to the contrast with the Newton and Bernoulli theories of hydrodynamics. 
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FIGURE 1. Russell’s scheme of his studies about the ―wave of translation‖ 

The problem was theoretically unexplained until 1876, when Lord Rayleigh published a 

paper in the ―Philosophical Magazine‖ supporting Russell’s experimental observation. 

In that paper, Lord Rayleigh presented his mathematical theory [3] and mentioned that 

the first theoretical treatment was made by Joseph Boussinesq five years earlier [4] 

(Boussinesq also cited Russell in his work). Twenty years later, Korteweg and de Vries 

published a paper called ―On the change of form of long waves advancing in a 

rectangular canal and on a new type of long stationary waves‖ also in the 
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―Philosophical Magazine‖ [5], in this work they didn’t mentioned John Russell, but 

they did quote Boussinesq and Rayleigh papers. This work is one of the milestones in 

the construction of the modern soliton theory. 

The equation presented by Korteweg - de Vries (KdV) is: 

 0,t x xxxu uu u     (1) 

where: α and β are constants and u(x,t) represents the amplitude from the average water 

surface and x is the coordinate moving with linearized wave velocity. Equation (1) has 

a solitary wave (Fig. 2) solution: 

  23 1( , ) sec .
2

v vu x t h x vt
 

 
  

 
 (2) 

 

FIGURE 2. A solitary wave travelling to the beach in a Hawaiian isle.  
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In 1955 Fermi and its colleagues [6] investigated how the equilibrium state is 

approached in a one dimensional nonlinear lattice. The researchers expected that the 

non-linear interactions among the normal modes of the linear system would lead to the 

energy of the system being evenly distributed throughout all modes; that is, an ergodic 

system. Amazingly, the results contradicted these ideas. The energy was not uniformly 

distributed in all modes, but, after some time, the system returned to its original state. 

Ten years later, Zabusky and Krustal [7] solved the KdV equation as a model for a non-

linear lattice and observed the same phenomenon that Fermi reported before [6] and 

they observed that, with a smooth initial waveform, waves with sharp peaks emerge. 

Those pulse-waves moved almost independently with constant speeds and passed 

through each other without distortions after collisions. They performed a detailed 

analysis about these waves and found that each pulse was a solitary wave of sech2-type 

(the KdV solitary wave solution) and also that the waves behaved like stable particles. 

Equation (1) can be rewritten as: 

 6 0.t xx xxxu uu u    (3) 

In this form, the second and third terms represent the nonlinear and dispersion effects 

respectively [8]. The dispersion effects makes a wave spread while the nonlinear effect 

causes the steepening of the waveform, if these two effects are compensated a soliton 

could exist. 
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As can be seen, it is not easy to give a comprehensive and precise definition of a 

soliton. However, the term shall be associated with any solution of a non-linear system 

(or equation) which fulfills the following characteristics: 

- Represents a wave with constant shape (sech or sech2). 

- It’s localised in a region (it decays at infinity). 

- Can interact strongly with other solitons without losing energy. 

Some scientists use the term soliton when they are working with solutions that fulfills 

the first two characteristics [9-10] (e.g. Light Bullets are called solitons, despite losing 

energy when they interact, Fig. 3).  

 

FIGURE 3. Light bullets interaction, when these type of soliton interact they lose 

certain quantity of energy. 

 



   
1. PRELIMINARIES 

 

 

7 
 

1.2. ELLIPTIC FUNCTIONS 

An elliptic function is a function defined in the complex plane that is periodic in two 

directions and, at the same time, is meromorphic [11]. These functions were discovered 

as inverse functions of elliptic integrals, hence the name derives. 

Elliptic functions are important to have a better understanding of solitons due to its 

characteristics. 

Defining the next integral as: 

 
 

1/22
0

,
1 sin

dv
m








  (4) 

where m, the parameter, is restricted to 0 1m  . Equation (4) can be compared with 

the elementary integral: 

 
 

1/22
0 1

dtw
t






  (5) 

where sint  so that arcsinw  orsin w  , and so observe that Eq. (5) defines the 

inverse of the trigonometric function, sin. This relation led the mathematician Carl 

Jacobi to define a new pair of inverse functions from Eq. (4) 

 
sn sin ,
cn cos .

v
v








 (6) 
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These are two of the twelve Jacobian elliptic functions (those functions can be 

constructed with the aid of the Argand diagram shown in Fig. 4) and are normally 

written as sn(v|m) and cn(v|m). To denote the parameter dependence (it is usual also to 

work with the modulus, k, where 2m k [12]. 

The two special cases for 0,1m   enable Eqs. (4) and (6) to be reduced to elementary 

functions: if m = 0 then, v = ϕ and so cn(v|0) = cos ϕ = cos v, and if m = 1 the integral 

can be evaluated to yield  arcsech cosv  and so cn(v|1) = sech v. It therefore follows 

that cn(v|m) and sn(v|m) are periodic functions for 0 1m  , but that periodicity is lost 

for m = 1. Now the period of cn and sn corresponds to the period 2π of cos and sin, and 

so the period of these elliptic functions can be written as: 

 
   

2 /2

1/2 1/22 2
0 0

4
1 sin 1 sin

d d

m m

 
 

 


 
   (7) 

This latter integral is the complete elliptic integral of the first kind (because it’s 

bounded), 

  
 

/2

1/22
0

.
1 sin

dK m
m








  (8) 

It is obvious that K (0) = π/2, and it is also straightforward to show that K (m) increases 

monotonically as m increases. In fact    
1 log 16 / 1
2

K m m    as 1m  , and so 
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 K m  as 1m  , this demonstrate the infinite period of the cn(v|1) = sech v 

function. 

 

FIGURE 4. Argand diagram constructed to show the formation of the Jacobi elliptic 

functions 

1.3. CNOIDAL WAVE 

Another important contribution of Korteweg-de Vries was the cnoidal wave. The 

cnoidal wave is an exact non-linear periodic solution to the KdV equation [5]. These 

solutions are described in terms of the Jacobi elliptic function cn, hence their name 

came from. 

The main characteristic of these waves is that they are parametrically bounded by the 

parameter (i.e. ellipticity); they change their shape from a sinusoidal (when the 

ellipticity is zero) to a soliton-like (when the ellipticity tends to one) as shown in Fig. 5. 
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FIGURE 5. Cnoidal wave profile achieved for different parameter’s value. 

These waves are not exclusive for the KdV equation; they can be found in any system 

able to produce solitons (e.g. Boussinesq equations, non-linear Schrödinger equation, 

shallow water equations, Sine-Gordon equation) [1-13]. 

The amplitude A(x,t) as a function of the horizontal position, x, and time, t, for a cnoidal 

wave is given by: 

    2
2, cn 2 |x ctA x t A H K m m



 
   

 
 (9) 

where A2 is the trough elevation, H is the wave height, c is the phase speed and λ is the 

wavelength. Further cn correspond to one of the Jacobi elliptic functions and K (m) is 

the complete elliptic integral of the first kind; both depend on the elliptic parameter m. 

This parameter determines the cnoidal wave shape; for m = 0 the cnoidal wave becomes 

a cosine function, while for 1m  the cnoidal wave is transformed into a hyperbolic 

secant function, as is illustrated in Fig. 6. 
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Cnoidal waves (also found as soliton trains) have been a hot research topic in lasers 

over the past 15 years; the published articles are basically about cnoidal wave stability, 

formation in quadratic and cubic media, techniques to stabilize the cnoidal trains and 

generation of cnoidal wave in passive q-switched and mode-locked fiber laser [14-17]. 

 

FIGURE 6. Cnoidal wave limits. a)sinusoidal shape. b) soliton shape. 

 

1.4. RATE EQUATIONS 

To lase, an inverted population level must be achieved and maintained in a laser media. 

For laser operation, excitation and decay rates of all of the different energy levels 

participating in the process must be balanced to maintain a steady-state inverted 

population for the radiative transition [18-19]. The equations describing the change 

rates of the population densities N1 and N2 as a result of pumping, radiative, and non-

radiative transitions are called the rate equations. 
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FIGURE 7. Two energy levels diagram including life-times 

Consider the energy diagram of Fig. 7. Levels 1 and 2 have overall life-times τ1 and τ2, 

respectively, permitting transitions to lower levels. The lifetime of level 2 has two 

contributions: one associated with decay from 2 to 1 (τ21), and the other (τ20) associated 

with decay from 2 to all other lower levels. When several modes of decay are possible, 

the overall transition rate is a sum of the component transition rates. Since the rates are 

inversely proportional to the decay times, the reciprocals of the decay times must be 

added as 1 1 1
2 21 20      . Multiple modes of decay therefore shorten the overall life-time. 

Aside from the radiative spontaneous emission component (with time constant sp ) in

21 , a non-radiative contribution, nr , may also be present, so that 1 1 1
21 sp nr      . 

If a system like the illustrated in Fig. 7 is allowed to reach the steady-state, the 

population densities N1 and N2 will vanish by virtue of all the electrons ultimately 

decaying to lower levels. 
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FIGURE 8. Energy levels 1 and 2 with surrounding higher and lower energy levels 

Steady-state populations of levels 1 and 2 can be maintained, however, if energy levels 

above level 2 are continuously excited and leak downward into level 2, as shown in the 

more realistic energy level diagram of Fig. 8. Pumping can bring atoms from levels 

other than 1 and 2 out of level 1 and into level 2, at rates R1 and R2 (per unit volume per 

second), respectively. Consequently, levels 1 and 2 can achieve non-zero steady-state 

populations. 

1.4.1. RATE EQUATIONS IN THE ABSENSE OF AMPLIFIER RADIATION 

The population densities increase rate of levels 2 and 1 arising from pumping and decay 

are: 

 

2 2
2

2

1 1 2
1

1 21

,

.

dN NR
dt

dN N NR
dt



 

 

   

 (10) 
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Under steady-state condition ( 1 2 0N N  ), Eqs. (10) can be solved  for N1 and N2 and 

the population difference N0 = N2 – N1 can be found. The result is: 

 1
0 2 2 1 1

21

1 .N R R
 



 
   

 
 (11) 

1.4.2. RATE EQUATIONS IN THE PRESENCE OF AMPLIFIER RADIATION 

The presence of radiation near the resonance frequency enables transitions between 

levels to take place by the processes of stimulated emission and absorption as well, 

characterized by the probability density Wi and shown in Fig. 9. The Eqs. (10) must be 

extended to include this source of population variation in each level 

 

2 2
2 2 1

2

1 1 2
1 2 1

1 21

,

.

i i

i i

dN NR N W N W
dt

dN N NR N W N W
dt



 

   

     

 (12) 

Under steady-state condition ( 1 2 0N N  ) eqs. (12) can be solved for N1 and N2, thus, 

the population difference N = N2 – N1 is found. 

 

0

2
2 1

21

 with 
1

1 ,

s i

s

NN
W


  






 
   

 

 (13) 

where τs is the characteristic time which is always positive since 2 21  . 
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FIGURE 9. The population densities N1 and N2 (cm-3s-1) of atoms in energy levels 1 and 2 

are determined by three processes: decay (b), pumping(r), and absorption and stimulated 

emission (g) 

1.5. STATZ – DE MARS MODEL 

The rate equations proposed by H. Statz and G. de Mars (SdM) are independent of the 

number of the laser’s energy levels because are based in the phenomenology that leads 

the laser to emit stimulated radiation [20]. This characteristic allows to model different 

types of laser systems (e.g. dye, solid state, semiconductor, fiber).  This model is given 

by the following set of equations: 

 

( )' ( ) ( ) ,

( )' ( ) ( ) ,

dM M tB M t N t
dt T

dN No N tB M t N t
dt




 


 

 (14) 

where N(t) represents the population inversion density and M(t) the emitted photon 

density at a determinate frequency. The emitted photon density is directly linked with 
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the photon-flux density S(t). If we divide the photon-flux between the propagation 

speed of light v and the photons energy hv we obtain the emitted photons density; this 

is: 

 ( )( ) .S tM t
vh

  (15) 

The constant B’ means ,Bh where B is the Einstein coefficient for stimulated 

transitions. T represents the photons life-time inside the resonant cavity, which is 

inversely proportional to the sum of the losses coefficients ξ1 and ξ2: 

 
 1 2

1T
v  




 (16) 

τ represents the relaxation time of the population inversion difference between levels 

where the laser emission takes place; β is a constant that depends of the level numbers 

of the system and N0 stands for the equilibrium value of the population inversion 

density achieved in absence of laser oscillation. 

The physical interpretation of the SdM equations is especially simple. The first equation 

states that the photons density grows as a consequence of the stimulated transitions 

inside the cavity and decreases due to losses imputable to the medium and the resonator 

[21]. The growth of the emitted photons density to a certain frequency is directly 

proportional to the product of the same emitted photons quantity at that frequency by 

the population inversion density of the laser medium. The second equation shows that 
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the population inversion density will decrease because of the stimulated emission and 

will grow due to the pumping action on the upper energy levels of the medium. 

1.6. SATURABLE ABSORBERS 

A saturable absorber (SA) is a non-linear optical component with a certain optical loss, 

which is reduced at high optical intensities [18]. SAs are usually used for passive mode-

locking and Q-switching depending on their parameters. It is well known that 

continuous wave dye lasers with SAs provide short pulses due to self-stabilization of 

the pulse shaping process. A SA inserted into a laser cavity increases the nonlinearity of 

such system and enriches the laser operation dynamics. Mode-locking laser dynamics 

has been an important study subject, traditionally mode-locking is actively obtained 

with an optical modulator inside the cavity or passively with a SA. 

The principal characteristics of a SA are: modulation depth (maximum possible change 

in optical loss), unsaturable losses (unwanted losses which cannot be saturated), 

recovery time, saturation fluence, saturation energy and damage threshold (given in 

terms of intensity) [22]. 

When dealing with pulses, a fast saturable absorber has a recovery time well below the 

pulse duration, while a slow absorber has it well above the pulse duration. The same 

device may be either a fast absorber or a slow absorber, depending on the pulses used 

with [19]. The saturation parameter of a saturable absorber is the ratio of the incident 

pulse fluence to the saturation fluence of the device. 
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CHAPTER 2 

 

THEORETICAL MODEL 

 

2.0. INTRODUCTION 

In this chapter the system configuration is presented, the modeling will be made and the 

stability analysis of the obtained model will be performed. The system dynamics will be 

discussed in order to find the best regions to control the system. 

2.1. LASER SCHEME 

The proposed configuration is composed by a laser made up with an active medium 

(AM), two mirrors (total reflexion, M1, and semitransparent, M2) and an intracavity 

saturable absorber (SA) coupled with a low-power continuous wave laser (CW) through 

an electro-optical modulator (EOM) as shown in Fig. (10) 
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FIGURE 10. Optical scheme for a laser system with an active saturable absorber. AM and 

SA are active medium and saturable absorber, M1 and M2 are total reflected and semi-

transparent laser mirrors, and EOM is an electro-optical modulator. 

2.2. LASER MODEL 

Is assumed that the proposed system is a three-level laser [1] obeying the following 

equations: 

 
 

 

1 2
1 ( ) ( ) ( ) ( ),

( ) 2 ( ) ( ) 1 ,

dS t N t S t S t
v dt
dN t nS t N t Z

dt h

  



 

  

   

 (17) 

where: S(t) and N(t) stands for the photon-flux density and the population inversion 

density inside the cavity, σ is the effective cross-section of interaction between active 

centers and photons; the coefficient for absorption and dispersion is represented by  ξ1 
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meanwhile the coefficient of the losses that depend on the mirrors reflectivity is ξ2; v is 

the speed of light in the medium, τ represents the life-time between energy levels, n 

stands for the number of active centers per volume unit on the medium and pZ W 

where Wp represents the stimulated emission transition probability and finally  is the 

photon energy. 

The saturable absorber will be modeled by two-level active resonant centers [2,3], so 

that all the active absorbents centers are on a lower energy level to get the resonant 

photons to cause the maximum opacity. The rate equations that describe the active 

centers of the absorber are: 

 

2 2
1 2

1 2
2 1

,

,

dn nS SB n B n
dt v v

dn nS SB n B n
dt v v

 
   

  

 
   

  





  

  

 (18) 

where Bα is the Einstein coefficient for stimulated emission on the absorber,  and 1 / τα 

is the probability of spontaneous emission for the absorbers active centers. Denoting by 

n1α and n2α the density of active centers of the absorber in the lower and upper energy 

levels, respectively, the total density of active centers of the absorber is given by 

1 2n n n     and then we have that in t = 0 

 1

2

,
0.

n n
n

 






 (19) 

When enough power-pump is applied the saturation condition can be achieved 
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 1 2 .
2
nn n 

    (20) 

Population inversion density of the absorber is defined as 2 1 ,N n n     deducing 

from Eqs. (19) and (20): 

  2 .
N ndN B N S

dt v
   

 


    (21) 

Defining the absorption coefficient for the absorber as:  

 ,k N     (22) 

where 
  is the effective section of stimulated emission given by ,

v
B






   where 

v  represents the speed of light on the absorber and ω is the angular frequency.  

If we multiply Eq. (21) by
 , it can be rewritten as: 

  02 ,
v

k kdk B k S
dt

   

 


    (23) 

where 0k 
 is the initial absorption coefficient given by  0 0k N n        . 

Steady-state implies that 0dk
dt
  , and Eq. (23) becomes: 

 0 ,
1

Sat

kk S
S










 (24) 
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where 
Sat

S
 is the photon-flux in where the absorption coefficient k  falls down to half 

its initial value 0k  . 

Being   the non-resonant absorption coefficient, K  the total absorption coefficient 

of the absorber defined as: .K k     Once this relation is satisfied, the photon flux 

average equation of the active medium may be expressed by: 

 1( ) ,
t

m
S m m

d SLS L N S L S
v dt

     (25) 

where Lm is the active medium length.  

The photon-flux average equation inside the absorber is given by: 

 
(

t

m m
S

m m l

d SL L L L LS
v v c dt

L N S L N S L S L S



 



       

  
    
 

  

 (26) 

And the filling-coefficient of the cavity as: 

 
   

/
( )( )

m m

mm m m

L n L v
L L LL n L n L L L L L

v v c
   



  
    

 

 (27) 

where /n c v  and /n c v   are the refractive index on the active medium and inside 

the absorber, respectively, L is the cavity length and Lα the saturable absorber length. 

Because 2( )( ),
tS mS L S


  Eq. (26) becomes then: 
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 1 2
1 .
v m m

L LdS N N S S
dt L L

 
      

   
       

    
 (28) 

This is the photon-flux equation inside a cavity with an active medium and a saturable 

absorber, as shown in Fig. 11. 

 

FIGURE 11. A laser cavity with an active medium and a saturable absorber. 

Given that k N     and defining T as the photons life-time inside a cavity with the 

form 
1

1 2 ,
m

LT
L


  



  
     

  
 Eq. (23) can be rewritten as: 

 1 .
m

LdS v NS v k S S
dt L T


     (29) 
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Therefore, for a complete description of a laser with saturable absorber, only three 

equations are needed: the photon-flux equation, an equation for the population inversion 

density on the active medium and the saturable population inversion equation that gives 

the saturation coefficient (taking into account k N    ): 

 0

0

1 ,

,

2 .

m

LdS v NS v k S S
dt L T

N NdN NS
dt h
dk k S k k
dt




    








 



 

   


  


  

 (30) 

In order to have an easier handling [4] of the Eqs. (30) the next non-dimensional 

parameters are defined: t’ = t / τ, G = τ / T, δ = τ / τα, ρ = 2σα / βσ, α = ΓvσTN and αα = - 

ΓvTk0αLα / Lm = - ΓvTσαnα / Lm; the new variables are: n(t’) = ΓvσTN(t’), nα(t’) = - 

ΓvTkα(t’)Lα / Lm and m(t’) = βBτS(t’) / v = βστS(t’) / hω. With these new adimensional 

parameters and variables, the Eqs. (30) can be rewritten as: 

 

 

 

 

1 ,
'

1 ,
'

.
'

dm Gm n n
dt
dn n m
dt
dn n m
dt




 



   

  

  

  

 (31) 

All the parameters used to define the saturable absorber are fixed, except for αα, which 

includes a measure of the active centers absorbent density, for this reason, αα will be 

used as the saturable absorber’s identifying parameter. 
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The next step is to add an external modulation directly into the saturable absorber. The 

best way to do this is through its main parameter (i.e. αα). Considering a CW low-

energy laser which output is normalized and an EOM which responds linearly to the 

modulation injected energy (sinusoidal shape), Eqs. (31) are transformed into: 

 

 

 

 
 

1 ,
'

1 ,
'

1 cos
.

' 2
c

dm Gm n n
dt
dn n m
dt

tdn n m
dt




 




  

  

  

 
   

 

 (32) 

where ωc stands for the modulation frequency applied to the EOM. 

These three differential equations represent the working system, it must be noted that, 

in absence of modulation frequency applied to the EOM, ω, the system returns to Eqs. 

(31), i.e. rate equations for a laser with a passive saturable absorber. 

2.3. LINEAR STABILITY ANALYSIS 

Linear stability analysis (LSA) is used to understand the system dynamics [5]. The 

analysis is based on the linear disturbance equations, these equations are derived from 

the original equations. The method consists in linearizing the equations, obtain the 

initial state condition (i.e. when the derivatives are zero), expand the system about the 

initial state condition, construct the Jacobian matrix and find the eigenvectors and 

eigenvalues with the determinant equal to zero [6]. This gives as a result the fixed 
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points of the equations system, which must be analyzed in order to know what type of 

points are (i.e. fixed, source, saddle, etc.). 

The equations of interest are Eqs. (32), these equations are non-autonomous due to the 

explicit time-dependence found in the cosine of the third equation. To be able to 

perform the LSA that dependence must be eliminated, to do that, a variable change 

must be applied, giving as a result, the next equations system: 

 

 

 

 
 

1 ,
'

1 ,
'

1 cos
,

' 2

.c

dm Gm n n
dt
dn n m
dt

xdn n m
dt
dx
dt




 



  



  

  

 
   

 



 (33) 

Naming the Eqs. (33) as: 

 

   

   

 
 

 

 

, , , 1 ,
'

, , , 1 ,
'

1 cos
, , , ,

' 2

, , , .c

dmf m n n x Gm n n
dt
dng m n n x n m
dt

xdnh m n n x n m
dt
dxj m n n x
dt

 




  





  



   

   

 
    

 

 

 (34) 

Supposing that  * * * *, , ,m n n x is the steady state, that is  * * * *, , , 0,f m n n x   

 * * * *, , , 0,g m n n x   * * * *, , , 0g m n n x   and  * * * *, , , 0.j m n n x    



   
2. THEORETICAL MODEL 

 

 

29 
 

In order to know if the steady state is stable or unstable, a small perturbation 

(represented by the subscript “p”) must be added to it 

 

*

*

*

*

,

,

,

.

p

p

p

p

f f f

g g g

h h h

j j j

 

 

 

 

 (35) 

with  , , , 1p p p pf g h j . 

Now, the main question is: will the perturbations grow (steady state unstable) or decay 

(steady state stable)? 

To be able to observe if the perturbations grow or decay, the perturbations derivatives 

must be found. 

 

* * * *

* * * * * * * * * * * *

* * * * * * * *

( , , , ) ( , , , )

( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , ) high order terms

p
p p p p

p p

p p

df dm f m n n x f m f n g n h x j
dt dt

f m n n x f m n n x f f m n n x g
m n

f m n n x h f m n n x j
n x

 

  

 



 

 

 

 

       

  

 

 (36) 

Following the Taylor series expansion shown in Eqs. (36) the derivatives for each 

perturbation are: 
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. . . . ,

. . . . ,

. . . . ,

. . . . ,

p
p p p p

p
p p p p

p
p p p p

p
p p p p

df
f f f g f h f j

dt m n n x
dg

g f g g g h g j
dt m n n x

dh
h f h g h h h j

dt m n n x
dj

j f j g j h j j
dt m n n x









   

   

   

   

   

   

   

   

   

   

   

   

 (37) 

The system presented in Eqs. (37) can be rewritten in the matrix form: 

 

'
'

,
'
'

p p p

p p p

p p p

p p p

f f f f
m n n x

f f f
g g g g

g g gm n n x
h h h

h h h j
m n n xj j j

j j j h
m n n x









   

   

   

   

   

   

   

   

 
 
 

      
      
        
      
           
      

 
 
 

 (38) 

where  denotes the Jacobian matrix of the original system at the steady state. 

Substituting the values in the Jacobian function and the next matrix is obtained: 

 

 1 0
1 0 0

.
0 sin( )

2
0 0 0 0

G n n Gm Gm
n m

n m x







  

   
 

   
 

    
 
 
 

 (39) 
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The next step is to find the eigenvectors and eigenvalues of the system   0,pI    

so the determinant would be: 

 0.I   (40) 

The matrix for the former equation is: 

 

 1 0
1 0 0

0,
0 sin( )

2
0 0 0

G n n Gm Gm
n m

n m x











   



    
 

    
 

     
 
  

 (41) 

The solutions for the perturbed steady-state of the original system are:  

 

0,
,

,

0.

s

s

s

s

m
n
n
x
 













 (42) 

 Substituting the former solutions in Eqs. (41), the matrix transforms into: 

 

 1 0 0 0
1 0 0

0,
0 0

0 0 0

G 



  

 

  



    
 

    
   
 

 

 (43) 

Matrix (43) has the next characteristic equation: 

      1 1 0,G                   (44) 
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where 1 ( 1),G      2 1,   3    and 4 0  are eigenvalues which are all 

real; being λ2 and λ3 always negative (i.e. the perturbation will decay) and λ4 is critically 

stable. Therefore, the stability condition is defined only by the sign of λ1, i.e. the fixed 

point is a source when 1    as shown in Fig. 12. 

 

FIGURE 12. Stability condition given by the relation between α and αα. 
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CHAPTER 3 

 

RESULTS AND CONCLUSIONS 

 

3.0. INTRODUCTION 

In this chapter the representing equations for the proposed experiment are numerically 

solved in order to study the system dynamics. In some explored regions the cnoidal 

waves are observed, the numerics were performed for different control parameters.  

3.1. CONTROLLING THE SYSTEM DYNAMICS 

To find the solutions of the Eqs. (32) a program was build using the typical Statz – de 

Mars parameters for a Dye laser [1,2] G = 200, α = 4, δ = 1 and ρ = 0.001 and using as 

initial condition a neighboring point to a system’s stable fixed point [3], i.e. m0 = 0.25, 

n0 = 0 and nα0 = 0.152, that corresponds to a non-stationary fixed point neighboring. 

As expected, when the modulation is not applied to the SA, the system tends to a fixed 

point in a small computational time, as shown in Fig. 13. Once the modulation is 

applied, the system starts to change into a periodic one as can be observed in Fig. 14. 



   
3. RESULTS AND CONCLUSIONS 

 

 

35 
 

 

FIGURE 13. Laser output without external modulation, the system tends to a fixed 

point. 

With a fixed modulation, the only parameter we can manipulate is αα, a measure of the 

active centers absorbent density contained in the SA. Since all the geometrical values 

involved in the definition of αα are fixed, the parameter αα will be identified as an 

absorption ratio and therefore will depend on the chosen SA (in a dye SA its 

dependence vary according to the dye concentration). For this numerical experiment, its 

value was chosen in a practical range (between 0.3 and 60). 

If all the physical parameters involved in this experiment are fixed, the available 

variables are only the external modulation, represented by ωc, and the absorption ratio, 

represented by αα. Due to this reason, the experiment is segmented in two parts. The 

first one is realized with a fixed modulation frequency and varying absorption ratio, and 

the second one is the reverse case, i.e. with fixed absorption ratio and varying 

modulation frequency.  
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FIGURE 14. Laser output with fixed modulation (ωc = 1) and variable absorption ratio. 

a) αα = 0.3, b) αα = 1, c) αα = 3, d) αα = 15, e) αα = 30 and f) αα = 60. 

For the first case, when the Eqs. (32) were solved without modulation, the output 

photon-flux, m, reached a fixed point in few iterations no matter the absorption ratio 

used (transients), Fig. 13, as soon as the modulation is injected into the SA a periodic 

train begins to appear with αα as small as 0.3, Fig. 14(a), as αα is increased the 

maximum intensity reached increases and a region of different frequencies coexistence 
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(undamped undulations) begins to appear at a certain location in the pulse, the 

localization of this region depends on the absorption ratio. 

It can be observed from Fig. 13 that the laser output tends to a fixed point when the SA 

is in passive configuration, i.e. without external modulation; as soon as the SA is turned 

into an active device (Fig. 14), different packages of pulses are obtained depending on 

the SA’s absorption ratio (αα), the bigger the concentration the higher the reached 

intensity. The laser output, in this case, goes from a continuous wave regime to a high-

intensity peaks train passing, through an undamped undulations window moving across 

the pulse’s body. 

 
When the absorption ratio is larger than a threshold that depends on the modulation 

frequency, the phase diagram between m and na exhibits instead of one, two critical 

points, as shown in figure 15. When the frequency is normalized with the laser’s 

relaxation frequency this phenomenon appears for an αa value near 1.4. If αa = 30 the 

two critical points are separated in the phase space diagrams (figure 15(b)). 

Being in the fixed point without modulation, the laser represents periodic oscillations 

when the external modulation is applied and undergoes the period-doubling bifurcation 

when the modulation frequency is increased. 



   
3. RESULTS AND CONCLUSIONS 

 

 

38 
 

 

FIGURE 15. Phase diagram m vs na. a) with αa = 1.4 b)with αa = 30. 

For the second case (i.e. fixed absorption ratio), a comprehensive study on the output 

signal in terms of ωc was done for an αa = 15, the value was chosen first of all because 

the undamped undulations are obvious for small ωc and are nowhere near the maximum 

intensity reached by the laser output; its behavior is representative of what happens at 

any frequency even if there are some differences in detail. 

Figure 16 shows how the signal frequency increases following the change in the 

modulation frequency. As the frequency rises, a threshold is obtained where the narrow 

pulse train is reached, its value is closely related with αa, a change in the absorption 

ratio only moves the undamped undulations window; the window is shifted towards the 

right (both thresholds get larger) as αa is increased. The second threshold corresponds to 

the appearance of a narrow pulse train, when αa = 15 the narrow high intensity pulse 

train is obtained at around ωc = 35. 
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FIGURE 16.  Pulse shape at αa = 15 with different frequencies a) ωc = 1/4, b) ωc = 1/2,   

c) ωc = 2, d) ωc = 5, e) ωc = 10, f) ωc = 35. 

The dependence between the output pulse width and the modulation frequency, shown 

in Fig. 17, is clearly a very good approximation to an exponential decay. It must be 

noted that the modulation frequency ωc enters the equation as an integer multiple of the 

laser relaxation frequency ω, so that the pulse duration is calculated from the relaxation 

time. From the above considerations one can observe a width lower limit around 19 ns 

achieved approximately at 80 KHz, which is 35 times the relaxation frequency. 
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FIGURE 17. Pulse width against control frequency. It is shown how the pulses width 

become narrower as the control frequency is increased. 

3.2. CNOIDAL WAVE OBSERVATION 

Figure 18 shows the temporal dynamics of the laser output for fixed αa = 15 and 

different modulation frequencies ωc. For small ωc (lower than the laser relaxation 

oscillation frequency), the laser generates pulse trains with localized undulation 

windows, which are the damped relaxation oscillations (Figs. 18(a)--18(c)). For higher 

ωc, only one frequency remains, i.e. the laser oscillates with the modulation frequency 

(Figs. 18(d)--18(f)), and the pulse shape strongly depends on ωc. One important aspect 

is that as ωc is increased; the peak amplitude first increases, reaches a maximum, and 

then decreases, thus going from a sech2 (when the amplitude is maximum, Fig. 18(d)) to 

almost harmonic oscillations (Fig. 18(f)). While the peak amplitude is decreasing, the 

laser intensity never falls down to zero again; the continuous background appears 
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because the frequency applied to the SA is so high that it has not enough time, neither 

to relax to its ground state nor to saturate. As ωc further increases, the signal behavior 

becomes more and more sinusoidal with relatively small amplitude. We repeat the 

simulations for different αa with a step of 5 and find that the results shown in Fig. 18 for 

αa = 15 follow exactly the same qualitative pattern for any other αa  [5, 60]. 

In 2004, Y. Kartashov et al [4,5] demonstrated that certain cnoidal waves can be forced 

to stabilized (this because normally the cnoidal waves are unstable), that forced-stable 

waves were bounded, as in this case, by two values of control parameter; in the case 

presented here, the boundaries are given by the modulation frequency.  

It must be noted that the cnoidal waves obtained through the presented scheme are 

founded in the inverse expected order, first, the upper limit was achieved (the soliton 

shape) and, second the sinusoidal shape (the cosine limit). 

The obtained pulse trains are asymptotically stable due to the quadratic non-linearities 

given by the SA. 
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FIGURE 18. Laser output intensity for αa = 15 and control frequencies (a) ωc = 1, (b) 5, 

(c) 15, (d) 25, (e) 50, and (f) 75. 

Another interesting feature of the observed dynamics is that when the pulse train 

amplitude reaches its maximum, a sech2 (soliton-like) shape approximates the pulse 

shape with a very good precision as demonstrated in Fig. 19. This is confirmed by 

overlapping one pulse with a sech2 waveform; the difference that appears on the base 

right hand side is very small (in the order of 2%, and always less than 5%). We find that 

for every saturable absorber coefficient αa there is an optimal modulation frequency ωs 
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for which this soliton-shape approximation has better precision than for other 

frequencies. 

As seen from Fig. 20, ωs increases approximately linearly with αa with two jumps at αa 

= 5 and αa = 30. We should note that several theoretical and experimental works report 

the existence of solitons meaning that the pulses shape obtained at the output presents 

the soliton characteristic functions (sech and sech2). While in the cited works, the 

difference between the reported pulses and the soliton shape is larger than 5%; our 

system allows the soliton generation with a higher precision, which makes it prominent 

for optical communication purposes. 

 

FIGURE 19. Overlapping of one pulse taken at αa = 15 and ωc = 25 (solid line) with a 

sech2 wave form (dashed line). 
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FIGURE 20. Modulation frequency ωs and absorption ratio of saturable absorber 

corresponding to soliton-shape pulses. 

3.3. CONCLUSIONS 

This work effectively shows how a saturable absorber can be made in to an active 

device to control the output of a laser. 

The insertion of a modulated signal directly into the saturable absorber modifies the 

continuous output driving it into a periodic one.  The larger the αa the higher the laser 

intensity obtained, and the more comb-like it becomes. For a given αa there are two 

important thresholds: the modulation frequency where the undamped undulations 

appear and the one where they disappear, as the absorption ratio is increased, the 

undulations window is shifted towards higher frequencies. 

For a given αa, as the modulation frequency is increased, the output signal changes from 

a smooth periodic function to a clear comb-like pulse train whose width decreases 

exponentially, thus the saturable absorber is behaving as an active device. 
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It was also demonstrated with a rate equations model (based on SdM) that a laser with 

an active saturable absorber under the influence of a control radiation from another 

laser can generate cnoidal waves within a certain range of control parameters, which 

bound soliton-like and sinusoidal regimes. 

No matter the physical saturable absorber characteristics, there is always a certain value 

of the modulation frequency that would result in the cnoidal waves generation. 

When we compared the resulting pulses with a typical soliton shape (sech2), we 

obtained less than 5% error at the pulse base. The proposed system can be a base for 

building a reliable and cheap device to generate cnoidal waves as efficient information 

carriers for optical communication; the proposed system is economic due to the 

elements involved, at using general purpose laser elements and not ultra-fast optics 

elements, the experimental implementation of the presented scheme results less 

expensive. 

3.4. FUTURE WORK 

In this thesis the studies were done with a simple rate-equations model, we believe that 

the obtained results can be applied to different laser systems (e.g. Erbium-doped fiber 

laser) and not only to Dye lasers. 

As part of the future work, a more complete model will be studied theoretically and 

experimentally. 

The following experiment was implemented as a preliminary experimental attempt:  

A 1550-nm EDFL diode pumped at 980-nm was used; the experimental array is shown 

in Fig. 21. A 4-m Fabry-Perot laser cavity was formed by an active heavily doped 90-
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cm-long erbium fiber, a Faraday rotating mirror (FRM) and a fiber Bragg grating (FBG) 

with a 100-pm FWHM bandwidth, having, respectively, 100% and 98% reflectivities. 

FRM was used in order to avoid polarization mode beating. An electro-optical 

modulator (EOM), modulated through a functions generator, was placed inside the 

cavity. The fiber output, after passing through a wavelength-division multiplexer 

(WDM) was recorded with a photodetector and analyzed with an oscilloscope. The 

pump-diode current was fixed at 64 mA, which results in a pump power of 15.5 mW. 

This corresponds to about 10% over the laser threshold of 14 mW. This value was 

chosen in order to obtain CW laser operation. The EDFL’s relaxation frequency is 

around 28 kHz due to the applied pump power. 

 

FIGURE 21. Experimental set-up implemented for search cnoidal waves. 

Figure 22 shows preliminary results obtained for the shown configuration, these pulses 

are generated when the frequency applied to the EOM is around 9.1 MHz, which 

correspond to 325 times the laser’s relaxation frequency. It is expected that if the 



   
3. RESULTS AND CONCLUSIONS 

 

 

47 
 

erbium-doped fiber length changes, the frequency needed to generate cnoidal waves 

would be shifted, if the length is reduced, so the frequency would be diminished  and 

conversely. 

 

FIGURE 22. Experimental cnoidal wave limits. a) soliton-shape limit, b) sinusoidal shape 

limit. 

It is important to complete the experimental part of this work in order to be able to 

construct a cheap cnoidal wave generator that can be reliable used with optical 

communications purposes. 
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