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Abstract

In this thesis we present an ab initio study of the optical response in bulk
semiconductors and their surfaces using the local density approximation to
the density functional theory under the approach of pseudopotentials and all-
electron schemes.

In the �rst part of the thesis we present a study of the nonlocal e�ects in the
optical response due the use of density functional theory within local density
approximation and the errors introduced by the use of pseudopotentials. We
obtain the linear and nonlinear optical susceptibility tensors including the scis-
sors approximation within the formalisms of velocity-gauge and length-gauge
by solving the density matrix equation of motion and using a perturbative
technique. These two formalisms are equivalent and they are related by a
gauge transformation. When the calculation is done under the velocity-gauge
formalism, we show that new terms coming from the nonlocal scissors correc-
tion appear. These terms, not considered before in the literature, are crucial
in order to obtain gauge invariance.

In the second and third part of the thesis we present the study of the optical
injection of electric current and the optical injection of spins, for several semi-
conductor surfaces. We present new expressions that describe both phenomena
that take into account the layer-by-layer contribution of any surface.

The last part of this work is devoted to the study of optical spin injection
in stressed bulk Si and bulk GaAs. This is of great technological importance
since Si is nowdays the quintessential semiconductor of the electronic industry.
It is shown that one can inject up to 75% of spins with the appropriate stress.
This means that Si could be used to build spintronic devices.
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Introduction
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A semiconductor can be characterized using its response when we apply a
external stimulus, for example an electronic circuits can be characterized by
using its output voltage when we apply an input voltage, the resulting function
is known as transfer function, this function provides all the information that
is needed to understand the circuit.

In a crystalline semiconductor the same thing happens, the crystal semi-
conductor can be characterized using its response function. The question that
arises is how the crystal behave under external in�uence or stimuli? The dis-
turbance could be electrical �elds , magnetic �elds, temperature, light, etc. If
the stimulus is light, the absorption, re�ection and dispersion give us informa-
tion about the interaction of the electromagnetic wave with the semiconductor.
Examining the e�ects of the stimuli it is possible to determine the properties
of the semiconductor.

In this scheme the input could be an electromagnetic �eld and the output
would be the electric polarization of the semiconductor. The response is known
as the susceptibility, χ, and it contains the information needed to determine
the optical properties of the semiconductor. In general we can write

P = χ(1) ·E + χ(2) : EE + χ(3)...EEE + . . . (1.1)

where χ(1) is the linear susceptibility tensor, χ(2) is the second order susceptibil-
ity tensor, which describes processes such as second harmonic generation, and
χ(3) is the third order susceptibility tensor which describes processes as third
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harmonic generation and the intensity-dependent refractive index. In equation
above P is the polarization and E is the applied electric �eld. Depending on
the strength of the electromagnetic �eld the polarization will depend either
linearly or non-linearly on the applied electromagnetic �eld. In this thesis the
electromagnetic �eld will be treated as a classical �eld and the material system
will be treated quantum mechanically.

The general goal of this thesis is the development of quantum mechanical
expressions for χ(1) and χ(2), and two other optical responses. The �rst is the
spin tensor ζ, associated to the �rst order response, and the second one is the
current injection tensor, η2, related to second-order response. The interest in
studying nonlinear optical susceptibilities is that they can be used to obtain
information about reconstructions of surface semiconductors, electronic energy
levels, surface states, etc. But more importantly, these e�ects could be used
to coherently manipulate the spin of the electron and the electronic current.

1.1 Nonlocal e�ects of the scissors operator

As it is well known in the literature, one of the main failures of the den-
sity functional theory (DFT), within the local density approximation (LDA),
is the underestimation of the band gap. The Schrödinger equation within
the one-electron approximation contains a self-energy term that describes the
many-body interactions. The solution to such equation is an ongoing theo-
retical and numerical challenge. Within LDA one neglects such many-body
e�ects and this leads to the band gap miscalculation. The solution of the self-
energy term is known to lead to the calculation of the energy gap in agreement
with the experimental values. To �rst order, the many body e�ects are in-
troduced through the so call �GW� approximation, where �G� stands for the
electron Green function and �W� for the screened Coulomb interaction. The
GW solution produces electron wavefunctions that are very similar to the LDA
wavefunctions, and conduction energy bands that have the same dispersion in
the Brillouin zone as the LDA bands. However, the GW conduction bands
are shifted upwards in energy almost rigidly with respect to the LDA bands
in such a way that the GW gap is very similar to the experimental gap. The
problem is that the GW scheme is computationally very demanding and for
our purposes is not feasible. To overcome this, the so-called scissors approx-

imation is widely used. Within this approximation the conduction bands are
rigidly shifted in energy so the energy gap matches the experimental value.
Thus, the formulation of linear and nonlinear optical susceptibility with and
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without the scissors approximation and under the formalisms of velocity-gauge
and length-gauge, is the �rst goal of this thesis. The expressions for χ(1) and
χ(2) are obtained by solving the density matrix equation of motion and using
a perturbative technique. We show that new terms, not considered before in
the literature, appear when the calculation is done under the velocity-gauge
and that these terms are crucial for gauge invariance.

1.2 Optical injection current

The generation of currents in semiconductor surfaces is studied. There are
basically three types of currents that can be generated with photo-excitation:
recti�cation, shift and injection current. Optical generation and control of
currents in semiconductors can be described within the standard framework
of nonlinear optics using susceptibilities. In general χ(2) can be written as the
sum of a non-divergent term and two diverging terms as

χ(2)(−ωD;ω1,−ω2) = χ
(2)
R (−ωD;ω1,−ω2)

+
σ2(−ωD;ω1,−ω2)

−iωD

+
η2(−ωD;ω1,−ω2)

(−iωD)2
, (1.2)

where the ω1 and ω2 are the frequencies of the excitation optical pulses and
ωD = ω1 − ω2. χ

(2)
R is recti�cation current tensor, σ2 is the shift current

tensor and η2 the injection current tensor. The last two terms in Eq. (1.2)
diverge as ωD → 0. In this thesis we are interested in η2 which originates
from the quantum interference between absorption pathways associated with
orthogonal components of the beam polarization. A study of optical coherent
control of injection currents at surfaces of cubic semiconductors is presented.
To obtain the surface contribution to η2 a formalism that allows to get the
�layer-by-layer� response also is presented. This optical e�ect will serve as a
surface sensitive probe of crystals with bulk inversion symmetry or 6̄m2, 6̄,
and 4̄3̄m (zinc-blende) symmetry. In crystals with any of these symmetries,
this e�ect vanishes in bulk, but it is allowed in the surface region owing to
the local break of symmetry. We present the results of ab initio calculations
for injected currents at prototypical Si and GaAs surfaces, hydrogenated and
As-covered Si(111)(1×1), clean Si(111)(2×1), as well as clean and Sb-covered
GaAs(110)(1×1). The e�ects are shown to be sensitive to the surface structure
and these e�ects should be experimentally mesurable.
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1.3 Optical spin injection

Spin is a quantum mechanical property associated with the intrinsic angular
momentum of many elementary particles. In particular for the electrons, it
explains magnetism in matter. Electron spin can have two possible values:
1/2 and −1/2; they are colloquially refered to as �spin up� and �spin down�.
This dichotomy between the values of the spin is the basis of the emerging �eld
of spintronics, which is a new branch of electronics where the spin degree of
freedom is controlled to carry information. Thus, information can be encoded
via electron spin, and transported from one part of the device to another using
electron currents. In order to build a useful device, the �eld of spintronics has
three main challenges: spin injection, spin transport and spin detection. Spin
injection in semiconductors can be optically or electrically achieved. In this
thesis only optical spin injection will be presented, which is produced by the
use of circularly polarized light. A previously introduced formalism to study
optically injected spins in stressed bulk semiconductors is used, like Si and
GaAs, and extend the theoretical formalism to study optical spin injection at
the surfaces of semiconductors. This extension is similar to the layer-by-layer
scheme developed for the injection current. For the surfaces we study opti-
cal spin-injection at several Si(111) and GaAs(110) surfaces. The theoretical
results predict that both semiconductor surfaces are good candidates to be
used for optical injection of spins. Thus the quintessential element of the elec-
tronic industry, bulk Si, and its surfaces, could be a good choice to be used for
spintronic devices.

1.4 Organization of this thesis

This thesis is organized as follows: Chapter 2 presents a formal derivation of
the linear and nonlinear response with and without the scissors approximation
in bulk semiconductors using both length-gauge and velocity-gauge formalism;
Chapter 3 is devoted to the study of current injection in semiconductor sur-
faces; Chapters 4 and 5 are dedicated to the study of optical spin injection in
surfaces and bulk, respectively, and in Chapter 6 the general conclusions of the
thesis are given.
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Gauge invariance
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2.1 Summary

Calculations of the second harmonic susceptibility tensor χabc(−2ω;ω, ω) are
presented for bulk semiconductors within both the velocity and the length
gauge. The description of the semiconductor states incorporates the �scissors�
Hamiltonian commonly used to obtain the correct band gap. The non-locality
of the scissors correction leads to additional terms in χabc(−2ω;ω, ω) that were
not considered before within a sum-over-states approach in the velocity gauge.
Using this new expression, we show that the calculations of χabc(−2ω;ω, ω)
with both gauges match within very good numerical accuracy.1 As part of
the derivation, we clarify the well known result for the linear optical response,
which states that the scissors correction rigidly shifts the spectrum along the
energy axis, keeping the line-shape intact. The calculation for GaAs is pre-
sented using an all-electron and a pseudopotential scheme.

11 part in approximately 105
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2.2 Introduction

The development of new nonlinear optical materials is an active area of re-
search, with works ranging from the study and growth of new nonlinear crys-
tals to the design of novel metamaterials. Perhaps the simplest nonlinear
process, second harmonic generation (SHG), is one of the most used for gen-
eration of new frequencies, as a spectroscopic probe, and because its reverse
process, spontaneous parametric downconversion, which is described by the
same nonlinear susceptibility, it can be used to generate entangled photons for
application in quantum information processing.

The numerical calculation of any nonlinear optical response is a nontrivial
task, and di�erent methodologies and numerical approaches have been em-
ployed. Our interest is focused in strategies that can be applied to study the
nonlinear optical response of a material over a wide frequency range, and in a
regime where a perturbative treatment is appropriate. The �rst attempt along
this line is the work of Butcher and McLean [BM63], where the resulting equa-
tions appeared to be plagued of divergences that appear in the DC (static)
limit. Aspnes [Asp72] showed that, in the static limit, these divergences are
only apparent, since the coe�cients that multiply the divergent terms van-
ish; however his proof was only limited to cubic crystals. Ghahramani, Moss
and Sipe [GMS91], gave a more general proof of the disappearance of these
apparent divergences for cold (T = 0 K), undoped semiconductors of any crys-
tal class. Levine [Lev94], presented a formula for the nonlinear second order
susceptibility tensor where the scissors approximation is properly introduced,
unfortunately the expressions are di�cult to compute. These studies used
what is called the �velocity gauge� or �v ·A gauge� for the treatment of the
coupling of an electron to the electromagnetic �eld, where v is the velocity
operator of the electron and A is the vector potential specifying the electro-
magnetic �eld. Later, Aversa and Sipe [AS95] showed that a divergence free
expression for the nonlinear second order susceptibility tensor χabc(−2ω;ω, ω)
could be more easily obtained by using what is called the �length gauge� or
�r ·E formulation�. Here r is the position operator and E is the electric �eld.

In the works of Rashkeev et al. [RLS98], and Hughes and Sipe [HS96],
the length-gauge formulation was used to evaluate χabc(−2ω;ω, ω) for sev-
eral zinc-blende semiconductors within an ab initio scheme. The more recent
work of Leitsmann et al. [LSHB05], extends the velocity-gauge approach to
include excitonic and local �eld interactions in GaAs. Quasi-particle e�ects,
at the scissors correction level, have been correctly incorporated by Nastos
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et al. [NOSS05] in the length-gauge approach. Before this Adolph and Bech-
stedt [AB98] discussed how to include these e�ects, even beyond the scis-
sors approximation, within the velocity-gauge approach. Surface second har-
monic generation has also been studied within the velocity-gauge scheme with
success fully [MPODS01, MGDS98, RDSCP94], and χabc(−2ω;ω, ω) spectra
have been calculated for superlattices within both the length-gauge approach
[SDAD03] and the velocity-gauge approach [GMS91].

A full comparison between calculations using these two di�erent approaches
has not been done. One goal of this chapter is to establish the equivalence be-
tween the length-gauge and velocity-gauge schemes. It is well known that
measurable quantities must be gauge invariant. We thus show in this chapter
that the expressions for χabc(−2ω;ω, ω) evaluated through these two di�er-
ent approaches lead to the same result. In order to do so, we derive a new
expression for χabc(−2ω;ω, ω) within the velocity-gauge, that properly takes
into account the non-local nature of the scissors Hamiltonian. In all previous
calculations of χabc(−2ω;ω, ω), within the velocity-gauge, the scissors imple-
mentation was carried out by following the same method used for the linear
optical response. It can be shown that this naïve procedure, of shifting the
conduction energies and renormalizing the velocity matrix elements, which
works for the linear response, does not work properly for the nonlinear re-
sponse. The new expression derived for χabc(−2ω;ω, ω) contains two terms
directly obtained from the scissors Hamiltonian that are clearly required to
obtain gauge invariance within the scissors implementation. Earlier, Nastos
et al. [NOSS05] showed the correct way of calculating χabc(−2ω;ω, ω) using
the scissors Hamiltonian within the length-gauge. In this chapter a uni�ed
approach to χabc(−2ω;ω, ω), is presented with and without the scissors cor-
rection, that matches for the velocity-gauge and length-gauge. While we can
verify this analytically for the linear response [AS95], for the SHG response
coe�cient this could only be con�rmed numerically. Nonetheless, with this
con�dence acquired our approach can serve as a model for the gauge-invariant
calculation of other nonlinear optical response coe�cients.

The chapter is organized as follows. In Section 2.3 we present the most
important steps involved in the derivation of second order susceptibility tensor
χabc(−2ω;ω, ω), within the length-gauge and velocity-gauge approaches. In
Section 2.4 we show the results of the numerical evaluation of χabc(−2ω;ω, ω),
taking as an example the zinc-blende bulk semiconductor GaAs, and discuss
them. We calculate the expressions for χabc(−2ω;ω, ω) with ab initio programs
based on Density Functional Theory within the Local Density Approximation
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(DFT-LDA), using all-electron and pseudopotential schemes.

2.3 Theory

In this section we present the strategy used to calculate the second-order non-
linear response. Although this has already been discussed in earlier studies,
we consider both the velocity gauge and the length gauge response within a
common formalism. this derivation includes new terms not included before in
the velocity gauge, for both the linear and the nonlinear response. For the
nonlinear response, the new terms are crucial for establishing numerically that
both gauges give the same result.

2.3.1 Perturbation approach

We use the independent particle approximation, neglect both the local �eld
and the excitonic e�ects, and treat the electromagnetic �eld classically, while
the matter is described quantum-mechanically. We can describe the system
using a scaled one electron density operator ρ, with which we can calculate
the expectation value of a single-particle observable O as 〈O〉 = Tr(ρO), with
O the associated quantum mechanical operator and Tr the trace. The density
operator satis�es i~(dρ/dt) = [H(t), ρ], with H(t) as the total single electron
Hamiltonian, written as

H(t) = H0 +HI(t),

where H0 is the unperturbed time-independent Hamiltonian, and HI(t) is the
time-dependent potential energy due to the interaction of the electron with the
electromagnetic �eld; H0 has eigenvalues ~ωn(k) and eigenstates |nk〉 (Bloch
states) labeled by a band index n and crystal momentum k. To proceed with
the solution of ρ it is convenient to use the interaction picture, where a unitary
operator U = exp(iH0t/~) transforms any operator O into Õ = U OU †. Even
if O does not depend on t, Õ does through the explicit time dependence of U .
The dynamic equation for ρ̃ is given by

i~
dρ̃

dt
= [H̃I(t), ρ̃],

with solution

i~ρ̃(t) = i~ρ̃0 +
∫ t

−∞
dt′[H̃I(t′), ρ̃(t′)], (2.1)
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where ρ̃0 = ρ̃(t = −∞) is the unperturbed density matrix. We look for the
standard perturbation series solution, ρ̃(t) = ρ̃(0) + ρ̃(1) + ρ̃(2) + · · · , where the
superscript denotes the order (power) with which each term depends on the
perturbation HI(t). From Eq. (2.1) the N -th order term is

ρ̃(N)(t) =
1
i~

∫ t

−∞
dt′[H̃I(t′), ρ̃(N−1)(t′)]. (2.2)

The series is generated by the unperturbed density operator ρ̃(0) ≡ ρ̃0, assumed
to be the diagonal Fermi-Dirac distribution, 〈nk|ρ̃0|nk〉 = f(~ωn(k)) ≡ fn.
For a clean, cold semiconductor, fn = 1 for n a valence (v) or occupied band,
and fn = 0 for n a conduction (c) or empty band. We will use this assumption
throughout.

The expectation value of the macroscopic current density J is given by

〈J〉 =
e

Ω
Tr(ρṙ), (2.3)

where ṙ is the time derivative of the position operator of an electron of charge
e. The velocity operator of the electron is given by

v ≡ ṙ =
1
i~

[r,H], (2.4)

with Ω the normalization volume. The macroscopic polarization density P
is related to 〈J〉 by 〈J〉 = dP/dt. For a perturbing (Maxwell macroscopic)
electromagnetic �eld, E(t) = E(ω)e−iω̃t + c.c., where ω̃ = ω + iη, and η > 0
is used to adiabatically turn on the interaction. We write the second order
nonlinear polarization as,

P a(2)(2ω) = χabc(−2ω;ω, ω)Eb(ω)Ec(ω), (2.5)

where χabc(−2ω;ω, ω) is the second order susceptibility. The superscripts in
Eq. (2.5) denote Cartesian components, if repeated are to be summed over.
Without loss of generality we can always de�ne χabc(−2ω;ω, ω) to satisfy in-
trinsic permutation symmetry, χabc(−2ω;ω, ω) = χacb(−2ω;ω, ω); if it does
not, the part that does not satisfy the intrinsic permutation symmetriy would
make no contribution to the second order polarization. This part could be
dropped since it would have no physical signi�cance.

The unperturbed Hamiltonian is given by

H0 =
p2

2me
+ V (r), (2.6)
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withme the mass of the electron, p its canonical momentum, and V (r) the local
periodic crystal potential, where we neglect spin-orbit terms. This Hamiltonian
is used to solve the Kohn-Sham equations [KS65] of DFT, within the LDA. The
use of these solutions as single particle states leads to an underestimation of the
band gap. A standard procedure to correct this is to use the so-called �scissors
approximation�, by which one rigidly shifts the conduction bands in energy so
that the band gap value corresponds to the experimental one; this value is often
in fairly good agreement with the GW2 band gap based on a more sophisticated
calculation [HL86]. Concurrently, one uses the LDA wave functions, since they
produce band structures with dispersion relations similar to those predicted by
the GW approximation. Mathematically, one adds the scissors (non-local) term
S(r,p), to the unperturbed or unscissored Hamiltonian H0, i.e.

HS
0 = H0 + S(r,p),

where
S(r,p) = ~∆

∑
n

∫
d3k(1− fn)|nk〉〈nk|, (2.7)

with ~∆ the rigid (k-independent) energy correction to be applied, and fn is
occupation factor taken to be one for occupied bands and zero for unoccupied
bands, the underlying physics that this operator describe is shift only the con-
duction band energies when it operate over all conductions and valence states.
Several properties of S(r,p) are shown in the appendix. The unscissored and
scissored Hamiltonians satisfy respectively the relations:

H0ψnk(r) = ~ωn(k)ψnk(r),

HS
0 ψnk(r) = ~ωS

n (k)ψnk(r),

where
ωS

n (k) = ωn(k) + (1− fn)∆, (2.8)

and ψnk(r) = 〈r|nk〉 is the coordinate representation of the ket |nk〉.

2.3.2 Velocity gauge formalism

To calculate the optical response in the velocity gauge, we use the minimal
substitution through which, in the presence of an electromagnetic �eld, the
Hamiltonian is written as

HS =
1

2me
(p− e

c
A)2 + V (r) + S(r,p− e

c
A), (2.9)

2One Particle Green Function (G) with Screened Coulomb Interaction (W)
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where A is the vector potential; one obtains the magnetic �eld as B = ∇×A
and the electric �eld as E = −(1/c)Ȧ, with c the speed of light in vacuum.
In general these electric and magnetic �elds are taken to be the macroscopic
Maxwell �elds. We assume the long-wavelength limit, in which A is uniform
and only depends on time. Furthermore, we take a harmonic perturbation of
the form A(t) = A(ω)e−iω̃t + A∗(ω)eiω̃

∗t, where only the �positive frequency�
term will be kept in the following calculations. Expanding the scissors operator
according to [NOSS05],

S(r,p−e
c
A) = S(r,p)+

e

c

i

~
A·[r, S(r,p)]+

1
2!

(
e

c

i

~

)2

[A·r, [A·r, S(r,p)]]+· · · ,

leads to the following scissored Hamiltonian up to second order in A

HS = HS
0 +HI,1 +HI,2,

where

HI,1 = −e
c
A · vΣ, (2.10)

HI,2 = − ie2

2~c2
[rb, vS,c]AbAc +

e2

2mec2
A2, (2.11)

are the linear and nonlinear (second order) interaction Hamiltonians. The last
term in Eq. 2.11 is only a function of time. It contributes to a global phase
factor of the electron wave function which has no e�ect on expectation values.
Therefore it can be neglected. We have de�ned

vS = − i
~
[r, S(r,p)], (2.12)

as the contribution to the velocity operator due to the non-local scissors term,
and

vΣ =
p
me

+ vS , (2.13)

as the scissored velocity operator. From Eq. (2.4) the current operator j = eṙ,
up to second order in A, is

ja = ja
0 + ja

1 + ja
2 ,

with

ja
0 = evΣ,a,

ja
1 = − e2

cme
Aa +

ie2

~c
[ra, vS,b]Ab,

ja
2 = − e3

2~2c2
[ra, [rb, vS,c]]AbAc,
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being the operators of zero, �rst and second order in A, respectively. From
Eq. (2.3), we have that

〈J (1)a〉 =
1
Ω
Tr(ja

0ρ
(1)) +

1
Ω
Tr(ja

1ρ
(0)) (2.14)

is the linear macroscopic current density, and

〈J (2)a〉 =
1
Ω
Tr(ja

0ρ
(2)) +

1
Ω
Tr(ja

1ρ
(1)) +

1
Ω
Tr(ja

2ρ
(0)) (2.15)

is the nonlinear (second order) macroscopic current density.

2.3.2.1 Linear response

In this section the linear response is calculated, within the velocity gauge,
and it is shown that there is a new term not previously included when the
scissored Hamiltonian is used. Indeed, we show that by chance the �usual�
way of including the scissor correction leads to the correct result. That is, the
scissors correction only gives a rigid shift in the energy axis of the unscissored
spectrum by an amount equal to ∆; the line shape of the spectrum is the same
for both the scissored and the unscissored Hamiltonians [NOSS05, DSG93,
LA91, LA89]. In the following, we show that if the usual procedure is used
for the nonlinear response the resulting scissored susceptibility is wrong. The
derivation of the linear response here is important for making sense of our later
results, and also sets some of the intermediate results that will be used in the
calculation of the nonlinear response. Aditionally we also show that the linear
response is gauge invariant, since we obtain the same analytic result for the
linear susceptibility in both gauges. This agreement holds with and without
the scissors correction.

Lets start by taking matrix elements of Eq. (2.2) leads to

ρ̃(1)
mn(t) =

ei

~c

∫ t

−∞
dt′Ab(t′)

∑
`

(
ṽΣ,b
m` (t′)ρ̃(0)

`n (t′)− ρ̃
(0)
m`(t

′)ṽΣ,b
`n (t′)

)
,

where the sum over ` is over all states, and we have used the linear interac-
tion Hamiltonians, Eq. (2.10). Since U(t) = exp(iHS

0 t/~), we get ṽΣ,b
m` (t′) =

vΣ,b
m` e

iωS
m`t

′
, ρ̃0

`n(t′) = f`δ`n, and ωS
m` = ωS

m(k)− ωS
` (k), where we have omitted

the dependence on k. Then ρ̃(1)
mn(t) = ρ

(1)
mneiω

S
mnte−iω̃t, with

ρ(1)
mn(t) =

e

~c
vΣ,b
mnfnm

ωS
mn − ω̃

Ab(ω), (2.16)
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where fnm = fn − fm. Using Tr(ρ(0))/Ω = n0, with n0 the electronic density,
and dP/dt = 〈J〉 to write P a(ω) = (i/ω̃) 〈Ja(ω)〉 = χab(−ω;ω)Eb(ω), we get
from Eq. (2.14) that

χab(−ω;ω) =
e2

~ω̃2

∫
d3k

8π3

∑
m6=n

vΣ,a
nmv

Σ,b
mnfnm

ωS
mn − ω̃

− e2n0

meω̃2
δab +

ie2

~ω̃2

1
Ω
Tr(ρ(0)Fab)

=
e2

~

∫
d3k

8π3

∑
m6=n

fnmv
Σ,a
nmv

Σ,b
mn

( 1
(ωS

mn)2(ωS
mn − ω̃)

+
1

(ωS
mn)2ω̃

+
1

ωS
mnω̃

2

)
− e2n0

meω̃2
δab +

ie2

~ω̃2

1
Ω
Tr(ρ(0)Fab) (2.17)

is the linear susceptibility within the scissored Hamiltonian; we used a partial
fraction expansion in the �rst term after the �rst equal sign. We have de�ned

Fab = [ra, vS,b], (2.18)

and used the fact that the fnm factor allow us to write m 6= n and that in the
continuous limit of k (1/Ω)

∑
k →

∫
d3k/(8π3).

From time reversal symmetry we have that vS
mn(−k) = −vS

nm(k) and
ωS

mn(−k) = ωS
mn(k) impliying that the contribution to χab(−ω;ω), coming

from the 1/ω̃, term cancels out. By index manipulation, the third term, com-
bined with the fourth term in the right hand side of Eq. (2.17), gives

e2

~

∫
d3k

8π3

∑
m6=n

fn
vΣ,a
nmv

Σ,b
mn + vΣ,a

mnv
Σ,b
nm

ωS
mn

− e2n0

me
δab ≡ ζab. (2.19)

The last term on the right hand side of Eq. (2.17) reduces to

ie2

~

∫
d3k

8π3

∑
n

fnFab
nn ≡ ηab, (2.20)

where
Fab

nn = i∆
∑

m(6=n)

fnm(ra
nmr

b
mn + rb

nmr
a
mn). (2.21)

Summingm over all v and c states di�erent from n (see the Appendix). Finally,
Eq. (2.17) reduces to

χab(−ω;ω) =
e2

~

∫
d3k

8π3

∑
m6=n

vΣ,a
nmv

Σ,b
mnfnm

(ωS
mn)2(ωS

mn − ω̃)
+
ζab

ω̃2
+
ηab

ω̃2
, (2.22)
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which is the linear response coe�cient obtained within the velocity gauge,
including the scissors correction. Using

vΣ
nm =

ωS
nm

ωnm
vnm , (n 6= m), (2.23)

and ωS
mn = ωmn − fmn∆, from the appendix we get that

χab(−ω;ω) =
e2

~

∫
d3k

8π3

∑
m6=n

fnmv
a
nmv

b
mn

ω2
mn(ωS

mn − ω̃)
− e2

ω̃2

∫
d3k

8π3

∑
n

fn

[
1
m∗

n

]ab

,

(2.24)
where [1/m∗

n]ab is the e�ective mass tensor given in Eq. (2.54).
For a clean, cold semiconductor fn = fn(k) = 1 or 0, independent of k and

the integration over the Brillouin Zone of the term involving the e�ective mass
tensor vanishes identically [GMS91], implying

χab(−ω;ω) =
e2

~

∫
d3k

8π3

∑
m6=n

fnmv
a
nmv

b
mn

ω2
mn(ωS

mn − ω − iη)
, (2.25)

where the energy denominator leads to resonances when ωS
mn = ω.

A similar calculation neglecting the scissors term in the Hamiltonian leads
to

χab
unscissored(−ω;ω) =

e2

~

∫
d3k

8π3

∑
m6=n

fnmv
a
nmv

b
mn

ω2
mn(ωmn − ω − iη)

,

where now the resonances are at ωmn = ω. A naïve procedure to �scissors� the
above result would be to take

χab
naïve(−ω;ω) =

e2

~

∫
d3k

8π3

∑
m6=n

fnmv
Σ,a
nmv

Σ,b
mn

(ωS
mn)2(ωS

mn − ω − iη)
, (2.26)

an incorrect strategy, since it misses the second and third terms on the right
hand side of Eq. (2.22). However, using Eq. (2.23) in Eq. (2.26) leads by
coincidence to the correct result of Eq. (2.25). It appears that this has not
been appreciated in the literature; Eq. (2.22) shows the correct way to include
the scissors Hamiltonian within the velocity gauge, which is not the usual
strategy illustrated by Eq. (2.26) [las].

Using Eq. (2.43), Eq. (2.25) can be rewritten as

χab(−ω;ω) =
e2

~

∫
d3k

8π3

∑
m6=n

fnmr
a
nmr

b
mn

ωS
mn − ω − iη

,
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which is identical to the length gauge result for the scissored Hamiltonian
[NOSS05]. Again, for the unscissored Hamiltonian [SS00],

χab
unscissored(−ω;ω) =

e2

~

∫
d3k

8π3

∑
m6=n

fnmr
a
nmr

b
mn

ωmn − ω − iη
.

As discussed by Nastos et al. [NOSS05], in the length gauge the unscissored
linear susceptibility can be �scissored� by simply shifting ωnm → ωS

nm and
keeping the same matrix elements rnm. Thus, as in the velocity gauge, the
scissored linear response is simply rigidly shifted in energy form its LDA result,
keeping the same line shape. We remark that this constitutes a direct analytical
proof of gauge invariance for the linear response. For the nonlinear response, we
have not been able to construct any such analytical proof. However, we can at
least provide a check on the gauge invariance through a numerical calculation.
In order to do this we need expressions for the second order response in the
velocity and length gauges, and we now turn to the �rst of these.

2.3.2.2 Non linear response

Using the results of subsection 2.3.1 and the previous subsection, we �nd that
to second order in A the density matrix is given by

ρ̃(2)
mn(t) = − i

~

∫ t

−∞
dt′[H̃I,1(t′), ρ̃(1)(t′)]mn −

i

~

∫ t

−∞
dt′[H̃I,2(t′), ρ̃(0)(t′)]mn

=
e2

~2c2

[ ∑
`(6=n)

fn`v
Σ,b
m` v

Σ,c
`n

ωS
`n − ω̃

−
∑

`(6=m)

f`mv
Σ,c
m` v

Σ,b
`n

ωS
m` − ω̃

+
i

2
fnmFbc

mn

]
× Ab(ω)Ac(ω)

ωS
mn − 2ω̃

e−i2ω̃teiω
S
mnt

= ρ(2)
mne

iωS
mnt,

where, only the positive frequency terms are used like in the linear response.
The Fab

mn term is obtained in the appendix in Eq. (2.49). The macroscopic
nonlinear current density can be calculated through Eq. (2.15), where we take
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each term separately:

1
Ω
Tr(ja

0ρ
(2)) = e

∫
d3k

8π3

∑
mn

vΣ,a
nmρ

(2)
nm

=
e3

~2c2

[ ∫ d3k

8π3

∑
mn

vΣ,a
nm

ωS
mn − 2ω̃

( ∑
`(6=n)

fn`v
Σ,b
m` v

Σ,c
`n

ωS
`n − ω̃

−
∑

`(6=m)

f`mv
Σ,c
m` v

Σ,b
`n

ωS
m` − ω̃

)
+
i

2

∫
d3k

8π3

∑
m6=n

fnmv
Σ,a
nmFbc

mn

ωS
mn − 2ω̃

]
× Ab(ω)Ac(ω)e−i2ω̃t, (2.27)

1
Ω
Tr(ja

1ρ
(1)) =

e2

cme

1
Ω
Tr(ρ(1))Aa(ω)e−iω̃t +

ie2

~c
1
Ω
Tr(Fabρ(1))Ab(ω)e−iω̃t

=
ie3

~2c2

∫
d3k

8π3

∑
m6=n

fnm
Fab

nmv
Σ,c
mn

ωS
mn − ω̃

Ab(ω)Ac(ω)e−i2ω̃t, (2.28)

since Tr(ρ(1)) = 0 (see (2.16)), and �nally

1
Ω
Tr(ja

2ρ
(0)) = − e3

2~2c2

∫
d3k

8π3

∑
mn

ρ(0)
mn[ra, [rb, vS,c]]nmA

b(ω)Ac(ω)e−i2ω̃t

= − e3

2~2c2

∫
d3k

8π3

∑
n

fn[ra,Fbc]nnA
b(ω)Ac(ω)e−i2ω̃t

= − e3

2~2c2

∫
d3k

8π3

∑
n

fn

(
ra
nmFbc

mn −Fbc
nmr

a
mn + i

∂

∂ka
Fbc

e,nn

)
× Ab(ω)Ac(ω)e−i2ω̃t, (2.29)

where we used the expressions for [ra,Fbc]nn derived in the Appendix. Em-
ploying time reversal symmetry, we can take ra

nm(−k) = ra
mn(k), rmn;k(k) =

−rnm;k(−k), Fbc
nm(−k) = Fbc

mn(k), and Fbc∗
nm(k) = −Fbc

mn(k). If we add the
k and the −k contribution in Eq. (2.29), we get a perfect cancellation of the
terms within the parenthesis, and so the contribution from Tr(ja

2ρ
(0)) vanishes.

Using 〈J〉(2) = dP(2)/dt for the second harmonic response, we getP(2)(2ω) =
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(i/2ω̃)
〈
J(2)(2ω)

〉
, and from Eq. (2.5), Eq. (2.27) and Eq. (2.28) we �nd

χabc(−2ω;ω, ω) =
e3

2~2ω̃3

[
− i

∫
d3k

8π3

∑
mn

vΣ,a
nm{vΣ,b

m` v
Σ,c
`n }

ωS
mn − 2ω̃

×
( ∑

`(6=n)

fn`

ωS
`n − ω̃

−
∑

`(6=m)

f`m

ωS
m` − ω̃

)

+
1
2

∫
d3k

8π3

∑
m6=n

fnm

(vΣ,a
nm{Fbc

mn}
ωS

mn − 2ω̃
+ 2

{Fab
nmv

Σ,c
mn}

ωS
mn − ω̃

)]
,

where {} denotes the symmetrization of the Cartesian indices bc, i.e. {ubsc} =
(ubsc + ucsb)/2. We take half of this expression and add the corresponding
expression to it with k replaced by −k in the integrand; this of course yields a
result equivalent to our �rst expression, and using time-reversal symmetry we
simplify it to

χabc(−2ω;ω, ω) =
e3

2~2ω̃3

[ ∫ d3k

8π3

∑
(mn)6=`

Im[vΣ,a
nm{vΣ,b

m` v
Σ,c
`n }]

ωS
mn − 2ω̃

×
( fn`

ωS
`n − ω̃

− f`m

ωS
m` − ω̃

)
+

1
2

∫
d3k

8π3

∑
m6=n

fnm

×
(Re[ vΣ,a

nm{Fbc
mn}]

ωS
mn − 2ω̃

+ 2
Re[{Fab

nmv
Σ,c
mn}]

ωS
mn − ω̃

)]
. (2.30)

Following Ghahramani et al. [GMS91], we use partial fractions to write the
energy denominator of the �rst term on the right hand side of Eq. (2.30) as

A

ω̃3
+
B

ω̃2
+
C

ω̃
+ F, (2.31)

where the odd terms in ω, A and C, can be shown to give zero contribution
[GMS91]. For the second term on the right hand side of Eq. (2.30) we expand
the denominators in partial fractions to obtain

1
ω̃3(ωS

mn − ω̃)
=

1
ω̃(ωS

mn)3
+

1
ω̃3ωS

mn

+
1

ω̃2(ωS
mn)2

+
1

(ωS
mn)3(ωS

mn − ω̃)
, (2.32)

and

1
ω̃3(ωS

mn − 2ω̃)
=

4
ω̃(ωS

mn)3
+

1
ω̃3ωS

mn

+
2

ω̃2(ωS
mn)2

+
8

(ωS
mn)3(ωS

mn − 2ω̃)
. (2.33)
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Using time reversal symmetry and manipulating band indices, we can show
that all the odd terms in ω̃ coming from Eq. (2.32) and Eq. (2.33) give zero
contribution. Collecting the B and F terms of Eq. (2.31), and the non-zero
terms of Eq. (2.32) and Eq. (2.33) we obtain

χabc(−2ω;ω, ω) =
e3

2~2

∫
d3k

8π3

[ ∑
n(m6=`)

( Im[vΣ,a
mn{vΣ,b

n` v
Σ,c
`m }]

ωS
nm − 2ωS

`m

−
Im[vΣ,a

n` {v
Σ,b
`m v

Σ,c
mn}]

ωS
`n − 2ωS

`m

) fm`

(ωS
`m)3(ωS

`m − ω̃)

− 16
∑

`(m6=n)

fmn

ωS
`m − 2ωS

nm

Im[vΣ,a
m` {v

Σ,b
`n v

Σ,c
nm}]

(ωS
`m)3(ωS

`m − 2ω̃)
(2.34)

− 16
∑

m(`6=n)

f`n

ωS
`m − 2ωS

`n

Im[vΣ,a
m` {v

Σ,b
`n v

Σ,c
nm}]

(ωS
`m)3(ωS

`m − 2ω̃)

+
∑
m6=n

fnm

(ωS
mn)3

(
4
Re[ vΣ,a

nm{Fbc
mn}]

ωS
mn − 2ω̃

+
Re[{Fab

nmv
Σ,c
mn}]

ωS
mn − ω̃

)]
,

as the non-divergent contribution, to which the divergent term

χabc
D (−2ω;ω, ω) =

e3

2~2ω̃2

∫
d3k

8π3

[ ∑
(mn)6=`

b`mnIm[vΣ,a
nm{v

Σ,b
m` v

Σ,c
`n }]

+
∑
m6=n

fnm

(ωS
mn)2

(
Re[ vΣ,a

nm{Fbc
mn}] + Re[{Fab

nmv
Σ,c
mn}]

)]
,

must be added, where

b`mn =
fm`

ωS
nmω

S
`m

(
2

ωS
nm

+
1
ωS

`m

)
+

fn`

ωS
nmω

S
n`

(
2

ωS
nm

+
1
ωS

n`

)
,

comes from the B term of Eq. (2.31). Following the steps of Ghahramani et
al. [GMS91], we can show that for a clean, cold semiconductor χabc

D = 0 [cab].

Finally, we insert the explicit values for the fn factors and take the limit
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of η → 0 in Eq . (2.34) to �nd

Im[χabc
v (−2ω;ω, ω)] =

π|e|3

2~2

∫
d3k

8π3

[∑
vc

16
(ωS

cv)3
(∑

c′

Im[vΣ,a
vc {vΣ,b

cc′ v
Σ,c
c′v }]

ωS
cv − 2ωS

c′v

−
∑
v′

Im[vΣ,a
vc {vΣ,b

cv′ v
Σ,c
v′v }]

ωS
cv − 2ωS

cv′

)
δ(ωS

cv − 2ω)

+
∑

(vc)6=`

1
(ωS

cv)3
( Im[vΣ,a

`c {vΣ,b
cv v

Σ,c
v` }]

ωS
c` − 2ωS

cv

−
Im[vΣ,a

v` {v
Σ,b
`c v

Σ,c
cv }]

ωS
`v − 2ωS

cv

)
δ(ωS

cv − ω)

−
∑
vc

1
(ωS

cv)3
(
4Re[ vΣ,a

vc {Fbc
cv}]δ(ωS

cv − 2ω)

+ Re[{Fab
vc v

Σ,c
cv }]δ(ωS

cv − ω)
)]
, (2.35)

as the imaginary part of the nonlinear SHG susceptibility for the scissored
Hamiltonian within the velocity gauge formalism, where we have used the
subscript v to denote it. The Re[χabc

v (−2ω;ω, ω)] is obtained through the
Kramers-Kroning transformation. Taking ∆ = 0 we get

Im[χabc
v,∆=0(−2ω;ω, ω)] =

π|e|3

2~2

∫
d3k

8π3

[∑
vc

16
(ωcv)3

(∑
c′

Im[va
vc{vb

cc′v
c
c′v}]

ωcv − 2ωc′v

−
∑
v′

Im[va
vc{vb

cv′v
c
v′v}]

ωcv − 2ωcv′

)
δ(ωcv − 2ω)

+
∑

(vc)6=`

1
(ωcv)3

( Im[va
`c{vb

cvv
c
v`}]

ωc` − 2ωcv
−

Im[va
v`{vb

`cv
c
cv}]

ω`v − 2ωcv

)
× δ(ωcv − ω)

]
,

since Fab
nm|∆=0 = 0 (see the appendix). This equation is identical to that

obtained earlier for the unscissored Hamiltonian [GMS91]. However, as far
as we know the expression for Im[χabc(−2ω;ω, ω)] given in Eq. (2.35) is new,
and the last two terms proportional to ∆ through Fab

nm (see Eq. (2.49) have
been neglected in the literature until now. As shown below (Section 2.4), these
terms are crucial for the gauge invariance of the second order response within
the scissored Hamiltonian.
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In the past the scissors implementation within the velocity gauge has been
performed by taking Eq. (2.36) and simply replacing ωmn by ωS

mn and vmn

with vΣ
mn, as the usual scissoring of the linear response would wrongly suggest.

This strategy leads to

Im[χabc
v,wrong(−2ω;ω, ω)] =

π|e|3

2~2

∫
d3k

8π3

[∑
vc

16
(ωS

cv)3
(∑

c′

Im[vΣ,a
vc {vΣ,b

cc′ v
Σ,c
c′v }]

ωS
cv − 2ωS

c′v

−
∑
v′

Im[vΣ,a
vc {vΣ,b

cv′ v
Σ,c
v′v }]

ωS
cv − 2ωS

cv′

)
δ(ωS

cv − 2ω)

+
∑

(vc)6=`

1
(ωS

cv)3
( Im[vΣ,a

`c {vΣ,b
cv v

Σ,c
v` }]

ωS
c` − 2ωS

cv

−
Im[vΣ,a

v` {v
Σ,b
`c v

Σ,c
cv }]

ωS
`v − 2ωS

cv

)
δ(ωS

cv − ω)
]
, (2.36)

a wrong result, since we are missing the important contribution from Fab
mn

given in Eq. (2.35). It is obvious that the coincidence that takes place in the
linear response does not arise here. If we substitute vΣ

nm = (ωS
nm/ωnm)vnm in

Eq. (2.36) we do not get the last two terms on the right hand side of Eq. (2.35)!

2.3.3 Length gauge formalism

Within this gauge, the interaction Hamiltonian is given by

HI(t) = −er ·E(t). (2.37)

As discussed in Nastos et al. [NOSS05], the length-gauge formalism for the scis-
sored Hamiltonian can be easily worked out by simply using the unscissored
Hamiltonian for the unperturbed system with −er·E(t) as the interaction, and
then, at the end of the calculation, only replacing ωnm by ωS

nm to obtain the
scissored result for any susceptibility expression, whether linear or nonlinear.
Indeed, rnm and rnm;k are calculated within the unscissored (LDA) Hamilto-
nian, as stated before. We use H(t) = H0 − er · E(t) as the time dependent
Hamiltonian, that from Eq. (2.4) gives ṙ = v = p/me.

Taking the matrix elements of the density using, Eq. (2.2) with HI(t) of
Eq. (2.37), we obtain (ρ̃(1)

L (t))nm = Bb
nmE

b(ω)ei(ωnm−ω̃)t, with

Bb
nm =

e

~
fmnr

b
nm

ωnm − ω̃
,
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and

(ρ̃(2)
L (t))nm =

e

i~
1

ωnm − 2ω̃

[
i
∑

`

(
rb
n`B

c
`m −Bc

n`r
b
`m

)
− (Bc

nm);kb

]
× Eb(ω)Ec(ω)ei(ωnm−2ω̃)t.

We have used the fact that for a cold semiconductor ∂fn/∂k = 0 and thus the
intraband contribution to the linear term vanishes identically. From Eq. (2.3)
we can obtain [AS95]

χabc
L,e(−2ω;ω, ω) =

e3

~2

∫
d3k

8π3

[ ∑
`(n6=m)

2fnm

ωmn − 2ω̃
+

∑
m(`6=n)

f`n

ω`n − ω̃

+
∑

n(`6=m)

fm`

ωm` − ω̃

]ra
nm{rb

m`r
c
`n}

ω`n − ωm`
,

as the contribution from interband processes, and

χabc
L,i (−2ω;ω, ω) =

ie3

~2

∫
d3k

8π3

∑
m6=n

fnm

[ 2ra
nm{rb

mn;kc}
ωmn(ωmn − 2ω̃)

+
{ra

nm;kcrb
mn}

ωmn(ωmn − ω̃)

+
1

ω2
mn

( 1
ωmn − ω̃

− 4
ωmn − 2ω̃

)
ra
nm{rb

mnVc
mn}

−
{rb

nm;karc
mn}

2ωmn(ωmn − ω̃)

]
,

as the contribution from intraband processes only, where rb
nm;ka is the gener-

alized derivative of r, and is explicitly given by [AS95],

rb
nm;ka =

ra
nmVb

mn + rb
nmVa

mn

ωnm
+

i

ωnm

∑
`

(
ω`mr

a
n`r

b
`m − ωn`r

b
n`r

a
`m

)
; (n 6= m),

(2.38)
where Va

nm = (pa
nn − pa

mm)/me is the di�erence between the electron velocity
at bands n and m, and the sum over ` is over all the valence and conduction
states.

Notice that the above expressions for χabc
L,e,i(−2ω;ω, ω) are divergence free

at ω = 0, that both satisfy the intrinsic permutation symmetry

χabc
L,e,i(−2ω;ω, ω) = χacb

L,e,i(−2ω;ω, ω), (2.39)

and �nally that the full susceptibility is given by

χabc
L (−2ω;ω, ω) = χabc

L,e(−2ω;ω, ω) + χabc
L,i (−2ω;ω, ω), (2.40)
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where the subscript L denotes the length gauge. Again using time reversal
symmetry, we can take rmn(k) = rnm(−k) and rmn;k(k) = −rnm;k(−k), along
with the hermiticity condition rmn = r∗nm, which implies that rmn;k = r∗nm;k,
and leading to the imaginary parts of χabc

i,e ,

Im[χabc
L,e] =

π|e|3

~2

∫
d3k

8π3

∑
(vc)6=`

[2Re[ra
vc{rb

c`r
c
`v}]

ωS
c` − ωS

`v

δ(ωS
cv − 2ω)

+
(Re[ra

v`{rb
`cr

c
cv}]

ωS
cv − ωS

`c

+
Re[ra

`c{rb
cvr

c
v`}]

ωS
v` − ωS

cv

)
δ(ωS

cv − ω)
]

(2.41)

and

Im[χabc
L,i ] =

π|e|3

~2

∫
d3k

8π3

∑
vc

[(2Im[ra
vc{rb

cv;kc}]
ωS

cv

− 4Im[ra
vc{rb

cvVc
cv}]

(ωS)2cv

)
× δ(ωS

cv − 2ω)

+
( Im[{ra

vc;kcrb
cv}]

ωS
cv

+
Im[ra

vc{rb
cvVc

cv}]
(ωS)2cv

−
Im[{rb

vc;karc
cv}]

2ωS
cv

)
× δ(ωS

cv − ω)
]
, (2.42)

where we have taken ωnm → ωS
nm so the above expressions are valid for the scis-

sors Hamiltonian, HS = H0 +S(r,p)− er ·E. Recall that both rnm and rnm;k

werw calculated with the unscissored (Kohn-Sham) Hamiltonian [NOSS05].
The last two equations give the nonlinear SHG susceptibility within the length
gauge for the scissored Hamiltonian. Comparing Eq. (2.41) and Eq. (2.42) to
the velocity gauge result of Eq. (2.35), it is clear that, unlike for the linear
response, there is no obvious analytical scheme to support that both gauges
give the same result. In the following section we present numerical results to
prove the expected gauge invariance.

2.4 Results

In this section we evaluate the velocity and length gauge expressions χabc
v,L for

GaAs. In order to calculate the energies, wave functions and matrix elements
we employ the �augmented plane wave plus local orbital method� using the
WIEN2K code [BSM+01]. This all-electron code uses the full local-crystal po-
tential, i.e. V (r), just as required by our assumptions of Eq. (2.6), and thus
the commutator [r,H] = i~ṙ is correctly calculated for the local V (r). We also
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Parameter (GaAs) all-electron pseudopotential
Lattice parameter 10.684a0 10.684a0

k-points 27720 27720
Unscissored band gap 0.277 eV 0.469 eV

Scissors 1.243 eV 1.051 eV
Valence bands 14 (includes semi-core) 4

Conduction bands 7 7
Exchange correlation energy LDA LDA

Energy convergence limit 0.001 Ry -
Cut-o� energy - 20 Ha

RMTKMAX 7.0 -

Table 2.1: The most important parameters used in the all-electron and pseu-
dopotential schemes for GaAs. The empty entries are not relevant for the
corresponding code. The k-points are for the irreducible part of the �rst Bril-
louin zone, and RMTKMAX is a product of the �mu�n-tin� radius R and the
maximum value for the plane wave vectors K [BSM+01].

show results calculated through the use of pseudopotentials with the ABINIT
plane-wave code [GBC+02]. The pseudopotentials are non-local functions ex-
pressible as V NL(r,p) [Sta71], just as is the scissor Hamiltonian S(r,p). To
really complete the calculation one would have to do the corresponding ma-
nipulations including V NL(r,p) in the Hamiltonian HS (Eq. (2.9)), and new
terms would arise in the linear and nonlinear susceptibility expressions. For
instance, the term i~vNL = [r, V NL(r,p)] should be added to the velocity op-
erator vΣ given by Eq. (2.13). This is a research project for the future. Here
we use the comparison of the all-electron and the pseudopotential calculation
to get a estimate of the error involved by neglecting the nonlocal contributions
coming from V NL(r,p). The linear response counterpart of these calculations
is discussed in Pulci et al. [PODSS98] and Mendoza et al. [MNAS06].

The spin-orbit e�ects, local �eld e�ects, and the consequences of the electron-
hole attraction [LSHB05] on the SHG process are neglected. Although all these
e�ects are important for the optical response of a semiconductor, their calcu-
lation is still subject of research and a numerical challenge that ought to be
pursued. However this endeavour is beyond the scope of this thesis. The
band gap of GaAs is adjusted to be its experimental value of 1.52 eV. We �nd
converged spectra for all the quantities of interest in this work, and the most
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important parameters are shown in Table 2.1. All the spectra are calculated
with an energy smearing of 0.15 eV. The linear analytic tetrahedron method is
used to evaluate the Brillouin zone integrals for the imaginary part of the spec-
tra, where special care was taken to examine the double resonances [NOSS05].
Double resonances occur if, for a given frequency ω, there can be resonant tran-
sitions at both frequencies ω and 2ω, that is, if there is a region in the Brillouin
zone such that ωcv(k) = 2ωc′v(k) = 2ω. For these k points the perturbation
theory used to calculate the spectrum breaks down, since there is real popula-
tion excited, which in a correct calculation must be taken into account. These
points introduce sharp spikes in the spectrum that can in principle a�ect the
low-frequency results, since the response at frequencies below the band gap
is computed from the Kramers-Kronig relation. However, in agreement with
Nastos et al. [NOSS05], we �nd here that the double resonances a�ect the
low-frequency results by less than 2%.

In Fig. 2.1 we show the imaginary part of χxyz
v,L (−2ω;ω, ω) with no scis-

sors correction (∆ = 0), calculated with the all-electron scheme [nota]. As
expected, Im[χxyz

v,L ](−2ω;ω, ω) is zero below the gap, (ELDA
g = 0.27 eV), and

above it we see a series of positive and negative peaks that can be related to
electronic transitions. What is more relevant for this chapter is that in the (a)
panel of Fig. 2.1 we have plotted both χxyz

v (−2ω;ω, ω) and χxyz
L (−2ω;ω, ω);

they seem to be identical. In the bottom panel (b) of Fig. 2.1, we show
Im[χxyz

L (−2ω;ω, ω)−χxyz
v (−2ω;ω, ω)], which con�rms that the results for the

unscissored Im[χabc
v (−2ω;ω, ω)] and Im[χabc

L (−2ω;ω, ω)] coincide to within a
numerical accuracy of about 1 part in approximately 105, as would be expected
from gauge invariance.

In Fig. 2.2 we show the imaginary part of χxyz
v,L (−2ω;ω, ω) with a scissors

shift of ∆ = 1.243 eV, calculated with the all-electron scheme. In the top
panel we compare the velocity-gauge calculation of Im[χxyz

v (−2ω;ω, ω)] (of
Eq. (2.35)) to a calculation where we neglect the new contributions coming
from the scissors term, (i.e. Im[χxyz

v,wrong(−2ω;ω, ω)] of Eq. (2.36)); we see that
the results disagree. In the middle panel we show Im[χxyz

L (−2ω;ω, ω)] and
in the bottom panel we show Im[χxyz

L (−2ω;ω, ω)− χxyz
v (−2ω;ω, ω)], where it

is clear that, as in the unscissored case, gauge invariance with the scissored
Hamiltonian is con�rmed within good numerical accuracy. We stress that this
ful�llment of gauge invariance is due to the additional terms of Eq. (2.35)
proportional to Fab

mn which, in turn, depend on the commutator [r,vS ], with
vS = −(i/~)[r, S(r,p)], thus, neglecting the e�ect of the scissors operator
S(r,p) in the usual perturbation procedure would lead, in general, to the wrong
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Figure 2.1: (a) Plot of the Im[χxyz
v,L (−2ω;ω, ω)] calculated within the length

and the velocity gauge schemes, using the all-electron approach for zero scissors
correction, ∆ = 0. (b) Plot of the Im[χxyz

L (−2ω;ω, ω)−χxyz
v (−2ω;ω, ω)] where

very small di�erences between the two schemes are seen.

result for nonlinear susceptibility tensors within the velocity gauge approach.
As explained above, we have also used a pseudopotential method to cal-

culate the SHG susceptibility tensor. This way, we can estimate the error
made when one calculates the matrix elements of the electron's momentum
operator through the use of pseudopotentials, the error arising from the non-
local part of the pseudopotential in the commutators [PODSS98, MNAS06]. In
Fig. 2.3 we show the absolute value of |χxyz

L (−2ω;ω, ω)| = |χxyz
v (−2ω;ω, ω)| ≡

|χxyz(−2ω;ω, ω)| with the scissors corrections, of ∆ = 1.051 eV using pseu-
dopotential code and of ∆ = 1.243 eV using the all-electron code. Notice that
there is a di�erence of approximately 36.8 pm/V between the results of the
value of the static limit of |χxyz(−2ω;ω, ω)| calculated within the length and
the velocity gauges. We obtain a static value of |χxyz(0; 0, 0)| = 135.6 pm/V
for the pseudo-potential calculation, and |χxyz(0; 0, 0)| = 172.4 pm/V, for the
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Figure 2.2: (a) Plots of the Im[χxyz
v (−2ω;ω, ω)] and Im[χxyz

v,wrong(−2ω;ω, ω)]
calculated within the velocity gauge. (b) Plot of the Im[χxyz

L (−2ω;ω, ω)] calcu-
lated within the length gauge. (c) Plot of Im[χxyz

L (−2ω;ω, ω)−χxyz
v (−2ω;ω, ω)]

where very small di�erences are seen . The spectra is evaluated within the all-
electron approach using a scissors correction of ∆ = 1.243 eV.

all-electron calculation. These quantities are close to the theoretical values
of other studies [NOSS05], and to the recently found experimental value of
172 pm/V at 0.118 eV [ETP+01]. We see that the corrections owing to the
non-local nature of the pseudopotentials a�ect, not only the strength of the
spectrum, but also its line shape, as some resonances are energy shifted from
one calculation to the other. The overall intensity correction is smaller than
∼ 25%, and we may conclude that the pseudopotential calculation does a rea-
sonable job for the nonlinear response. Indeed, this seems to be the case for
the linear optical response as well [MNAS06].

Although the main objective of this chapter is to show how the non-local
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Figure 2.3: Plot of |χxyz
L (−2ω;ω, ω)| = |χxyz

v (−2ω;ω, ω)| ≡ |χxyz(−2ω;ω, ω)|
with a scissors correction of ∆ = 1.243 eV for the all-electron calculation and
∆ = 1.051 eV for the pseudopotential calculation.

scissors correction must be included in the linear and nonlinear optical re-
sponse, and how including it ful�lls gauge invariance, as shown in Fig. 2.2, we
present for comprisson purposes the theoretical and experimental results. In
Fig. 2.4 we show the experimental spectrum of χxyz measured by Bergfeld and
Daum [BD03]. In order to have a better comparison between theory and ex-
periment, the energy scale of the theoretical results has been linearly rescaled
as proposed by them [notb]. Our results for the all-electron calculation for χxyz

shows a good qualitative agreement with the experimental spectrum. Above
4.3 eV the theoretical signal qualitatively disagrees with the experimental sig-
nal, although it shows a similar line shape but blue-shifted in energy. The
theoretical spectra obtained in Ref. [RLS98, LSHB05, NOSS05, AB98, HS96]
qualitatively show a similar comparison with the experiment.

2.5 Conclusions

We have presented a comparison between the calculations of the second har-
monic susceptibility tensor using two well-known approaches, often colloquially
referred to as using the �velocity gauge� and the �length gauge�. We have done
this using two di�erent Hamiltonians: the usual LDA Hamiltonian and the
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Figure 2.4: Plot of |χxyz
L | = |χxyz

v | = χxyz with with a scissors correction of
∆ = 1.243 eV for the all-electron calculation, along with the experimental
data of Ref. [BD03]. The top axis is the original energy Eorig of the all-
electron calculation. The bottom axis is the scaled energy, 2Emod [notb], for
the theoretical spectra and the two-photon energy of the experimental data.

scissored Hamiltonian, where a rigid energy shift in the conduction bands is
introduced so that the experimental (or GW) energy gap is obtained. We de-
rived a new expression for the velocity gauge susceptibility χabc

v (−2ω;ω, ω),
where correction terms related to the non-local nature of the scissors opera-
tor were obtained. These terms, not considered before in the literature, are
crucial in order to obtain gauge invariance. Using the unscissored Hamilto-
nian, gauge invariance is obtained with the usual χabc(−2ω;ω, ω) expression
calculated within the velocity and length gauge.

We have presented our numerical results for GaAs using both a DFT-
LDA ab initio calculation, with the augmented plane wave plus local orbital
all-electron method as given by WIEN2K [BSM+01], and a plane-wave pseu-
dopotential scheme given by the ABINIT code [GBC+02]. Besides providing a
numerical demonstration of gauge invariance for the unscissored and the scis-
sored Hamiltonian calculations, we have shown the kind and size of error when
one neglect the non-local nature of the pseudopotentials, it a�ects not only
the strength of the spectrum, but also its line shape. Our results compare
qualitatively well to previous works of other authors and, in particular, with
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the experimental data. However, the details of each approach used show that
the calculation of the nonlinear response is a nontrivial matter, and better
calculations of χabc(−2ω;ω, ω) using more sophisticated means are still to be
sought.

2.6 Appendix

In this Appendix we derive several results related to the scissors operator
S(r,p) of Eq. (2.7). First we sketch some well known results, for which we
follow Aversa and Sipe [AS95], and Blount [Blo62]. We write the position
operator of the electron, r, as the sum of its interband part re and intraband

part ri, r = re + ri. The matrix elements of re are simply given by [AS95]

〈nk|re|mk′〉 = δ(k− k′)(re)nm → rnm =
pnm

imωnm
=

vnm

iωnm
n 6= m, (2.43)

where the canonical momentum matrix elements, pnm, are calculated according
to

〈nk|p|mk′〉 = δ(k− k′)pnm = δ(k− k′)
∫
d3rψ∗nk(r)(−i~∇)ψmk(r),

and one actually uses its following property [AS95],

〈nk|[ri,O]|mk′〉 = iδ(k− k′)(Onm);k, (2.44)

where O is an operator and (Onm);k is the generalized derivative of its matrix
elements, i.e. Eq. (2.38) for rb

nm;ka . As discussed by Nastos et al. [NOSS05],
both rnm, (Eq. (2.43)), and its generalized derivative rnm;k, (Eq. (2.38)), are
evaluated using the unscissored energies.

Now we derive Eq. (2.23). We take matrix elements of Eq. (2.12) and use
Eq. (2.7) to write

vS
nm = − i

~
〈nk|(rS(r,p)− S(r,p)r)|mk〉

= −i∆
(
(1− fm)− (1− fn)

)
〈nk|r|mk〉

= i∆fmnrnm

=
∆fmn

mωnm
pnm ; n 6= m (2.45)
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where we used Eq. (2.43). Then the matrix elements of Eq. (2.13) reduce to

vΣ
nm =

(
1 +

∆fmn

ωnm

)
〈nk| p

m
|mk〉

=
(ωnm + ∆fmn

ωnm

)
vnm =

(ωS
n − ωS

m

ωnm

)
vnm

=
ωS

nm

ωnm
vnm ; n 6= m (2.46)

where we used Eq. (2.8); thus Eq. (2.46) is Eq. (2.23).
In order to prove Eq. (2.21), we start with the matrix elements of Fab,

Eq. (2.18), which we write as

Fab
nm = 〈nk|

(
[ra

i , v
S,b] + [ra

e , v
S,b]
)
|mk〉.

The interband part is

〈nk|[ra
e , v

S,b]|mk〉 ≡ Fab
e,nm =

∑
`

(
ra
e,n`v

S,b
`m − vS,b

n` r
a
e,`m

)
= i∆

∑
`6=(mn)

(
fm`r

a
n`r

b
`m − f`nr

b
n`r

a
`m

)
, (2.47)

where we used Eq. (2.43) and Eq. (2.45). For the intraband part we use
Eq. (2.44) and Eq. (2.45) to simply write

〈nk|[ra
i , v

S,b]|mk〉 ≡ Fab
i,nm = ivS,b

nm;ka = ∆fnmr
b
nm;ka . (2.48)

Substituting Eq. (2.47) and Eq. (2.48) we �nd

Fab
nm = i∆

∑
`6=(mn)

(
fm`r

a
n`r

b
`m − f`nr

b
n`r

a
`m

)
+ ∆fnmr

b
nm;ka . (2.49)

We see that for n = m, the intraband contribution Fab
i,nn = 0. Whereas the

interband part reduces to

Fab
nn = Fab

e,nn = i∆
∑
m6=n

fnm(ra
nmr

b
mn + rb

nmr
a
mn), (2.50)

giving Eq. (2.21).
Now we take matrix elements of [ra,Fbc], separating ra = ra

i + ra
e . Then

the interband part gives

[ra
e ,Fbc]nn =

∑
m6=n

(
ra
nmFbc

mn −Fbc
nmr

a
mn

)
, (2.51)
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while the intraband part gives

[ra
i ,Fbc]nn = iFbc

nn;a = i
∂

∂ka
Fbc

nn = i
∂

∂ka
Fbc

e,nn, (2.52)

where we used Eq. (2.50). Then Eq. (2.51) and Eq. (2.52) are used to obtain
Eq. (2.29).

Now we derive Eq. (2.24), using Eq. (2.46), ωS
mn = ωmn−fmn∆, Eq. (2.43)

and Eq. (2.21), Eq. (2.19) reduces to

ζab =
e2

~

∫
d3k

8π3

∑
m6=n

fnω
S
mn

va
nmv

b
mn + va

mnv
b
nm

ω2
mn

− e2n

m
δab

=
e2

~

∫
d3k

8π3

∑
m6=n

fnωmn
va
nmv

b
mn + va

mnv
b
nm

ω2
mn

− e2n

m
δab

− e2∆
~

∫
d3k

8π3

∑
m6=n

fnfmn
va
nmv

b
mn + va

mnv
b
nm

ω2
mn

= −e2
∫
d3k

8π3

∑
n

fn

(δab

m
−
∑
m6=n

va
nmv

b
mn + va

mnv
b
nm

~ωmn

)
+

e2∆
~

∫
d3k

8π3

∑
n

fn

∑
m6=n

fnm

(
ra
nmr

b
mn + ra

mnr
b
nm

)
= −e2

∫
d3k

8π3

∑
n

fn

[
1
m∗

n

]ab

− ie2

~

∫
d3k

8π3

∑
n

fnFab
nn, (2.53)

where [
1
m∗

n

]ab

=
δab

m
−
∑
m6=n

va
nmv

b
mn + va

mnv
b
nm

~ωmn
, (2.54)

is the e�ective mass tensor. Identifying the second term on the right hand side
of Eq. (2.53) as −ηab (see Eq. (2.20)), leads to

ζab + ηab = −e2
∫
d3k

8π3

∑
n

fn

[
1
m∗

n

]ab

. (2.55)

Substituting Eq. (2.55) in Eq. (2.22) gives Eq. (2.24).
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3.1 Summary

We present a study of the optical coherent control of injection currents at
surfaces of cubic semiconductors. We propose and use this optical e�ect as
a surface sensitive probe of crystals with bulk inversion symmetry or 6̄m2, 6̄,
and 4̄3̄m (zinc-blende) symmetry. In crystals with any of these symmetries,
this e�ect vanishes in the bulk, but it is allowed in surface regions owing to the
local break of symmetry. We present the results of ab initio calculations for
optically injected currents at the clean Si(111)(2×1) surface, and clean and Sb-
covered GaAs(110)(1×1) surfaces. The reconstruction of each of these surfaces
is well understood. The e�ects are shown to be sensitive to surface structure,
and the experimental signals that the injected currents should generate can be
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understood in terms of the surface electronic structure. Calculated magnitudes
indicate that the currents should be observable, and the calculated spectra of
all of the surfaces show interesting behavior as a function of the energy of the
incident light.

3.2 Introduction

The study and control of the structure and chemistry of surfaces is of scienti�c
and technological importance. Optical probes are of particular interest because
they do not require a high vacuum environment, and experiments can be per-
formed at interfaces where other techniques are impossible to use. However,
because of the long wavelength of the incident light, surface sensitivity typi-
cally only arises when the e�ect studied is absent in the underlying bulk. Two
examples are re�ectance anisotropy spectroscopy (RAS) [WMCF05, Ric96],
and surface second harmonic generation (SSHG) [DMG01, LDE+00]. Both
have been employed as passive probes of clean and adsorbate-covered surfaces.
In this chapter we introduce a surface optical e�ect that o�ers the potential,
not only for the study of surfaces, but also for the control of chemical reac-
tions there. It relies on the breaking of the bulk symmetry at the surface. In
some excitation scenarios a current can be injected in the surface region by
an incident optical �eld, with a variation in time that is driven by the time
dependence of the incident intensity. Within the susceptibility framework of
optical response this e�ect is nonlinear, but its amplitude scales linearly with
the incident intensity. In pulsed excitation it can be detected by the emission
of THz radiation due to the acceleration of the charges [lam]. It can also be
studied, in both pulsed and CW excitation, by measuring a voltage induced
along the surface [lam].

The simplest such phenomenon is below band-gap optical recti�cation,
where a polarization is induced by an optical �eld at incident frequencies be-
low the energy gap of a semiconductor or insulator; the polarization follows
the incident intensity in its time evolution, and its time derivative yields a
current that can produce THz radiation. This current, which vanishes for
CW irradiation, is not our concern here. Rather, we focus on incident light
with frequencies above the band gap, where not only virtual but also real ex-
citations are allowed. For such incident �elds there are, approximately, two
currents that can arise [NOSS05, SS00, nas]: The �rst is a shift current, Jshift,
associated with the motion of the center of charge of the electrons as they
are injected from the valence to the conduction bands; it is approximately
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proportional to the pulse intensity. The second is an injection current, Jinj ,
associated with a polar asymmetry of the injected electrons to the conduction
band and holes in reciprocal space; in this case, dJinj/dt is approximately
proportional to the pulse intensity, and the injection can be understood as a
quantum interference between di�erent absorption pathways associated with
di�erent linear polarizations of the light. In both e�ects the energy increase
of carriers is provided by the electromagnetic �eld, while the increase in mo-
mentum is provided by the crystal lattice. In the bulk of crystals without
inversion symmetry the injection and shift currents fall into the phenomeno-
logical categories of a circular photogalvanic e�ect and a linear photogalvanic
e�ect respectively [Stu92], and their description has been formulated in the con-
text of nonlinear optics [NOSS05, SS00, AS96, AS95, nas]. As shorter pulses
are considered, the distinction between these terms (and optical recti�cation,
which, of course, still exists above the band gap) becomes less sharp [nas]. In
the CW limit, the injection current in a bulk medium is characterized by a
third rank tensor ηabc

2

J̇a
inj = 2ηabc

2 (0;ω,−ω)Eb(ω)Ec(−ω), (3.1)

where the superscripts indicate Cartesian components that are to be summed
over if repeated, and E(ω) indicates the electric �eld amplitude at the incident
frequency ω; in the independent particle approximation the coe�cient ηabc

2 is
antisymmetric in the components b and c, and is purely imaginary [NOSS05,
SS00, nas]. For slowly varying pulses the intensity-like term Eb(ω)Ec(−ω) can
be multiplied by a function describing the time dependence of the intensity
in the pulse [NOSS05, nas], and the resulting equation used to determine the
injected current in the absence of scattering and space charge e�ects.

In this chapter we focus on the optical injection current that arise at the
surfaces centrosymmetric when light incides on it. This includes not only
centrosymmetric crystals (such as Si), Among centrosymmetric crystals, we
have Si crystals of the clasess 6̄m2, 6̄, and 4̄3̄m. The latter class includes typical
III-V semiconductors such as GaAs. Notice that the di�erent e�ects can be
distinguished from each other by their dependence on pulse width, and from
each other and from phase insensitive photovoltaic e�ects by their dependence
on the polarization of the incident �eld [NOSS05, nas, notc]. We consider that
current injection is the most striking of these as yet uninvestigated surface
terms, since it vanishes of the bulk of many fundamental centrosymmetric
semiconductors and because the opportunity it would give an experimentalist
to �shoot� electrons and holes in one direction or another along the surface is
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particularly exciting.
At a surface, Eq. (3.1) can be replaced by corresponding equations involving

the surface injection current J̇S
inj and a surface response coe�cients ηS,abc

2 . We

evaluate ηS,abc
2 for three structures of the well-studied Si(111) surfaces [RL99,

SCC+87],and two of GaAs(110) surfaces [MAVN08]; the results demonstrate
that the injection current is sensitive to surface structure. Furthermore, we
show that it can be understood in a simple way in terms of the properties of
electronic surface states, and it should be amenable to experimental study.

The chapter is organized as follows. In Section 3.3 we present the theory
for the calculation of the surface injected current, using a new approach that
is well suited for a surface calculation. Then, in Section 3.4 we present the
computational details of the ab initio approach used in our calculations, and in
Section 3.5 we present the results for the chosen surfaces. Finally, in Section 3.6
we present the conclusions.

3.3 Theory

In this section we derive the expressions for the generation of the injection
current suitable for surfaces and interfaces. To model the semi-in�nite crystal,
we use a slab consisting of N atomic layers inside a supercell of total height L
and volume Ω = AL, where A is the surface area of the unit cell. The supercell
includes the vacuum region required to use a repeated slab scheme. In a slab
calculation not only one often wants to calculate the response from one of the
two halves of the slab but also from a particular layer of the slab. A convenient
way to accomplish the separation of the response of any layer is through the
use of the so called �cut function�, F`(z), as a top-hat cut function that selects
a given layer,

F`(z) = Θ(z − z` + ∆b
`)Θ(z` − z + ∆f

` ), (3.2)

where Θ is the Heaviside function. Here, ∆f/b
` is the distance that the `-th layer

extends towards the front (f) or back (b) from its z` position. Thus ∆f
` + ∆b

`

is the thickness of layer `. The cut function was originally used by Hogan
et al. [HDSO03] and Castillo et al. [CMS+03], and more recently was put on
a more solid basis through a microscopic calculation of the linear optical re-
sponse of a surface by Mendoza et al. [MNAS06]. The above scheme known as
a layer-by-layer approach is successfully used to provide deeper understanding
of various surface optical responses [MNAS06, MSM04, HDSO03, CMS+03].
However, for this work, the use of the layer-by-layer approach is crucial, since
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it allow us to perform a physically relevant calculation for the surface injection
current. The slab used to represent the aforementioned surfaces is centrosym-
metric and thus ηabc

2 (ω) = 0 for the whole slab. Using F`(z) for each layer
gives a �nite value of ηabc

2 (ω), and as we will see in this section, such splitting
allow us to calculate the surface value of ηabc

2 (ω) → ηS,abc
2 (ω) and thus of J̇S

inj .
Lets begin by writing the polarization density of the `th layer of the slab

as
P `,a(ω) = ~ξ`,ab(ω)Eb(ω), (3.3)

where, from the appendix,

ξ`,ab(ω) =
e2

~2

∫
d3k

8π3

∑
m6=n

fnm
R`,a

nm(k)rb
mn(k)

ωmn(k)− ω − iη
, (3.4)

is related to the imaginary part of the `th layer of the linear optical suscep-
tibility. In here we take η → 0, fnm = fn − fm with fn the Fermi occu-
pation factor that, for a clean, cold semiconductor, equals one if the band
n is occupied (valence band n = c) and zero if the band is empty (conduc-
tion band n = c), regardless of the value of k, and thus fnm does not de-
pend on k; ~ωmn(k) = ~ωm(k)− ~ωn(k) is the di�erence of energies between
states m and n for a crystal momentum k. The position operator matrix
elements are obtained through the relationship ra

nm(k) = va
nm(k)/(iωnm(k))

(n 6= m), where va
nm(k) are the standard velocity matrix elements. However,

Ra
nm(k) = Va

nm(k)/(iωnm(k)) (n 6= m), where

V`,a
nm(k) =

1
me

∫
d3rψ∗nk(r)P`,aψmk(r), (3.5)

is the modi�ed velocity matrix elements, through which the polarization of the
`th layer is obtained [MNAS06]. Here, ψnk(r) is the wave function normalized
with the volume of the supercell and me is the electron mass. Also,

P`,a =
F`(z)pa + paF`(z)

2
, (3.6)

with pa = −i~∇a, the top-hat cut function F`(z) selects the `th layer of the
slab. If we take F`(z) = 1, then P`,a → pa, from Eq. (3.5) we obtain that
V`,a

nm(k) → va
nm(k) or R`,a

nm(k) → ra
nm(k). We remark that replacing R`,a

nm(k)
by ra

nm(k) in Eq. (3.4) would give the standard expression for the linear sus-
ceptibility [SS00] through which one can calculate the polarization of the whole
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slab or of a bulk semiconductor. We mention that the dielectric response ten-
sor for the `th layer is given by ε`,ab = δab + 4π~ξ`,ab. In the context of RAS,
it is analyzed in Ref. [MNAS06] for a hydrogenated Si(100) surface.

The rate at which the electromagnetic �eld does work on the `th layer of
the material medium (per unit volume) is given by J` ·E = Ṗ` ·E, and its time
average is related to the photocarrier generation rate of the `th layer, ṅ`, by

ṅ` =
1

~ω
〈Ṗ` ·E〉, (3.7)

where 〈· · · 〉 denotes the time average. Writing

E(t) = E(ω)e−iωt + E∗(ω)eiωt, (3.8)

where E∗(ω) = E(−ω), and the `th layer polarization as

P`(t) = P`(ω)e−iωt + P`∗(ω)eiωt, (3.9)

we get

ṅ` =
−i
~

(P`(ω) ·E∗(ω)−P`∗(ω) ·E(ω)), (3.10)

where the terms proportional to 2ω (not shown) average out to zero. Before we
proceed, a word of caution is required. The electric �eld of Eq. (3.10) is implic-
itly taken as uniform in the region of interest. Clearly this is inappropriate for
the z component of the electric �eld, which for semiconductors can change by
orders of magnitude as one moves from vacuum to the semiconductor. Thus,
all aspects of the optical response at an interface due to this component of the
electric �eld would require a self-consistent calculation of the variation of Ez

across the surface region [SSP98]. Although the calculation of this variation
is important, we do not address it here. Instead, we focus on the simplest
experimental geometry of normal incidence. Then, since the electric �eld lies
in the plane of the interface, it can be taken, as uniform through the interface
region, neglecting local �eld corrections which is typically done even in bulk
calculations,

Using Eq. (3.3) in Eq. (3.10), we obtain

ṅ` =
−i
2

(
ξ`,bcEc(ω)Eb(−ω)− ξ`,bc∗Ec(−ω)Eb(ω) + b↔ c

)
, (3.11)

where we have symmetrized the dummy Cartesian indices b and c using b↔ c

that denotes the exchange of b and c of the previous terms. Using Eq. (3.4),
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we obtain

ṅ` =
−e2

2~2

∫
d3k

8π3

∑
m6=n

fnm

(
i
( R`,b

nm(k)rc
mn(k)

ωmn(k)− ω − iη
− R`,c

mn(k)rb
nm(k)

ωmn(k)− ω + iη

)
× Eb(−ω)Ec(ω) + c.c.

)
, (3.12)

with c.c denoting the complex conjugate of the previous term. We used
ra
nm(k) = ra∗

mn(k) and Ra
nm(k) = Ra∗

mn(k). We see that the terms inside the
integral over k and the summation over states are proportional to the rate of
photocarriers generated by the electric �eld between bandsm and n at point k,
for the `th layer. Thus, from Eq. (3.12) we can construct the injection current
density of the `th layer, J̇ `,a, as

J̇ `,a
inj =

−e2

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

(
i
( R`,b

nm(k)rc
mn(k)

ωmn(k)− ω − iη

− R`,c
mn(k)rb

nm(k)
ωmn(k)− ω + iη

)
Eb(−ω)Ec(ω) + c.c.

)
,

where we have introduced the real function e∆`,a
mn = e(V`,a

mm − V`,a
nn ), that rep-

resents the current created in the `-th layer by bands m and n, with V`,a
mm the

electron velocity along a for bandm and layer `-th, The Fermi factor fnm forces
n 6= m and so if n = c then m = v and viceversa, thus the minus sign in e∆`,a

mn

simply says that we are including the current created by the electron/hole pair
created at k for the `-th layer. The equation above is written as

J̇ `,a
inj = η`,abc(0;ω,−ω)Eb(ω)Ec(−ω) + c.c., (3.13)

where

η`,abc(0;ω,−ω) =
i|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

( R`,c
nm(k)rb

mn(k)
ωmn(k)− ω − iη

− R`,b
mn(k)rc

nm(k)
ωmn(k)− ω + iη

)
. (3.14)

Writing η`,abc(0;−ω, ω) = η`,abc
r (0;−ω, ω)+iη`,abc

i (0;−ω, ω), and using (see the
appendix),

η`,abc(0;−ω, ω) = −η`,acb(0;−ω, ω)

η`,abc(0;−ω, ω) = η`,abc∗(0;ω,−ω),
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Eq. (3.13) reduces to

J̇ `,a = 2iη`,abc
i (0;ω,−ω)Eb(ω)Ec(−ω)

≡ 2η`,abc
2 (0;ω,−ω)Eb(ω)Ec(−ω), (3.15)

where from the appendix η`,abc
2 (0;ω,−ω) = iη`,abc

i (0;ω,−ω) is given by

η`,abc
2 (0;ω,−ω) =

iπ|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)Im

[
R`,c

mn(k)rb
nm(k)

+ R`,b
nm(k)rc

mn(k)
]
δ(ωmn(k)− ω), (3.16)

which shows that η`,abc
2 (0;ω,−ω) is a purely imaginary tensor and that is anti-

symmetric in the last two Cartesian indices. This constitutes the main analytic
result of this chapter.

Replacing R`,c
mn(k) by rc

mn(k) , R`,b
nm(k) by rb

nm(k) and ∆`,a
nm(k) by ∆a

nm(k)
in the equation above one would obtain the expression for ηabc

2 (0;ω,−ω) valid
for a bulk semiconductor (see Eq. (3.29),in the appendix) [SS00]. However,
such a replacement is equivalent to taking F`(z) = 1 for all `, i.e. the whole
slab, and thus the same bulk expression could be used to calculate the response
of the full slab. Nevertheless, for a centrosymmetric system, whether bulk or
slab, one can always choose the matrix elements of ra

nm(k) to be real functions,
and thus ηabc

2 (0;ω,−ω) = 0 (see also Eq. (3.29)). Indeed, for a centrosymmetric
system there is no injection current [Sau96, SS00], however for a surface there
may be a �nite injection current since the surface is not centrosymmetric.
Therefore, the use of F`(z) readily allow us to get a �nite η`,abc

2 (0;ω,−ω) from
Eq. (3.16).

In order to de�ne the injection current suitable for a surface, we take into
account the following observations. As we mentioned before, the slab that
we use to represent the semi-in�nite system consists of N layers, where the
value of N is such that for N ≥ Nc the value of η`,abc

2 (0;ω,−ω) does not
change any more. Also, one should expect that for a layer, ˜̀, near or at the
middle (`B) of the slab, where the spatial environment is centrosymmetric,

η
˜̀,abc
2 (0;ω,−ω) ≈ η`B ,abc

2 (0;ω,−ω) = 0. The k integration in Eq. (3.16) is
normalized by Ω. Then we could use (1/A)

∑`B
`=1 Ωη`,abc

2 (0;ω,−ω), as a surface
response. Now, Ω/A = L where L = Ls +Lv with Ls and Lv being the length
of the slab and the vacuum, respectively. The value of Lv is such that after
some minimum value, that avoids the interference between slabs of contiguous
unit cells, the calculated response for a given Ls does not change. Indeed,
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choosing inappropriate values for Lv leads to inaccurate results as analyzed
in Ref. [MNAS06] for the linear optical response. On the other hand, Ls

comprise all the layers of the slab, but as we would expect some of them have
zero response due to their centrosymmetric environment. Therefore, we �nd
that the most appropriate length needed to de�ne the surface response is the
total thickness that comprise all the layers that do have a η`,abc

2 (0;ω,−ω) 6= 0.
Let the surface response be

ηS,abc
2 (0;ω,−ω) = Leff

`eff∑
`=1

η`,abc
2 (0;ω,−ω) =

`eff∑
`=1

η̃`,abc
2 (0;ω,−ω),(3.17)

with η̃`,abc
2 (0;ω,−ω) = Leffη

`,abc
2 (0;ω,−ω), where Leff is the thickness of all the

layers that �e�ectively� contribute to the sum in th equation above, and `eff
the last layer (counting from the surface) for which η`,abc

2 (0;ω,−ω) 6= 0. Thus
only the layers close to the surface, will contribute to ηS,abc

2 (0;ω,−ω) since it
is only close to the surface where the centrosymmetry is broken. Finally,

J̇S,a = 2ηS,abc
2 (0;ω,−ω)Eb(ω)Ec(−ω), (3.18)

gives the surface injection current, where both J̇S,a and ηS,abc
2 (0;ω,−ω) have

the units of their bulk counterparts times the length as expected for a surface
response.

3.4 Computational details

Our layer-by-layer analysis is done by using the well known ABINIT plane-
wave code [XBC+02]. A self-consistent calculation is �rst made to determine
the Kohn-Sham potential for the relaxed surface structures. We use the sepa-
rable Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials [HGH98] within
the LDA as parametrized by Goedecker et al. [GTH96]. In our calculations for
Si and GaAs surfaces, we exclude the semi-core states, as it is usually done,
though they can be included with more computational e�ort. Once the Kohn-
Sham potential is determined, we �nd the wavefunctions, and then the matrix
elements are calculated for k-points on a specially determined tetrahedral grid.
This grid is used in the integrals of Eq. (3.16), that are conveniently done by
a linear analytic tetrahedral integration method [NRSM+07]. A set of 112 k-
points in the irreducible surface Brillouin zone (SBZ) and a cut-o� energy of
10 Ha is used for each of the surfaces. With these parameters, and the number
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Figure 3.1: Top and side views of the (a) clean Si(111)(2 × 1), (b) clean
GaAs(110)(1× 1) and (c) Sb-covered GaAs(110)(1× 1) surfaces. The shaded
areas represents the unit cells for the corresponding surfaces.

of layers in the slab, Nc, shown in Table 3.1, we �nd well converged results for
all the responses of interest in this work. The required matrix elements are
calculated as indicated in Ref. [MNAS06]. We use the scissors correction, to
correct the LDA energy gap underestimation with respect to the experimental
value, that for the calculated responses, only implies the rigid shift of the spec-
tra by the scissors correction S [NOSS05, CME+09]. We have neglected local
�eld and excitonic e�ects; including any of these is a numerical challenge.

3.5 Results

In this section we present our results using the full-band electronic scheme
developed in section 3.3. The chosen systems are the clean Si(111)(2 × 1)
and the clean and Sb covered GaAs(110) surfaces (see Fig. 3.1). We have
considered these surfaces since their reconstruction are well understood and
easily reproducible experimentally. The nonzero (symmetry-allowed) compo-
nents of ηS,abc

2 (0;ω,−ω) for all the surfaces under consideration are the yyx,
xzx and yzy components. The last two take places with a �eld perpendic-
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Figure 3.2: Plot of ηS,yyx
2 (0;ω,−ω) for a clean Si(111)(2× 1) surface and the

layer resolved contribution, η̃`,yyx
2 (0;ω,−ω), for several of its layers. Note that

for ` ≥ 3, η̃`,yyx
2 (0;ω,−ω) ∼ 0 and that η̃`B ,yyx

2 (0;ω,−ω) = 0.

ular to the surface, and as discussed above, it requires a detailed calcula-
tion of Ez(ω) [SSP98], thus we only present results for the �rst component.
The ηS,yyx

2 (0;ω,−ω) tensor component, requires a circularly polarized �eld
and parallel to the surface, i.e. at normal incidence. For instance, taking
Ex(ω) = E0(ω) and Ey(ω) = E0(ω)eiφ, from Eq. (3.18)

J̇S,y = 4iηS,yyx
2 (0;ω,−ω)|E0(ω)|2 sinφ, (3.19)

from where it follows that the rate of injected current along y is proportional
to the phase di�erence of the �eld components through a sine dependence.
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Figure 3.3: Plot of ηS,yyx
2 (0;ω,−ω) for a clean Si(111)(2×1) surface for several

values of N , notice that the results are converged for Nc = 16.

3.5.1 Si(111) surfaces

We �rst show the results for a clean cleaved Si(111) surface. This surface has
a 2× 1 Pandey reconstruction which is characterized by buckled zigzag chains
along the y ([011]) direction [Pan82, RL99]. The upper atoms labelled 2 in
Fig. 3.1, show sp3-like bonding with one orbital predominantly �lled, while
the lower atoms labelled 1, exhibit sp2-like bonding with their pz orbitals
predominantly empty. From Eq. (3.19) it follows that the rate of injected
current along the y direction is possible because excited electrons can move
along the zigzag chains of atoms.

For a clean Si(111) 2×1 surface we plot in Fig. 3.2, the spectral dependence
of ηS,yyx

2 (0;ω,−ω) and η̃`,yyx
2 (0;ω,−ω) for several values of ` corresponding to

the top most atomic layer (` = 1) composed by the dimers, the next two
atomic layers ` = 2, 3 and the bulk-like layer at `B = 8. We see that the
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surface response starts rising sharply around 0.5 eV, which corresponds to the
transitions between the surface states, reaching its maximum at 0.75 eV and
followed by a sharp decline. Above 1.75 eV the signal is basically zero. The
calculated layer-by-layer responses convincingly demonstrates that the surface
signal is dominated by the �rst two atomic layers, and that after the third
layer η̃`≥3,yyx

2 (0;ω,−ω) ≈ 0 is almost zero. Therefore Leff would correspond to
the total thickness of the �rst 3 layers and `eff = 3. surprising very few atomic
layers beneath the surface are required for the system to be �centrosymmetric�
as far as this response is concerned. As shown in Fig. 3.2 the corresponding
surface injection current occurs below the bulk band gap of Si, this is because
the prominent surface energy levels appear within the gap of the projected-bulk
band structure. In Fig. 3.3, we plot the calculated spectrum of ηS,yyx

2 (0;ω,−ω)
for several values of N , where we know that Leff corresponds to the thickness of
the �rst three layers of the slab from previous results. We see that the results
converged for Nc = 16 layers.

3.5.2 GaAs(110) surfaces

The GaAs surfaces considered here are a clean (110) and Sb covered (110)
surfaces, both of them show a (1×1) reconstruction. The clean surface contains
a zigzag chain of alternating Ga and As atoms along the y direction, [110],
that are replaced by Sb atoms in the Sb-covered surface. In Fig. 3.4 we show
the spectra of ηS,yyx

2 (0;ω,−ω) and η̃`,yyx
2 (0;ω,−ω) for the �rst two layers of

both the clean and the Sb covered GaAs(110)(1 × 1) surfaces. Notice the
sensitivity of the signal to the di�erent surface termination. The magnitudes
of the injection current response are of the same order of magnitude and have a
rich spectral behavior. It is interesting to see the di�erent spectral features of
ηS,yyx
2 (0;ω,−ω) by the two �rst layers of the surface. For instance the negative
peak at ∼ 3 eV in the clean surface comes from the �rst atomic layer, whereas
the positive peak at ∼ 3.4 eV comes from the second atomic layer. For the
Sb covered surface the signal seem to be dominated by the Sb zigzag chains
that correspond to ` = 1 in Fig. 3.4, with some contribution by the Ga and
As atoms in the second layer but only for energies above ∼ 2.5 eV. We �nd
that for both surfaces a large Nc is required for convergence, as seen in Table
3.1, and that `eff = 7 with is corresponding value of Leff properly included in
Eq. (3.17).
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Figure 3.4: Spectra of ηS,yyx
2 (0;ω,−ω) and η̃`,yyx

2 (0;ω,−ω) for the clean and
an Sb covered GaAs(110)(1 × 1) surfaces. The spectra for ` = 1 in the clean
(Sb-covered) surface corresponds to that layer with the zigzag chains of Ga
and As (Sb) atoms, and the spectra for ` = 2 corresponds to the second layer
of Ga and As atoms for both surfaces.

3.5.3 Surface vs. bulk experimental detection estimate

The detection of injection current requires measurements of voltage induced
along the surface [LSSvD99], or terahertz radiation generated by an incident
ultrafast optical pulse [CLvD02, CFD+99]. To demonstrate that this e�ect is
strong enough to be observed experimentally we refer to the study of injection
of current in hexagonal bulk CdSe made by Laman et al. [LSSvD99]. There the
current injection generation was restricted to the penetration depth of l ≈ 1.8
µm of the incident radiation, therefore the signal can be associated with an ef-
fective surface injection coe�cient ηS

2 = lηB
2 , where η

B
2 is the bulk coe�cient.

The injection current that results with a carrier momentum relaxation time
of τ ≈ 40 fs, is Jinj ∝ 4τηB

2 |E0|2 (see Eq. (3.18)) where an e�ective surface
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Surface Number of Layers Nc S (eV)
Si(111)(2× 1) 16 0.43

GaAs(110)(1× 1) 27 1
GaAs(110)(1× 1):Sb (1)Sb+(27)GaAs+(1)Sb=29 0.8

Table 3.1: We give the number of atomic layers and the scissors correction S
for the considered slab. In all surfaces, the we used a grid of 112 k-points and
10 Ha as the cut-o� energy.

current JS
inj = lJinj of magnitude 5.4 nA/cm was detected [LSSvD99], corre-

sponding to an e�ective surface injection coe�cient ηS
2 = 90 mC3/(J2s2). This

experimental value is larger than our calculated values. However, the measure-
ments of injection current made by Latman et al. [LSSvD99] were done at low
incident �eld intensity of only 0.06 W/cm2. Since the current signal generated
from the e�ect scales linearly with the incident intensity (see Eq. (3.19)), an
easily observable signal from surface injection current should be possible at
intensities low enough to avoid surface damage. Finally, the injection current
periodic dependence on the phase shift between two perpendicular light polar-
izations provides a straightforward way to discriminate the injection current
from various surface photovoltaic e�ects.

3.6 Conclusions

We have developed a layer-by-layer formalism of the injection current in order
to calculate it at the surface of semiconductor crystals. Since the injection cur-
rent is zero for crystals with bulk inversion symmetry or crystal of the groups
6̄m2, 6̄, and 4̄3̄m (zinc blende), the experimental measurement of such a cur-
rent present a valuable tool for non-invasive characterization of semiconductor
surfaces. Following the layer-by-layer approach we derived the macroscopic
response tensor that describes the surface injection current. We performed ab-

initio calculations to evaluate the response for a few prototypical surfaces such
as the clean Si(111)(2×1) as well as clean and Sb terminated GaAs(110)(1×1)
surfaces. The surface injection current is found to be very sensitive to the basic
semiconductor surface parameters such as reconstruction, unit cell symmetry,
adsorbates type and bonding, which modify the electronic band structure. At
all considered surfaces, contributions to the surface states are clearly present in
the calculated spectra of the surface injection coe�cients. The layer-by-layer
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analysis proved to be crucial in order to extract the current response of each
atomic layer of any given system, and thus it allows to explain the surface
response behavior as the sum of the response contributions of the di�erent
atomic planes.

Like other conventional optical techniques, it requires a comparably easy
experimental setup. However, unlike SSHG, which is a parametric process and
typically only probes excitation to virtual states, the surface injection current
involves real transitions where the system is left in the �nal excited state.
Since, the nature of these �nal excited states can be understood in terms of
the symmetry and the structure of the surface, it is possible to interpret the
injection current much more directly than the signal due to SSHG. Also, the
injection current is linear in the incident optical intensity, unlike the quadratic
dependence of SSH. Although detection by terahertz radiation requires ultra
short pulses, we note that electrode detection of the injection current has been
demostrated even with CW radiation [CFD+99].

Finally, numerical estimates indicate that the surface injection current
should be measurable. Thus, the injection current o�ers the possibility of
using optical coherent control to manipulate the actual motion of the electrons
at the surface. Experiments to investigate the surface injection current are
clearly warranted.

3.7 Appendix

We derive Eq. (3.4) that is needed for the Eq. (3.4) of polarization of the `th

layer. We combine Eq. (14) and Eq. (15) from Mendoza et al. [MNAS06], to
write

J `,a(ω) = e

∫
d3k

8π3

∑
mn

cmn(k, ω)V`,a
nm(k), (3.20)

as the current density from the `th layer of the slab used to represent the
semi-in�nite crystal [MNAS06]. In the equation above, cmn is given by

cmn(k, ω) =
−ie
~

fnmv
b
mn(k)Eb(ω)

ωmn(k)(ωmn(k)− ω − iη)
, (3.21)
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From J = dP/dt, and assuming a harmonic �eld E(t) = E(ω)e−iωt+E∗(ω)eiωt,
using Eq. (3.20) and Eq. (3.21) gives

P `,a(ω) =
e2

~ω

∫
d3k

8π3

∑
mn

fnmV`,a
nm(k)vb

mn(k)
ωmn(k)(ωmn(k)− ω − iη)

Eb(ω) (3.22)

=
e2

~

∫
d3k

8π3

∑
mn

fnmV`,a
nm(k)vb

mn(k)
ωmn(k)(ωmn(k)− iη)

( 1
ω

+
1

ωmn(k)− ω − iη

)
Eb(ω)

=
e2

~

∫
d3k

8π3

∑
mn

fnmV`,a
nm(k)vb

mn(k)
ω2

mn(k)

( 1
ω

+
1

ωmn(k)− ω − iη

)
Eb(ω),

since we can take η → 0 in the �rst term after the sum. Only the �posi-
tive frequency� term is kept in the result above, because that term will con-
tribute to the positive frequency part of the injection current responses. Using
time-reversal symmetry, i.e. va

nm(−k) = −va
mn(k), V`,a

nm(−k) = −V`,a
mn(k),

and ωmn(k) = ωmn(−k), we can easily show that the 1/ω term vanishes as
one does the sum over k. Since fnm = fn − fm forces n 6= m, we can use
va
nm(k) = iωnm(k)ra

nm(k) and Va
nm(k) = iωnm(k)Ra

nm(k) in Eq. (3.22) to
write

P `,a(ω) =
e2

~

∫
d3k

8π3

∑
m6=n

fnm
R`,a

nm(k)rb
mn(k)

ωmn(k)− ω − iη
Eb(ω)

≡ ~ξ`,ab(ω)Eb(ω), (3.23)

as the corresponding polarization of the system's layer, `th, from where Eq. (3.4)
could be obtained.

To obtain Eq. (3.16) we proceed as follow. We write the �rst term of
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Eq. (3.14) as

η`,abc ∝ i|e|3

2~2

∑
m6=n

fnm

(∫
k>0

∆`,a
mn(k)R`,c

nm(k)rb
mn(k)

ωmn(k)− ω − iη

+
∫
k<0

∆`,a
mn(k)R`,c

nm(k)rb
mn(k)

ωmn(k)− ω − iη

)d3k

8π3

=
i|e|3

2~2

∑
m6=n

fnm

∫
k>0

d3k

8π3
∆`,a

mn(k)
R`,c

nm(k)rb
mn(k)−R`,c

mn(k)rb
nm(k)

ωmn(k)− ω − iη

=
i|e|3

2~2

∑
m6=n

fnm

∫
k>0

d3k

8π3
∆`,a

mn(k)
R`,c

nm(k)rb
mn(k)−R`,c∗

nm (k)rb∗
mn(k)

ωmn(k)− ω − iη

=
−|e|3

2~2

∑
m6=n

fnm

∫
k>0

d3k

8π3
∆`,a

mn(k)
2Im[R`,c

nm(k)rb
mn(k)]

ωmn(k)− ω − iη

=
−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

Im[R`,c
nm(k)rb

mn(k)]
ωmn(k)− ω − iη

, (3.24)

where we recall that ∆`,a
nm(k) is a real quantity, and that due to time-reversal

invariance ra
nm(−k) = ra

mn(k) and R`,a
nm(−k) = R`,a

mn(k) is satis�ed. Likewise,
the second term of Eq. (3.14) could be deduced, so we obtain

η`,abc(0;ω,−ω) =
−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

( Im[R`,c
nm(k)rb

mn(k)]
ωmn(k)− ω − iη

− Im[R`,b
mn(k)rc

nm(k)]
ωmn(k)− ω + iη

)
. (3.25)

Now, we prove several properties of η`,abc(0;ω,−ω) from the equation above.
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For instance

η`,abc(0;−ω, ω) =
−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

( Im[R`,c
nm(k)rb

mn(k)]
ωmn(k) + ω − iη

− Im[R`,b
mn(k)rc

nm(k)]
ωmn(k) + ω + iη

)
=

−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

( Im[R`,c
nm(k)rb

mn(k)]
−ωnm(k) + ω − iη

− Im[R`,b
mn(k)rc

nm(k)]
−ωnm(k) + ω + iη

)
=

−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

(−Im[R`,c
nm(k)rb

mn(k)]
ωnm(k)− ω + iη

+
Im[R`,b

mn(k)rc
nm(k)]

ωnm(k)− ω − iη

)
=

−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fmn∆`,a
nm(k)

(−Im[R`,c
mn(k)rb

nm(k)]
ωmn(k)− ω + iη

+
Im[R`,b

nm(k)rc
mn(k)]

ωmn(k)− ω − iη

)
=

−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

( Im[R`,c
nm(k)rb

mn(k)]
ωmn(k)− ω + iη

− Im[R`,b
mn(k)rc

nm(k)]
ωmn(k)− ω − iη

)
= η`,abc∗(0;ω,−ω), (3.26)

Where the second step we simply did ωmn(k) = −ωnm(k); in the third step
we factorize a minus sign in the energy denominators; in fourth step we ex-
changed the dummy indices m and n; �fth line we used the following identities
Im[AmnBnm] = −Im[AnmBmn] and fmn∆`,a(k)nm = fnm∆`,a(k)mn; �nally in
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the last step we just followed trivially from the �fth step Also,

η`,acb(0;ω,−ω) =
−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

( Im[R`,b
nm(k)rc

mn(k)]
ωmn(k)− ω − iη

− Im[R`,c
mn(k)rb

nm(k)]
ωmn(k)− ω + iη

)
=

−|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

(−Im[R`,b
mn(k)rc

nm(k)]
ωmn(k)− ω − iη

+
Im[R`,c

nm(k)rb
mn(k)]

ωmn(k)− ω + iη

)
=

|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

( Im[R`,b
mn(k)rc

nm(k)]
ωmn(k)− ω − iη

− Im[R`,c
nm(k)rb

mn(k)]
ωmn(k)− ω + iη

)
= −η`,abc(0;ω,−ω), (3.27)

where in the second step we use the identity Im[AmnBnm] = −Im[AnmBmn]
and in the third step we simply factorized a minus sign. The last line of
Eq. (3.27) follows by comparing the obtained expression of third step with
Eq. (3.14). Similarly we can prove that η`,abc(0;−ω, ω) = −η`,abc(0;ω,−ω).

Using limη→0 1/(x− iη) = P(1/x) + iπδ(x), with P the principal part, we
get from Eq. (3.25) that

η`,abc
i (0;ω,−ω) =

−π|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

(
Im[R`,c

nm(k)rb
mn(k)]

+ Im[R`,b
mn(k)rc

nm(k)]
)
δ(ωmn(k)− ω)

=
π|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆`,a
mn(k)

(
Im[R`,c

mn(k)rb
nm(k)]

+ Im[R`,b
nm(k)rc

mn(k)]
)
δ(ωmn(k)− ω), (3.28)

which gives η`,abc
2 (0;ω,−ω) = iη`,abc

i (0;ω,−ω) from Eq. (3.16). If we replace
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R`,a
nm(k) by ra

nm(k) and ∆`,a
mn(k) by ∆a

mn(k) in the previous equation we get

ηabc
2 (0;ω,−ω) =

iπ|e|3

~2

∫
d3k

8π3

∑
m6=n

fnm∆a
mn(k)Im[rc

mn(k)rb
mn(k)]

× δ(ωmn(k)− ω)

=
π|e|3

2~2

∫
d3k

8π3

∑
m6=n

fnm∆a
mn(k)[rc

mn(k), rb
nm(k)]

× δ(ωmn(k)− ω), (3.29)

where we removed the ` superscript since the expression no longer depends on
its value, and used 2iIm[AnmBmn] = AnmBmn−BnmAmn ≡ [Anm, Bmn]. The
above expression is the same as that one derived by Sipe and Shkrebtii valid
for a bulk semiconductor [SS00].
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4.1 Summary

We present a study of electron spin-injection at several Si(111) surfaces pro-
duced by optical excitation above the direct gap with circularly polarized light.
Calculations where performed on H, As and In covered Si(111) surfaces. The
reconstruction of each of these surfaces is well understood and experimentally
achievable. We use a full-band electronic structure pseudopotential scheme to
calculate the rate of spin and carrier injection, and then calculate the degree
of spin polarization up to energies well above the surface modi�ed band gap.
The model accounts for the coherences excited in a semiconductor with spin-
split bands, and a �layer-by-layer� analysis of the response is implemented.
The relatively low symmetry of the surfaces leads to spin-injection from direct
transitions which can be up to 52% for the In covered Si(111) surface. For
comparison, in bulk Si the maximum polarization calculated is 30%, and only
over a very narrow range of incident frequencies. The spectra for all of the
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surfaces shows an interesting behavior as a function of the energy of incidence
of the circularly polarized light.

4.2 Introduction

The study of spin injection into a non-magnetic semiconductor is an important
problem in condensed matter physics. The optical excitation of semiconductors
with circularly polarized light creates spin-polarized electrons in the conduc-
tion bands [DP84]. The idea of using light for spin injection and detection
dates back to the late 1960 [Lam68], and later it was shown that conversion of
angular momentum of light into electron spin and vice versa is very e�cient in
III-V semiconductors [DP84]. Known as �optical orientation�, this e�ect serves
as an important tool in the �eld of spintronics, where it is used to spin polar-
ize electrons. The injection of spin and the degree of spin polarization in bulk
GaAs, Si and CdSe semiconductors has been reported recently [NRSM+07],
and a detailed comparison between a 30-band k · p model and a full band
structure LDA (Local Density Approximation) calculation was given. Some
of the results obtained could be explained by using well-known features of
the band structure and selection rules around the Γ points of GaAs and Si.
However, for photon energies well above the band gap the selection rules are
more complicated and full band structure calculations are required to calcu-
late the degree of spin polarization. For many semiconductors no k ·p models
are available. Results of Nastos et al. [NRSM+07] indicate that the degree of
spin polarization can be reliably calculated with LDA band structures. This
suggests a program of study of optical orientation based on LDA calculations.
Both the ubiquitous presence of a surface in any semiconductor sample, and
the steady progress in the miniaturization of electronic semiconductor compo-
nents, suggests a focus on the spin injected at the surface of semiconductors.
In this chapter we report the �rst calculations of the degree of spin polar-
ization at semiconductors surfaces produced by absorption of light across the
direct gap. The Si semiconductor was chosen for this study because it is, by
far, the most used semiconductor. H, As and In terminated as well as clean
surfaces were studied. The criteria for choosing these surfaces as representa-
tive examples is that their atomic reconstruction is well understood and that
the surfaces are experimentally achievable. To model these surfaces we use
a slab approach and develop a scheme that allows us to study the layer-by-
layer [HDSO03, CMS+03, MNAS06, CMN+] contribution. To calculate the
rate of spin injection, we use Density Functional Theory (DFT). We restrict
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ourselves to pseudopotential band structures based on the LDA + scissors cor-
rection, since this is the simplest and still the most popular approach LDA
systematically underestimates the band gap, therefore a band gap correction,
is required. This rigidly shifts the conduction band energies by a constant
amount. The excitation of spin-split bands by the �nite energy width of the
laser pulse creates coherences that are properly accounted for in our description
of the optical spin injection of a semi-in�nite semiconductor.

We show that the lower symmetry of the reconstructed surfaces taken as
examples exhibits a well di�erentiated spectra for the degree of spin polariza-
tion. For instance, in the In covered Si(111) surface, the spin polarization is
increased to 52% from the bulk Si value of 30%, and a signi�cant value for
the spin polarization occurs over a wider frequency range. This indicates that
surfaces of semiconductors provide venues for the optical injection of spin that
are interesting as well as novel.

This chapter is organized as follows: in Section 4.3 we present a derivation
of the spin and carrier injection rate for any layer of a slab, and their surface
related counterparts. In Section 4.4 the computational details of the calculation
are given. In Section 4.5 The results obtained for the degree of spin polarization
of the chosen surfaces are presented and discussed, and �nally in Section 4.6
conclusions are given.

4.3 Theory

In this section the required expressions to evaluate the degree of spin polar-
ization for a clean, cold-semiconducting surface are derived. To model the
semi-in�nite medium we use a slab consisting of N atomic layers inside a su-
percell of total height L and volume Ω = AL, where A is the surface area of the
unit cell. The supercell includes the required vacuum region to use a repeated
slab scheme.

In a slab calculation, not only one often wants to calculate the response
from one of the two halves of the slab but also from a particular layer of the
slab. A convenient way to accomplish the separation of the response of any
layer is to through the use of the so called �cut function�, F`(z), as a top-hat
cut function that selects a given layer,

F`(z) = Θ(z − z` + ∆b
`)Θ(z` − z + ∆f

` ), (4.1)

where Θ is the Heaviside function. Here, ∆f/b
` is the distance that the `-th layer

extends towards the front (f) or back (b) from its z` position. Thus ∆f
` + ∆b

`
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is the thickness of layer `. The cut function was originally used by Hogan et

al. [HDSO03] and Castillo et al. [CMS+03], and more recently was put on a
more solid basis through a microscopic calculation of the linear optical response
of a surface by Mendoza et al, [MNAS06] and in the optical coherent control of
the injection current at a surface by Cabellos et al. [CMN+]. In order to obtain
the spin injection rate for a particular layer of the slab, we proceed as follows.
First we realized that conduction bands in a semiconductor are spin-split by a
small amount [Dre55, CvSK06], typically smaller than the energy width of the
laser pulse, and so the external pulse excites a coherent superposition of the
two conduction spin-split states. Even for very long pulses with narrow energy
widths, dephasing e�ects lead to an energy width of the bands large enough
so that spin-split states can become quasidegenerate. Within the independent
particle approximation, these coherences can be calculated by using a multiple
scale approach to solve the following equation of motion for the scaled single
particle density matrix ρmn(k; t) [Boo57],

∂ρmn(k; t)
∂t

= −i(ωmn(k)− iε)− i

~
([Hext(t), ρ(k; t)])mn.

Assuming that the conduction bands c and c′ are close to one another, and that
the pulse is short enough so that the energy width overlaps the two bands, the
result for the o�-diagonal component, ρcc′ , where c and c′ are quasi-degenerate
conduction states, is given by Nastos et al. [NRSM+07] as

∂ρcc′

∂t
= −i(ωcc′ − iε)ρcc′ −

e2Eb∗(ω)Ec(ω)
i~2

×
∑

v

rbvc′r
c
cv

(
1

ω − ωc′v − iε
− 1
ω − ωcv + iε

)
, (4.2)

where we have assumed a perturbation of the form Hext(t) = −eraEa(t), with
e the electron charge, r the position operator and E(t) = E(ω) exp(−iωt) +
E∗(ω) exp(iωt), being the Maxwell �eld. Many-particle e�ects and phonon
scattering are neglected. In the equation above, racv(k) = va

cv(k)/iωcv(k) are
the o�-diagonal position matrix elements, va

cv(k) are the matrix elements of
the velocities, ε → 0, and the sum over v is limited to valence bands. Also,
the ground state Hamiltonian, H0, gives H0|nk〉 = ~ωn(k)|nk〉 where ~ωn(k)
is the energy of the electronic band n, with crystal momentum k, |nk〉 is the
Bloch state, and ωmn(k) = ωm(k) − ωn(k). We consider the bands to be
either totally empty (conduction bands n = c), or totally full (valence bands
n = v). The superscript in Roman characters indicate Cartesian coordinates,
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when repeated, as in the above expressions, are to be summed over. The
implicit dependence of k is assumed in the corresponding quantities in order
to save space. Throughout this chapter we assume, that the hole spins relax
very quickly and we neglect them [DP84], focusing only on the electron spins.
Measurements have led to estimates of 110 fs for the heavy-hole spin life time
in GaAs [HT02].

Furthemore, we change to the so called interaction representation, by which
any operator O is replaced by

Õ = eiH0t/~Oe−iH0t/~,

such that the matrix elements are now given by,

Õmn(k) = 〈mk|eiH0t/~Oe−iH0t/~|nk〉 = eiωmn(k)tOmn(k). (4.3)

Taking ε→ 0 in the �rst term of Eq. (4.2) and using Eq. (4.3) we get

∂ρ̃cc′(k)
∂t

=
e2Eb(−ω)Ec(ω)

i~2
eiωcc′ t

×
∑

v

rbvc′r
c
cv

(
1

ω − ωc′v − iε
− 1
ω − ωcv + iε

)
, (4.4)

where ε→ 0 still needs to be taken, and we have used E∗(ω) = E(−ω). Now,
we introduce the top-hat cut function, F`(z), of Eq. (3.2) in order to obtain
the `-th layer contribution to the density matrix ρ̃cc′ as

∂

∂t
〈ck|F`(z)ρ̃|c′k〉 =

e2Eb(−ω)Ec(ω)
i~2

eiωcc′ t
∑

v

〈vk|F`(z)rb|c′k〉〈ck|rc|vk〉

×
(

1
ω − ωc′v − iε

− 1
ω − ωcv + iε

)
,

and de�ne ρ̃`
cc′(k) ≡ 〈ck|F`(z)ρ̃|c′k〉 and R`,b

nm(k) ≡ 〈nk|F`(z)rb|mk〉 (with
n 6= m), to get

∂ρ̃`
cc′

∂t
=

e2

i~2
eiωcc′ t

∑
v

R`,b
vc′r

c
cv

(
1

ω − ωc′v − iε
− 1
ω − ωcv + iε

)
× Eb(−ω)Ec(ω), (4.5)

as the cc′ matrix elements for the single particle density of the `th layer (in
the interaction picture). Following Mendoza et al. [MNAS06], the modi�ed



60 Chapter 4. Optical spin injection at semiconductor surfaces

position operator matrix elements are obtained through Eq. (3.5). The spin
injection rate into the conduction bands of a semiconductor for the `-th layer,
is calculated through Ṡ`,a = Tr( ˙̃ρ`S̃a), with Tr the trace. From Eq. (4.5) we
get

Ṡ`,a =
e2

i~2

∫
d3k

8π3

∑
vcc′

′ Sa
c′cR

`,b
vc′r

c
cv

(
1

ω − ωc′v − iε
− 1
ω − ωcv + iε

)
× Eb(−ω)Ec(ω), (4.6)

where we used S̃a
c′c = eiωc′ctSa

c′c (see Eq. (4.3)). The prime on the summation
indicates that the sum is to be done over pairs of conduction bands c and c′

that are quasi-degenerate. We classify bands separated by no more than δE
to be quasi degenerate, where the de�ning energy δE is chosen such that it is
approximately both a typical laser pulse energy width and the room tempera-
ture energy. We �nd that for δE ∼ 30 meV the results are rather insensitive
to the exact value of δE. In Eq. (4.6), Sa

c′c(k), are the matrix elements of the
spin operator, Sa = (~/2)σa, with σa the begin Pauli matrices

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
.

From Eq. (4.6) we see that the spin injection rate is proportional to the �eld
intensity [MZ84, NBS03, NRSM+07], thus it is convenient to write it as,

Ṡ`,a = ζ`,abc(ω)Eb(−ω)Ec(ω), (4.7)

where

ζ`,abc(ω) =
e2

i~2

∫
d3k

8π3

∑
vcc′

′ Sa
c′c(k)R`,b

vc′(k)rccv(k)

×
(

1
ω − ωc′v(k)− iε

− 1
ω − ωcv(k) + iε

)
. (4.8)

is the tensor purely imaginary that allow us to calculate the `-th layer spin
injection rate.

Using time-reversal invariance [notd], Eq. (4.8) can be rewritten as

ζ`,abc(ω) =
e2

~2

∫
d3k

8π3

∑
vcc′

′ Im[Sa
c′c(k)R`,b

vc′(k)rccv(k)]

×
(

1
ω − ωc′v(k)− iε

− 1
ω − ωcv(k) + iε

)
.
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Taking ε→ 0, leads to

ζ`,abc(ω) =
e2

~2

∫
d3k

8π3

∑
vcc′

′ Im[Sa
c′c(k)R`,b

vc′(k)rccv(k)]

×
(
P
( ωcc′

(ωcv(k)− ω)(ωc′v(k)− ω)

)
+ iπ

(
δ(ωcv(k)− ω) + δ(ωc′v(k)− ω)

))
,

where P denotes the Cauchy principal part. Since ωcc′ is small we can neglect
the principal part term and obtain that

ζ`,abc(ω) =
iπe2

~2

∫
d3k

8π3

∑
vcc′

′ Im[Sa
c′c(k)R`,b

vc′(k)rccv(k)

+ Sa
cc′(k)R`,b

vc (k)rcc′v(k)]δ(ωcv(k)− ω), (4.9)

We �nish this section presenting the carrier injection rate, ṅ`, for the `-th
layer. With the help of Eq. (4.5) we obtain that

ṅ` = ξ`,bc(ω)Eb(−ω)Ec(ω), (4.10)

with

ξ`,ab(ω) =
2πe2

~2

∫
d3k

8π3

∑
vc

Re[R`,a
vc (k)rbcv(k)]δ(ωcv(k)− ω), (4.11)

begin the carrier injection tensor, this result agrees with that reported by Ca-
bellos et al. [CMN+] For a bulk calculation we simply take R`,a

mn(k) → ramn(k)
in Eq. (4.9) and Eq. (4.11) to obtain ζB,abc(ω) and ξB,ab(ω), respectively.
These bulk (B) expressions are the same as those of Nastos et al. [NRSM+07].

4.3.1 Surface responses

Once that we have the expressions for the carrier injection rate and spin injec-
tion rate for the `-th layer, we proceed to de�ne their surface related quantities.
The slab that we have useed to represent the semi-in�nite system, extends N
atomic layers, from the �front� surface to the �back�surface. N is chosen such
that one gets converged results, i.e. for the considered physical quantities that
beyond some value of N ≥ Nc its corresponding spectrum do not change sig-
ni�cantly. In principle, for a given layer ` in the middle of the slab or close
to it, called `B, when N ≥ Nc, the values of ṅ`=`B and Ṡ`=`B should match
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the bulk values. Indeed, one should expect that for a large enough slab, the
evaluation of ξ`B ,bc from Eq. (4.11) and ζ`B ,abc from Eq. (4.9), should give the
corresponding bulk values for ξB,bc and ζB,abc, respectively [note].

Both ṅ` and Ṡ`, are de�ned per unit volume, and as such are not additive
quantities. To overcome this, we simply multiply them by the normalizing
unit cell volume Ω, add them and then divide over A, to get the corresponding
surface related quantities per unit area. Therefore, we can easily de�ne a
surface response through the following general expression,

OS =
1
A

`B∑
`=1

(
ΩO` − ΩO`B

)
(N ≥ Nc), (4.12)

where O stands for the sought response. Of course, one can also describe the
above expression as the response coming from the �front� surface of the slab,
while

ObS =
1
A

N∑
`=`B

(
ΩO` − ΩO`B

)
(N ≥ Nc),

would be the response of the �back� surface of the slab. For symmetric slabs OS

would be trivially related to ObS . We see that the above de�nition, Eq. (4.12),
would give converged results since even if we use a very large slab with N >>

Nc, the sum would be �nite, after some large value of ˜̀ < `B one would be
at a bulk-like layer and thus O ˜̀' O`B and the summand would be zero from
this value until ˜̀= `B.

We introduce volume independent quantities by putting a tilde over them,
then Õ = ΩO, and thus we can write with the help of Eq. (4.12)

ξS,ab(ω) =
1
A

( `B∑
`=1

ξ̃`,ab(ω)− `B ξ̃
`B ,ab(ω)

)
(N ≥ Nc), (4.13)

as the response tensor that gives the surface value of the number of injected
electrons into the conduction band per unit area, and

ζS,abc(ω) =
1
A

( `B∑
`=1

ζ̃`,abc(ω)− `B ζ̃
`B ,abc(ω)

)
(N ≥ Nc), (4.14)

as the response tensor that gives the surface value of the spin injection rate per
unit area. We have used the fact that ξ̃`B ,ab(ω) and ζ̃`B ,abc(ω) do not depend
on `. Although ζS,abc(ω) is useful for understanding the total surface spin
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injection, a more physically transparent quantity useful for characterizing the
spin-injection is the surface degree of spin polarization(DSP), which is de�ned
as

DS,a =
ṠS,a

(~/2)ṅS
, (4.15)

where

ṠS,a = ζS,abc(ω)Eb(−ω)Ec(ω), (4.16)

is the surface spin injection and

ṅS = ξS,bc(ω)Eb(−ω)Ec(ω). (4.17)

is the surface carrier injection.

4.4 Computational details

Our calculations are done by using the ABINIT plane-wave code [XBC+02]. A
self-consistent calculation was done to determine the relaxed surface structures
and their Kohn-Sham potential. We used the separable Hartwigsen-Goedecker-
Hutter (HGH) pseudopotentials [HGH98] within the LDA as parametrized
by Goedecker et al. [GTH96]. These pseudopotentials are a common choice
in ab initio studies investigating materials where the spin-orbit contribution
cannot be neglected. In our calculations, we exclude the semi-core states,
though they can be included with more computational e�ort. Once the Kohn-
Sham potential is determined, we �nd the wavefunctions, and then the matrix
elements are calculated for k-points on a specially determined tetrahedral grid.
This grid is used in the integrals of Eqs. (4.9) and (4.11), that are calculated
through a linear analytic tetrahedral integration method [NRSM+07]. With
the parameters shown in Table 4.1, we �nd convergence of the results for all
the quantities of interest in this work, with respect to the number of layers in
the slab, the number of k-points, and the cut-o� energy.

The ABINIT code provides the plane-wave coe�cients C↑,↓
nk (G) of the

spinor wave function expansion

ψnk(r) =
∑
G

(
C↑

nk(G)
C↓

nk(G)

)
ei(k+G)·r, (4.18)
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Surface # k # Atomic layers # Atoms ∆ (eV)
Clean Si(111)(2× 1) 109 14 28 0.45
Si(111)(1× 1) :As 109 1-As+46-Si+1-As=48 48 1.14
Si(111)(1× 1) :H 109 1-H+46-Si+1-H=48 48 1.55

Si(111)(
√

3×
√

3) :In 91 1-In+12-Si+1-In=14 38 1.01

Table 4.1: Convergence parameters for the calculation of ṠS,a and ṅS and the
corresponding scissors correction ∆. In all surfaces the cut-o� energy is 10 Ha.

where the up(down) arrow denotes the up(down) component of the spinor.
From Mendoza et al. [MNAS06], we �nd that the matrix elements of the ve-
locity, Eq. (3.5), in function of the plane-wave coe�cients C↑,↓

nk (G) are given
by

Va
mn(`;k) =

~
2

∑
G,G′

(
C↑∗

mk(G)C↑
nk(G′) + C↓∗

mk(G)C↓
nk(G′)

)
× (2ka +Ga +G′a)δG‖,G′

‖
f`(G⊥ −G′

⊥). (4.19)

where the reciprocal lattice vectors G are decomposed into components par-
allel, G‖, and perpendicular G⊥ẑ, to the surface so that G = G‖ + G⊥ẑ,
and

f`(g) =
1
L

∫ z`+∆f
`

z`−∆b
`

eigz dz. (4.20)

The double-summation over the G-vectors can be e�ciently done by creating a
pointer array to identify all the plane-wave coe�cients associated with the same
G‖. We take z` at the center of an atom that belongs to layer `. Thus Eq. (4.9)
and Eq. (4.11) give the `-th atomic layer contribution to the spin injection rate
and carrier injection rate of the slab. Note that if we take the cut function
F`(z) to be unity through the whole slab, then f`(g) = δg,0 and from Eq. (4.19)
one would recover the results for the entire slab. The contributions from the
nonlocal part of the pseudopotential and from the spin-orbit interaction to
the velocity matrix elements are excluded. They are not readily available
and, to our knowledge, no e�cient scheme that include simultaneously has
been presented. Yet, it has been demonstrated that these contributions are
small for Si [MNAS06, RN91, KS97]. It is well known that the DFT generally
underestimates the band gap of insulators [JG89, GSS86]. A usual approach
to overcome this problem is the use of the so-called scissors correction, in
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surface ζabc(ω) = −ζ`,acb(ω)

Si(111)(1× 1) :As xzy yxz zxy

Si(111)(1× 1) :H xzy yxz zxy

Si(111)(2× 1) xzy xyx yxz zxy zyz

Si(111)(
√

3×
√

3) :In xzy xyx yxz zxy zyz

Table 4.2: Non-zero components of the layer spin injection tensor, ζ`,abc(ω),
for the surfaces considered in this work.

which the conduction bands are rigidly shifted up in energy by an amount ∆
that corrects the band gap to the experimental value (see Table 4.1). The
result from an analysis of the scissors-modi�ed Hamiltonian is that the matrix
elements Sa

mn(k), ramn(k) and Ra,`
mn(k) are the same for both the LDA and

the scissored Hamiltonian [CME+09, NOSS05, DSG93]. Since the energies are
shifted, the only signi�cant consequence is in the δ function of Eq. (4.9) and
Eq. (4.11), and so the spectra corresponding to the scissored Hamiltonian are
obtained by simply translating in energy the spectra calculated from the LDA
Hamiltonian by the scissors correction ∆.

4.5 Results

In Fig. 4.1 we show the di�erent Si(111) surfaces for which we calculate the
surface DSP, DS,a. These surfaces are chosen on the basis that they are ex-
perimentally accessible and their reconstruction is well understood. We take
the surface parallel to the x-y plane, with the surface-normal in the +z direc-
tion. The surfaces are the clean surface with a 2 × 1 Pandey reconstruction
characterized by buckled dimers forming zigzag chains along the y ([001̄]) di-
rection [Pan82, RL99], for which ξS,xx(ω) 6= ξS,yy(ω) [CCSC84]; the As and
H covered surfaces with a 1 × 1 surface reconstruction, exhibitis a bulk-like
hexagonal symmetry, where ξS,xx(ω) = ξS,yy(ω); and �nally, the In covered
surface, which exhibits a rather large reconstruction with a (

√
3 ×

√
3)R30◦

unit cell, with 3 Si atoms by atomic layer beneath the surface and only one
In atom at the surface, with ξS,xx(ω) 6= ξS,yy(ω). In Table 4.2 we show the
nonzero components of ζ`,abc(ω) for all the surfaces treated in this work, satisfy
ζ`,abc(ω) = −ζ`,acb(ω) as can be proved from Eq. (4.9).

The slabs used to represent the surfaces mentionated above are all cen-
trosymmetric and thus their front and back surface layer are equivalent. This
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Figure 4.1: Top and side views of the (a) H and (b) As-covered Si(111) surfaces
with a 1 × 1 relaxed unit cell; (c) clean Si(111) surface with a 2 × 1 relaxed
unit cell; (d) In-covered Si(111) surface that relaxes with a (

√
3 ×

√
3)R30◦

unit cell. All surface unit cells are denoted by dotted lines.

simpli�es the expression for ζS,abc(ω) and ξS,ab(ω). For instance we can write

`B∑
`=1

ζ̃`,abc(ω) ≡ ζ̃half−slab,abc(ω) =
ζ̃slab,abc(ω)

2
, (4.21)

where the half-slab response which calculated by taking F`(z) = 1 either in the
�rst or second half of the slab. Since the slab is centrosymmetric, this should
be half of the full slab result, which is obtained by taking F`(z) = 1 in the
whole slab. For this case, one actually does the calculation taking R`,a

mn → ramn,
that is, like a bulk calculation with the unit cell being the whole slab. Then,
using Eq. (4.21) in Eq. (4.14) we get

ζS,abc(ω) =
Ω
A

(ζslab,abc(ω)
2

− `Bζ
`B ,abc(ω)

)
(N ≥ Nc). (4.22)
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Likewise, Eq. (4.13) reduces to

ξS,bc(ω) =
Ω
A

(ξslab,bc(ω)
2

− `Bξ
`B ,bc(ω)

)
(N ≥ Nc). (4.23)

The derivation of Eq. (4.7) and Eq. (4.10) implicitly takes the electric �eld
to be uniform in the region of interest. This is clearly inappropriate for the
z component of the electric �eld, which for semiconductors it can change by
orders of magnitude as one moves from vacuum to the semiconductor. Thus,
all aspects of the optical response at an interface owing to this component
of the electric �eld would require a self-consistent calculation of the variation
of Ez across the surface region. Although the calculation of this variation
is an important issue, we do not address it here. Instead, we focus on the
simplest experimental geometry of normal incidence. Then, since the electric
�eld lies in the plane of the interface, it can be taken, to be uniform through
the interface region neglecting the local �eld corrections. Then, we take a
circularly left-polarized electric �eld propagating along the −z direction,

E(ω) =
E0√

2

(
x̂− iŷ

)
, (4.24)

with E0 being its intensity, thus Eq. (4.15) can be rewritten as

DS,z =
2ζ̂S,zxy(ω)

~ (ξS,xx(ω) + ξS,yy(ω)) /2
, (4.25)

where we wrote ζ̂S,zxy(ω) = iζS,zxy(ω), and we used the fact that for all the
surfaces considered here, ξS,ab(ω) is diagonal in the adopted reference frame.
We recall that the �rst super index in ζS,abc gives the direction of the induced
spin, whereas the last two are related to the exciting electric �eld. Thus, ζS,zxy

gives the spin spin injection rate with polarized along the z direction, which is
the direction of propagation of the driving electric �eld with components along
x and y.

Before we present the DSP for the above mentioned Si surfaces, we �rst
con�rm that our formalism to extract the surface response readily works. In
the top panel of Fig. 4.2, we show the layer spin-injection spectra ζ̃`,zxy(ω) for
the As terminated Si(111) surface. With ` = 1 that corresponds to the As
layer; with ` = 24 that corresponds to `B = 24 the middle layer of the slab;
we also show ζB,zxy(ω) corresponding to the bulk Si. Notice that ζ`=1,zxy(ω)
becomes non-zero at 2.2 eV, since the electronic surface sates induced by the
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Figure 4.2: In the top panel we show the layer spin-injection spectra ζ̃`,zxy(ω)
(bottom panel ~ξ̃`,xx(ω)) for the As-terminated Si(111) surface, where ` = 1
corresponds to spectra for the As layer, ` = 24 corresponds to the spectrum for
the middle of the slab, and the label Bulk corresponds to the bulk spectrum.

As layer reduce the direct energy gap value of bulk Si from 3.4 eV to 2.2 eV.
Thus, we see that ζ`B ,zxy(ω) is non-zero above 3.4 eV, and that it is very similar
to ζB,xyz(ω). Our calculated, spin injection spectrum, ζB,zxy(ω) agrees with
that reported by Nastos et al. [NRSM+07]. In the bottom panel of Fig. 4.2
we show the carrier injection tensor spectra ~ξ̃`,xx = ~ξ̃`,yy (a dimensionless
quantity) for the same cases as in the top panel. Again, we see that the As-
related signal is well below the bulk energy gap, and that the corresponding
spectra for `B and bulk are almost identical. Thus, a very clear picture emerges
from our formalism. For energies above at the bulk energy gap the response
coming from the middle of the slab is almost identical to the bulk response, and
for energies above at the surface modi�ed energy gap, the response is surface
related. We see that the surface response may also overlap with the bulk
response, however from this energy on, the response would be bulk dominated.
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Figure 4.3: ζ`,zxy(ω) for the H-covered Si(111) surface, where ` = 1 corre-
sponds to the H layer, ` = 24 to the middle of the slab, and the half-slab
value.

Therefore, our scheme clearly shows that for �low� energies the response is
surface related, whereas for �high� energies the response is bulk related. To
reinforce this result, we show in Fig. 4.3 the calculated values of the layer
spin injection spectra, ζ̃`,zxy(ω), for the H-terminated Si(111) surface. The
H atoms quench the electronic surface states, and as a result we see that
|ζ̃H,xyz(ω)| << |ζ̃`B ,xyz(ω)| ∼ |ζ̃half−slab,xyz(ω)|, and thus for this surface there
is no �surface� response since it entirely overlaps with the bulk response. This
shows that the surface response ought to be calculated with care, since one
has to calculate both the surface response and the bulk response to clearly
separate the latter from the former. If we apply Eq. (4.15) naively we would
get not �nite values which of course is inconsistent, but all this means that
there is no �low� energy surface response for the H covered Si(111) surface.

Now, we move to the DSP results. In Fig. 4.4 we show the DSP spectrum
DS,z for the clean Si(111) surface. Wherein we see a sharp onset of DS,z just
above the band gap edge, with a maximum signal of 36%; then the spectrum
remains positive and is almost zero above ∼ 1 eV. In Fig. 4.5 we show the
DSP spectrum DS,z for the Si(111) As covered surface. Notice that as in the
previous surface, the signal rises sharply just after the band edge (2.2 eV) and
remains at ∼ 44% for almost 100 meV after the band gap edge. For energies
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Figure 4.4: We show the DSP spectrum Dz
s(ω), for the clean Si(111) surface

as a function of the incoming photon energy at normal incidence.

greater than 2.3 eV, DS,z starts to decay to zero almost monotonically. Finally,
in Fig. 4.6 we show the DSP spectrum DS,z for the In-covered Si(111) surface.
In contrast with the previous surfaces, we see a rich spectral dependence, and
that DS,z is mainly negative, meaning that the spin polarizes opposite to the
direction of the propagation of the left-circularly polarized electric �eld, that
is towards the surface. The onset of the signal DS,z is still at the band gap
edge wherein reaches a value of -34%, similar to the previous surfaces. The
maximum spin polarization value, -52%, is almost 120 meV above the band
gap. The DS,z spectrum shows a rapid change from -16% to 12% at a photon
energy of ∼ 2.23 eV, and above this value it is almost zero.

To understand the main features shown by the DSP spectrum DS,z(ω)
of any of the previous surfaces, we can analyse the corresponding surface spin
injection spectrum, ζS,zxy(ω), according to the contributions coming from elec-
tron transitions between any valence band to any conduction band. In particu-
lar, we show in Fig. 4.7 ζS,zxy(ω) for selected transitions between the spin-split
valence and conduction bands of the In-covered Si(111) surface. We label the
bands from the bottom conduction band c1, to the higher consecutive con-
duction bands as c2, c3, · · · , and from the top valence band v1, to the lower
consecutive valence bands as v2, v3, · · · . We see how the onset of the response
is mainly given by contributions of the transitions v1 → c1, v1 → c2, v2 → c1,
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Figure 4.5: We show the DSP spectrum DS,z(ω) for the As covered Si(111)
surface as a function of the incoming photon energy.

and v2 → c2, which are the transitions from the top-two spin-split valence
bands to the bottom-two spin-split conduction bands. From Fig. 4.7 we see
that these are the transitions that contribute to the �rst minimum of DS,z.
On the other hand, the minimum of ζS,zxy(ω) at around 2.09 eV mainly comes
from the transitions v1 → c3,4 and v2 → c3,4. It is interesting to note that
the v1,2 → c2 transitions contributes with an almost constant signal, whereas
the v1,2 → c1 transitions are positive around the 2.09 peak, thus subtracting
spin injection from the corresponding contributions of the other transitions. In
turn, these are the transitions responsible for the minimum around 2.09 of DS,z

shown in Fig. 4.6. We also see that a given transition injects spin with a very
di�erent spectral dependence, energy onset and sign, which could even change
as a function of photon energy. For example, we also show the contribution
from v3 → c1 that is responsible for the local maximum of the total spin injec-
tion signal at 2.03 eV. Likewise we can identify the transitions responsible for
any of the features in ζS,zxy(ω), and from these the actual line shape in DS,z

of the clean and As covered Si(111) surfaces shown in Fig. 4.4 and Fig. 4.5,
respectively.

From the calculations presented above we see that studied the surfaces have
a di�erent optical response depending on the magnitude and spectral shape of
the injected spin polarization. The onset of the spin injection spectrum oc-
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Figure 4.6: The DSP spectrum, DS,z(ω), for the In-covered Si(111) surface as
a function of the incoming photon energy.

curs at very di�erent energies, from the infrared, for the clean Si(111)2 × 1
surface, (see Fig. 4.4) to the visible (green-yellow), for the As-covered Si(111)
surface (see Fig. 4.5). The maximum value of DS,z(ω) can arise not just above
the band gap, but also at higher energies, as in the In-covered surface (see
Fig. 4.6). Part of the di�erence in the injected spin polarization can be under-
stood by the fact that the spin-orbit coupling, which allows the incident light
to distinguish between the two (opposite) electronic spin states, is larger for
heavier atoms. Thus the clean surface, has the smaller DS,z with a porcentage
value of 36%, followed in size by the As-covered surface with 44%, and then by
the In-terminated surface with 52%. It is very interesting that, except for the
H-covered Si(111) surface, where there is no �surface� contribution separable
from the �bulk� contribution, the other surfaces show a sizable surface spin po-
larization, specially when compared with bulk Si for which DB,z|max = −30%
at 3.4 eV [NRSM+07], thus indicating that the Si(111) surfaces could be better
candidates to optically polarize the electron spin with the added advantage of
having di�erent photon energies to chose from.
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bands (see text for details).

4.6 Conclusions

We have presented a systematic scheme to calculate the degree of spin polar-
ization from semiconductor surfaces, where the corresponding contribution of
any given layer of the slab can be calculated. The coherent excitation of the
spin-split bands of the semiconductor were included. We have neglected local
�eld and excitonic e�ects as well as the contributions to the velocity matrix
elements from the nonlocal part of the pseudopotential. The inclusion of any
of these e�ects is a theoretical challenge that should be addressed. We used the
ABINIT plane-wave code to calculate the degree of spin polarization for several
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Si(111) surfaces, and showed that these surfaces present very interesting spec-
tra. The largest degree with which the spin can be polarized is 36% at 0.5 eV
for the clean surface, 44% at 2.2 eV for the As-covered surface, and 52% at 2.08
eV for the In-covered surface. All of these values are larger than that of bulk
Si, which is only 30% at 3.4 eV. However, for the H-covered surface it is not
possible to separate the surface spin polarization from bulk spin polarization,
being what one should expect as the H atoms basically quench the surface elec-
tronic states. Since the degree of spin polarization has been measured in bulk
GaAs [BNK+05], and agrees rather well with the calculation [NRSM+07], we
hope that the present investigations will motivate corresponding experiments
at Si(111) surfaces. Appropriately chosen or designed surfaces are good venues
for the optical injection of spin polarized electrons and, needless to say, one can
use this fact either to characterize the surface itself, or to exploit the richness
of the e�ect for practical applications in spintronics.
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5.1 Summary

A full band-structure ab initio calculation of the degree of spin polarization
(DSP) in stressed bulk Si and bulk GaAs is reported. For Si, we found that
compressive stress causes the DSP signal peak to decrease slightly in magnitude
and to shift to higher energies. For expansive stress, the DSP signal shows a
notable enhancement, changing from -31.5% for the unstressed case to +50%
with only 1.5% of volumetric change. For GaAs, the only change induced
due to either expansive or compressive stress is an energy shift of the DSP
spectrum. This behaviour may serve to tune the DSP in semiconductors to a
suitable laser energy.

5.2 Introduction

The study of spin injection into a non-magnetic semiconductor is an important
�eld of research in condensed matter physics, known as spintronics, which
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has the potential of many applications [ZFS04]. The optical excitation of
semiconductors with circularly polarized light creates spin-polarized electrons
in the conduction bands [DP84]. The idea of using light for spin injection and
detection dates back to 1968 [Lam68]. Later it was shown that conversion of
angular momentum of light into electron spin and viceversa is very e�cient
in III-V semiconductors [DP84]. Known as �optical orientation�, this e�ect
serves as an important tool in the �eld of spintronics, where it is used to
spin-polarize electrons. The injection of spin and the DSP in bulk GaAs, Si
and CdSe semiconductors has been reported recently [NRSM+07], where a
detailed comparison between a 30-band k · p model and a full band structure
LDA (local density approximation) + scissors correction calculation was given.
Some of the results obtained could be explained simply by using well-known
features of the band structure and selection rules around the Γ points of GaAs
and Si. However, for photon energies well above the band gap, the selection
rules are more complicated, and full band structure calculations are required
to explore the DSP. For many semiconductors, like CdSe, no k · p models are
available, and the results of Nastos et al. [NRSM+07] indicate that the DSP
can be reliably calculated with LDA + scissors corrected band structures. This
suggests a program of study of optical orientation based on LDA + scissors
calculations.

The purpose of this chapter is to calculate the DSP in stressed bulk Si
and stressed bulk GaAs. We characterized the applied stress by isometric
volumetric strains, where the ratio of the volume at the stressed state to the
volume at the unstressed state is employed as the independent input variable.
We compute the DSP for a set of volumetric strains. To avoid structural
changes, which are reported to arise at about 10% of volumetric change [tur],
we restricted our computations between the range of 1.5% of expansive strain
and −1.5% of compressive strain.

The chapter is organized as follows: In Section 5.3 we brie�y describe the
theoretical approach for the calculation, in Section 5.4 the results are presented
and in Section 5.5 the conclusions are given.

5.3 Theory

The theory of DSP is laid out in the previous chapter (Chapter 4) where
we refer the reader for details. Here, we only reproduce the most important
expressions in order to calculate the DSP, which is formally de�ned along the
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�a� direction as

Da =
Ṡa

(~/2)ṅ
, (5.1)

where the rate of spin injection is given by Ṡa = ζabc(ω)Eb(−ω)Ec(ω) and the
rate of carrier injection by ṅ = ξab(ω)Eb(−ω)Ec(ω). Also,

ζabc(ω) =
iπe2

~2

∫
d3k

8π3

∑
vcc′

′ Im
[
Sa

c′c(k)rbvc′(k)rccv(k)

+ Sa
cc′(k)rbvc(k)rcc′v(k)

]
δ(ωcv(k)− ω), (5.2)

is the (purely imaginary) pseudo-tensor that allows us to calculate the spin
injection rate, and

ξab(ω) =
2πe2

~2

∫
d3k

8π3

∑
vc

Re[ravc(k)rbcv(k)]δ(ωcv(k)− ω), (5.3)

is the tensor that allows us to calculate the carrier injection. In the expres-
sions above we have substituted Ra

nm with its corresponding bulk value ra
nm

(see Eqs. 4.9 and 4.11). The roman Cartesian superscripts are summed over if
repeated. Eq. (5.2) takes into account the excited coherences of the conduc-
tion bands that are spin split by a small amount, typically smaller than the
laser pulse energy width. Thus, this pulse excites a coherent superposition of
two conduction bands. Even for very long pulses with narrow energy widths,
dephasing e�ects lead to an energy width of the bands large enough so that
spin-split states can become quasi-degenerate. Thus, these coherences were in-
cluded by solving the equation of motion for the single particle density matrix
with the use of a multiple scale approach [NRSM+07]. Therefore, the prime
in the sum of Eq. (5.2) is restricted to quasi-degenerated conduction bands
c and c′ that are closer than 30 meV, where this value is both a typical laser
pulse energy width and the room temperature energy [NRSM+07]. As we show
later, neglecting these coherences leads to wrong results. The matrix elements
of the position operator ranm(k), the spin operator Sa

nm(k), and the energy
di�erence between valence (v) and conduction (c) states, ωcv(k), are evaluated
for k-points on a specially determined tetrahedral grid. This grid is used in the
integrals of Eqs. (5.2) and (5.3) that are calculated through a linear analytic
tetrahedral integration method [NRSM+07]. We assume that the hole spins
relax very quickly and we neglect them [DP84], focusing only on the electron
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spins; measurements have led to estimates of 110 fs for the heavy-hole spin
life time in GaAs [HT02]. We mention that the theoretical scheme neglects
many particle e�ects, electron energy thermalization, electron-hole recombina-
tion and phonon interaction, the latter limits the results to absorption across
the direct band. The treatment of above e�ects is a theoretical challenge that
ought to be pursued.

5.4 Results

The calculations were performed in the framework of DFT within LDA +
scissors correction by using ABINIT plane-wave code [GBC+02]. To include
the spin-orbit interaction, we use the separable Hartwigsen-Goedecker-Hutter
pseudopotentials [HGH98] within LDA as parametrized by Goedecker et al. [GTH96].
We exclude the semi-core states and the contributions to the velocity matrix
elements from the nonlocal part of the pseudopotential. However, we know
that this contributions are small for Si [MNAS06, RN91, KS97]. The scissors
correction causes a rigid shift of the spectrum of Da along the energy axis by
0.87 eV for Si and 1.16 eV for GaAs, these values are required to increase the
LDA gap, at the Γ point, to their experimental value [CME+09, NOSS05].
Since the core electrons are neglected, we have 8 electrons in the primitive unit
cell with either spin up or spin down wave functions, and thus 8 valence bands.
Consequently we found converged results with just 8 conduction bands, along
with a cut-o� energy of 30 Hartree and 18424 k-points.

For Si and GaAs their corresponding crystal classes have the following
non-zero components for the spin injection tensor: ζzxy = ζyzx = ζxyz =
−ζzyx = −ζyxz = −ζxzy, and for carrier injection ξxx = ξyy = ξzz ≡ ξ. Using
a circularly left-polarized electric �eld propagating along the −z direction,
i.e. E = E0

(
x̂ − iŷ

)
/
√

2 with E0 being its intensity, we get the DSP along
the direction of propagation of the electric �eld as Dz = ζzxy/(~ξ/2) from
Eq. (5.1). Because of the relatively high symmetry of Si and GaAs, the exact
crystal cut is unimportant; the injected spin density will always be aligned
parallel or antiparallel to the laser beam. We characterized the applied stress
by isometric volumetric strains. Then, we de�ne σ = as/a0 as the ratio between
the lattice parameter of the stressed state, as, to the lattice parameter of the
unstressed state, a0, where a0 = 5.39 Å (5.53 Å), for the cubic unit cell of Si
(GaAs). We use as = σa0 as the independent variable to calculate Dz as a
function of σ.

The calculated DSP, Dz, as a function of the photon energy for Si at several
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Figure 5.1: Stress modulation of the DSP, Dz, as a function of photon energy
for bulk Si. Several spectra for di�erent percentage values of σ are shown,
where σ > 0 (σ < 0) is for expansive (compressive) stresses. The unstressed Dz

(σ = 0%) is shown by a red dotted line with a maximum value of |Dz| = 31.5%.
For σ = 1.5%, Dz|max = 50%. Neglecting the coherences in Eq. (5.2) leads to
a wrong spectrum as shown for σ = 1.5% (dash-dotted line). Each spectrum
has been o�set in the vertical axis for displaying purposes.

values of σ, including both expansive and compressive strains, along with the
unstressed (σ = 0) result is shown in Fig. 5.1, varying the porcentage value
of σ from −1.5% to 1.5%. The unstressed spectrum shows two main features:
one at 3.43 eV, just a few meV above the band gap with a −31.5% deep, and
the other at 3.59 eV with a 15% peak. As we compress the unit cell (σ < 0) we
see that the negative dip remains almost unchanged in magnitude and energy
position, however the positive peak moves towards higher energies, keeping
almost the same shape and showing a modest reduction to 11% at σ = −1.5%.
This situation changes radically when we expand the unit cell. Indeed, as σ
increases the negative gets narrower, it slightly moves to lower energies and
then disappears at σ = 1.403%. The positive peak, in turn, moves to lower
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Figure 5.2: Plot of the calculated spectrum of ζzxy(ω) (thick lines) and of the
spectrum of ~ξ(ω) (thin lines) for Si as a function of photon energy for three
di�erent values of strain σ. The horizontal arrows point to the corresponding
vertical scale of ζzxy(ω) (left) and ~ξ(ω) (right).

energies, increases its height, and its shape changes until rises sharply at the
band gap edge with a maximum percentage intensity of 50%. The spectrum
at σ = 1.5% of the Dz, only shows this positive peak that has the largest
|Dz| magnitude of all spectra. Thus, under expansive stress, bulk Si exhibits
a quite interesting response: the negative deep and positive peak shown in Dz

for the unstressed unit cell coalesce into a single positive peak at the band gap
edge with 75% of the spins polarized along the direction of propagation of the
optical beam [notf]. We have checked that for σ > 1.5%, the Dz only shifts
the spectrum to lower energies, retaining the magnitude of the DSP signal
peak at 50%. Nevertheless such large expansions may be experimentally more
di�cult to achieve [notg]. Also, in Fig. 5.1 and only for σ = 1.5%, we plot
Dz without coherences, that is equivalent to putting c = c′ in Eq. (5.2). We
see that coherences account for more than 70% of the total spectrum in this
calculation, and neglecting them leads to unphysical results.

In Fig. 5.2 we show the spectrum of the spin injection tensor, ζzxy(ω) and
the spectrum of carrier injection tensor, ~ξ(ω), for σ = 0,±1.5%. We remark
that in Gaussian units both tensors are dimensionless quantities. Notice that
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Figure 5.3: Stress modulation of the DSP, Dz, as function of photon energy
for bulk GaAs and for three values of strain (σ).

the onset of the spectra at the band gap edge is red-shifted in energy as σ
goes from −1.5% to 1.5%. For both σ = 0 and −1.5%, ζzxy(ω) is negative
just around above the onset, whereas it is positive for σ = 1.5% and rises very
sharply. For ~ξ(ω) we see that the rise of the signal at the onset also changes
with σ, being rather sharp for σ = 1.5%, as it is for ζzxy(ω). From these
results, one can understand the line shape of Dz shown in Fig. 5.1. Indeed,
the minimum (maximum) that is present in Dz, for σ = 0,−1.5%, comes from
the minimum (maximum) in ζzxy(ω), whereas the only maximum of Dz for
σ = 1.5%, near the band gap edge comes from the maximum of ζzxy(ω), but
then the next local maximum in ζzxy(ω), at around 3.5 eV, is barely seen in
Dz since, as shown in the Fig. 5.2, the corresponding ~ξ(ω) is rather large as
compared with ζzxy(ω). In other words, the DSP depends strongly on the �ne
interplay between the ability of polarizing the spin of the electrons, and the
number of electrons that are injected.

The calculated DSP spectrum, Dz as a function of the photon energy for
GaAs at three values of σ: one for expansive stress (σ = 1.5%), one for com-
pressive stress (σ = −1.5%) and the unstressed one(σ = 0%) are shown in
Fig. 5.3. The corresponding unstressed spectrum shows two positive peaks,
one at 1.5 eV, just at the band gap edge with a value of Dz = 50%, and the
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Figure 5.4: Plot of of the spectra of ζzxy(ω), for Si. The spectra correspond
to transitions from the top valence band (V ) to the bottom conduction band,
(C) for σ = 1.5% and σ = 0%.

other at 3.18 eV with a value of Dz = 30%. As we expand (compress) the
unit cell to σ = 1% (σ = −1%) we see that the Dz spectrum shifts almost
rigidly along the energy axis towards lower (higher) energies, with only a very
small change in the intensity of the peak at 3.1 eV. This behavior remains
valid for larger values of |σ|. For the unstressed case of GaAs, the 50% value of
the Dz has been con�rmed experimentally [BNK+05], and explained theoreti-
cally [NRSM+07], thus our calculated results indicate that either compressive
or expansive strain will only move the onset of the signal. This also shows that
the symmetry of the electronic band structure that leads to the results shown,
for σ = 0, remains basically the same as we apply the stress [NRSM+07], in
contrast with Si, where the changes of Dz are readily noticeable.

To gain an understanding of the rate of spin injection in bulk si we proceed
as follows. First we analyze the contribution of the di�erent transitions to
the spectrum of ζzxy(ω). In Fig. 5.4 we show ζzxy(ω) for the transitions from
the top valence band (V ) to the bottom conduction band (C), for σ = 0
and σ = 1.5%. These transitions have the most in�uential e�ect on the net
spin-injection rate right at the band gap edge. The V (C) band is doubly
degenerated due to the spin degree of freedom. These transitions for σ =
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0 have a ζzxy(ω) that is �rst negative from 3.40 eV util 3.58 eV, and then
becomes positive having a peak at around 3.63 and then decays to values to
close o zero above 3.86 eV. However, for the same transitions at σ = 1.5%,
the corresponding ζzxy(ω) is always positive and goes to almost zero above
3.9 eV. We note that for σ = 0 the signal shits in 200 meV above the band
gap, whereas for σ = 1.5% the signal kicks in just 32 meV above the band gap.
This large di�erence, in turn, gives the Dz observed in Fig. 5.1, i.e. for σ = 0
we have a broad minimum at 25 meV above the band gap edge, followed by a
broad maximum at 195 meV above the band gap edge, whereas for σ = 1.5%
we have a sudden build up of Dz at the band edge followed by a rapid decrease
of the signal to zero.

To further understand the results of the DSP, Dz, we show in Fig. 5.5
the relevant energy bands for Si and GaAs for the corresponding k values that
determine the onset ofDz for three values of σ. We show the allowed transitions
between the top-valence band (V ) and the bottom-conduction band (C) for
an energy range of 50 meV from the corresponding energy gap, Eg, of each σ.
Thus, we cover the spectra of Dz right at the onset (band gap edge) and 50 meV
above it. The e�ect of expanding (compressing) the unit cell gives a value of the
band gap, Eg, smaller (larger) than the corresponding value of the unstressed
unit cell. This, in turn, determines the onset of Dz seen in the �rst four �gures.
We notice that for σ = −1.5% and 0% the allowed transitions for Si are only
concentrated around the Γ point, whereas for σ = 1.5%, besides having a
similar allowed transition range around Γ, there is also a rather wide range
of allowed transitions along the Λ-k path in the Brillouin zone. This is due
to the top-valence and bottom-conduction bands being almost parallel (within
50 meV) for these values of k, a behavior that is absent for σ = 0,−1.5%.
Thus the expansion of the unit cell changes the band structure in such a way
that the bottom conduction band, along Λ, becomes (almost) parallel to the
top-valence band. For compression, the bottom conduction band does not
change its curvature and remains the same as the corresponding band of the
unstressed unit cell. The top valence band is almost insensitive to the change
of the unit cell, at least for the L-Γ path in the Brillouin zone, but of course
this k range is the only one relevant for the onset of the spin polarized signal.
We mention that we do not show the other energy bands, like the spin-orbit
split-o� band, for a clear presentation of the �gure, however all the bands
are properly taken into account in the calculation. In Fig. 5.5 we show the
value of the k-integrand of Eq. (5.2). We notice that for all three values of
σ, the integrand is negative for values of k around Γ, whereas for a large set
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Figure 5.5: The top panel shows the valence, V, and conduction, C, bands for
Si and GaAs (inset)for the corresponding k values that determine the onset
Dz for three values of σ. The valence bands are plotted with the same energy
scale and the conduction bands are separated in energy for displaying purposes.
The vertical lines are the allowed transitions between the top-valence, (V ),
and bottom-conduction, (C), bands for an energy range of 50 meV from the
corresponding energy gap, Eg, of each σ. The vertical axis is not drawn to scale
and the Eg(σ) is shown for reference. The bottom panel shows the integrand
of Eq. (5.2) for Si along the same Λ-k path. Note that no other energy bands
are shown, in particular the spin-orbit split-o� bands, although all the bands
are included in the calculation.

of values of k towards L along the Λ line, the integrand is positive. Thus, as
all the allowed transitions for σ = −1.5% and 0% are concentrated around Γ
the corresponding values of ζzxy(ω) are negative. In contrast, for σ = 1.5%
the number of allowed transitions along the Λ line, with a positive integrand,
are much greater than those around the Γ point, with negative integrand, thus
resulting in positive values for ζzxy(ω) and Dz as shown in Figs. 5.2, 5.4 and
5.1, respectively. On the other hand, as we can see from Fig. 5.5, for GaAs,
the all allowed transitions are concentrated around Γ, and the integrand (not
shown) is only positive for the three values of σ. As a result we observe in
Fig. 5.3, an almost rigid shift of the spectrum Dz as a function of σ, with no
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change of sign, in contrast to Si. A similar analysis could be carried out for
any other energy like, for instance, the sudden change of sign seen at ∼ 3.6 eV
in Fig. 5.4, where transitions from other energy bands would be responsible
for the signal.

5.5 Conclusions

We have presented a study of optical spin injection rate for stressed bulk Si
and stressed bulk GaAs. Both compressive and expansive stress can e�ectively
modulate the degree of spin polarization in these materials. For bulk Si, com-
pressive stress shifts the positive peak of Dz to higher energies and diminishes
the signal about 20% of its corresponding value for the unstressed case. On
the other hand, the negative dip remains almost unchanged both in energy
position and magnitude. On the contrary, for expansive stress we found that
the DSP signal just above the band gap is notably enhanced with respect to
that of unstressed spectrum. For 1.5% of volumetric change, the line shape
of the signal changes from negative deep and a positive peak to two positive
peaks, one dip at the band edge with 50% of DSP and the other with an almost
negligible magnitude. Thus, expansive strain changes the DSP just above the
band gap from a value of −31.5% of the unstressed case a value of 50%. Fur-
ther expansion shifts this positive peak to lower energies without changing its
magnitude. For bulk GaAs, compressive and expansive stress rigidly shift the
spectrum to higher or lower energies, respectively, maintaining the band gap
edge peak signal at 50%. The results presented in this chapter show that the
application of stress can be employed to tune the material to a suitable photon
energy at which the net value of DSP is highest, making this material just as
e�cient as GaAs. We believe this calculations may motivate researchers to
verify experimentally the theoretical results presented here.





Chapter 6

General conclusions

In the �rst part of this thesis we have derived the susceptibility tensors with
and without the scissors operator by solving the density matrix equation of mo-
tion through a perturbative technique. We used two well-known approaches,
colloquially referred to as the �velocity gauge� and the �length gauge�. New
correction terms for the velocity gauge susceptibility related to the non-local
nature of the scissors operator were obtained. These terms, not considered be-
fore in the literature, are crucial in order to obtain gauge invariance. We have
presented numerical results for GaAs using a pseudopotential scheme and an
all-electron scheme. Besides providing a numerical veri�cation of gauge invari-
ance for the unscissored and the scissored Hamiltonian calculations, we have
shown the kind and size of error when the non-local nature of the pseudopoten-
tials is neglected. From these results we found that it a�ects both the strength
and line shape of the spectrum.

In the second part of this work we developed a layer-by-layer formalism of
the injection current in order to calculate it at the surface of semiconductor
crystals. Following the layer-by-layer approach we derived the macroscopic
response tensor that describes the surface injection current. We performed ab-

initio calculations in several surfaces, where the layer-by-layer analysis proved
to be crucial in order extract the response of each atomic layer. From this work
we found that the surface injection current is sensitive to the adsorbates and
surface reconstruction. Numerical estimates indicate that the surface injection
current should be measurable. Thus, the injection current o�ers the possibility
of using optical coherent control to manipulate the electrons at the surface and
a new technique for surface analysis.

In the third part of this thesis we presented a systematic scheme to cal-
culate the degree of spin polarization from semiconductor surfaces, where the
contribution of any given layer of a material slab can be calculated. We calcu-
lated the degree of spin polarization for several Si(111) surfaces, and showed
that these surfaces present very interesting spectra. The highest degree of spin
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polarization was estimted to be 36%, at 0.5 eV, for a clean surface, 44% at 2.2
eV, for a As-covered surface, and 52%, at 2.08 eV, for an In-covered surface. All
these values are larger than that of bulk Si, which is only 30% at 3.4 eV. Since
there is an equal population of spin-up and spin-down electrons in equilibrium,
the excess of optically injected spins, accounted for by the degree of spin po-
larization, should be added to the existing population. Appropriately chosen
or designed surfaces are attractive candidates for optical spin injection and,
needless to say, one can use this fact either to characterize the surface itself,
or to exploit the richness of the e�ect for practical applications in spintronics.

In the last part of this thesis we presented a study of optical spin injection
rate for stressed bulk Si and stressed bulk GaAs. Both compressive and ex-
pansive stress can e�ectively modulate the degree of spin polarization (DSP)
in these materials. For bulk Si, compressive stress shifts the positive peak of
Dz to higher energies and diminishes the signal about 20% of its value from
the unstressed case. Expansive strain changes the DSP from −31.5% of the
unstressed case to 50%. Further expansion shifts this positive peak to lower
energies without changing its magnitude. For bulk GaAs, compressive and ex-
pansive stress rigidly shift the spectrum of the Dz to higher or lower energies,
respectively, maintaining the band gap edge peak signal at 50%. The results
obtained in this work shows that the application of stress can be employed to
tune the material to a suitable photon energy at which the net value of DSP,
for the case of Si, is highest making this material just as e�cient as GaAs and
a good candidate to build spintronic devices.
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