
 
 

Development of experimental technique for 
the measurement of refractive index profile 
for different kinds of conventional and 

microstructured optical fibers 
 
by 

 

 

 

 
Edgar Saucedo Casas 

 
A Thesis submitted for the degree of 

 
Doctor en Ciencias (Óptica) 

 
 

Centro de Investigaciones en Óptica, A.C. 
Léon,México 

 
 
 
 
 
 
Diciembre                                                                                                                  2007 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

Dedicated to the patience of my parents 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                  “…….., Its father is the Sun, Its mother is the Moon, 

                                                                                                                                        the wind carried itin its belly,………….”. 
 

                                                                                                                                              Hermes Trismegistus (2270 B.C.)  

 
 
 



 
 
 
 
Acknowledgements 
 
 
 I wish to tank to my advisor Dr. Uldazimir P. Minkovich for encourage me to do 

research in the field of Optical Fibers, for his trust in having allowing me to work in his 

Laboratory. 

 I would also want to thank to Dra. Reyna Duarte for her help and collaboration 

with the optical material corresponding of the Postgraduate Laboratories. 

 I am also grateful to Lic. Guillermina Muñiz for her attendance in these years. 

Thanks to my friends José Trinidad Guillen, Luis CarlosAlvarez and J.L. 

Cabellos for shearing their friendship, it had a great value. 

 

 

 

 

 

 

                                                                         “All the small ones, the trivial things or insignificant things are  
                                                                                                                              good to complete the splendor of the infinitum”. 

                                                                                                                                           Giordano Bruno Nolano. 
                                                                                                                                Of the Infinite Universe and Worlds (1584) 

 
 
 
 



 
 
 
 
Contents 
 
List of Figures                                                                              iv 
 
 
Chapter One 
Introduction                                                                                   1 
1.1 Background.                                                                                        1 
1.2 Opto-measurement systems.                                                               4 
1.3 Contents by Chapter.                                                                           6 

References.                                                                                          6 
 
Chapter Two 
Basic Concepts of Optical Waveguides and the transport-of 

intensity equation.                                                                        7 
2.1 Optical Waveguides.                                                                          7 
2.2 The method of localized basis functions.                                          12 
2.3 Classes of Microestructured Optical Fibers.                                     15 
2.4 Large-mode-area MOFs (Characteristics and Fabrication).             17 
2.5 The transport-of-intensity equation.                                                  25 
2.6 Defocusing image in a simple microscope system model.                27 
2.7 Approximation of Intensity derivative.                                             29 

References.                                                                                        31 
 
Chapter Three 
Refractive index function of conventional axially symmetric 

optical fibers.                                                                                33 
3.1 Introduction.                                                                                      33 
3.2 Experimental Setup.                                                                          36 
3.3  Model and Results.                                                                            39 
3.4  Conclusions and remarks.                                                                 44 
3.5 Note                                                                                                   44 

References.                                                                                        45 

 



 

Chapter Four. 
A bright field microscopic image technique for measurement of 

averaged index profiles of quasi-axially symmetric large-mode-

area microstructured optical fiber.                                              47 
4.1  Introduction.                                                                                      47 
4.2  Experimental Procedure.                                                                   49 
4.3 Data and Results.                                                                               51 
4.4 Conclusions.                                                                                      58 

References.                                                                                        58 

Chapter Five. 
Defocused transfer function for measurement of refractive 

index profiles of axially symmetric optical fibers.                         60 
5.1 Introduction.                                                                                      60 
5.2 Experimental Procedure.                                                                   63 
5.3 Analysis and Results.                                                                        64 
5.4 Conclusions.                                                                                      69 

References.                                                                                        70 
 

Chapter Six. 
General conclusions and outlook.                                               71 
 
Appendix A.                                                                                 73 
 
Appendix B.                                                                                            75 
 
 
 
 

 
 

 
  

  
 
 



 
 
 
 
 
 
List of Figures 

 

1.1 Wollaston Prism splitting rays of light into two beams with a separation δx in the 

Optometronic system. 

2.1 Schematic representation of (a) refracted and reflected beams and (b) total internal 

reflection beam 

2.2 (a) Total internal reflection in conventional fiber and (b) in microstructured 

optical fiber (MOF). 

2.3 Decomposition of squared refractive index profile, A cross section along the x-

direction is shown  

2.4 Main classes of different Holey Fibers (HF), (a) High numerical aperture fiber 

(HNA), (b) Highly Non-Linear Fiber (HNL) and (c) Large-Mode -Area Fiber (LMA). 

2.5 Large-Mode-Area Fiber where the air channels have diameter d and pitched by 

distance Λ. 

2.6 Dependence of large-mode-area MOFs transmission loss versus d/Λ measured with 

probe signals (OTDR) at wavelengths 1550 nm (filled circles) and 1310 nm (empty 

circles) 

2.7 Silica thin capillaries are placed into a preform.  

2.8- End face photo-image of a Large-Mode-Area MOF fiber of five full rings of air- 

holes in a hexagonal pattern. 

2.9 Schematic figure of drawing process of a MOF. 

2.10 Two different preforms containing a dense package of thin silica tubes. 

2.11 Typical fiber drawn tower for producing optical fibers. 

2.12 (a) Standard microscope with CCD camera. 



2.12 (b) Scheme of an equivalent simple microscope. S represents the light source, O is 

the tested object, L1 is the objective, L2 is the ocular, I stands for the focused image in 

the plane B, and the defocused images are taken by ∆F. 

2.13 A defocused red blood cell. 

3.1 Schematic diagram showing (a) end view of the fiber and (b) transverse view. 

3.2 Scheme of the Experimental Setup of the optical system. 

3.3 Experimental Setup. 

3.4 Tested optical fibers pieces are placed between silica covers. 

3.5 Experimental bright field microscopic image of (a) Corning 62.5/125 graded index 

fiber, (b) 60/125 nearly step-index fiber, and (c) doped ytterbium-holmium fiber. 

3.6 (a) Transverse phase gradient image of the Corning 62.5/125 graded index fiber and 

(b) Averaged transverse phase gradient image of the optical fiber. 

3.7 (a) Transverse phase gradient image of the 60/125 conventional step-index fiber and 

(b) Averaged transverse phase gradient image of the optical fiber. 

3.8 (a) Transverse phase gradient image of the heavily doped ytterbium-holmium silica 

fiber and (b) Averaged transverse phase gradient image of the optical fiber. 

3.9 Refractive index profiles of the Corning 62.5/125 optical fiber. 

3.10 Refractive index profile of the 60/125 conventional step-index optical fiber. 

3.11 Refractive index profile of the heavily doped ytterbium-holmium silica optical 

fiber obtained in experiments. 

3.12 Image of faulty pinhole. 

3.13 Unreliable experimental bright field microscopic image of Corning 62.5/125 

graded index fiber. 

4.1 Schematic diagram of MOF showing (a) end view and (b) transverse view. 

4.2 Microscope slide where the fiber pieces are placed between silica covers. 

4.3 Conventional Corning 60/125 step-index fiber images obtained with DC3-163 

video-microscope at white light illumination: (a) end view of the fiber, (b) transverse 

view. 

4.4 Images of Corning 60/125 step-index fiber: (a) experimental bright field 

microscopic image, (b) transverse phase gradient image, (c) averaged transverse phase 

gradient image. 

4.5 Refractive index profile of the 60/125 conventional step-index fiber. 



4.6 Experimental MOF with two dimensional cladding: (a) end view of the fiber, (b) 

transverse view. Outer diameter of the fiber is 125 µm, diameter of the core 15.6 µm, 

and relative hole diameter d/Λ = 0.42. 

4.7 Experimental large-mode-area MOF: (a) end view of the fiber, (b) transverse view. 

Outer diameter of the fiber is 125 µm, diameter of the core is 11.6 µm, and the relative 

hole diameter of the cladding d/Λ=0.5. 

4.8 Bright field microscopic images: (a) experimental MOF with two dimensional 

cladding and the relative hole diameter of the inside cladding d/Λ=0.42; (b) 

experimental large-mode-area MOF with d/Λ=0.5. 

4.9 Experimental setup used for tested experimental MOFs. 

4.10 Experimental MOF with two dimensional cladding: (a) transverse phase gradient 

image, (b) grey scale integer values of the phase gradient image. 

4.11 Large-mode -area MOF with d/Λ=0.5: (a) transverse phase gradient image, (b) 

grey scale integer values of the phase image. 

4.12 Averaged index profile for experimental MOF with two–dimensional cladding and 

with relative hole diameter of inside cladding d/Λ=0.42. 

4.13 Averaged index profile for large-mode area MOF with d/Λ=0.5. 

5.1 Focus bright field microscopic images of (a) Corning 62.5/125 graded-index fiber, 

(b) 60/125 step-index fiber, and (c) 218/227 nearly step-index fiber. 

5.2 (a) Defocused transfer function of Corning 62.5/125 graded-index fiber and (b) 

theoretical bright field microscopic image of the same fiber in the frequency domain. 

5.3 (a) Defocused transfer function of 60/125 step index fiber and (b) bright field 

microscopic image of the same fiber in the discrete frequency domain.  

5.4 (a) Defocused transfer function of 218/227 step index fiber and (b) bright field 

microscopic image of the same fiber in the discrete frequency domain. 

5.5 Dashed and solid curve show, respectively, the refractive index profile of the same 

Corning 62.5/125 graded-index fiber obtained with common procedure and with the 

optical transfer function. 

5.6 Dashed curve shows the refractive index profile of 60/125 step-index fiber obtained 

with common procedure. Solid curve is the refractive index profile of the same fiber at 

using the optical transfer function. 



5.7 Solid and dashed curves show, respectively, the refractive index profiles of the same 

218/227 nearly step-index fiber obtained with common procedure and with the optical 

transfer function. 

A. Reference system for a traveling wave.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
Chapter 1 
 

Introduction 
 
 

          1.1 Background 
 
Many optical investigations require of laser sources as well as waveguide schemes, Besides 

in the last years together with the development of optical fibers, which are able to transfer 

electromagnetic fields over hundreds of kilometers become an important tool in the new 

period of time for worldwide high speed telecommunication systems. So, many forms of 

communications procedures have appeared over the most recent years. The principal 

motivations behind each new one were either to make better the transmission fidelity, to 

improve the data rate so that more information could be sent, or to increase the transmission 

distance [1]. In the most recent years, the speed or bandwidth at which a single optical fiber 

could send data seemed pretty much unlimited. Step by step the bandwidth of 

telecommunication networks became too small, but it seemed that the limitation was not so 

much due to the inherent limits of the waveguide, but much more to the limited speed of the 

signal sources and receivers. Investigations for increasing the bandwidth of optical 

networks in these days is more a question of how to get the best out of fibers through 

injecting more information, than a question of improving optical waveguides. 

We have seen recently that, with the increasing demand for bandwidth, basically due to the 

popularization of the worldwide telecommunication networks and multimedia contents, 

along with the progress made in high speed electronics and optoelectronics, the inherent 



limits of optical fibers were reached. In addition to telecommunication applications [2], 

optical fiber links have been installed in not antiquated electrical power plants. These links 

are used to transmit information for system protection, supervision, and control, which are 

extremely important in large and complex modern power plants. In this manner, the 

immunity of optical fibers to inductive interference and their high data transmission 

capacity thus offer an excellent possibility to telecommunication systems. 

Nowadays, higher density data injection is possible, but because of non-linear effects of 

new microstructured composition in the optical fibers (they are called microstructured 

optical fibers MOFs), where in many cases they have been done by arranging a collection of 

tubes around a solid central rod. A basic scheme of this structure can be seen in Figure 2.4. 

Thus, other effects which can be developed in the field of optical fiber technology, which is 

constantly undergoing changes and improvements. 

The discovery of these new microstructured optical fibers MOFs (In the early 1990s), they 

showed that they could have unprecedented properties and overcome many limitations 

intrinsic to conventional optical fibers. The possibilities of microstructured optical fibers 

brought prospects of totally new fields of application for fiber optics, such as optical fibers 

for high power applications [1], optical fibers for non-conventional wavelengths ranges like 

far infrared and ultra violet regimes, compact high precision metrology and innovative 

optical fiber sensors (OFS) [2], Here, we can enumerate some general advantages of OFS, 

properties like: immunity to the electromagnetic interference, .lightweight, small size, high 

sensitivity and large bandwidth. In addition, these optical sensors have the versatility of 

being configured in arbitrary shapes specially in new geometrical configurations in the field 

of new microstructured optical fibers and in this manner they offer a technological base in 

the scheme to sensing more diverse physical quantities, just as: temperature, pressure, 

rotation, thermal conductivity, voltage and so on. 



On the other side, we can say that one of the main properties of solid core in MOFs 

discovered is that they can be single-mode over an infinite range of wavelengths [3], this 

essential attribute becomes an important property over all conventional optical fibers, and it 

gives the possibility of manipulating high power electromagnetic fields regimes. Then, such 

microstructured fibers are a topic of active research worldwide because of their potential 

significance in the development of novel optoelectronic and photonics devices. Also, MOFs 

with different planar geometries are studied and developed for novel ways to manipulate the 

flow of light and at the same time they have shown great capability for many applications in 

the field of optics, as we have said before [4]. 

In all kind of optical waveguides (conventional and micostructured optical fibers) the 

knowledge of the main physical properties of these fibers keeps being the principal 

objective for improving the fibers properties in the plane of optical fiber technology and 

telecommunication applications [5]. 

To a large extent, the studies of the physical properties in optical fibers have been playing 

an important role during their manufacturing process. In this sense, if we are talking about 

the refractive index function of the optical fibers is considered indeed one of the most 

important parameter in the optical fibers area: Thus, the main motivation coming because 

through refractive index profile can be determined various physical attributives on the 

optical fibers, such as: mode file profiles, dispersion characteristics, power transmission 

coefficients optical power carried by modes and so on. 

 

1.2 Opto-measurement systems 

Up to these years, there are several numbers of techniques where refractive index function is 

obtained with a good approximation [4]. Alone to mention one of them, a well-known 

“Imaging Optometronic System” [6], which has recently been applied for testing and 



studying multiple types of waveguides, arrayed waveguides and other photonic circuits. This 

mentioned system operates with a conventional optical microscopy system simultaneously 

with an atomic force microscopy, which has the additional advantage of allowing for 

extremely precise optical fiber control and movement. A basic scheme of the previously 

described system is drawn in the Figure 1.1 

 
Figure 1.1 Wollaston Prism splitting rays of light into two beams with a separation δx in the 

Optometronic system. 

 
The above described system contains a Wollaston prism that can split the rays of the laser 

beam into two beams with a separation δx, these two beams can follow a different optical 

path which is detected on the Point detector. Thus, the physical information is obtained for 

this difference of optical path. 

Then, among all different techniques, non-destructive methods are more usually spread 

because they are able to get physical information from the system without modify the system, 

and beside we can apply inside them image processing tools, where it is well known that 

image processing is an extensive set of functions for processing multidimensional arrays, at 



which they can be satisfactory used in the field of optical fibers qualities. Thus physical 

properties can be achieved by meaning of numerical procedures over these arrays.  

In the content of the present dissertation, axially symmetry is introduced as a main feature 

of the studied optical fibers, which provides an important role when we estimate final 

results. Also, we describe the experimental results, with the purpose of having a particular 

refractive index profile in each particular fiber specimen and consequently the experimental 

difficulties and sources of errors are discussed, all this with the purpose of getting a better 

estimation of refractive index profile function. 

In this dissertation is described a method of obtaining refractive index function using a 

basic experimental arrangement which it works with a well-determined wavelength 

monochromatic source illumination and thus finally visual fields have been taken by a 

microscopy system. Several examples of optical fibers have been tested, and the application 

of the method to measurement the refractive index profile is also discussed in general form. 

All these techniques are described for static systems where the environmental conditions are 

almost supposed under control in the laboratory, but we hope all these measurement 

techniques could be applied to the industry where the environmental conditions are usually 

harder tested for the optical devices and where it requires a better precision and maybe 

several different numerical procedures. 

 

1.3 Contents by Chapter. 

The thesis contains five chapters, the first and second Chapters are addressed to 

Introduction and Basic concepts of Conventional and Microstructured Optical Fibers 

(MOFs). The study and application of a non-destructive and non-interferometric method 

based on bright field microscopy images for conventional optical fibers is treated in Chapter 

3, and for large-mode-area MOFs in the Chapter 4. 



In Chapter 5, a defocused transfer function of experimental bright field microscopic images 

are applied together with the simple experimental technique for the measurement of 

refractive index function of conventional optical fibers. 
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Chapter 2 
 

Basic Concepts of Optical Waveguides and the 

transport-of intensity equation. 
 

 

2.1 Optical Waveguides 



A conventional optical fiber is composed of a cladding usually made of silica and a core 

of doped silica (in general cases with germanium). The refractive index function of the 

silica cladding n2 is subsequently only just smaller than the refractive index function of 

the core n1. Generally, the refractive index difference between core and cladding is of 

the order of 01021 .=− nn . Therefore the electromagnetic field that is coupled to the 

end face of the waveguide is partly reflected and partly refracted at the core-cladding 

interface. The angle of incidence of the electromagnetic field and the angle of refracted 

field are related according to the Snell´s Law  

2211 θθ sinsin nn =  

Here, θ1 and θ2 are the incident and refracted angle with respect to the normal to the 

core-cladding interface as it is shown in the following Figure 2.1  

 

 

 

Figure 2.1 Schematic representation of (a) refracted and reflected beams and (b) total 

internal reflection beam 

 

According to Snell´s law, the function sin(θ2) has a limit value 1, and if 
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electromagnetic fields are fully reflected at the core-cladding interface and they 



propagate inside the core of the fiber. A basic structure and refractive index profile of 

the optical waveguides are shown  

 

 

(a) 
 
 
 

 
(b) 

Figure 2.2 (a) Total internal reflection in conventional fiber and (b) in microstructured 

optical fiber (MOF). 
 
 

The transmission properties of an optical waveguide are dictated by its structural 

characteristics, which have a principal effect in determining how an optical signal is 

affected as it propagates along the fiber. Let us consider a plane waves propagating 

along the z-direction with inclination angle φ, the plane waves are perpendicular to the 

light rays, in addition, the wavelength and the wave number of the electromagnetic 

fields in the core are λ/n1 and kn1 (where k=2π/λ ), respectively, here the wavelength λ 

is given in vacuum space. The propagation constants along z and x (lateral direction) are 

represented by [1]: 

φβ cos1kn=        and        φκ sin2kn= , 



And then, the propagation of electromagnetic fields along a waveguide can be described 

in terms of a set of guided electromagnetic waves called the “modes” of the waveguide. 

These guided modes are referred to as the bound modes of the waveguide. In this 

manner, each guided mode is a patter of electric and magnetic field lines that is repeated 

along the fiber at intervals equals to the wavelength. Only a certain discrete number of 

modes are capable of propagating along the waveguide. These modes are those 

electromagnetic waves that satisfy the homogeneous wave equation in the waveguide 

and the boundary conditions at the core-cladding interface. 

Thus, Maxwell`s equations determine the spatial dependence of the electrical field 

E(x,y,z) and the magnetic field H(x,y,z) in an optical waveguide. It has been assumed 

an implicit time dependence )( iwtexp − for both field vectors. The dielectric constant 

ε(x,y,z) is related with the refractive index function n(x,y,z) by ε=n2ε0 , where ε0 is the 

permittivity value in the vacuum space. Besides, for nonmagnetic materials which 

usually constitute an optical waveguide, the magnetic permeability of the medium µ is 

almost always equal to the vacuum space value µ0.Then, Maxwell`s equations in a 

homogeneous and lossless dielectric medium are written in the form [2]: 
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Here, the free-space wavelength number stands for k  and λ is the wavelength of the 

light in the vacuum. Strictly speaking, in a waveguide, we have a two-dimensional 

refractive index function n=n(x,y), where in this situation the waveguide become 

translationally invariant. Therefore the modal field vectors can be expressed by: 
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β j is the propagation constant of the j-th mode. Here, yx êêE j
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components of the modal electric and magnetic fields, respectively. 

In the case of cylindrical polar coordinates the field vectors are: 
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Replacing the equations (2.2) into (2.1) and comparing the field components the 

following expressions are obtained [2]: 
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Here, operator ⊥∇  represents transverse gradient and the two-dimensional refractive 

index function is written by n=n(x; y) and the wavelength number k . 

In both cases, conventional and microstructued optical fibers (MOFs), the number and 

characteristics of these electromagnetic fields depend on the fiber parameters (refractive 



index function, core size, and in the special MOFs case, where their cross-section is a 

web on m-hexagonal rings of air-holes ). 

Maxwell´s Equations (2.4) do not determine the electromagnetic fields in optical fibers 

completely. Out of the endless possibilities of solutions of Maxwell´s equations, we 

need to take those that satisfy the boundary conditions of each particular fiber. In the 

majority of the cases the boundary conditions occurs when there are discontinuities in 

the refractive index function. At the boundary the tangential components of 

electromagnetic fields should satisfy the conditions of continuity. 

 

2.2 The method of localized basis functions 

In the special context of MOFs, It becomes complicated to locate such core-cladding 

boundaries. Therefore, advanced numerical methods are used for highly accurate 

modeling of the MOFs. To mention one very well-known, the method of localized basis 

functions [3], this method is based on the direct solutions of Maxwell`s equations, using 

a representation of the refractive index function and the electromagnetic field 

distributions as a sum of localized basis functions. A shortly review of this method is 

presented right away.  

Using the scalar wave equation for the modal electric field ),( yxEEE
yx
== we have 

the following mathematical expression: 
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Thus, the localized orthonormal set of Hermite–Gaussian basis function in the XY plane 

is written as: 
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Here H2n is the 2n-order Hermite polynomial, where only even order polynomials are 

used, this happens because fundamental mode profiles in MOFs are even. Constant “Λ” 

is known as pitch of the web and here it takes an important roll. This separable 

orthonormal functions set keeps the following rules: 
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Let us suppose that, the scalar modal electric field mE  is expanded as: 
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At this point, F is the number of terms preserve in the expansion. Substituting Eq.(2.9) 

in (2.5) and then each term is multiplied by )()( yx
dc

ψψ  followed by an integration 

over the transverse plane XY. Making use of expression (2.7) and (2.8) of the complete 



Hermite-Gaussian basis functions, after that, an eigenvalue equation is obtained and it is 

expressed as: 
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A, I are (F-1)2x(F-1)2 matrices and the eigenvector v̂ is represented of the subsequent 

form: [ ]
FFFF

T εεεε ........v̂ 1000= , Here, 
ji ,ε  are the modal fields components. 

In the case of particular MOFs (Holey Fibers) [4] the squared index distribution is 

expanded in two parts, the central index core is represented using the localized Hermite-

Gaussian functions defined above, and the periodic lattice of holes is represented using 

periodic functions (See Figure 2.3). Afterwards, solving the eigenvalue equation (2.10) 

at specific wavelength λ, the modal field components and the propagation constants of 

the fiber can be calculated. 



 

Figure 2.3 Decomposition of squared refractive index profile, A cross section along  the 

x-direction is shown 

2.3 Classes of Microestructured Optical Fibers.  

MOFs can be classified by the dimensions of the fiber structures, and their specific 

properties. In the case of the total internal reflection principle, three subclasses have 

today appeared, and they are: High-numerical aperture (HNA) fibers having a wide 

central core surrounded by a ring of relatively large air-holes, High-Non.Linear (HNL) 

fibers, having a very small core dimensions to provide tight mode confinement, and 

finally, Large-Mode-Area fibers, using relatively large dimensions and small effective 



refractive index contrasts to spread out the transverse optical field. The set of the all 

above MOFs are called Holey Fibers.(HF) (See these fibers in Figure 2.4) 

    

  

 

                                   (a)                                                                    (b) 

 

 

                                                                     (c) 

Figure 2.4- Main classes of different Holey Fibers (HF), (a) High numerical aperture 

fiber (HNA), (b) Highly Non-Linear Fiber (HNL) and (c) Large-Mode -Area Fiber 

(LMA). 

The development of Large-Mode-Area MOFs fibers, whose cross section is a web of mr 

hexagonal rings of air-holes of the diameter “d” pitched by the distance “Λ”, is very 

important for a wide range of useful applications most notably those demanding the 

transmission of high power optical beams. For this large number of applications, spatial 

mode quality is also a crucial issue, and so, (LMA) fibers should preferably maintain 

just a single transverse mode. 

 

2.4 Large-mode-area MOFs (Characteristics and Fabrication) 



It is well known, that, the intrinsic material absorption of pure silica for wavelengths 

between approximately 0.6 µm and 1.8 µm is very small, and in the theory light in the 

wavelength range could be carried hundreds of kilometers almost without any losses, 

Nevertheless, to compensate for losses, signal amplifiers and repeaters are introduced at 

intervals, In this sense, the single-mode properties of LMA-MOFs, depend on a very 

small effective-index contrast between core and cladding, here it is noticed too, that 

Large-Mode-Area (MOFs) technology provides more accurate direction to controlling 

the aforementioned index difference between core and cladding regions of the fiber, 

since the supervision of hole size “d “ and centre-to centre spacing “ Λ” may be used to 

adjust the exact effective indices. Typically diameter air-hole “ d “ is in the range from 

1.1 µm to 3.6 µm and spacing Λ kept fixed, about 6.0-7.5 µm. Thus, the relative hole 

diameter d/Λ for LMA fibers covers the interval running from 0.14 to 0.6.[ 5,6] 

Returning back with the cross section of the LMA-MOF (see Figure 2.5): 

 

Figure 2.5- Large –Mode-Area Fiber where the air channels have diameter d and 

pitched by distance Λ. 

According to reference [8] the geometrical air-filling fraction in a cross-section of a 

LMA fiber can be expressed by: 
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Then, the corresponding silicon fraction is: 
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Therefore, the effective index refraction neff of the cladding becomes strongly 

wavelength-dependent of this air-filling fraction. And the following limits should be 

satisfied the following mathematical expressions: 
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Thus, the above statements give us the possibility of change the refractive index 

difference between core and cladding by adjusting the relative hole diameter d/Λ. 

In this manner, optical properties in MOFs can be controlled rather easily by changing 

the structural parameters like the pitch length Λ and diameter d of each air hole or even 

the material inside of the small holes. The importance of the relative hole diameter d/Λ 

in particular for large-mode-area MOFs can be seen in the reliance between the 

transmission loss and the above mentioned numerical proportion d/Λ. It was measured 

this dependence loss by using an optical time-domain reflectometer (OTDR) working at 

operation wavelength of 1310 and 1550 nm. One can see MOFs have low transmission 

loss when 0.48< d/Λ<0.52 as it is shown in Figure 2.6 [6, 7]. 



 

Figure 2.6 Dependence of large-mode-area MOFs transmission loss versus d/Λ 

measured with probe signals (OTDR) at wavelengths 1550 nm (filled circles) and 1310 

nm (empty circles) 

 

In addition, we need to remark, that pure silica refractive index )(λiSn  is a very 

sensitive an important parameter in the frame of theoretical and experimental operations 

with conventional and microstructured optical fibers (MOFs), it is for this reason that 

the Sellmeier formula is being applied, and its expression [9] is given by: 
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where Ak and Bk stand for Sellmeier coefficients. The values for the Sellmeier 

coefficients of pure silica are given in the following Table 2A 

 Pure Silica 

A1 0.6961663 

A2 0.4079426 

A3 0.8974794 

B1 0.0684043 

B2 0.1162414 

B3 9.8961610 

Table 2A Sellmeier coefficients for pure silica 

Here, we will comment a little about the production of Large-Mode-Area MOFs fibers. 

The method employed to fabricate LMA-MOFs fibers was based in the following 

procedure:  

A set of identical silica capillaries were stacked into a periodic structure (see Figure 

2.7), which was then fused at high temperature, in order to eliminate air gaps between 

the capillaries, then, this periodic structure was pulled from a composite preform, it was 

a silica tube containing a dense layers of thin silica capillaries, surrounding a pure silica 

rod. Finally, this composite-structure tube was pulled, to form microstructured optical 

fibers MOFs (typically LMA-MOFs have 125 µm of outer diameter and about 12 µm of 

core surrounded by a web of air channels). 



 

Figure 2.7 Silica thin capillaries are placed into a preform  

 Special precautions were taken to keep the annular shape of air holes and to eliminate 

the air gaps between the neighboring capillaries during the whole process. Figure 2.8 

presents an end face microscope photo-image of LMA-MOF fiber with outer diameter 

equals to 124 µm, average air-hole diameter 2.81 µm and pitched by 5.63 µm. Figure 

2.9 shows a schematic diagram of the stack-and-draw process carried out in a fire tower. 

 

Figure 2.8 End face photo-image of a Large-Mode-Area MOF fiber of five full rings of 

air- holes in a hexagonal pattern. 

 



 

Figure 2.9 Schematic figure of drawing process of a MOF. 

The principal element in the drawing of the microstructured optical fiber is the ability to 

preserve the highly regular structure of the preform (Figure 2.10) all the way down to 

fiber dimensions. 

 

(a) 

 



 

(b) 

Figure 2.10 Two different preforms containing a dense package of thin silica tubes. 

 

 

 

A conventional fiber drawn tower is shown in the following photo-image (Figure 2.11) 



 

Figure -2.11 Typical fiber drawn tower for producing optical fibers. 

 

2.5 The transport-of-intensity equation. 

Recently, it has had a particular importance the work of M.R. Teague [10], where it is 

shown that two displaced intensity measurements should allow the gradient phase of a 

coherent wave to be resolved with the transport of intensity equation, expressed by: 
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I stands for image matrix intensity, which is usually represented by a matrix of grey 

integer values, k; λ is the wavelength of the radiation, ⊥∇∇∇∇ denotes the gradient operator 

over the plane XY, and φ is the phase of the bright field image. 

The above transport-of-intensity equation can be understood by using the empty space 

time-independent wave equation (See Appendix A): 
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Function zψ  represents the plane wave traveling towards the optic axis “z ” (nominal 

direction of radiation propagation), transverse operator 
2

⊥∇  is taken once more for: 
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, and the k is the wavelength number. 

 

Employing this Eq.(2.15), a knowledge of the intensity and its derivate are sufficient 

elements for the unique recovery of the gradient phase function, it means, the intensity 

derivative image can be easily obtained by acquiring experimentally the intensity in two 

different planes, separates by a distance ∆z [11,12]  

By Taylor expansion the bright field intensity may be expressed into the form: 
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Then in the first approximation is obtained: 
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This above mentioned mathematical expression is placed into the intensity propagation 

equation (2.15), and then solved for the gradient phase φ⊥∇∇∇∇ . 

The solution of the transport of intensity equation (2.15), can be implemented using fast 

Fourier transforms, and the image examination method was well described in the 

references [13], and the method requires an in-focus image together with images 

defocused either side of the in-focus plane. 

 

 

 

2.6 Defocusing image in a simple microscope system model. 

We present an equivalent simple optical microscope system with laser beam as a light 

source that illuminates the object “O”, lens L1 is the objective with focal distance F1 and 

L2 is the ocular lens with focal distance F2 separated by the distance d. A focused 

intensity distribution 0=zI  is produced over the plane B. Defocused bright fields images 

zI ∆+  and zI ∆−  are taken over planes A and C, respectively, as is shown in Figure 



2.12(b). ( In this case, 0=zI , zI ∆+  and zI ∆−  are representing ),( 0rI
v , ),( zrI ∆+r  and 

),( zrI ∆−r  respectively. 

 

Figure 2.12 (a) Standard microscope with CCD camera 

 

Figure 2.12(b) Scheme of an equivalent simple microscope. S represents the light 

source, O is the tested object, L1 is the objective, L2 is the ocular, I stands for the 

focused image in the plane B, and the defocused images are taken by ∆F.  

 



The defocused bright field images zI ∆+  and zI ∆− are obtained by moving the 

microscope objective by a distance ∆F with respect to the studied object. 

The propagation of electric field through the previous equivalent microscope system 

was analyzed in Ref.14, and it was applied to study shape, size and refractive index 

function of biological materials. [15]. 

 Under the condition that the tested object is illuminated by a plane wave light 

propagation along “z” direction with amplitude 0E , and by supposing that the electric 

field of this light after passing the phase object “O”[16] follows the relation: 

                                  ))r(()r( φiexpEE 00 =                             (2.19) 

Then, the final bright field light microscopic image in the plane B is written as: 
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where 
2

00 EI ∝ , yx yx êêr += , and k is the wavelength number. 

A clear application of Eq. (2.20) is presented, when a refractive index function of a red 

cell blood (see Figure 2.13) is calculated [15]. 

 



Figure 2.13 A defocused red blood cell   

Therefore, it is important to notice that, the transfer of intensity equation Eq. (2.15) has 

similarity form with the above mentioned Eq. (2.20) (see Appendix B). 

 

2.7 Approximation of Intensity derivative. 

In the case of optical fibers, the two mentioned defocused bright field microscopic 

images are measured using a CCD camera system, and due to the small displacements 

in the dimensions of the optical fibers, bright field images are subject to the effect of 

experimental noises, one of them is the speckle noise, which is produced in our case by 

the coherent light source (laser beam).Consequently, the whole bright field intensity in 

the defocused planes can be calculated using a noise-free bright field image 
Ideal
I  plus a 

noise term σ  [17]: 
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After Taylor expansion around the zero defocus from equations (2.21), then, it is 

obtained the following term: 
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The previous Eq.(2.22) has a good approach with Eq.(2.18) if it is completed that: 
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The assumption of small displacements for obtaining bright field microscopic images, it 

means that 1<<∆z , then Eq. (2.23) is evidently satisfied.  

On the other hand, as we have previously mentioned, when bright field images of 

complex objects are formed by use of the coherent light produced by a laser, a serious 

kind of image defect soon becomes apparent. If the tested sample is composed of 

surfaces that are rough on the scale of an optical wavelength, the field image is found to 

have a “granular” appearance. Therefore, the condition of enclosed noise into the 

microscopic images Eq.(2.24) can be satisfied  with tools of the field of digital image 

processing, which generally demand extensive experimental work requiring models of 

simulation and testing with large sets of these sample bright field microscopic images. 
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Chapter 3 
 

Refractive index function of conventional 

axially symmetric optical fibers. 
 

It is well known, the refractive index profile plays a very important role in the field of 

optical fibers, because trough this function can be given direction to get basic properties 

of the optical fiber, such as mode field profiles, multimode or single-mode regimes of 

transmission, power attenuation coefficients, etc., etc. 

 

3.1 Introduction. 

In recent past, a new robust, rapid and non-destructive technique for calculate the 

refractive index profile of axially symmetric optical fibers has been developed [1]. This 

method is based on quantitative phase microscopy (QPM), which is sufficient to obtain 



the transversal gradient of the phase φ⊥∇∇∇∇ ,from bright field microscopic images (one in 

focus and the others with a defocus), to which the inverse Abel transform [2,3] is used 

in order to get the refractive index function n(r).  
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R is the outer radius of the fiber and r is the separation from the symmetric axis of the 

fiber (Figure 3.1). 

The term 
x

φ⊥∇∇∇∇ represents the x-transverse phase gradient component. 

 

Figure 3.1 Schematic diagram showing (a) end view of the fiber and (b) transverse 

view. 

The previous figure exhibits the end face and a transverse diagram of an axially 

symmetric optical fiber of a radius R. And in a precise way, the transverse diagram 

indicates the surface where bright field microscopic images are extracted. 



In this reference frame, the y coordinate runs along the symmetric axis of the fiber, the x 

axis shows the transverse coordinate and the z direction gives the orientation of focus 

and defocus microscopic images. 

As it is above mentioned in the Chapter 2, to determine the transverse phase gradient, 

the transport of intensity equation (2.15) is employed [4], where the involved variables 

are: I the intensity of the optical field measured on a transverse plane z, λ is the 

wavelength and besides z gives the direction of focus and defocus microscopic bright 

field images. 

Then, to solve (2.15) for the transverse gradient phase, the Fourier transform method 

[5,6] can be implemented, giving the mathematical expression: 
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In this case, operators F̂  and 
1−

F̂  correspond to Fourier and inverse Fourier 

transformation, respectively, and 
x
k  and 

y
k denotes the variables conjugated to x and y. 

In this chapter, a simple experimental technique is presented for determination of bright 

field microscopic images that are used for the measurement of the refractive index 

profiles of axially symmetric optical fibers. In contrast to the Ref. 1, it has been used in 

the experimental setup a well-defined wavelength source (laser). Under this condition, 

more accuracy in the wavelength value is obtained. But contrarily, noise was increased 

into the bright field microscopic image. For that reason, advanced image processing 

tools were required. This way then, results of measurements are presented for 

conventional multimode graded and step index silica fibers, and also for a novel heavily 



doped ytterbium-holmium silica fiber, which could be an interesting element for 

prospects fiber optical lasers. 

3.2 Experimental Setup. 

An incident He-Ne laser beam goes through the fiber sample (see Figure 3.2) and the 

rate given by 
z

I
∆

∆ is calculated from the experimental bright field microscopic images. 

Here, we mention that, bright field microscopic images of the studied fibers were 

obtained with a DC3-163 “National” microscope using a 20×0.40 numerical aperture 

objective.  

 

Figure 3.2 Scheme of the Experimental Setup of the optical system. 

Besides a He-Ne laser, a pinhole and a collimator to obtain uniform illumination of the 

optical fiber are used. Using a polarizer in the experimental setup, the amount of light 

intensity can be regulated. An in-focus bright field microscopic images and bright field 

images at ± 1µm defocus were obtained with a “National” Magnaview charge-coupled 



device camera with 712×582 effective pixels. The photo of the experimental setup is 

shown in Figure 3.3. 

 

 

Figure 3.3 Experimental Setup. 

 

With the preceding experimental setup, It has been tested a Corning 62.5/125 graded 

index multimode fiber, a 60/125 conventional step index multimode fiber, and a heavily 

doped ytterbium-holmium silica fiber fabricated in the laboratory of optical fibers [7]. 

As we can see in the scheme presented in Figure 3.2, a short length of each fiber 

without plastic coating was placed on a microscope slide. Two sections of the fibers 

with the same external diameter were used on each side of the fiber under study as 

spacers. Besides, the studied samples were also put under index matching oil before a 

silica cover slip was placed across the fibers (See photo in Figure 3.4). 



 

Figure 3.4 Tested optical fibers pieces are placed between silica covers. 

Experimental bright field microscopic images of these studied silica fibers are presented 

in the following Figure 3.5. 

 

Figure 3.5 Experimental bright field microscopic image of (a) Corning 62.5/125 

gradient index fiber, (b) 60/125 nearly step index fiber, and (c) doped ytterbium-

holmium fiber. 

3.3 Model and Results. 

At first approximation we can assume that: 

                                                
xii xS φ⊥≈ ∇∇∇∇)(                                           (3.3) 



where i stands for Corning 62.5/125, 60/125 step index, and experimental ytterbium-

holmium silica fibers; )(xiφ  is a continuous one-variable real function, which is a 

symmetric function in the interval from iR−  to iR ; and 0=)(xiφ  out of the interval  

Then its Fourier expression can be written by: 
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Substituting Eq.(3.3) into Eq.(3.1) for each tested optical fiber, one can obtain the 

relative refractive index profiles for the core of each fiber. 

Figures 3.6, 3.7 and 3.8 exhibit (a) transverse phase gradient images and (b) averaged 

transverse phase gradient images obtained in the experiments for the Corning 62.5/125 

fiber, 60/125 conventional step index fiber, and experimental, doped ytterbium-

holmium silica fiber, respectively. 

 



 

Figure 3.6 (a) Transverse phase gradient image of the Corning 62.5/125 gradient index 

fiber and (b) Averaged transverse phase gradient image of the optical fiber. 

 

Figure 3.7 (a) Transverse phase gradient image of the 60/125 conventional step index 

fiber and (b) Averaged transverse phase gradient image of the optical fiber. 



 

Figure 3.8 (a) Transverse phase gradient image of the heavily doped ytterbium-holmium 

silica fiber and (b) Averaged transverse phase gradient image of the optical fiber. 

Here, we remark that in the measurements of Corning 62.5/125 optical fiber, two 

samples were cut from both ends of the fiber with length of 970 m. The relative index 

profiles step index fibers for the two tested samples for the Corning 62.5/125 is shown 

the following Figure 3.9. 

 



Figure 3.9 Refractive index profiles of the Corning 62.5/125 optical fiber. 

The solids curves represent the refractive index profiles obtained in the experiments 

from the microscopic bright field image for the Corning 62.5/125 fiber using the 

previous transverse phase gradient method. In the precedent figure, the dashed curve is 

the refractive index profile obtained in the reference [1]. 

A comparison of these different curves shows a little discrepancy between the curves 

because such changes are possible for this type of the fiber [8,9] 

And the refractive index profile for a 60/125 step index fiber is also shown in the Figure 

3.10. 

 

Figure 3.10 Refractive index profile of the 60/125 conventional step index optical fiber. 

Finally, in the same way Figure 3.11 presents the refractive index profile for the 

experimental, doped ytterbium-holmium silica fiber. 



 

Figure 3.11 Refractive index profile of the heavily doped ytterbium-holmium silica 

optical fiber obtained in experiments. 

3.4 Conclusions and remarks. 

It has been used a simple, experimental non-destructive technique for determining of the 

transverse phase gradients introduced into an optical field by an optical fiber. Then 

these data were used to determine the refractive index profiles of an axially symmetric 

Corning 62.5/125, 60/125 conventional step index, and experimental, heavily doped 

ytterbium-holmium silica fiber. In our simple experimental setup, all bright field 

microscopic images were taken in a static reference frame, where all small length 

samples were only placed in the microscope slide, even so, many effects of noise were 

present. It is for this reason that, making use of the tools of statistical models for noise 

and imaging processing the final results were improved. 

3.5 Note. 

In all the measurements, it was so important the punctual source given by the spatial 

filter into the experimental setup. To show that, it is presented a image of a faulty 

pinhole and its inaccurate bright field microscopic image. As a sample, A Corning 



60/125 graded index fiber is proved using again the DC3-163 Microscope with 20x0.40 

NA. 

 

Figure 3.12 Image of faulty pinhole. 

Therefore, as a consequence the inaccurate bright field microscopic image is obtained. It 

is shown in the following Figure 3.13. 

 

Figure 3.13 Unreliable experimental bright field microscopic image of Corning 

62.5/125 graded index fiber. 
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Chapter 4 
 

A bright field microscopic image technique for 

measurement of averaged index profiles of 

quasi-axially symmetric large-mode–area 

microstructured optical fiber. 

 

It was inspected MOFs with a solid silica core surrounded by cladding, which consists 

of a system of air channels in silica, running along the fiber in a hexagonal structure 

around the core. In this case, it has been used the transverse gradient of the phase, which 

was obtained from bright field microscopic images of quasi-axially symmetric MOFs. 

 

4.1 Introduction. 



The refractive index profile of MOFs, as well as for conventional fibers, is again a very 

important property, and as we have mentioned in the chapter 3, this characteristic 

determines fundamental features of the MOFs. 

In spite of the fact that there are only a few theoretical methods for calculation of the 

average index profiles for MOFs with a ideal and a simple structured of microstructured 

cladding [1], experimental techniques for measuring real MOFs are absent until this 

time. In the present chapter, we investigated large-mode-area all silica MOFs [2,3], 

whose cross section is a web of a few hexagonal rings of air holes with average 

diameter d and pitched by the distance Λ, see Figure 4.1. Also, it has been investigated 

an experimental double clad MOF. 

 

  

  

 

 

Figure 4.1 Schematic diagram of MOF showing (a) end view and (b) transverse view. 

We followed the technique [4], developed for conventional fibers to obtain the 

transversal gradient of the phase function for MOFs from bright field microscopic 

images (one in focus and others with defocus ±1 µm). And with the same steps used in 

the previous chapter 3, the inverse Abel transform [5,6] Eq. (3.1) is here applied once 

more, with unchanged meaning of the transverse phase gradient 
x

φ⊥∇∇∇∇ and the 



wavelength of the used He-Ne laser ( λ=632.8 nm). For our studied MOFs, the axis y 

coincides with symmetric axis of the fiber, the transverse coordinate is given by the x 

axis and the optical axis is as previously indicated by the z axis, where focus and 

defocus images are obtained. Besides, R indicates the outer radius of the MOF and r 

corresponds to the distance from the axis to the fiber (see figure 4.1). 

The transverse phase gradient is obtained using the transport of intensity equation [7]  

Eq.(2.15) with the experimental bright field microscopic image I measured on a 

transversal plane z. As it has been written, the solution of the transport of intensity 

equation for the transverse gradient phase 
x

φ⊥∇∇∇∇ can be calculated applying the Fourier 

transform method [8,9] Eq.(3.2) where Fourier operators F̂  and 1−F̂ take place again. 

For the purpose of obtaining a reference frame in the qualitative measurements of the 

index profiles for the tested MOFs, the refractive index profile of conventional step 

index silica fiber was firstly measured, and additionally, due to the microscopic image 

noise, some image processing implements have been used [10.]. 

 

4.2 Experimental Procedure. 

In the case of MOFs, bright field microscopic images were captured with a DC3 

“National” Microscope using in this time two objectives in the described previous 

experimental setup (see Figure 3.2): one is 20x0.40 NA and the other one is 40x0.65 

NA. Then, an in-focus image and images at ± 1µm defocus were obtained working with 

a “National” Magnaview CCD camera, with 712x582 pixels.  



A short piece of each MOF sample without plastic coating was placed in a microscopic 

slide, where two sections of the same MOF were used similarly as spacers (see Figure 

4.2). 

With our experimental setup showed in Figure 3.3, we tested a conventional Corning 

step index fiber with 60 µm core and 125 µm cladding diameter as a reference frame. 

After that, we studied an experimental MOF with two dimensional cladding with 

relative hole diameter d/Λ= 0.42 of the inside cladding and another large-mode-area 

MOF with relative hole diameter d/Λ= 0.5, both fabricated in our laboratory. 

In all cases again, a short piece of each fiber without plastic coating was placed on a 

microscope slide, while two sections of the same fiber were used on each side of the 

tested fiber as spacers. The samples were also immersed into index matching oil before 

a silica cover slip was positioned across the fibers.  

 

Figure 4.2 Microscope slide where the fiber pieces are placed between silica covers. 

 

4.3 Data and Results. 



Before bright field microscopic images were taken with a He-Ne laser illumination over 

all studied optical fibers, end face and transverse views of tested fibers were captured by 

CCD camera with a white microscope light (see Figure 4.3,4.6 and 4.7), as it was shown 

in the schematic diagram in Figure 4.1, in order to have the references frame. 

 

Figure 4.3 Conventional Corning 60/125 step index fiber images obtained with DC3-

163 video-microscope at white light illumination: (a) end view of the fiber, (b) 

transverse view. 

The bright field microscopic image for the reference step index fiber at its illumination 

with He-Ne laser, the gradient phase image and its respective average image are 

exhibited in Figure 4.4. 



 

Figure 4.4 Images of Corning 60/125 step index fiber: (a) experimental bright field 

microscopic image, (b) transverse phase gradient image, (c) averaged transverse phase 

gradient image. 

From the preceding average phase gradient matrix image it is possible to suppose that 

the transverse phase gradient can be approximate to a continuous function )(xS  as we 

have supposed in Eq.(3.3) together with the phase function φ , which is a symmetric 

function in the interval from –R to R , (see Eq. (3.4) ). 

Substituting the continuous function )(xS  in the inverse Abel transform Eq.(3.1), the 

relative refractive index profile for the core of this conventional step index fiber was 

found. 

 Figure 4.5 shows results of our calculation. It is clear seen from Figure 4.5, that the 

obtained curve has a step index profile. 



 

Figure 4.5 Refractive index profile of the 60/125 conventional step index fiber 

For the case of the tested MOFs, images of their end and transverse view at white light 

illumination are shown in the following Figures 4.6 and 4.7. 

 

Figure 4.6 Experimental MOF with two dimensional cladding: (a) end view of the fiber, 

(b) transverse view. Outer diameter of the fiber is 125 µm, diameter of the core 15.6 

µm, and relative hole diameter d/Λ = 0.42. 



 

Figure 4.7 Experimental large-mode-area MOF: (a) end view of the fiber, (b) transverse 

view. Outer diameter of the fiber is 125 µm, diameter of the core is 11.6 µm, and the 

relative hole diameter of the cladding d/Λ=0.5. 

Experimental bright field microscopic images of the investigated MOFs are presented in 

the Figure 4.8. 

 

Figure 4.8 Bright field microscopic images: (a) experimental MOF with two 

dimensional cladding and the relative hole diameter of the inside cladding d/Λ=0.42; (b) 

experimental large-mode-area MOF with d/Λ=0.5. 



As well as for the conventional Corning 60/125 step index fiber, the phase gradient 

functions for tested MOFs were obtained with the experimental setup presented in the 

chapter 3 (Figure 3.3), but with additional microscopic system to capture the MOFs end 

faces of the experimental optical fibers. (see Figure 4.9). 

 

Figure 4.9 Experimental setup used for tested experimental MOFs. 

 

Therefore, the phase gradient functions of the MOFs with their respective grey scale 

integer values can be represented (see Figure 4.10 and 4.11). 



 

Figure 4.10 Experimental MOF with two dimensional cladding: (a) transverse phase 

gradient image, (b) grey scale integer values of the phase gradient image. 

 

Figure 4.11 Large-mode -area MOF with d/Λ=0.5: (a) transverse phase gradient image, 

(b) grey scale integer values of the phase image. 

Identifying the silica rings around the pure silica core inside the experimental MOFs, 

and using constant column values into the grey scale integer values of the phase 



gradient images, after applying the above method, the following refractive index 

profiles of MOFs were obtained [11]. 

 

 Figure 4.12 Averaged index profile for experimental MOF with two-dimensional 

cladding and with relative hole diameter of inside cladding d/Λ=0.42. 

 

Figure 4.13 Averaged index profile for large-mode area MOF with d/Λ=0.5. 

4.4 Conclusions. 

To measure the average index profile of quasi-axially symmetric microstructured optical 

fibers (MOFs) a non-destructive and non-interferometric method has been developed. 



This method is based on bright field microscopic images, which were obtained using a 

specially developed experimental setup.  

The data of measurement for conventional Corning 60/125 step index fiber were 

employed as reference to get experimentally an average of a refractive index function 

for a fabricated large-mode-area microstructured fiber with limited number of air holes 

in cladding and for an experimental microstructured optical fiber with two-dimensional 

cladding.  
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Chapter 5 
 

Defocused transfer function for measurement of 

refractive index profiles of axially symmetric 

optical fibers. 



 

It is examined in this chapter a defocused transfer function of experimental bright field 

microscopic images, closely connected with the evaluation of the relative index profile 

of the already studied axially symmetric optical fibers. It is shown that with this 

function, it is possible to obtain, with high precision, the defocused microscopic bright 

field images of investigated fibers from their focus images and, respectively, to easily 

evaluate the relative refractive index profiles of the fibers. 

 

5.1 Introduction. 

Recently, new simplified methods for the measurement of refractive index profiles for 

axially symmetric optical fibers that involve obtaining transverse images of the fibers 

have been developed [1,2].  

Although these techniques are robust, rapid and non-destructive, they are not convenient 

enough when measurements of defocused images are carried out. These evaluations are 

tedious when done manually. 

Then, the transfer function becomes a useful concept to analyze the imaging properties 

of a spatially invariant imaging system. 

Thus, the transfer function can be used to calculate the defocused bright field 

microscopic images of the tested optical fibers from their respective focus bright field 

microscopic images. 



It is well known for the defocused transfer function case that the effective pupil function 

),( yxP has the subsequent mathematical expression in the coordinate space [3] 
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where, )(),( 22
20 yxyxw C +=  is the third term (Defocus term) into the power series 

expansion of the general wave aberration function ),( yxW , 20C  expresses the 

aberration coefficient for defocusing and it is usually written for a number of 

wavelengths λπα )/(=20C , and k is the wavelength number. Consequently, the 

transfer function ),( vug for a defocused system with the above pupil function, where 

all other aberrations are excluded, is calculated by means of a normalized 

autocorrelation of the effective pupil function: 
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This estimation was first introduced by H.H. Hopkins.[4] 

In order to get a set of bright field microscopic images of the studied fibers, a He-Ne 

laser source is applied for illumination of the samples. A schematic end face and a 

transverse representation of an axially symmetric optical fiber of radius R are once more 

shown in Figure 3.1. The transverse representation displays the plane where a bright 

field microscopic image is acquired. 



With this reference frame, as we have described before, the y runs along the symmetric 

axis of the fiber, the x shows the transverse coordinate, and the z gives the direction of 

the focus and defocus images. The images in focus and with defocus [5] are needed to 

determine the transverse phase gradient φ⊥∇∇∇∇ , then with the same steps specified in the 

preceding chapters, this function is used in the transport of intensity equation [6] Eq. 

(2.15), furthermore as a consequence of the reference frame in the Figure 3.1, z is the 

direction where the defocusing transfer function is being applied. Repeating the Fourier 

transform method [7,8] to determine the solution of the transport of intensity equation 

and applying the inverse Abel transform Eq.(3.1), the refractive index functions )(rn  

together with their graphical representations of transfer functions are found for Corning 

62.5/125 gradient index, 60/125 step index profile and 118/124 nearly step index profile 

optical fibers. 

5.2 Experimental Procedure. 

With the same experimental setup (Figure 3.3), the focus bright field microscopic 

images were taken using anew a DC3-163 “National” microscope with a 20x0.40 

numerical aperture objective together with a “National” Magnaview implemented 

camera. A monochromatic He-Ne laser (λ=632.8 nm) was operated as homogeneous 

illumination over the investigated optical fibers. 

Afterwards, we followed the same procedure given in the aforementioned chapter 3 for 

the tested optical fibers when they were placed on a microscope slide (Figure 3.4). 

Subsequently, focus bright field images of all above enumerated fibers are shown in 

Figure 5.1. 



 

Figure 5.1 Focus bright field microscopic images of (a) Corning 62.5/125 gradient 

index fiber, (b) 60/125 step index fiber, and (c) 218/227 nearly step index fiber. 

5.3 Analysis and Results. 

Taking all our experimental microscopic fiber images into a discrete area of 512x512 

pixels, then the pupil function for focal shift is written in this discrete form by: 

                               ( )[ ]22 255255 )((),( −+−= ml2iexpmlP α                         (5.3) 

here l, m = 0,1,2………..511. 

In the normalized frequency discrete space, the defocused transfer function can be 

calculated as the normalized autocorrelation of the of the pupil function ),( mlP . 

Figures 5.2, 5.3 and 5.4 show (a) defocused transfer function graphs, (b) theoretical 

defocused bright field images in the discrete frequency domain for the Corning 62.5/125 

graded index fiber, for the 60/125 step index fiber, snf for the 218/227 nearly step index 

fiber, respectively. Unknown parameter α has been fitted using experimental defocused 



bright field microscopic images of the studied fibers, and we can notice that 

micrometric size of core and cladding in each studied optical fibers have a direct 

relation with this parameter into the pupil function ),( mlP  which it can be used in 

order to get a quality factor into the manufactured process of optical fibers. 

Afterwards, following the same mathematical procedure [2] for the Corning 62.5/125 

graded index fiber, for the 60/125 step index fiber, and also for the 218/227 nearly step 

index optical fibers, their relative index profiles can be found. 



 

Figure 5.2 (a) Defocused transfer function of Corning 62.5/125 graded index fiber and 

(b) theoretical bright field microscopic image of the same fiber in the frequency domain. 

  



 

Figure 5.3 (a) Defocused transfer function of 60/125 step index fiber and (b) bright field 

microscopic image of the same fiber in the discrete frequency domain.  



 

Figure 5.4 (a) Defocused transfer function of 218/227 step index fiber and (b) bright 

field microscopic image of the same fiber in the discrete frequency domain. 

The corresponding relative index profiles are show in Figures 5.5, 5.6 and 5.7 with solid 

curves. Dashed curves in these figures show profiles that were registered when 

defocused images were done manually. One can see good agreement between the 

presented profiles. 



 

Figure 5.5 Dashed and solid curve show, respectively, the refractive index profile of the 

same Corning 62.5/125 graded index fiber obtained with common procedure and with 

the optical transfer function. 

 

Figure 5.6 Dashed curve shows the refractive index profile of 60/125 step index fiber 

obtained with common procedure. Solid curve is the refractive index profile of the same 

fiber at using the optical transfer function. 



 

Figure 5.7 Solid and dashed curves show, respectively, the refractive index profiles of 

the same 218/227 nearly step index fiber obtained with common procedure and with the 

optical transfer function. 

 

5.4 Conclusions. 

It has been presented that defocused transfer function can provide defocused bright field 

images of an axially symmetric optical fiber only from its focus image. It makes 

possible to obtain in an easier manner the transverse phase gradient introduced into an 

optical field by the optical fiber. The results have been used to determine the refractive 

index profiles of Corning 62.5/125 graded index, 60/125 step index, and 218/227 nearly 

step index optical fibers.  

The foregoing obtained profiles are in good agreement with the ones obtained when 

defocused images are prepared manually. 
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Chapter 6 
 



General conclusions and outlook. 

 

It has been the purpose of this dissertation to analyze one of the principal optical 

characteristic (refractive index profile), as important for conventional optical fibers as 

for microstructured optical fibers (MOFs).In our study, multidisciplinary tools such as 

Fourier optics, Fourier analysis in two dimensions, Image restoration, Random process, 

Phase retrieval and other more have been used. In this way, a simple non-destructive 

and non-interferometric technique based on microscopic images was developed in order 

to test axially symmetric graded-index and step-index conventional optical fibers. Also 

this technique has been adopted for experimental investigation of an approximation for 

averaged index profiles of quasi-axially symmetric large-mode-area MOFs. Also a 

defocused transfer function of experimental microscopic bright field images, closely 

connected with the evaluation of the relative refractive index profile of axially 

symmetric conventional fibers, is analyzed. It is shown that with this function, it is 

possible to obtain with high precision, the defocused bright field images of the 

investigated fibers from their focus images and, respectively, to easily evaluate the 

relative index profiles of the fibers. 

 

As a first step the method above mentioned was applied for a stationary reference 

system. Here the challenge starts using the same system of microscopic images for 

dynamics schemes  

 

 



 

 

 

 

 

 

 

 

 

Appendix A. 

The stationary wave-equation in the empty space has the subsequent expression: 
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where we used the definition 
2

2

2

2
2

yx ∂

∂
+

∂

∂
=∇⊥  and the reference system is taken in 

such a way that ),(rr yx= , and waves are traveling along z-direction (See Figure A). 

Rewritten (A1) like product of operators: 
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Figure A.- Reference system for a traveling wave 

 

In the initial plane (z = 0), the wave equation may be written as: 
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where the wave function is defined as: 

                                              r)(r)(r)( 00 <>= zzz vuψ                                           (A4) 

Then, an enough condition is given by: 
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And, in the case, where waves travel along the +z  axis, we have: 
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Applying the first approach order of the square root operator, it is continued that: 
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Finally, the following expression is obtained: 
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The irradiance function ),,( zyxI  at any point in the empty space can be written by: 

                                            
2

r)(),,( zuzyxI =                                                  (A9) 

 

 

Then, a general wave function zu  may be described using a phase distribution: 

                                           [ ])r()r(r)( φiexpIuz =                                       (A10)  

Multiplying Eq.(A8) on the left-hand side by ∗
zu  and the complex conjugate of Eq.(A8) 

is multiplied on the left-side by zu . Then, if the two resulting equations are subtracted, 

we can obtain the transport of intensity equation: 
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Appendix B 

Taking into account the scheme of equivalent simple microscope (See Figure 2.11), the 

formula for the electrical field for defocused image in the plane image is given by 

[Physical Review E, 67,051904 (2005)] 
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where yx yx êêr += , F∆ is the out-focused distance, and k is the wavelength 

number. 

If the tested object is illuminated by a plane wave and it alters the phase but not the 

amplitude, we have a phase object [Max Born and Emil Wolf, Principles of Optics, 7th 

Ed.( Pergamon Press, 1999)]. Then, the electric field is written as: 

                                              ))r((r)( φiexpEE 00 =                                              (B2) 

here, )r(φ  is the phase taken place for the illumination over the phase object. Placing 

the expression (B2) into (B1) we have: 
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The first order in F∆ is used, therefore we have: 
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The intensity of field just after passing the phase object is: 
2
00 EI = , hence, 
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Rewriting the previous one formulates as: 
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In order to relate the above expression with the transfer of intensity equation (2.15), 

which it can be extended to: 
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Here, we suppose that the intensity function )r(I is varying too slowly and the effects 

of phase curvature )r(φ2⊥∇∇∇∇ are much bigger than this intensity derivative function, so 

that Eq. (B8) in the discrete space with the same defocused distance zF ∆=∆  

becomes: 
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Finally, it is clear, that there is a close connection between Eq.(B7) and Eq. (B9). 

 


