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Introduction 

 
1. Background 

 

Remote sensing systems have been applied in a many situations , chiefly in situations 

where they do not interfere in the process that they monitor and it is not necessary to 

destroy the object, which is monitored.  Among the non-destructive remote sensing 

methods, the monitoring in the infrared spectral region is the most popular.  This happens 

due the atmosphere’s characteristics and non-interference with the visible radiation. 

 

Herschel discovered infrared radiation in 1800, by passing sunligth through a prism and 

holding a thermometer just beyond the red end of the visible spectrum.  He was astonished 

when it showed a higher temperature than the obtained from the visible spectrum. Further 

experimentation led to Herschel's conclusion that there must be an invisible form of light 

beyond the visible spectrum.  

 

This invisible radiation for humans imply that the IR detector must act as a 

transducer between the image in the infrared and visible (Paez, Strojnik; Sandoval; Vacas-

Jacques [2002]). (Paez; Alfaro, Strojnik [2006]). (Paez, Strojnik [2006]. (Strojnik [2007])). 

Monitoring the environment on the earth has become an everyday issue to clarify 

risks from global warming and natural hazards. Also  tracking the condition of forests, 

fisheries, water and other resources.  The ability to follow retreating polar ice and shifting 

patterns of drought, rainfall and other environmental changes (Skrbek 2000).  We are 

interested in a range of temperature of the objects at environmental temperature.  
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Monitoring of the Earth resources assumes the temperature of the earth, water or vegetation 

that covers it at about 300 K.  Small changes observed in the infrared band indicate 

different vegetation coverage.  Also it may indicate an early warning signal due to the onset 

of a disease or the presence of a stress due to the lack of water caused by draught 

(Aldaklheel [2000]).  

 

We are interested in remotely monitoring large crop areas [1], Fig 1.  It may be, for 

example, a crop of agave azul, a plant that takes several years before bearing fruit.  Once a 

plant is found to be infected, it is destroyed.  Due to his lengthy maturation cycle (about 10 

years), the economic losses are minimized upon early disease identification.  

 

 

Fig. 1.  The plant is remotely monitored.  At the close approach, the plant fills the radiometer field-

of-view 

 The changed appearance of the disease-infected plant may, in principle be used to 

diagnose its state of health and to monitor its progress toward the production of healthy 

fruit.  However , it is well known that the human inspection is not very reliable: humans do 

not distinguish between small spectral differences of a specific plant on a consecutive 
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observations.  This is due to poor ability of humans to separate color nuances, our 

inadequate memory, and the absence of absolute internal calibration standards.  A machine 

inspection is significantly superior due to its repeatability, memory and ease of calibration.  

Monitoring in the IR band region is preferable to that in the visible, because the daylight 

conditions introduce a significant amount of noise and variability in the measurements. 

 

 Let us consider the monitoring scenario, illustrated in Fig. 2.  A radiometer 

operating in the IR spectral region is mounted on a vehicle that passes between two rows of 

plants.  Its field of view may be quite small so that even a small plant fills it.  Later on 

when a plant has grown larger, only a selected horizontal section of a plant is monitored.  

During the successive passes τ times apart, the detected incidance is recorded.  Assuming 

that the radiometer is calibrated, the only incidance change between the plant with 

coordinates (i,j) goes between E(i, j, τ) and E(i, j, τ+1) it is that due to the disease 

symptoms.  We are interested in recording the detected contrast, defined as the difference 

in the detected incidance from a healthy and unhealthy plant.  We monitor a plant (i, j) 

which from time t=0 to time t=Kτ to check for healthy.   
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Fig. 2. Monitoring the plant (i, j)on the nth pass.  A radiometer is mounted on the vehicle passing 

between two rows of plants. 

 

Thus, its detected incidance is unchanged upon repeated observations.  Then, at time 

t=Kτ  the plant starts developing and, consequently, displaying disease symptoms.  The 

infection of a plant with disease modifies its emissivity, its temperature, and the change of 

emissivity with temperature [2,3,4] (Paez, Strojnik [1997])..   

 

The contribution of the temperature-dependent emissivity to the temperature-

dependent gray-body incidence detected in a wavelength interval is shown to be significant, 

(Paez, Strojnik [1998]).  The infection of vegetation with a disease will modify its 

emissivity, its change of emissivity with temperature, and its temperature.  

 

For remote crop monitoring the quantum detector is more sensitive to the changes in 

contrast than the thermal detector, (Paez, Strojnik [1999]). 



 v

2. Methodology and objectives  

 

In chapter one we reviewed de concepts to asses remote sensing systems and the 

typical errors that can mislead the measurements, at the chapter two we review the figures 

of merit from the ideal thermal and quantum detectors and the incidance from a gray body 

detected in a wavelength interval.  We apply the result to a tungsten lamp.  At chapter three 

we will perform the theoretical comparison between the detected thermal contrast measured 

with a quantum and a thermal detector for an earth based remote monitoring at room 

temperature process.  At chapter four we determine the temperature distribution along a 

short line with continuous two wavelength thermometry on a micro surface element of the 

coiled coil whit a spectrometer. 
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Chapter 1 

Radiation thermometry 
 
1.1 Introduction 
 
 

Objects with a temperature greater than 0 K emit electromagnetic radiation.  The 

distribution of the power emission in the electromagnetic spectrum is a function of its 

temperature.  Ideal black bodies obey the Planck’s law, but the real bodies emit radiation 

with a slight modification to this law.  To asses the temperature of an object in base of its 

emitted radiation, we have to take in account the wavelength interval, the transmission path 

from the object to the sensor, the environment temperature, the fluorescence, the kind of 

source, such as Lambertian radiators and if there is another source of radiation that can 

mislead the evaluation of the acquired data.  In this chapter we are going to review these 

concepts, and any factor that can mislead the evaluation of the data.  
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1.2 Blackbodies and blackbody radiation 

 

The radiation is emitted by hot objects in a wide range of wavelengths of the 

electromagnetic spectrum.  For objects at temperatures of practical interest, most of the 

radiation lies at the infrared and visible portions of the spectrum [1].  A graphical 

description of the distribution of thermal radiation is shown in Fig. (1.1) 

 

 The spectral radiance plotted on the vertical axis of Fig. (1.1) is a measure of the 

amount of energy per unit time emitted by an object in a specific direction in a given 

bandwidth.  The horizontal scale describes the wavelengths at which the radiation is 

emitted.  The visible portion of the spectrum is also marked, with the violet end of the 

visible spectrum at 0.4 µm and the red end at 0.7 µm.  Radiation at wavelengths shorter 

than 0.4 µm is described as ultraviolet (above violet) or UV, while radiation at wavelengths 

longer than 0.7 µm is described as infrared (below red) or IR. 

 

We can see from Fig. 1 that for objects with a temperature about lower than 500 °C 

(~800 K) most of the radiation is in the invisible infrared region.  As the temperature 

increases, the radiance curves of Fig. 1.1 begin to edge into the red end of the visible 

spectrum, we see objects as red hot.  As the temperature is further increased, the maximum 

of the emission spectrum moves closer to  the visible portion and we see objects with the 

perceived colors shown in table 1.1.  At temperatures above 1500°C to 1800 °C, objects 

become so bright that our eyes have difficulty to accurately and comfortably discerning the 

color. 
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Fig. 1.1 Planck’s law: the spectral radiance of a blackbody as a function of temperature. 

 

 

 
Temperature (°C) Color 

500 Red, just visible 
700 Dull Red 
900 Cerise 

1000 Bright cerise 
1100 Dull orange red 
1250 Bright orange yellow
1500 White 
1800 Dazzling white 

Table 1.1 Temperature versus perceived color. 
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Spectral radiance, measured versus the energy emitted per unit time by a surface per unit 

area, per unit wavelength, per unit solid angle is the technical term for the optical 

brightness of a surface.  The advantage of using radiance, rather than other optical 

quantities, is that radiance is independent of distance to the surface and the size of the 

surface.  Also for an ideal optical system of lenses and mirrors, the radiance of an object is 

constant. That means that the radiance is a constant in any optical system.  Instruments that 

measure radiance allow us to infer temperatures at a distance and, if necessary, to use close-

up or telephoto lenses. 

 

A blackbody is simply a perfectly black surface: a perfect emitter and absorber of 

radiation [3].  Those who first encounter the blackbody concept may find it paradoxical, our 

every day experience is that bright objects are white because they reflect, not because they 

emit.  For any object the ability to absorb (absorptivity) is the same as its ability to emit 

(emissivity).  If not we could find situations where heat would flow from cooler 

temperatures to hotter temperatures, in contradiction to the basic laws of thermodynamics. 

 

Objects have three basic optical properties: emissivity, reflectivity and 

transmissivity. Since any light falling on a surface must be either absorbed, reflected or 

transmitted, 

 

Reflectivity + Emissivity + Transmissivity = 1     (1.1)   

 

Or using the appropriate symbols, 
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1=++ τερ          (1.2) 

 

 Most of the objects encountered in radiation thermometry are opaque so 

transmissivity is zero.  In that case the reflectivity and emissivity are complementary 

properties.  Fig. 1.2 gives a simple pictorial explanation of the relationship between 

reflectivity and emissivity for two different opaque surfaces. 

 

 

Fig.1.2 The complementary properties of emissivity and reflectivity 

 

 

 In 1900, Planck derived the mathematical description of the distribution of spectral 

blackbody radiation and is graphically  shown in Fig. 1.1 
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Where Lλ is the spectral radiance, the subscript b indicates that the radiance is that 

of a blackbody, λ is the wavelength of the radiation and T is the temperature of the 

blackbody in Kelvins. 

 

 The two constants c1 and c2 are known as the first and second radiation constants, 

and their best measured values are currently 

 

16
1 10x191044.1c −=   [Wm2] 

and 

014388.0c2 =   [m K] 

 

In practice, real objects are not blackbody, but emit less radiation than predicted by 

Planck’s law by the factor ε, the emissivity of the surface. The spectral radiance of a real 

object is 

 

( )TLTL b ,)(),( λλελ λλ =         (1.4) 

 

where ε(λ) indicates that the emissivity may vary with wavelength. 

 All of the curves in Fig 1.1 are characterized by a maximum that occurs at shorter 

wavelengths as the temperature increases.  The wavelength at which the maximum occurs 

is 

 

T/2989max =λ   [µm]       (1.5) 
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At room temperature (T = 300 K), for example, the maximum spectral radiance is 

near 10 µm, and at 3000 K, the temperature of incandescent lamp filament, the peak occurs 

at 1 µm. For the objects of practical interest most of the radiation is emitted in the infrared 

portion of the spectrum.  It is interesting to note that the response of the human eye has 

evolved to match the peak in the solar spectrum near 500 nm (T = 5800 K). 

 

For several practical reasons, most radiation thermometry is carried out at 

wavelengths in the 0.5 µm to 20 µm portion of the spectrum, depending mostly on the 

temperature of interest.  In the normal operating regime, λ is less than λmax, and Planck’s 

law is approximated to 1% or better by Wien’s law: 

 

( ) 













 −

=
T
ccTL b λλ

λλ
2

5
1 exp,         (1.6) 

 

Although it is less exact because of the minor simplification, this is much more ‘user-

friendly’ function than Planck’s law for estimating the errors and uncertainties in 

measurements. 

 

The total radiance of a blackbody, Lb(T), is found by integrating Planck’s law to 

determine the area under the curves of Fig. 1.1: 

 

4
b T)T(L

π
σ

=          (1.7) 
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Where σ is the Stefan-Boltzman constant, σ = 5.67051 x 10-8 Wm-2K-4.  The total power 

emitted by the blackbody in all directions is π times this value; hence energy is emitted by a 

real surface at the rate of 

 

4TM εσ=           (1.8) 

 

Where ε is the total emissivity.  Some examples of the power emitted by blackbodies are 

given in table 1.2.  Both the table and the fourth-power law in equation (1.8) show that the 

total radiance increases very rapidly with the temperature.  At the short-wavelength end of 

the Planck spectrum the spectral radiance increases spectacularly.   

 
Temperature (°C) Rate of emission 

(per square meter)
25 (room temperature) 470 W 
230 (melting point of solder) 3.6 kW 
500 (a hot stove element) 20 kW 
1000 (yellow flame) 150 kW 
2500 (lamp filament) 3.4MW 
5800 (sun) 77 MW 

Table 1.2 The rate of emission of blackbodies at range of temperatures. 
 

 
1.3 Errors in Spectral Band Thermometry 

 

Every measurement made with a radiation thermometer involves the characterization of the 

sensor and transmission path, which change with each new measurement and are often 

inaccessible parts of the thermometer [2]. 

 That part of the thermometer that we normally describe as the radiation 

thermometer is, strictly speaking, only a radiometer.  The radiometer, which measures 
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radiance, is analogous to the potentiometer or voltmeter in a thermocouple circuit; only 

when the potentiometer is attached to the thermocouple do the two, together form a 

thermometer. 

 The errors in radiation thermometry fall into three main groups: 

1. Errors relating to the characterization of the target surface (sensor): emissivity, 

reflections and fluorescence; 

2. Errors due to variation in the transmission path: absorption and emission, scattering, 

size-of-source effects and vignetting; and 

3. Signal processing errors due to variations in ambient temperature, linearization and 

the instrumental emissivity. 

 

The radiometric measurement of the temperature of a real object requires knowledge of 

two, sometimes three quantities: the surface emissivity, the spectral radiance of the surface 

and, if a low-temperature thermometer is being used, the detector temperature.  Many of the 

dominant errors that occur in spectral band thermometry can be interpreted as errors in 

either the measured radiance or the estimated emissivity. 

 

The temperature error caused by errors in the measured radiance and emissivity is 

estimated as 









−=

)(
)(
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L

c
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m

m

2

2

m λε
λε∆∆λ∆        (1.9) 
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Here ∆Lm represents the difference between the measured and true values of spectral 

radiance, and ∆ε(λ) represents the difference between the value of the instrumental 

emissivity and the true value of the emissivity, εi-ε(λ). 

Equation (1.9) is appropriate when the errors are known, but if the errors are unknown, then 

their relationship to the measurement error is properly expressed in terms of uncertainty: 

 

( )
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2/1
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2

2
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2
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2
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T
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+=

λε
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This equation is conveniently expressed as 

 

( ) 2/12
)(

2
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2

Tm 1200
T

λερρλσ +
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



=        (1.11) 

 

where λ is in micrometers and the relative uncertainties, ρ, are in percent.  For all three of 

these equations we can make the following observations: 

 

• The errors and uncertainties increase with operating wavelength; therefore, as a 

general rule, choose thermometers with a short operating wavelength. 

• The errors and uncertainties increase as the square of temperature. 

• The errors and uncertainties due to emissivity as 1/ε(λ).  In general, the errors are 

very large for low-emissivity materials, such as metals. 
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The wavelength dependence of errors can cause confusion when thermometers of differing 

operating wavelengths are used to measure the same temperature.  Indeed, a difference in 

readings between two thermometers would normally indicate that both are probably in 

error, since nearly all the mayor sources of error are wavelength dependent and affect all 

spectral band thermometers. 

 

 

1.3.1 Errors in emissivity 

 
In almost all areas of radiation thermometry the largest source of error is the lack of 

knowledge about the surface emissivity.  Depending on the degree of oxidation, roughness 

and wavelength, the emissivity varies, for example, between 0.1 and 0.95 in various 

samples of Inconel.  And this is a material that is used as emissivity standard. 

 

 For many materials, especially rough and amorphous materials, the practical 

problems are not as bad as implied.  It is reasonably easy to identify the material, decide 

whether it is rough or polished, oxidized or not and make and estimate of the emissivity.  

However, to make a good estimate of the emissivity some serious homework is necessary.  

It is important to know what wavelength the thermometer operates at, and what the material 

is, and to have access to reliable information on the surface properties of the material.  Most 

manufacturers of radiation thermometers supply a list of the emissivities of a wide variety 

of materials, each measured at the operating wavelength of their thermometer.  If all of this 

information is available, it is usually possible to make an estimate to about ±0.05. 
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At moderately high temperatures, where short-wavelength thermometers operate and the 

emissivity of materials is usually high, measurements can be made with reasonable 

accuracy.  At lower temperatures, where the longer-wavelengths thermometers must be 

used and some materials have very low emissivities, the uncertainties can be so large as to 

make the measurements almost useless. 

 

 Without information on the spectral emissivity of the material, it is almost 

impossible to make reasonable estimate of the emissivity from the visual assessment alone.  

Surfaces that are black in the visible portion of the spectrum may well have a low 

emissivity in the infrared and vice versa.  Two common examples will illustrate this point.  

Nowadays, most paints use titanium dioxide as the base pigment.  While the pigment is 

extremely white (i.e. has a low emissivity) in the visible part of the spectrum, it is also very 

black in the infrared.  Thus the appropriate emissivity setting for a 10 µm thermometer 

looking at any painted surface is about 0.95.  As a general rule most organic materials, for 

example wood, skin and organic fibers, exhibit this type of behaviour. 

 

 The opposite effect occurs with metals coated with thin layer of oxide.  At short and 

visible wavelengths the surface can be quite black.  At longer wavelengths the oxide layer 

becomes transparent so that the surface behaves as the pure metal and has a very low 

emissivity.  For most surfaces the emissivity is also dependent on the angle of view.  This is 

shown in Fig. 1.3.  The drop in emissivity at high angles, which is for view near grazing 

incidence, is a feature in common with all surfaces.  As a general rule the emissivities that 
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are published are for normal incidence, so radiation thermometers should always be used at 

or near normal incidence. 

 

 

Fig. 1.3 The emissivity of glass, aluminum, and tungsten as a function of the angle of view [1]. 

 

 

1.3.2 Reflection errors 

 
Because radiation thermometers infer temperature from measured radiance, 

anything that adds to the surface radiance will cause the thermometer to be in error.  The 

most important source of additional radiance is radiation reflected from other objects in the 

vicinity.  Radiation thermometers are most useful in for high temperature processing 

industries where, unfortunately, there are invariably reflections from flames, electric 

heaters, furnace walls, etc.  At low temperatures the problem is even worse because the 

whole environment behaves as a very large blackbody at 300 K.  In fact it is quite hard to 

find an application where reflections are not a problem. 
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The most difficult aspect of the reflection problem is that we do not naturally 

associate other hot objects, which may be some distance from the source of interest, with 

the surface itself.  It is a matter of discipline to be aware of all objects in the space above a 

surface and methodically assess the likelihood of reflection error caused by that object. 

 

 The most effective way of eliminating reflection errors is to eliminate the source of 

extraneous radiation.  One of the most important sources of radiation in measurements 

made outdoors is the sun.  If a radiation thermometer is being used to detect hot spots, such 

as thermal leak in buildings, then the measurements should be made when the surface is 

shaded, or at night.  In many cases it is possible to shade the surface artificially.  This 

technique can also be used inside furnaces to shade heaters or flames that are in close 

proximity to a surface. 

 

 More often than not, the interfering source is too large or too hot to shade.  This 

occurs in many high temperature processing industries where a product is pre-heated in a 

large firebox, and radiation thermometers are used to determine when the product has 

reached the required temperature.  Fortunately, in these cases it is relatively easy to 

estimate the magnitude of errors.  If we assume that the firebox walls are at a uniform 

temperature, Tw, Then the firebox behaves as a blackbody cavity with an emissivity of 1.0.  

The radiance of a small object within the firebox then comprises two parts: 

 

( ) ( )[ ] ( )wbsbm T,L1T,L)(L λλελλε −+=       (1.12) 
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The first part of the equation represents the thermal emission from the surface, and 

the second is the radiance due to reflections originating from the firebox walls.  Now, 

depending on the wall temperature, Tw there are four strategies for handling the reflection. 

1. TW  <<  TS : assume negligible error and set εi=ε(λ). 

2. TW  ≅  TS: assume black body conditions and set εi=1.0 

3. TW  >>  TS: apply corrections for reflections (high temperatures).  For these systems 

there is an optimum operating wavelength that minimizes the uncertainty in the 

corrected result. λopt, is near 

( )
sw

sw
opt TT

TTc −
≈ 2λ  

4. TW  ≅  TS apply corrections for reflections (low temperatures).  Almost all low-

temperature measurements are therefore corrupted by the reflected radiation from 

the walls.  If we correct for the emissivity and then for the detector radiance we 

obtain  

( ) ( )[ ] ( ) ( )[ ]
)(

,,1,
λε

λλλελ dbwb
sbm

TLTLTLL −−
+=  

Thus the reflection error is zero if the detector and the surroundings are at the same 

temperature.  This requirement is very nearly satisfied for measurement made 

indoors since our rooms behave very much like a black body as the same 

temperature as the thermometer.  
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1.3.3 Absorption errors 

 

One of the great advantages of radiation thermometers is that they can measure 

temperature at a distance.  However this involves using the intervening space between the 

object and the thermometer as the transmission path for the radiation, and unfortunately 

most gases, including air, are not completely transparent.  Most of the absorption in air 

(Fig. 1.4) is due to water vapor and carbon dioxide. 

 

Nearly all spectral band thermometers are designed to avoid the worst of the 

absorption bands, and in most practical situations the absorption effects can be neglected.  

However, most of the thermometers operate over a broad band of wavelengths that overlaps 

the tails of the absorption lines and will not be completely immune to these effects.  When 

Wavelength (µm) 

Fig.1.4 The transmittance of 300m of air at sea level.  The area above the transmittance of the 
spectrum for which the atmosphere is transparent (unshaded) are known as windows.  Some of 
the most useful windows for spectral band radiation thermometry are near 0.65 µm, 0.9 µm, 
1.05 µm, 1.35 µm, 1.6 µm, 2.2 µm, 4 µm and 10 µm [1]. 
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they are used in environments with very high concentrations of carbon dioxide and water, 

such as inside oil-or gas-fired furnaces, they are sensitive to absorption effects.  Where the 

gas is hotter than the target the thermometer will read high and vice versa.  The worst cases 

are in the exhausts of flames where there are high concentrations of water and carbon 

dioxide at high temperatures.  Errors approaching 10 °C per meter of path length have been 

observed.  Absorption errors are also a problem for some general-purpose low temperature 

thermometers because they employ very wide bandwidths, such as from 8 µm to 20 µm, 

which includes water absorption lines. 

 

When absorption errors occur they can be modeled by an equation of the same form 

as that for the reflection errors:  

 

[ ] mgba,m Ld)(1d)T,(L)(L λαλλα −+=       (1.13) 

 

where α(λ) is the absorption coefficient of the gas, d is the path length through the gas, Tg 

is the gas temperature, and Lm is the radiance of the surface that would be measured in the 

absence of the gas.  The effect of the gas absorption is almost identical to reflection errors 

(except that it varies with path length, d), so there are three similar measurement strategies: 

 

1. Tg  <<  Ts : the absorption in the gas appears to reduce the emissivity of the target. 

2. Tg  ≅  Ts: the gas and the target behave much like a blackbody. 

3. Tg  >>  Ts: the emission from the gas appears to increase the emissivity of the target. 
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In principle, we could use Equation (1.13) to calculate corrections for the absorption.  In 

practice, however, there are large uncertainties associated with the values of the absorption 

coefficient and gas temperature.  In addition, the effect often occurs in combination with 

reflection errors, with the result that the uncertainties in the corrections are impractically 

large. 

 

 A key factor in Equation (1.13) is that the absorption effect increases with the 

distance.  Thus the error can be detected, and the magnitude of the error estimated, by 

observing the same target through different distances, thereby changing the path length 

through the interfering gas. 

 

 

1.3.4 Transmission errors 

 

With transparent objects, radiation from behind the target can find its way to the 

radiometer. This situation arises most commonly with glass and plastics.  Models of the 

situation are almost identical to those for reflection and absorption, and as expected the 

strategies for avoiding the errors are similar. If the object behind is sufficiently cool, there 

is no error.  If the object behind is at similar temperature, it enhances the effective 

emissivity of the object to a value near 1.0.  If the object behind is hotter it can cause large 

errors.  The error can be detected by changing the temperature of the background, perhaps 

by placing a different object behind the object of interest.  For situations in glass and 

plastics there are radiation thermometers specially designed to avoid these errors.  
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1.3.5 Non-thermal emission 

 

Another, less frequent, source of error is fluorescence, which arises because thermal 

energy excites impurities in the object that then emit radiation in a very narrow band of 

wavelength.  This can happen with some type of glass. 

 

 If this type of non-blackbody emission occurs with the pass-band of the radiation 

thermometer, then the measured radiance will be high.  The problem is most likely to occur 

in relatively pure materials that are partially transparent in the pass band of the 

thermometer. 

 

 Avoiding errors due to fluorescence is difficult unless equipment is available to 

measure the whole spectrum.  The best strategy is to use well-established procedures and 

operating wavelengths.  This relies on the fact that others have found such procedures 

reliable. 

 

 

1.3.6 Scattering errors 

 

Dust in the transmission path of the radiation thermometer has three detrimental 

effects.  First, it scatters radiation out of the transmission path.  This cause a decrease in the 

measured radiance of the object of interest, and therefore a decrease in the temperature 

readings.  Second, it scatters radiation from other sources into the transmission path and 
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increases the temperature reading.  Third, the dust may itself emit blackbody radiation, so 

that the dust temperature will affect the thermometer reading.  Examples of dust include 

smoke, luminous flames, water fog, carbon, metal ore, and silica. The 2 % to 3 % loss in 

transmission in the windows in Fig. 1.4 is due to atmospheric scattering. 

The general problem of the scattering of radiation from small particles is extremely 

complicated and depends on the size of the particles, on whether they transmit or absorb, 

and on the wavelength of the radiation.  The only useful general principle is that the 

problem can often, but not always, be reduced by using thermometers that operate at longer 

wavelengths. 

 

 

1.3.7 Size of the source effects 

 

All radiation thermometers collect the radiation from a well-defined conical zone in 

front of the thermometer (Fig. 1.5).  The size of the zone is defined by the two defining 

apertures and is known as the field of view.  Ideally, the zone has a sharp boundary so that 

radiation from outside the cone has no effect on the reading.  In practice, there are three 

effects, as shown in Fig. 1.5, which contribute to the blurring of the field of view boundary. 

 

 

Flare  

It is the most serious of the size-of-source effects.  It is caused by scattering of 

radiation within the radiation thermometer; in particular, by dust, scratches and density 

imperfections on, or in, the front lens of the thermometer.  Usually the only way to 
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minimize flare is to use sight tubes.  These are tubes which are black on the inside, and 

mounted on the front of the thermometer to restrict the radiation falling on the lens to that 

within the field of view.  When employing sight tubes it is important that the tube does not 

impinge on the field of view, as this will cause vignetting.  

 

 

Fig 1.5 Size-of-source effects: (a) an ideal target profile, (b) a target profile broadened by flare, (c) 
a target profile due to poor focus, and (d) misalignment. 
 

 

Poor focus 

Lenses and mirrors in radiation thermometers are used to focus an image of the 

object of interest onto the target-defining aperture.  Radiation from the portion of the image 

over the aperture then passes on to detector.  If the thermometer is not well focused then the 

boundaries of the target area are not well defined, Fig1.5 (c).  For systems with a fixed 

focus or no lenses, the field of view must be well overfilled in order to get an accurate 

reading. 
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Optical aberrations and misalignment 

In practice, imperfections in the optical components, interelement reflections, and 

slight misalignment of the optical components all lead to very slight blurring of the target 

image.  Usually these effects are negligible for practical purposes.  However there are two 

examples of misalignment that lead to large size-of-source problems. The first occur if, the 

thermometer is knocked or dropped, so that some of the components become seriously 

misaligned.  The second problem occurs in long-wavelength thermometers where a separate 

visual telescope or sighting laser is provided to sight the target.  If the two optical paths are 

not exactly aligned, or not in focus at the same time, then the field of view may have to be 

overfilled considerably to get an accurate reading. To minimize effects, always overfill the 

field of view as much as possible with neighboring objects at the same or similar 

temperature as the object of interest.  In particular, avoid having objects at a much higher 

temperature than the object of interest near the field of view. 

 

Ambient temperature dependence 

All radiation thermometers suffer some sensitivity to the ambient temperature due to 

any one of three causes.  A cause that affects all radiation thermometers is the change in 

detector sensitivity with temperature.  In most radiation thermometers, there is an electronic 

means of compensating the change in sensitivity.  However, if the ambient temperature 

changes quickly the compensation is unlikely to track the change in detector temperature 

exactly.  For this reason thermometer should be allowed to settle in a new environment for 

up to an hour to ensure that the whole instrument has come to equilibrium. 
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 In instruments with very narrow bandwidths, the wavelength response is determined 

by the pass-band of interference filters, which are extremely sensitive to temperature. 

Low-temperature and long-wavelength radiation thermometers are probably the most 

susceptible to ambient temperature changes. This is because the signal from a detector in 

radiation thermometer is actually a measure of the difference between the radiance of the 

target and the radiance of the detector.  For high-temperature applications, the detector 

radiance is negligible and is ignored.  However, for thermometers working below 200 °C, 

and especially those working near 20 °C or lower, the detector radiance is significant and 

may be greater than that of the object of interest.  For these instruments it is necessary to 

measure or compensate for the detector radiance in order to achieve an accurate 

measurement. 

 

Vignetting 

In all radiation thermometers the acceptance angle and the target area are defined by the 

two apertures (Fig.1.5).  Anything that further restricts the cone of radiation accepted by the 

thermometer will cause the thermometer to read low, since there will be less radiation 

falling on the detector.  In particular, all parts of the front lens of the thermometer must 

have an unobstructed view of the entire target. Obstruction of the field of view, known as 

vignetting, occurs often in high temperature applications where the thermometer is sighted 

through small peepholes in furnace walls.  Vignetting also occurs when sight tubes are 

misaligned. 
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Linearization 

All direct-reading radiation thermometers include some form of linearization in their 

electronic systems. This is necessary to convert the signal from the detector, which is an 

extremely non-linear function of temperature, into a signal that is proportional to 

temperature. 

 

 

1.4 The dual wavelength thermometer 

 

In some applications the uncertainty in emissivity seriously limits the utility of 

spectral band thermometers, an useful alternative are the ratio thermometers.  Dual-

wavelength thermometers also known as ratio thermometers and two-color thermometers, 

measure radiance at two wavelengths and determine the ratio 

 

( ) ( )
( ) ( )s2b22

s1b11

T,L)(
T,L)(R

λλελα
λλελα

=          (1.14) 

 

If it is assumed that the absorption α(λ) and the emissivity ε(λ) are constant over the 

wavelength range including λ1 and λ2, then the ratio R depends only on the temperature. 

 

 The independence from emissivity and absorption is obtained at the expense of 

sensitivity. This can be seen firstly from Wien’s law approximation for R, 
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And secondly from the propagation-of-uncertainty formula which gives the uncertainty in 

temperature versus the uncertainty in R: 
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The similarity of these equations to those for the single-wavelength spectral band 

thermometers suggests that the performance of the ratio thermometer would be similar to 

that of a spectral band thermometer with an operating wavelength of 
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However, this is misleading.  While the sensitivity is 10 to 20 times worse than a 

good spectral band thermometer, some of the most significant errors are also much less 

important.  First, the most significant error in spectral band thermometry, the uncertainty in 

emissivity, has been eliminated.  And second, many of the instrumental errors that affect 

the radiance measurement in spectral band thermometers are common to both channels of 

the ratio thermometer and so do not affect the ratio. 
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Overall the performance of ratio thermometers on surfaces that have a high 

emissivity and are grey (i.e. constant emissivity with wavelength) is perhaps two or three 

times worse than good spectral band measurements.  On the other hand, if the surface is 

grey and has a low or highly variable emissivity (with time or temperature) then the ratio 

thermometer is clearly better.  Ratio thermometers find application where the object is too 

small to fill the field of view and a spectral band thermometer would be susceptible to size-

of-source effects.  Such objects include hot wires and molten-glass streams. 
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Chapter 2 

 

Detected incidance from a thermal source in a wavelength interval 

 

2.1 Introduction 

 

To assess the total amount of radiation emitted in a wavelength interval, requires 

the integration of the Planck’s equation.  In this chapter  we use an alternative method 

of integrating the Planck’s equation.  The amount of signal that a detector register, 

depends on its general type, its sensitivity and its non-radiometric characteristics.  The 

incidance from a grey body source detected in the wavelength interval is determined for 

a quantum and thermal detectors, for the ideal behavior.  We applied these results to the 

specific case of a tungsten thermal source, an important calibration source for 

spectrometric applications. 

 

 

2.2 Responsivity of the thermal and quantum detectors 

 

Before we evaluate the amount of radiation detected by a detector at a given 

temperature, we review some parameters that are useful in modeling its behavior.  These 

parameters or figures-of-merit are relevant because they allow us to deduce the detection 

limits[1,2].  Generally, we are interested in the sensor performance with respect to the 

power incident upon the sensor and the minimum detectable power.  Sometimes we use the 

term sensitivity to describe the ratio of change in its input.  This word is ambiguous because 
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it is used in so many different ways.  Hence, we will use the following terms: responsivity, 

noise equivalent power, signal-to-noise ratio, and detectivity. 

First, we need to know the root mean square (rms) signal voltage VS(rms) (or current IS(rms)) 

generated in a detector with a temperature TD  in response to an average incident radiant 

power P.  Although the detectors may be modeled as either sources of current or voltage, 

we will treat them as generating voltage quantities. This is possible because the ease of 

transformation between a current to voltage source.  Generally the measured current, 

voltage, even the radiant power exhibit some fluctuation.  We are interested in a rms values 

throughout this study, unless we say otherwise, the current and voltage quantities are 

rmsed.  The noise rms is measured with the detector covered (so the incident radiant power 

is zero).  Considering that the signal and the noise voltages are temperature dependent, the 

signal to noise ratio is evaluated at temperature TD then it is defined as 

 

)(/)()( DnDSD TVTVTSNR =         (2.1) 

 

The spectral responsivity R(TD,λ) is defined as the ratio of the (output) signal voltage to the 

radiant power P incident upon the detector. 

 

R(TD,λ) = VS(TD)/P(λ)     [V/W]   (2.2) 

 

The units utilized will depend on the type of detector and its intended use; however, 

normally these will be volts (or amps) per watt.  We see that the responsivity changes with 

wavelength. 
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It is difficult to measure the signal voltage when it is equal to that generated by the noise.  

The noise equivalent power NEP is the incident radiant power that produces an output 

voltage equal to that noise.  We would interpret the NEP as an indication of the minimum 

detectable signal.  We can calculate the spectral NEP as 

 

)(
)(),(
D

D TSNR
PTNEP λλ =          [W]   (2.3) 

 

The SNR depends on several characteristics of the detector, including the temperature TD, 

its area AD, and the bandwidth ∆f.  Therefore, the NEP also depends on these 

characteristics.  Many noise sources generate white noise, for which the square of the noise 

voltage is proportional to the electrical bandwidth ∆f.  In addition, for a large number of 

sensors, the noise voltage squared is proportional to the detector area AD.  Thus the noise 

voltage (or noise current) is proportional to squared root of the product of bandwidth and 

area.  Hence we may define the normalized NEP* as follows: 

 

fA
TNEPTNEP
D

D
D ∆

=
),(),(* λλ     [W/ (cm Hz)1/2]  (2.4) 

 

Thus, the NEP* is independent of the detector size and electrical bandwidth.  

However, a large NEP* refers to a poor detector performance.  For this reason, the 

reciprocal of the NEP* is commonly used because it incorporates a direct relationship with 

a superior performance of the detector.  This quantity is called the specific detectivity D* 

(pronounced D-star) and defined as  

 



 30

),(
),(*

λ
λ

D

D
D TNEP

fA
TD

∆
=     [cm Hz1/2/W]   (2.5) 

 

Upon combining Eqs. (2.1) and (2.2) and substituting them in Eq. (2.3), we may write the 

NEP in terms of responsivity  
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Finally, using Eqs. (2.5) and (2.6), the responsivity can be expressed as follows 

 

fA
VTDTR

D

nD
D ∆

=
),(*),( λ

λ      [V/W]   (2.7) 

 

The optical detectors may be classified essentially as either thermal or quantum devices 

[3,4,5,6].  The power of the incident radiation raises the temperature of the thermal 

detector, inducing a change of some temperature dependent parameter.  The thermal 

detectors measure the energy absorbed per unit time, whereas quantum detectors measure 

the rate of absorption of quanta. 

The responsivity of an ideal thermal detector is independent of the wavelength, and 

constant for a given detector temperature.  Then, Eq. (2.7) may be written 
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Figure 2.1 shows the response of ideal thermal and quantum detectors.  The responsivity of 

a thermal detector is proportional to the absorbed radiant power, but is independent of the 

wavelength.  The responsivity of the quantum detector (for equal amounts of radiant power 

per unit wavelength interval) increases with the wavelength.  This behavior is a 

consequence of the fact that the number of photons per second per watt is directly 

proportional to wavelength.  This functional dependence on wavelength persists until the 

photon energy is equal to the bandgap, i.e., the photon does not have enough energy to 

impart to electron to cross the gap. 

 

Therefore, the quantum detector does not operate beyond this maximum wavelength λmax 

Fig. 2.2 shows the specific detectivity as a function of wavelength for some representative 

photodetectors. 

 

Using Eq. (2.7), the detectivity of an ideal quantum detector is given by  
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Thus, the responsivity of an ideal quantum detector finally be expressed as 
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Fig. 2.1 Ideal behaviour of thermal and quantum detectors. 
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Fig. 2.2  Specific detectivity as a function of wavelength for some representative photodetectors.  
PV refers to photovoltaic device and PC to a photoconductive one. 
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We may rewrite the specific detectivity of an ideal quantum detector in order to simplify 

the notation.  In many applications the detector temperature is kept constant, at TD. 
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Here we assume that the maximum wavelength at which the detection is still possible is 

equal to the upper limit of the spectral interval of interest [λ1, λ2].  A detector is normally 

selected so that its spectral range of responsivity is larger or equal to this interval. 

 

The responsivity of the quantum detector in the wavelength interval [λ1, λ2], where λmax is 

greater than λ2, Eq. (2.11), is rewritten then as follows 
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The last equality is obtained upon substituting Eq. (2.11).  The wavelength dependence of 

the absorption coefficient modifies the ideal behavior of the thermal detector.  Likewise, 

the quantum efficiency η depends on altering the ideal response.  Figure 2.3 shows both the 

ideal (unit quantum efficiency) and the typical current responsivity of a PIN photodiode. 

We may approximate the spectral responsivity of a non-ideal detector (quantum o thermal) 

as a straight line, depicted in Fig. 2.4. 



 35

( ) ),(*)(  ]),(*),(*[, 11
12

12 λλλ
λλ

λλλ D
DD

D

n
D TDTDTD

fA
VTR −−

−
−

∆
=  

         [V/W]  (2.13) 
 

 

 

 
 
Fig. 2.3 Typical current responsivity of a PIN photodiode.  The straight line represents the 

responsivity of an ideal photodiode with unit quantum efficiency. 
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Fig. 2.4 The quantities used for the approximation of the spectral responsivity as a straight line 

in a wavelength interval. 
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2.3 Incidance from a thermal radiator in a wavelength interval 

 

The spectral radiance Lλ(T) is the spectral radiative power emitted per unit area per 

unit solid angle in the wavelength interval λ to λ+dλ.  The spectral radiance of the 

radiation emitted from a black-body source at temperature T, also knows as the Planck’s 

law, is 
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Where  

 BB superscript refers to the blackbody radiation, 

 h is the Planck’s constant (6.6256± 0.0005) x10-34 [J sec], 

 T is the absolute temperature in Kelvin degrees [K], 

 λ is the wavelength in [µm], 

 c is the velocity of the light in vacuum (2.992925±0.000003)x108 [m/sec], and 

 k is the Boltzmann’s constant (1.38054±0.00018)x10-23 [JK-1]. 

 

The spectral radiance of the black-body at various temperatures is depicted in Fig. 2.5. 

Eq. (2.14) is often written as follows 
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Here, we do a small change of what we have in chapter 2, 

 c1 is the first radiation constant = 2πhc2 = (3.7415±0.0003)x108 W.µm4m-2 
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 c2.is the second radiation constant = c.h/k = (1.43879±0.00019)x104 µm.K. 

 

 
Fig. 2.5 Spectral radiance of a blackbody at different temperatures. 
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We are interested in the radiation incident per unit area at the detector Eλ(T), assuming a 

Lambertian radiator.  We start from an expression for the incidance onto the image plane of 

an optical system [8]. 

 

)()( TLTE BBBB
λλ ωτ=     [W/(m2µm)]    (2.16) 

 

Here Eλ
BB(T) is the spectral incidance produced from  a black- body source onto the image 

plane.  In this equation τ is the transmission loss factor, a spectral quantity, in general.  

However when we design an instrument, its spectral interval of operation is customary 

chosen such that τ is constant.  In addition, ω is the solid angle subtended by the optical 

system at the focal plane. 
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Θmax is the half angle that the optical system subtends at the detector and Θmin is the half 

angle of the central obstruction.  Substituting Eq. (2.15) in Eq. (2.16), we obtain 
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We can express the incidance of a natural, non-black body radiator, introducing the 

emissivity ε(T,λ) that depends on temperature and wavelength. 
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The spectral emissivity is thus a ratio of the radiation emitted from a natural radiator 

to that emitted by a black-body radiator.  We want to evaluate the amount of radiation 

detected in the wavelength interval [λ1, λ2] by a detector at temperature TD with 

responsivity R(TD, λ).  Therefore, we multiply the spectral incidance given in Eq. (2.19) by 

the responsivity R(TD, λ) to obtain the detected spectral incidance ED
λ(T). 
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To find the total detector output, we integrate the product of spectral incidance with the 

detector responsivity over the wavelength interval.  This quantity is called the detected 

incidance, ED
[λ1, λ2](T). 
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We may substitute the spectral incidance of the black-body source Eλ
BB(T). 

 

∫






 −

=
2

1 2
51]2,1[

1)exp(

),(),(1)(
λ

λ
λλ λ

λ

λλε
πλ

ωτ d

T
c

TRTcTE DD    [V/m2]   (2.22) 

 



 41

In the last expression, we factored out the terms that are independent of the wavelength.  

We keep in mind that the spectral dependence of the responsivity of a thermal detector is 

constant, that is, independent of wavelength (see Eq. (2.8)), and a straight line with a 

positive slope for an ideal quantum detector (see Eq.(2.10)).  The detector responsivity 

depends strongly also on its operating temperature TD.  This temperature is generally 

controlled, so it varies insignificantly with the temperature, allowing us to neglect its 

temperature dependence. 

 

 

2.4 Incidance detected with quantum and thermal detectors 

 

In the previous section we obtained an expression for the detected incidance ED
[λ1, λ2](T), 

after we integrated the product of radiative incidance with the detector responsivity over 

the wavelength interval.  Now we are interested in calculating the detected incidance for 

thermal and quantum detectors.  This may be achieved by employing the corresponding 

spectral responsivity of the detector. 

 

2.4.1 Ideal quantum detector 

 

We saw that an ideal quantum detector has responsivity with linear wavelength 

dependence.  We substitute Eq. (2.12) into Eq. (2.22) to obtain the incidance detected 

with a quantum detector. 
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         [V/m2]  (2.23) 
 

To simplify the equations that follow, we may normalize the detected incidance with 

respect to the parameters of the detector (The noise voltage, the specific detectivity 

evaluated in the upper wavelength limit, the detector area, and the electrical bandwidth) 

and some instrument parameters (transmission loss factor and the subtended solid 

angle).  Their product is independent of temperature and wavelength.  Working with 

such normalization value, we can multiply the radiation quantities with the actual values 

of the parameters to determine the specific performance. 

 

We define the normalized detected incidance to include only the radiative quantities. 
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The normalization constant kD is 

 

ωτλ
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D
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While the emissivity in general depends on wavelength, it usually varies slowly in the 

specific infrared wavelength interval permitting us to neglect its spectral dependence.  

The value to take for the emissivity is then the value at the averaged wavelength.  We 

adopt the notation such that line over the physical quantity indicates the average.  Then, 

we can take the emissivity out the integral to obtain a simplified expression for the 

detected incidance. 
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We may represent the integral like those in Eq. (2.26) as I with a double subscript.  The 

numerical subscripts have the following significance: the first one is the absolute value 

of the exponent of the wavelength; the second one is the absolute value of the exponent 

of the square bracket. 

 

Then Eq. (2.26) becomes 
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We now evaluate I41(λ,T) 
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The various forms of Planck’s equation are usually solved changing the variable 

replacing the reciprocal of the wavelength with the dimensionless variable x, und 

employing infinite series. The purpose of the change of variable is to allow the 

integration by parts.  We prefer to integrate directly in order to maintain the cognizance 

of the physical quantities.  We use the following infinite series to expand the square 

bracket [7,8]: 
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Therewith, Eq. (2.28) becomes 
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The negative argument of the exponential assures the series convergence. 

 

Now, we realize that the integration and summation are equivalent operations: their 

order may be interchanged because the wavelength λ and the integer m are mutually 

independent variables. 
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We prefer to evaluate the integral directly upon completing the integrand to make a 

perfect differential.  To accomplish this, we rely on the following identity: we may use 

of the derivative of the product of an exponential with any function. 
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In order to obtain the perfect differential integrand of Eq. (2.31) we will give it 

the form of the right side of Eq. (2.32).  We identify the function g(λ) from Eq. (2.31) as 

(-mc2/λT), and we find its derivative. 
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Now, we can rewrite I41(λ,T) in terms of g(λ) and its derivative. 
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Here we used Eq. (2.33) to define a new function h(λ). 
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We need to find f(λ) such that the square bracket in Eq. (2.34) is equal to the curly 

bracket in Eq. (2.32). By construction, referring to each constructed function fci(λ), 

where i refers to the reconstructed term. 
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From here, we can see the first term of the construction of f(λ) as 
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We calculate the derivative of this function. 
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Now we add and subtract this derivative inside the square bracket of Eq. (2.34) 
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The expression given by Eq. (2.35) may be substituted in the last term of Eq. (2.39).  

Then we factor h(λ) from the first and third term. 
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(2.40) 

From this equation we identify the second term in the reconstruction of f(λ). 
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Its derivative 
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Again, we add and subtract this derivative inside the square bracket of (2.39) 
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We factor out the function h(λ) from the first and fourth term, again using Eq. (2.35). 
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The third term of the construction of f(λ) is then identified as 
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Because the derivative of Eq. (2.45) is zero, the process has ended, and the function has 

been found.  Finally, we can write out the complete function f(λ) using the terms given 

in Eqs. (2.37), (2.41), and (2.45). 
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Then, the derivative of the function f(λ) is 
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Using Eq. (2.46) and (2.47) we can solve the integral of Eq. (2.44) because it has the 

form of Eq. (2.32). 
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We may replace Eq. (2.48) with Eq. (2.27) to obtain the normalized detected incidance. 
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We multiply out the first term and find out the analytical solution to the series.  The last 

two terms have faster convergence due to higher powers of m in denominator. 
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Fig. 2.6 shows the normalized incidance of a tungsten thermal source in two-

wavelength interval, [3-5 µm] and [8-14 µm], as function of temperature, detected with 

a quantum detector. 

 

Fig. 2.6 The normalized incidance of a tungsten thermal source in a wavelength interval 
detected with an ideal quantum detector. 

 

 

2.4.2 Ideal thermal detector 

 

We may use Eq. (2.7) and Eq. (2.21) to calculate the incidance detected with a thermal 

detector. 
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The responsivity is independent of the wavelength for an ideal thermal detector; thus, 

the normalized incidance detected with a thermal detector is 
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We may simplify Eq. (2.51) following the arguments given for Eq. (2.26). 
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We may write this equation succinctly using the same notation as previously. 
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The integral I51(λ,T) is defined as 
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We expand this integral using the summation in Eq. (2.29). 
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The order of the two operations may be interchanged, because λ and m are independent 

variables. 
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We may used again the derivative of the product of an exponential with any function to 

evaluate the integral, as we did with Eq. (2.28).  We rewrite I51(λ,T) using Eq. (2.33) 
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Now, we construct the derivative of f(x) and compensate for the added terms. 
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We have the form proposed in Eq. (2.32), so we may write out the solved integral. 
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With this result, Eq. (2.54) becomes 
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We solve analytically the first term of the summation, remaining three terms.  These 

terms have a faster convergence. 
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Fig. 2.7 shows the normalized incidance of tungsten termal source in two-wavelength 

interval, [3-5 µm] and [8-14 µm], as a function of temperature, detected with a thermal 

detector. 

 

This equation may be evaluated in the interval [0,∞]. 



 53

[ ]
4

4
2

4
2

44

12,1 ),(
15
1),(2

90
6),( TT

hc
TkThc

c
TTcE Dn σλεπλεππλελλ =






==    (2.63) 

 

This result agrees with the closed form evaluation (Richtmyer, 1969). 

 

Fig.2.7 The normalized incidance of a tungsten thermal source in a wavelength interval detected 
with an ideal thermal detector. 

 

2.5 Conclusions 

 

 We use the figures of merit to asses the performance of ideal thermal and 

quantum detectors.  We evaluated the total radiation emitted in a wavelength interval, 

requiring the integration of the Planck’s equation.  The signal that the detector registers 

depends on its type, its sensitivity and non-radiometric characteristics. We applied the 
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result to the tungsten thermal source, a very important calibration source for 

spectroscopic applications. 
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Chapter 3 

 

 

Theoretical comparison of thermal contrast detected with thermal and quantum 

detector 

 

3.1 Introduction 

 

We have previously determined the detected change in incidance at the focal plane 

of an infrared instrument, integrated over a wavelength interval, arising from the 

combination of the change in both emissivity and temperature.  We propose to call this 

quantity the detected thermal contrast.  This is to differentiate it from the traditional 

contrast, the term that generally does not consider any detection process, and the thermal 

contrast, the expression that denotes the change in incident flux at the detector from the 

radiation of a blackbody source arising from the temperature change [1,2]  

 

We employ the nomenclature propose by Nicodemus [3,4].  Generally the quantum 

detectors have been recognized as superior in their capability to detect small differences in 

radiation.  However, the numerous advantages of uncooled , thermal detectors in an 

agricultural environment dictate that their performance be assessed also for remote 

monitoring of such process.  Thus we compare the contrast detected with the modern 

thermal and quantum detectors used in the focal plane of a radiometer. 
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3.2 Detected contrast for IR monitoring 

 

  We summarize here the pertinent steps leading to the results for the detected 

thermal contrast.  We use the expression, previously derived, for the spectral incidance onto 

the image plane of an optical system [5]. 

 

[ ] 1)T/2c5
1 1e)T()/c()T(L)T(E −− −== λ

λλ λεπωτωτ   [W/(m2µm)]  (3.1) 

 

In this equation, ω is the solid angle subtended by the optical system at the focal 

plane and τ is the transmittance factor of the intervening media, including the optical 

system [8,9].  Planck’s law gives the spectral radiance of the thermal source Lλ(T).  In this 

expression c1 is the first radiation constant, 2πhc2 = 3.7415 x 108 W µm4m-2, and c2 is the 

second radiation constant, ch/k = 1.43879 x 104 µm K.  Upon practical considerations and 

for simplicity, the emissivity, ε(T), is assumed constant over the wavelength interval [λ1, 

λ2], specified within the limits of integration.  This restricts our analytical results to the 

gray-body radiators whose emitted radiant power depends only on the source temperature 

and wavelength-independent emissivity; however the general steps indicated here are 

applicable to the spectral and line emitters as well. 

 

 The detected incidance )T(E D
]2,1[ λλ  is that obtained at the output of the detector 

with the responsivity )(λℜ that integrates the incident radiation over the spectral region of 

the detector sensitivity. We consider the intervals [3-5 µm] and [8-12 µm], the windows of 
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atmospheric transmission, whose transmission factor τ is largely independent of 

wavelength. 
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Next, we take the derivative of the detected incidance )T(E D
]2,1[ λλ with respect to 

temperature in order to find how the detected incidance changes with temperature.  A 

subscript indicates a derivative with respect to the quantity. 

 

[ ] }d1ee)(]T/c][T/)T([
2

1

2)T/2c()T/2c(6
2 ∫

−− −ℜ
λ

λ

λλ λλλε    [V/(m2.K)]  (3.3) 

The evaluation of these two integrals depends on the detector responsivity function, )(λℜ . 

 

 

3.3. Derivative of the detected incidance in a wavelength interval 

 

 Next we consider the specific cases of the thermal and the quantum detectors.  The 

superscripts T and Q denote with thermal and quantum detectors, respectively. 

 

3.3.1 Thermal detector 
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The responsivity of an ideal thermal detector is independent of wavelength. 

*
0dn0 D]fA/V[)( ∆λ =ℜ=ℜ    [V/W]     (3.4) 

In this expression Vn denotes noise voltage, Ad detector area, ∆f is the frequency bandwidth 

of the detector circuit, and D0
* is the detectivity-star. 

 

 Substituting Eq.(3.4) into Eq.(3.3), the wavelength-independent responsivity may be 

placed outside the integrals.  The resulting integrals and derivatives of the blackbody 

radiance had been evaluated previously [4,8,9].  It is a standard practice to change the 

variable from λ to x (x = c2/λT).  We also have x1 = c2/λ1T and x2 = c2/λ2T.  It is customary 

to expand the denominators in series and integrate the expression term by term. 
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4

201
DT

T2,1 ∑+∑ℜ= εεπωτλλ  [V/(m2.K)] (3.5) 

 

The symbols for the infinite sums Σ1 and Σ3 are defined next 
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Eq. (3.5) gives the contrast detected by a thermal detector in a wavelength interval.  

Terms in Eq. (3.5) correspond to the change in emissivity with temperature and to the 

change in gray-body radiative emission with respect to temperature, respectively. 

 

3.3.2 Quantum detector 

 

The responsivity of an ideal quantum detector is proportional to wavelength. 

 

λλλλ ')/]/[)( 2
*
2 ℜ=∆=ℜ DfAV dn  [V/W]     (3.8) 

 

Here, 2λ  is the detector cut-off wavelength, and *
2D is the detectivity-star evaluated at the 

end wavelength, )( 2
* λD . 
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The infinite sums Σ2 and Σ4 have likewise been evaluated previously [6, 11, 12]. 

 

( )[ ]∑
∞

=

−− ++=
1m

2
2

2
2mx3

2 2)mx(2mxe{mΣ  

 ( )[ ]}2)mx(2mxe 1
3

1
1mx ++− −       (3.10) 

( )[ ]∑
∞

=

−− +++=
1m

2
2

2
3

2
2mx3

4 6)mx(6)mx(3mxe{mΣ  

 ( )[ ]}6)mx(6)mx(3mxe 1
2

1
3

1
1mx +++− −      (3.11) 



 60

Eq.(3.9) gives the contrast generated by a gray-body source detected with a 

quantum detector in a wavelength interval.  Again, two terms in Eq. (3.9) correspond to the 

contributions due to the change in emissivity with temperature and to the change in gray-

body radiative emission with temperature, respectively. 

 

 

3. 4 Results and discussion 

 

Next, we compare the relative magnitudes of changes in the detected incidance in the 

wavelength interval due to the change in emissivity and due to the change in the gray-body 

radiative emission with the temperature.  Thus we evaluated the relative contributions of 

terms in Eq. (3.5) for thermal detector and Eq. (3.9) for the quantum detector.  The 

measured values of emissivity, ε(T), and its derivative with respect to temperature, [∆ε/∆T] 

would be preferably inserted in Eqs. (3.5) and. (3.9) to asses their relative importance.  

Unfortunately, they are not available, most likely because of the measurement difficulties 

and the lack of historical interest. 

 

 First we rewrite the analytical results of the previous section in an identical form.  

The slash is employed to refer to both the quantities related to the thermal and to the 

quantum detectors.  The quantities with the superscript T correspond to the infinite sums 

with subscripts 1 and 3.  The quantities with superscript Q correspond to the sums with 

subscripts 2 and 4. 
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[ ] { }4/32/1
//

2,1 ]/)([]/[)()( Σ+Σ∆∆= TTTTaTE QTQDT
T εελλ  [V/(m2K)]  (3.12)] 

 

Here aT(T) may be found upon comparing Eq.(3.12) with Eq. (3.5). 

4
201 )/()/()( cTcTaT ℜ= πωτ        (3.13) 

 

Similarly aQ(T) may be found upon comparing Eq.(3.12) with Eq. (3.9). 

 

')/)(/()( 3
21 ℜ= cTcTaQ πωτ        (3.14) 

 

Next, we asses the relative importance of terms in Eq. (3.12).  From the curly 

bracket we factor out the coefficient of the second sum, [ε(T)/T]. 

 

[ ] { }4/32/1
Q/TQ/DT

T2,1 )T,(C]T/)T()[T(a)T(E ΣΣεελλ +=  [V/(m2K)]  (3.15) 

 

Here we introduce the unknown function C(ε,T) tat includes the emissivity and temperature 

effects. 

]T/T/[)]T(/[]T/)T(/[]T/[)T,(C ∆εε∆ε∆ε∆ε ==    (3.16) 

 

In the second equality, the physical interpretation for the function C becomes 

apparent: it is the relative change in emissivity over the relative change in temperature.  We 

may find bounds on this function using the well established rule-of thumb: [4] “for the 

room temperature applications, the change in emissivity of 1% is about as affective in 

generating a change in radiance at the sensor as a change in temperature of 1 K”.  This 
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means that the first term is equal to the second term when the change of emissivity of 0.01 

corresponds to a change in temperature of 1 K at 300 K.  Under these conditions, two terms 

in Eq. (3.12) are equal. 

 

4/32/1 ]T/)T([]T/[ ∑=∑ ε∆ε∆       (3.17) 

 

Upon solving from Eq. (3.17) for the expression that appears on the right side of Eq.(3.16), 

we substitute it into Eq.(3.16). 

 

2/14/3 /]T/)T(/[]T/[)T,(C ΣΣε∆ε∆ε ==      (3.18) 

 

The infinite sums and their quotients have been evaluated previously.  The sums Σ1/2 

are approximately 10% to 20% of the sums Σ3/4, depending on the interval of detection, the 

detector type and the temperature. Thus, the second equality in Eq. (3.18) is bounded 

between 5 and 10. 

 

 The first equality in Eq.(3.18) is equal to 3/ε(T) by the above rule-of-thumb [4].  

When ε(T) is equal to 1, the first equality is equal to 3, much less than the right equality.  

Only when ε(T) falls between 0.3 and 0.6 is the first equality bounded by 5 and 10.  The 

rule-of-dumb has apparently been developed when working with materials that have lower 

emissivity than 1.  The empirical rule-of-thumb confirms the importance of the second term 

in Eqs. (3.5) and (3.9) at room temperature.  The additional finding demonstrated in this 
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work is that the contribution due to emissivity changes have been some what 

underestimated even by the practitioners working with empirical rules ( by about 50%).  

 

 The emissivity is indeed available as a function of temperature from room 

temperature to 500 K in the case of metals like steel and aluminum: the measured change of 

emissivity with temperature is approximately 0.003/K.  This means that the temperature 

difference of 1 K results in the change in radiative emission corresponding to 0.3K solely 

due to emissivity change with temperature.  For these two materials, important for infrared 

mirror surfaces, one may safely conclude that the real change of temperature of 1 K results 

in the change of the radiative emission equivalent to temperature change of 1.3K.  Thus, 

neglecting the emissivity term for this materials results in approximately 30% error. 

 

 This result is significant for the analysis of stray light, ghost images, and Narcissus 

in infrared optical systems, incorporating cooled optics and metal mirrors.  In the following 

subsections, we consider these effects as they apply to the thermal and quantum detectors. 

 

3.4.1 Thermal detector 

 

 We write out Eq. (3.15) for a thermal detector, using Eq. (3.13). 
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We remember that the temperature in Eq. (3.19) is around room temperature, and the 

parameter C is a slowly varying function whose value is on the order of 1 to 10, most likely 

about 3 to 9. 

 

 Figs. 3.1 and 3.2 show the magnitudes of two terms in the curly bracket, 

C(ε,T)∑1+∑3, for the temperature interval between 0 and 40 °C, and the wavelength 

intervals [3-5 µm] and [8-12 µm], respectively.  The function C is treated as a parameter, 

with a value between 0 and 10. 

 

Fig. 3.1 Terms in the curly bracket, {CΣ1+Σ3}, as a function of temperature between 0 and 40 
°C, for the wavelength interval [3-5 µm].  The function C is represented as a 
parameter, assuming values between 0 and 10. 
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 The curve with C = 0 represents the special case when the emissivity is independent 

of temperature, the previously treated results.  The difference between the C = 0 curve and 

the C = 1 shows the value of the infinite sum ∑1 as a function of temperature.  Clearly, the 

sum is quite small, however the contribution of the first term becomes appreciable when its 

coefficient is taken into consideration. 

 

 

 

 

Fig. 3.2 Terms in the curly bracket, {CΣ1+Σ3}, as a function of temperature between 0 and 40 
°C, for the wavelength interval [8-12 µm].  The function C is represented as a 
parameter, assuming values between 0 and 10. 
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3.4.2 Quantum detector 

 

Similarly, we write out Eq. (3.15) for a quantum detector, using Eq. (3.14). 

 

[ ] { }42
2

221
DQ

T2,1 )T,(C)c/T(')c/c()T()T(E ΣΣεπωτελλ +ℜ=  [V/(m2K] (3.20) 

 

Again we keep in mind that temperature in Eq. (3.20) is about room temperature, and the 

parameter C is a slowly varying function whose value is on the order of 1 to 10, most likely  

 

Fig. 3.3 Terms in the curly bracket, {CΣ2+Σ4}, as a function of temperature between 0 and 40 
°C, for the wavelength interval [3-5 µm].  The function C is represented as a 
parameter, assuming values between 0 and 10. 

 

about 3 to 9.  Figs. 3.3 and 3.4 show the magnitudes of the two terms in the curly bracket, 

C(ε,T)∑2+∑4, for the temperature interval between 0 and 40 °C, and the wavelength 
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intervals [3-5 µm] and [8-12 µm], respectively.  The function C is treated as a parameter, 

with the value between 0 and 10. 

 

The curve with C = 0 represents the special case when the emissivity is independent 

of temperature, the previously treated results.  The difference between the C = 0 curve and 

the C = 1 shows the value of the infinite sum ∑2 as a function of temperature.  Clearly, the 

sum is quite small; however the contribution of the first term becomes appreciable when its 

coefficient is taken into consideration. 

 

 

Fig. 3.4 Terms in the curly bracket, {CΣ2+Σ4}, as a function of temperature between 0 and 40 
°C, for the wavelength interval [8-12 µm].  The function C is represented as a 
parameter, assuming values between 0 and 10. 
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3.5. Thermal contrast detected with thermal and quantum detectors: comparison 

 

 Next, we simplify the expressions for the radiative incidance (see Eqs. (3.19) and 

(3.20)) by eliminating the common factors.  We define the following expression for the 

detected thermal contrast, applicable to both the thermal and quantum detectors,  

[ ]( ).TDTC Q/T
2,1 λλ  

 

[ ]( ) [ ] ( ){ } [ ]{ }fA/V)T(/TETDTC dn
Q/DT

T2,1
Q/T

2,1 ∆ωτελλλλ =  [ )mK/(Hz ] (3.21) 

 

Next, we evaluate the detected thermal contrast for the thermal and quantum detectors. 

 

3.5.1 Thermal detector 

 

 We substitute Eq.(3.13)into Eq. (3.21) to get the detected thermal contrast for the 

thermal detector. 

 

[ ]( ) { }31
3

2
*
021

T
2,1 )T,(C)c/T(D)c/c(TDTC ΣΣεπλλ +=  [ )mK/(Hz ] (3.22) 

 

Here we introduce a function bT(T).  It depends on temperature, the detectivity star, *
0D , 

and the radiation constants. 
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Using Eq. (23), Eq. (22) becomes 

[ ]( ) { }31
TT

2,1 )T,(C)T(bTDTC ΣΣελλ +=    [ )mK/(Hz ] (3.24) 

 

The published value for *
0D  for a pyrolitic detector at room temperature [4] is 109 

cm√Hz/(m K).  The coefficient bT (300 K) evaluated for the room temperature is 

approximately 4x108 √Hz/(m K).  

 

Figs. 3.5 and 3.6 show the relative detected thermal contrast measured with a 

thermal detector for the temperature interval between 0 and 40 °C, and the wavelength 

intervals [3-5 µm] and [8-12 µm], respectively.  The function C is represented as a 

parameter, with the value between 0 and 10.  As expected, a value an order of magnitude 

higher for the relative detected contrast is exhibited in the interval with the longer 

wavelengths. 
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Fig. 3.5 The relative detected thermal contrast obtained with a thermal detector as a function of 
temperature between 0 and 40 °C, for the wavelength interval [3-5 µm].  The function C is 
represented as a parameter, assuming values between 0 and 10. 
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Fig. 3.6 The relative detected thermal contrast obtained with a thermal detector as a function 
of temperature between 0 and 40 °C, for the wavelength interval [8-12 µm].  The 
function C is represented as a parameter, assuming values between 0 and 10. 

 

3.5.2 Quantum detector 

 

 Using Eq. (3.14), we write out Eq. (3.21) for a quantum detector 

[ ]( ) { }42
2

22
*
221

Q
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Here we introduce a function bQ(T).  It depends on temperature, the detectivity star, *
2D , the 

cutoff wavelength, λ2, and the two radiation constants. 
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Then Eq. (3.25) becomes 

 

[ ]( ) { }42
QQ

2,1 )T,(C)T(bTDTC ΣΣελλ +=    [ )mK/(Hz ] (3.27) 

 

For a cooled HgCdTe detector, the published value for *
2D  is 3x1010 cm√Hz/(m K), 

with the cutoff wavelength of 14 µm [6]. The coefficient bQ (300K) evaluated for the 

radiation at ambient temperature is approximately 2x108 √Hz/(m K).  Figs. 8 and 9 show 

the relative detected thermal contrast obtained with a quantum detector, for the temperature 

interval between 0 and 40 °C, and the wavelength intervals [3-5 µm] and [8-12. µm], 

respectively.  The function C is given as a parameter between 0 and 10. As expected, an 

order-of-magnitude higher value for the relative detected contrast is exhibited for longer 

wavelengths. 

 

 Figs. 3.9 and 3.10 show the relative thermal contrast detected with a quantum 

detector, for the following conditions: the value of the parameter C is 1, the temperature 

interval is between 0 and 40 °C, and the wavelength intervals  are [3-5 µm] and [8-12. µm].  

In both intervals, we note that the quantum detector exhibits approximately 20 times better 

performance than the thermal one. 
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Fig. 3.7 The relative detected thermal contrast obtained with a quantum detector as a function 
of temperature between 0 and 40 °C, for the wavelength interval [3-5 µm].  The 
function C is represented as a parameter, assuming values between 0 and 10. 
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Fig. 3.8 The relative detected thermal contrast obtained with a quantum detector as a function 

of temperature between 0 and 40 °C, for the wavelength interval [8-12 µm].  The 
function C is represented as a parameter, assuming values between 0 and 10. 
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Fig. 3.9 The relative detected thermal contrast obtained with a thermal and quantum detector 

as a function of temperature between 0 and 40 °C, for the wavelength interval [3-5 
µm].  The parameter C is equal to 1. 
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Fig. 3.10 The relative detected thermal contrast obtained with a thermal and quantum detector 

as a function of temperature between 0 and 40 °C, for the wavelength interval [8-12 
µm].  The parameter C is equal to 1. 

 

 

3.6 Conclusions 

 

 We developed the theoretical expression for the detected thermal contrast detected 

with the thermal and the quantum detectors in order to perform a reliable comparison and 

the trade-off analysis between their performances for the routine, remote monitoring of 

agricultural process.  Our analysis includes the contribution to the radiative emission 

arising from the emissivity change in addition to the traditionally considered one due to 

temperature change.  The former has not been quantified up to now, despite the fact that its 

contribution has been known.  The empirical rule-of-thumb developed by the long-time 
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practitioner confirms the importance of the second term in Eqs. (3.5) and (3.9) at room 

temperature.  The additional finding demonstrated in this work is that the contribution due 

to emissivity changes has been underestimated.  It introduces about 30% error for the 

detected thermal contrast at room temperature. 

 

 The detailed contrast evaluations presented here are in general agreement with the 

previously available qualitative knowledge.  Our results confirm that the detected thermal 

contrast is higher in the [8-12 µm] wavelength interval than in the [3-5 µm] interval, 

independently of the detector type.  Similarly, we note that under the same conditions the 

quantum detector measures 20 times higher detected thermal contrast than the thermal one 

in either spectral interval, independently of the magnitude of the change of emissivity 

value. 

 Thus, we conclude that the quantum detector exhibits better performance than the 

thermal detector for the remote monitoring of agricultural crops, especially in the case of 

the urgent need of the early disease detection. 

 

The factor of improvement in the contrast detected with the quantum detector over 

that with the thermal detector is also about 20 when the detected thermal contrast arises 

solely due to the change in emissivity.  This is significant in the interesting case that the 

infected plant undergoes only emissivity change without the accompanying change in 

temperature. 
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The phenomenon of the detected contrast arising solely due to an emissivity change 

is particularly relevant to the instrument design, especially for the cooled one, observatory 

facilities. In such cases, the designer is required to asses future operational performance of 

an instrument, under unknown conditions of aging in an environment that is not easily 

predictable or accessible for monitoring.  For example, the design studies of the 

performance for cooled telescopes tend to incorporate the barely achievable, laboratory 

emissivity values that are likely to deteriorate with time and operational use.  The 

magnitude of the thermal contrast arising solely due to the emissivity term may be 

determined only when data on emissivity deterioration in-situ, and with use, such as the 

lifetime data, becomes available. 

 

For the two materials that are important for infrared mirror surface, one may safely 

conclude that the real change of temperature of 1 K results in a change of the radiative 

emission equivalent to temperature change of 1.3 K.  Thus, neglecting the emissivity term 

for these materials, it results about an error of 30% .  Further research into application of 

these results to sources at higher temperatures is in progress [13-15].  
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Chapter 4 

Two-wavelength differential thermometry for a microscopic extended source 

 

4.1 introduction 

 

Determination of absolute temperature has always been considered a challenging 

task [1–4].  This is particularly difficult for an extended area sources where small 

temperature differences may arise upon action of heat transfer mechanisms [5,6].  A 

tungsten coiled coil source is often used as a reference source in spectrometric reflectance 

and transmission measurements.  In the evaluation of the tungsten source as a calibration 

standard, we found that the filament temperature actually varies as a function of position, 

resulting in its radiance variation along position and solid angle.  Initially, this appeared 

contrary to our expectations so we made a significant effort to determine the reasons [7,8]. 

 

 

4.2 Radiative temperature measurements 

 

The initial radiance evaluation over the whole projected coiled coil surface indicated 

that the structure forms a partially transmissive cavity, increasing the temperature of the 

inner surface elements. In the second attempt to improve the accuracy of the results, we 

used a differential two-wavelength thermometry, implemented with the spectrometer.  This 

method was believed to yield more credible results because the only source of error, 

emissivity differences, is eliminated.  The second measurement, described here, provides 

further verification for the formation of a cavity inside each of the two coils that form the 
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radiative surface of the tungsten filament.  Fig. 4.1 shows a high-resolution image of the 

filament at 550 nm and with a spectral width of 10 nm. By observing the cavity effects that 

arise in the tungsten lamp some degree of caution is advised when claiming traceability to 

the standard sources in the case of microscopic surface elements.  We performed a novel 

temperature measurement in a differential two-wavelength thermometry, in the belief that it 

was applicable to a microscopic area of the source.  Rather than performing a spectroscopy 

on the same projected surface area of the radiation source, we actually found how the 

temperature varies along a short line due to microscopic dimensions.  Such surface profiles 

that have likely been measured are outlined in horizontal rectangles, denoted by A, B, C, 

and D in Fig. 4.1. 

 
Fig. 4.1. The coiled coil obtained upon imaging on a 2000 x 2000-pixel camera at 550-nm central 
wavelength and with spectral width of 10 nm.  Thin lines are used to enhance the shape of the small 
diameter coils. In the middle part of the image, the inner surfaces of the small coil are outlined in a 
thin dotted line, outlining the volume of the small, partially transmitting cavity.  Thick lines show 
the envelope of the large coil with the continuous line indicating the outer surface.  The dotted line 
outlines the inner envelope of the large coil, forming the large porous cavity.  Only few surface 
elements are oriented perpendicular to the line of sight and parallel to the CCD surface, as for 
example the pixels 1, 4, and 7. Four scans (A, B, C, D) are indicated that could possibly give rise to 
temperature distribution reported in Fig. 4.6. 
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4.3 Error evaluation study in digitalization and Wien’s approximation.  

 

We can expect an error due the suppressed 1 in the Planck’s law.  At 2800 K, like in 

the thermal tungsten source which is a reference source in spectrometric reflectance and 

transmission measurements.  This error become significant as we can see in Fig. 4.2 

 
 

 
 

Fig. 4.2. The variation in the calculated temperature due the fact to disregard the one in the Plank’s 
law.  

 

 

This error increases with the wavelength and with the temperature.  Above the 2 µm 

at the temperature of 2800 K we have more than 8% of error or 217 K, but in 1 µm the 

error is just 17 K or 0.6%.  This is the reason to why we made the select the visible spectral 

interval 0.4 y 0.8 µm. 
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Digitalization error.  The spectrometer change the analogical signal to a digital one, in this 

process we can lose some information that can be significant.  As the data is taken closer 

this error will increase due the radiances are very similar, but if the measurements are taken 

for points that are distant, the emissivity can not be considered as a constant ( 30nm is an 

acceptable separation). 

We use a 12 bits spectrometer (4096 gray levels), with this device we expect an error of 3% 

(± 86 K) for measurements taken 0.37 nm apart at the temperature of 2800 K .  This error is 

due to the process of digitalization, Fig. 4.3   

Fig. 4.3  It shows the fluctuation in the calculated temperature due to digitalization with 12 bits at 

2800 K. 

 

 

The same rules applies to different temperatures and wavelengths.  In general the 

error due to suppressed 1 in the Plank’s law increases with the wavelength and the 

temperature.  The digitalization error is bigger as the measurements are closer in 



 84

wavelength , but the emissivity change with the temperature and with the wavelength, only 

can be considered constant in short intervals.  The emissivity change slowly with the 

temperature. 

 

 

4.4 Spectrometry for a microscopic surface element in a tungsten filament 

 

In non-contact temperature measurement, it is implicitly assumed that the surface 

element is at an specific temperature.  Measurement precision is similarly assumed to result 

in the same value for two consecutive measurements.  These assumptions may appear to be 

violated when imaging micro-structures with nanometric precision.  As we show next, the 

averaging rules applied to a macroscopic scale must be applied with caution to micro- and 

nano-surfaces.  

 

Fig. 4.4 A small area of the tungsten source is imaged on the spectrometer entrance pupil. 
Temperature is determined continuously as a function of wavelength, using differential two-
wavelength thermometry. 
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 Two wavelengths in a spectroscopic setup are separated by 0.3 nm to determine 

filament temperature of 0.1-mm2 projected area.  Two consecutive measurements may be 

used for the differential two-wavelength spectrometry.   Clearly, any other wavelength pair 

may also be used for thermometry in macroscopic applications, but not in the microscopic 

ones.  Allowing the spectrometer to record incidance measurements for all wavelengths, 

temperature may actually be found as a function of wavelength.  

A small area (0.1 mm2) of the tungsten filament is imaged on the spectrometer 

entrance pupil, as presented schematically in Fig. 4.4.  The filament about 4-mm long is 

placed in the focal plane of the lens with an effective focal distance of 35 mm.  The 

spectrometer entrance pupil is located about 400 mm behind the lens.  Filament temperature 

may be calculated for each pixel, using the familiar two-wavelength thermometry.  When 

two neighboring spectroscopic measurements are used, the emissivity effects may be 

completely neglected, resulting in the best theoretical measurement, for macroscopic 

applications. 
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Fig. 4.5 Published tungsten emissivity values increase from 0.05 at room temperature to 
0.35 at 3500 K (after Weast, 1970). 

 
Tungsten source emission primarily depends on temperature.  At 2800 K, its 

emissivity for the visible wavelength interval has been measured to be about 0.3, as 

illustrated in Fig. 4.3. In the same wavelength interval, the change of emissivity with 

temperature is about 6 x 10-5 K-1. For each 10M K of change in temperature, there is 2 x 

10M-4 change in emissivity, or about 0.02% per K.  While this value appears small, it is 

equal to 2% when dealing with the error in temperature of 100 K. Filament-heating current 

is kept stable using a regulated power source (see Fig. 4.4). 
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4.5 Differential two-wavelength thermometry 

 

The radiance of a grey body is given by Planck’ law 

( )
1

25
1 1T

cexpC),T(,TL
−

−





 −





= λλλελ       (4.1) 

 

C1 is different from the first radiation constant (c1=2πhc2 = 3.741832x10-16 Wm2) in being 

smaller than it by a factor π (C1 = c1/π).  The second radiation constant c2 is unchanged (c2 

= hc/kB = 1.438786x10-2 mK).  In the visible region of the electromagnetic spectrum, 1 

(one) in the denominator is appreciably smaller than the exponential function and may be 

neglected, without affecting the accuracy of results ( Wien approximation).  Then Eq. (4.1) 

can be simplified : 

 

( ) 










−= −

T
cexpC),T(,TL 25

1 λλλελ       (4.2) 

 

Two radiance values are close together because the wavelengths are separated by small 

value. 

( ) ),T(L),T(L,TLL 1122 λ∆λλ +==       (4.3) 

 

For each measurement we obtain the radiance value. 
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Dividing left and right side of Eq. (4.4) with the corresponding sides in Eq. (4.5), we find, 

 

( ) [ ] ( )( )[ ]212
5

122121 /1/1T/cexp/),T(L/,TLL/L λλλλλλ −−==   (4.6) 

 

Here we assumed that the emissivity of the body is the same at both wavelengths.  We 

apply logarithm to the left and right side of Eq. (4.6) 

 

[ ] )/1/1)(T/c(/ln5)L/Lln( 2121221 λλλλ −−=  

[ ] )/1/1)(T/c()L/Lln(/ln5 2122112 λλλλ −=−     (4.7) 

 

Then the temperature may be found. 

 

[ ][ ] ),),(L),(L(T)L/Lln(/ln5)/1/1)(T/c(T 1212
1

2112212 λλλλλλλλ =−−= −  

(4.8) 

This expression is exact in two-wavelength differential thermometry, because the 

emissivity is the same for both wavelengths.  Temperature is obtained upon measuring two 

radiance values at two distinct wavelengths. 

 

 When wavelengths are very close together as in two consecutives spectrometric 

measurement, differential quantities may be used. 
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112 λ∆λλ +=  and 121 λλλ∆ −=        (4.9) 

Emissivity is also a spectral quantity.  It is reasonably assumed that its value remains 

unchanged for two wavelengths, separated by less than 1 nm.  Thus, derivative of 

emissivity with respect to wavelength is zero. 

 

 The radiance is a continuous function of wavelength.  When the wavelength is 

changed by small amount, the radiance will be likewise changed by small amount.  We 

make the following simplification, remembering Eq. (4.9) and using binomial expansion 

for small quantities. 
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[ ] [ ] 1
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2
2121 /)/(/1/1 λλ∆λλλ∆λλ ==−       (4.11) 

 

We replaced the specific subscripts with the running variable to correspond with the 

spectrometric experiment. 

 

( ) [ ] ( )( )[ ]λλ∆λλλ∆λλ /T/cexp/51),T(L/,TLL/L 22121 −+==   (4.12) 

 

We take the natural logarithm of the left and right side of Eq. (4.12). 

 

( )[ ])T/()c)L/Lln( 2
221 λλ∆γ −=        (4.13) 
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Here we introduce a constant γ, 

)/ln(5)/51ln( 12 λλλλ∆γ =+=  

 

It is a product of 5 and logarithm of the ratio of λ2 and λ1, whose value is just slightly larger 

than zero. 

 

( )[ ])T/()c)L/Lln( 2
221 λλ∆γ −=−       (4.14) 

 

We can find temperature by solving for T in Eq. (4.14), thus defining differential two-

wavelength thermometry: 

 

[ ]{ }γλλ∆ −= )L/Lln(/)c(T 21
2

2        (4.15) 

 

Substituting the parameter γ again, we obtain: 

[ ]{ })/51ln()L/Lln(/)c(T 21
2

2 λλ∆λλ∆ +−=  

    ),),(L),(L(T 2112 λλλλ=         (4.16) 

 

Using Eq. (4.10), we attain an expression with single logarithmic function to minimize the 

manipulation of small quantities. 

[ ] [ ]5
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2
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We note that temperature may be determined if we measured four quantities: two radiances 

and two specific wavelengths (L1, L2, λ1, λ2). 

 

4.6 Application to tungsten source 

 

We reported earlier that the temperature of the tungsten filament is not uniform, as assumed 

previously.  We tried to determine the temperature of 0.1-mm2 area on the tungsten source 

more accurately, with two-wavelength differential thermometry. Fig. 4.4 shows the 

temperature as a function of wavelength obtained for a wavelength separation of only 0.3 

nm.  The measured temperature of the filament is seen to depend on the wavelengths at 

which the measurements are taken.  At 470 nm, its measured value is approximately 2500 

K, increasing to about 2950 K at 550 nm. The maximum temperature is reached at 603 nm.  

We calculated the temperature, Tavg = 2869 K, using the complete instrument spectral 

region from 470 nm to 650 nm.  This further variability of results was even more 

unexpected, prompting us to question the validity of the differential two-wavelength 

thermometry on a micro scale.   
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Fig. 4.6 Temperature as a function of monochromator wavelength, measured with differential two-
wavelength thermometry.  The wavelengths are separated by 0.3 nm to determine temperature of 
0.5-mm2 area on the filament. 
 
 
4.7  Conclusions 

 

Theoretically, sample temperature may be determined if we measure four quantities (two 

radiances at two specific wavelengths).  Results indicate that differential, continuous 

thermometry using a spectrometer measures temperature distribution along a short line.  

This method significantly enhances the capability of this established technique to new 

applications on a microscopic level.  With this measurement we further confirm the 

establishment of a micro-cavity in tungsten source, and determine temperature of inner and 

outer coils. We demonstrate that the differential two-wavelength thermometry may provide 

temperature distribution along a small distance when micro-areas are being imaged on 

spectrometer entrance pupil.  Finally, the challenges of measuring temperatures of micro-

surfaces at elevated values remain an area of significant research interest. 
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Chapter 5 

General conclusions 

We developed the theoretical expression for the detected thermal contrast detected 

with the thermal and the quantum detectors in order to perform a reliable comparison and 

the trade-off analysis between their performance for the routine, remote monitoring of 

agricultural process.  Our analysis includes the contribution to the radiative emission 

arising from the emissivity change in addition to the traditionally considered one due to 

temperature change.  The empirical rule-of-thumb developed by the long-time practitioner 

confirms the importance of the second term at room temperature.  The additional finding 

demonstrated in this work is that the contribution due to emissivity changes has been 

underestimated.  It introduces about 30% error for the detected thermal contrast at room 

temperature. 

 

 We note that under the same conditions the quantum detector measures 20 times 

higher detected thermal contrast than the thermal one in either spectral interval, 

independently of the magnitude of the change of emissivity value. 

 Thus, we conclude that the quantum detector exhibits better performance than 

thermal detector for the remote monitoring of agricultural crops, especially in the case of 

the urgent need of the early disease detection. 

 

The factor of improvement in the contrast detected with the quantum detector over 

that with the thermal detector is also about 20 when the detected thermal contrast arises 

solely due to the change in emissivity.  This is significant in the interesting case that the 
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infected plant undergoes only emissivity change without the accompanying change in 

temperature. 

 

The magnitude of the thermal contrast arising solely due to the emissivity term may 

be determined only when data on emissivity deterioration in-situ, and with use, such as the 

lifetime data, becomes available. 

 

For the two materials that are important for infrared mirror surface, one may safely 

conclude that the real change of temperature of 1 K results in a the change of the radiative 

emission equivalent to temperature change of 1.3 K.  Thus neglecting the emissivity term 

for these materials results in approximately 30% error. 

Theoretically, sample temperature may be determined if we measure four quantities 

(two radiances at two specific wavelengths).  Results indicate that differential, continuous 

thermometry using a spectrometer measures temperature distribution along a short line.  

The utility of this method restrict us to an interval of low wavelengths in the visible interval 

of the electromagnetic spectrum and the error could increase when we dealing with higher 

temperatures.  Also the digitalization process will add an error that could be significant, but 

in our case we have no such problem using a 12 bits spectrometer.  At the microscopic level 

we further confirm the establishment of a micro-cavity in tungsten source, and determine 

temperature of inner and outer coils.  We demonstrate that the differential two-wavelength 

thermometry may provide temperature distribution along a small distance when micro-areas 

are being imaged on spectrometer entrance pupil.  Finally, the challenges of measuring 

temperatures of micro-surfaces at elevated values remain an area of significant research 

interest. 
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