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ABSTRACT

The  thesis  deals  with the  application of the  fringe projection method for  topography and

dynamic deformation measurement. In the first part, we present an analysis of the influence of

the  grating  period  used  in  fringe  projection  technique  for  topography measurement.  The

algorithm used to the processing of the fringe images is phase shifting technique. Most phase

shifting algorithms are developed for  a  signal without  harmonics,  i.e.,  a  perfect  sinusoidal

signal. When they are used for phase detection of a nonsinusoidal signal there is an error in the

results.  In order to determine the grating period influence, sinusoidal fringes with different

pitch are projected on a semi-spherical object. It is observed that some fringe patterns captured

by the CCD camera have nonsinusoidal profile. These fringes are used to retrieve the surface

topography. An error is evaluated by the comparison of the results with a reference surface

which it was measured with the spherometer. 

In the second part, it realized a monitoring by fringe projection technique of the deformation

in sheet metal samples during a tensile test. Since it  is a dynamic event, the use of Fourier

transform method allows us to measure in real-time the deformation of the sample respect to

its  initial  state,  i.e.,  before  applying  the  load.  It  is  showed  that  the  resolution  of  fringe

projection technique  is  enough to  detect  the  transition zone  to  predict  failure.   Study of

material behavior is important due to the development of new materials that can exhibit  an

unexpected behavior.
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INTRODUCTION

Nowadays there is  an increasing need for accurately measuring the three-dimensional (3D)

shape of objects,  as well as stress-strain and vibration measurements for a wide variety of

applications.  For  this  purpose  there  are  both  mechanical  and  optical  techniques.  Optical

techniques offer the advantage of provide non-contact and full-field measurements of in-plane

and out-of-plane components of displacements.

For out-of-plane measurements some optical techniques have been developed, such as: time-

of-flight  method  [1],  laser  scanning  [1],  moiré  methods  [2],  interferometry  [3],

photogrammetry [1], fringe projection [2], electronic speckle pattern interferometry (ESPI) [4,

5], Talbot  interferometry  [6]  and  moiré  deflectometry  [7,  8].  Each  one  offers  different

resolution, accuracy and limitations. 

In  the development  of this  thesis  we  select  fringe  projection technique  to  measure  both,

deformation and shape. This technique is related with projection moiré, but shape is directly

decoded  from the  deformed  fringe  pattern  recorded  from the  surface  of  a  diffuse  object

without using a reference grating to create moiré fringes [1], and has the advantage of being

easy to  implement.  Data acquisition is  made  in  three  steps:  1)  phase  detection,  2)  phase

unwrapping and 3) phase-to-depth conversion using the parameters of the optical system, all

of which are involved in the sensitivity vector, thus obtaining dimensions of topography of the

object analyzed in real coordinates [9]. 

Accuracy of the measurements is a relevant topic, unfortunately it is affected by many factors.

We  will  describe  some  problems  that  arise  when  it  is  applied  fringe  projection  method.

Camera calibration is  a  crucial problem for computer vision where many tasks require the

computation  of  accurate metric  images.  Calibrating  a  camera  consists  in  determining  the

transformation which 3D points  of a  certain  scene  or object  into their  corresponding two

dimensional  (2D)  projections  onto  the  image  plane  of  the  camera.  The  precision  of  3D

reconstruction will be influenced by the veracity and reliability of camera and projector in the

2



Introduction 3

system. Therefore, the lens distortion of camera and projector should be considered during

calibration. Many techniques and some studies concerning calibration for lens distortion have

been presented in the last years [10-13].

Barrel distortion occurs when the magnification at the center of the lens is greater than at the

edges. A higher quality lens can be used to correct for this but this comes at additional cost to

the image capture system. Barrel distortion is  primarily radial in  nature,  with a   relatively

simple one parameter model accounting for most of the distortion. A cost effective alternative

to an expensive lens is to algorithmically correct for the distortion using field programmable

gate arrays.

When  testing  large  surfaces  telecentric  systems  are  not  convenient  since  the  size  of  the

measured field is limited by the diameter of optical system [2]. If the projection system is not

telecentric  the  projected  lines  of  the  grating  are  not  equidistant  in  the  reference  plane.

Contouring surfaces are thus no longer flat. There are several ways of contouring this effect:

making  a  special  projection  grating  whose  projection  in  the  reference  plane  will  give

equispaced lines [14]. Others authors found an equation which considers that the fringe period

is not constant and that depends on x [15-17].

Because of the finite distances there is also distortion due to viewing perspective. A point P on

the surface will be apparently at P' when viewed through the grating. By simple geometry the

actual coordinates (xr,yr) could be obtained from the measured coordinates (xa,ya): this enables

the measured surface to be mapped to the actual surface to correct for the viewing perspective

[18].

Other parameter that will affect the topography measurement it is that the observed waveforms

such as fringes in an interferogram often become nonsinusoidal because of, for example, the

nonlinearity of the detector or the nonlinear of the projector which cause the projected fringe

patterns to be nonsinusoidal, which results in phase error and therefore measurement error [19,

20].
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System  calibration  techniques  have  been  developed  to  obtain  the  mapping  relationship

between  the  phase  distribution  and  the  3D object  surface  coordinates,  without  explicitly

determining the system-geometry parameters. Instead, calibration parameters, which implicitly

account for the system-geometry, are determined [21, 22]. In the calibration method, a plane is

positioned successively at different positions from the camera. Usually, a marked point on the

first calibration plane is used as the origin of the world reference system, then the following

calibration results, a precise linear z stage has to be used. The main drawback of the system

comes from practical  limitations,  such as its  plane position restriction or the difficulty of

calibrating big measurement volumes.

We analyze the influence of the nonsinusoidal profile of the fringes in shape measurement, by

contouring an object with different grating periods. 

Deformation measurements have to be made by obtaining a fringe pattern of the object in its

original state and in its deformed state, followed by reconstruction of the object shape from

these  fringe  patterns  and  finally  by  calculating  the  difference  between  these  two

measurements.  We follow the changes induced in the topography of metallic sample sheets

subjected to uniaxial tensile tests. A reference fringe pattern of the object before applying the

load allows us to obtain deformation in real-time.

The organization of this thesis is described below:

Chapter 1. Mechanical aspects: some basic concepts of mechanics related with this thesis

are presented.

Chapter 2. Moiré and fringe projection techniques: it  is presented a description of moiré

and fringe projection techniques.

Chapter 3. Phase measurement: it is presented a description of phase detection techniques,

such as phase shifting and Fourier transform method, and phase unwrapping techniques.
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Chapter 4. Analysis of grating period in fringe projection technique:  it  is presented an

analysis  of the  error  caused by a  nonsinusoidal  fringe  profile.  The  shape  of an object  is

obtained by fringe projection technique by using different grating periods. The comparisons of

the topography obtained for each grating period with respect to reference surface, allows us to

establish an appropriate grating period that minimizes the error in the measurement.

Chapter 5. Dynamic measurement of out-of-plane deformation in test specimen by fringe

projection: deformation measurements in  real-time  of sheet  metal specimens subjected to

uniaxial tensile  test  are presented. By monitoring the entire process we detect the material

behavior in the elastic and plastic zone during its elongation until fracture took place, which

allows us to establish a comparison between different materials.

Chapter 6.  Final  conclusions: finally  the  obtained  results  and  possible  applications  are

reported.

Appendix A.  Spherometer: a  brief  description of a  spherometer  and  parameters  used  to

determine the radius of curvature are presented. 

Appendix B. Extrapolation of fringes: a description of a method used in processing of non

full-field  fringe  patterns  is  explained.  The  fringes  are  extrapolated  to  apply  the  Fourier

transform method.  With this  implementation in  the method,  errors in  phase detection are

avoided.

Appendix C. List of works presented in meetings.
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CHAPTER 1

MECHANICAL ASPECTS

The mechanics  of materials  studies the behavior  of a  solid  material under  external forces

applied to a body. The response of a material to external forces depends on their mechanical

properties. Mechanical properties are described in terms of the types of force or stress that the

material must withstand and how these are resisted. The most common properties are strength,

hardness, ductility, and impact resistance, to determine this properties the material has to be

submitted  to  different  tests.  Design  engineers  select  a  material  based  on  its  mechanical

properties,  and  determine  the  range  of  usefulness  and  establish  the  service  that  can  be

expected to ensure safety during operation.

In this chapter we describe the basic terms to easily understand the behavior of a material

subjected to external forces. Section 1.1 deals with the definition of stress. In Section 1.2 we

describe strain  and how is  related to  stress.  Section 1.3 describe a tensile  test.  Finally,  in

Section 1.4 we emphasizes the mechanical behavior of a specimen during tensile loading.

1.1 ANALYSIS OF STRESS

When a body is subjected to the actions of external forces, the effects are transmitted through

the material. Internal forces are thus produced to maintain the equilibrium. At each point of the

body the intensity of internal forces varies. Stress is used to describe the distribution of a force

over the area on which it  acts.  The stress at  a  small elementary area  dA of the force  dF

transmitted across it, is given by:

s=
d F

d A
(1.1)

which is composed of the normal stress � and the shear stress � .

8
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The normal stress represent the average stress over a transversal section:

�=
F n

A
(1.2)

and requires a single subscript which indicates the direction in which it acts.

The shear stress is a stress applied tangential to the transversal section:

�=
F

t

A
(1.3)

and requires two subscript, the first one indicated by the direction on its normal the plane on

which the shear stress acts while the second indicates the direction of the shear stress in that

plane.

The description of the complete stress state tensor at a point requires three planes to define the

stress tensor [1, 2], Figure 1.1A:

S=�
�

x
�

xy
�

xz

� yx � y � yz

�
zx
�

zy
�

z
� (1.4)

Since �
xy
=�

yx
, �

xz
=�

zx
, and �

yz
=�

zy
, we need six independent values to describe the stress

state of a point of a solid body. If the stresses are all parallel to one direction, the state of stress

is uniaxial. In this case, the state of stress is considerably simplified because only the stress

that coincides with the loading axis has a finite value while all the others are zero. 

A) B)

Figure 1.1 A) Stress components on an infinitesimal element, and B) Displacement of line elements . 
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1.2 ANALYSIS OF STRAIN 

The  displacement  of any point  in  a  body may be  conveniently  expressed  in  terms  of its

components  u,  v,  w parallel to the  x,  y,  z axes respectively.  Consider two infinitesimal line

elements OA, OB, (Figure 1.1B) of lengths dx, dy and parallel to the x, y axes intersecting at

the point O. Let these elements be displaced in the strained body into the positions O'A', O'B'.

If we denote the displacements of the point O by u, v, the corresponding displacements of A',

B' are u�
�u

� x
dx , v�

�v

� x
dx   and  u�

�u

� y
dy , v�

� v

� y
dy respectively.

The  normal  strains  [2]  describe  the  change  in  length  per  unit  length  in  each  coordinate

direction:

�x=
�u

� x
, �y=

�v

� y
, �z=

�w

� z
(1.5)

The shear strain [2] measures the decrease in the angle between two line segments initially

orthogonal and parallel to the coordinate axes:

� xy=
� v

� x
�
�u

� y
, � yz=

�w

� y
�
� v

� z
, � zx=

�u

� z
�
�w

� x
(1.6)

The subscripts have the same meaning as assigned for stresses.

1.2.1 Relations between stress and strain

If a homogeneous and isotropic body is subjected to an axial force (tension/compression), it

experiments an axial (extension/contraction) strain in the direction of the force, that results in

a transverse (contraction/expansion) strain in the two directions mutually perpendicular to the

axial strain,  Figure 1.2. While a material behaves elastically,  there are a linear relationship

between stress and strain given by Hooke's Law. Consider that the force is in the direction of

the x axis, the longitudinal strain is given by:

�x=
� x

E
(1.7)

where E is the modulus of elasticity. As mentioned above the axial strain is accompanied by
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simultaneous lateral strains, given by:

�
y
=�

z
=	
�

x (1.8)

which 
 is a constant known as Poisson's ratio.

Figure 1.2 Deformation of a homogeneous,
isotropic specimen under uniaxial load.

By measuring the displacement  fields,  stress and strain can be determined according to the

above introduced equations.

1.3 STRESS-STRAIN DIAGRAM

In order  to  measure  mechanical properties of a  material various tests must  be  made to  a

sample. A universal testing machine, may be used to apply a tensile load, a compressive load

or a  deflection to a test specimen. From a tensile  test properties as strength,  stiffness,  and

ductility can be determined. A tensile test consists in apply a load using a computed controlled

testing machine, the velocity must be uniform and controllable, and carefully selected since

material properties are affected by high rates of loading. As the specimen is pulled the load is

measured by the testing machine and recorded. 

After the test a stress-strain diagram [3, 4], Figure 1.3, is constructed from the measurements

taken during the test. The test starts at the origin  A, the specimen starts to elongate with a

linear relationship between stress and strain until point  B, known as the  proportional limit.

After this point the specimen begins yielding, i.e., with a small or any increments of load an

elongation is produced. The stress at point  C is referred as the yield point. From C to  D the
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specimen continues to elongate without any increase in stress, The stress begins to increase at

D, and the region from D to  E is  called zone of  strain hardening. The stress at  point  E is

referred to as ultimate stress or ultimate strength, this term is used to describe the maximum

stress a material can withstand. At E the load begins to drop, and the specimen begins to neck

down, this behavior continues until fracture occurs at the fracture stress F.

Figure 1.3 Stress-strain diagram.

From A to B the material is in the elastic zone, in this zone all deformations vanish when the

load is  removed. Between point  B and  C is  the transition zone. Below point  C begins the

plastic zone, and when uploading from a point in this zone the stress-strain behavior of the

specimen follows a straight  line,  Figure 1.3, whose slope is  parallel to  AB. The strain that

remains when the stress return to zero is called residual strain.

Although the mechanical properties for materials as aluminum, hot-rolled steel and others are

well defined, the importance to determine mechanical properties arise from that  nowadays

mechanical properties could be altered by different processes as alloying, work-hardening, and

tempering, besides that a wide variety of new materials have been developed as plastics with

improved properties,  or composites. Composites are materials that combine two constituent

materials in a manner that leads to improved mechanical properties, some of them are madded

by  placing  fibers  in  specific  orientation  to  produce  a  material  with  direction-dependent

properties. 
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1.4 STRESS CONCENTRATION

The average stress given by Equation 1.2 may be used only so long as the cross section of the

members is relatively uniform, that is, there are no abrupt changes in cross section, because

the stress will be uniformly distributed over the cross section, Figure 1.4.  

Figure 1.4 Stress distribution for a uniform cross section.

However, if there are abrupt changes in cross section, the stress distribution will no longer be

uniform. Consider a cracked plate subjected to a tensile stress. Since the tensile stress cannot

be transmitted through the crack, the load must be redistributed over the remaining material in

an uneven pattern that is highest at the edges. The lines of force are diverted around the crack

resulting in a local stress concentration. In the infinite plate, Figure 1.5A, the line of force at a

distance W from the crack center line has  force components in  the x and y directions,

figure. If the plate is restricted to 2W,  Figure 1.5B, the force x must  be zero on the free

edge, this boundary condition causes the lines of force to be compressed which results in a

higher stress intensification at the crack tip [5]. The maximum stress could be higher than the

average stress given by Equation 1.2. 

Depending  of  the  material  used  and  the  loads  of  which  will  be  subjected,  this  stress

concentrations may or may not be significant for the design. Although the exact distribution of

stress is not of great importance, the maximum value of stress if it  is. This maximum stress

may be  related to the average stress on the net cross section, by the stress concentration factor

K:

�max=K � (1.9)



Mechanical Aspects 14

A) B)

Figure 1.5 Stress concentration effects due to a crack in: A) infinite and B)
finite width plate.

The stress concentration factor can determined both theoretical and experimental, it depend of

the geometry and dimensions of the cross section changes and the type of load applied (axial

loading, torsion or bending).  Figure 1.6 shows an example of the stress concentration factor

for a hole in a rectangular bar, it  is important notice that a very small hole can have a very

damaging effect  on a member.  Values of stress concentration are based on linearly elastic

behavior  and  are  valid  only  as  long  as  the  computed  value �max does  not  exceed  the

proportional limit of the material. 

Figure 1.6 Stress concentration factor K for a flat bar with centrally located
hole in tension.

A ductile material due to its high elongation after yield, has the quality of redistributing stress
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in areas of high concentration of stress. Consider a bar with a hole, Figure 1.7A, where abrupt

changes occur in the area of the cross section of a member, as half of the hole, the stress are

not evenly distributed. The maximum normal stress occurs at the edges of the hole on the cross

section which passes through the center of the hole, Figure 1.7B. If the material is ductile, the

fibers near to the hole stress until the yield point. These fibers are deformed but maintain this

stress. The excess of stress would have to be applied to these fibers is supported by adjacent

fibers,  Figure 1.7C. If some fibers stress until the elastic limit of the material, do not break,

instead of that, support the load and the strain continue until all fibers  reach the yield point,

resulting in a stress redistribution,  Figure 1.7D. If some fibers fracture, the fracture of some

fibers in the cross section reduce the area and consequently more fibers are overloaded to the

high intensity. Finally these fibers break and as the process continue develops a progressive

crack. A small crack develops quickly causing that the entire member fracture [4].

Figure 1.7 Stress distribution in a nonuniform cross section. A)
Non uniform cross section, B) Stress distribution below the yield
point, C) Maximum stress over yield point, and) All fibers at the

yield point.

From the fracture mechanics approach,  fracture cannot  occur unless the stress exceeds the

ultimate strength of the material.  Thus the flaws (hole,  notch,  etc.)  must  lower  the global

strength by magnifying the stress locally. Loading produces a singularity at the crack tip, that

is,  a  region with a  determined distribution of stress fields.  The stress concentration factor

defines the amplitude of the crack tip singularity, that is, stresses near the crack tip increase in
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proportion to the stress concentration factor, and stresses far from the crack tip are governed

by remote boundary conditions. 

A plastic zone forms ahead of the crack tip, as this region grows the elastic stress analysis

become increasingly inaccurate.  Simple corrections to  linear elastic  fracture mechanics are

available when moderated crack tip yielding occurs. For more extensive yielding, one must

apply alternative crack tip parameters that take nonlinear material behavior into account [5].

Figure 1.8 The small circle represents
load that must be redistributed,

resulting in a larger plastic zone.

The stress singularity is truncated by yielding at the crack tip, in the elastic crack tip solution.

When yielding occurs,  stresses must  redistribute in  order to  satisfy equilibrium.  The small

circle in Figure 1.8 represents a region in which are forces that would be present in an elastic

material but cannot be carried in the elastic-plastic material because the stress cannot exceed

yield,  this  loads must  be redistributed.  The plastic  zone must  increase in  size  in  order  to

accommodate these forces.
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CHAPTER 2

MOIRÉ AND FRINGE PROJECTION TECHNIQUES

The term moiré against what might be thought is not a name of a person, in fact, it is a french

word referring to a silk  fabric that produces dark bands  [1]. In optics is used to describe a

common effect that is observed when two identical or closely identical amplitude gratings are

superimposed, this effect could be seen in our everyday surroundings with ordinary objects.

The gratings can be of straight lines or curves, when two gratings overlap, some of the light

passing through the first grating is obstructed by the second one, and a modulation of the light

intensities take place, producing a pattern of much lower frequency, known as moiré fringes. A

dark fringe is produced where the dark lines are out of step one-half period, and a bright fringe

is produced where the dark lines for one grating fall on top of the corresponding dark lines for

the second grating [2]. The phenomenon is dependent to the observer direction of view. 

Moiré effect is related to interferometry, and help us to understand interferometric test results.

A grating can be thought as a plane wave where the distance between two lines is equal to the

wavelength of light, then the superposition of two gratings is equivalent to the superposition of

two wavefronts. A circular grating represents a spherical wavefront.  Where the two waves are

in phase,  bright fringes result  (constructive interference), and where they are out of phase,

dark fringes result  (destructive interference). The moiré pattern obtained from superimpose

two  gratings  (linear  or  circular)  is  equivalent  to  the  interference  pattern  resulting  from

superimpose two wavefronts (plane or spherical). 

Moiré is  one of the first  optical methods used to measure displacements.  There are moiré

techniques  for  measure  in-plane  and  out-of-plane  components  of  displacements,  the

displacements are measured simultaneously over the whole field of view, without contact. The

main principle of moiré technique is to compare two states of the same system of lines, that

reflect the changes experimented by a surface. There are three basic types of moiré:

� Intrinsic moiré gives information concerning displacements taking place on a surface.

18
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� Projection or shadow moiré provides displacements of a surface with respect to a reference

plane.

� Reflection moiré provides information about the slopes of a surface.

A theoretical description of moiré fringes formation is given in Section 2.1. The methods to

measure  in-plane  deformations  and  strains  are  briefly  described  in  Section  2.2.  Moiré

techniques for out-of-plane deformations,  contouring and fringe projection are described in

Section 2.3.

2.1 MATHEMATICAL DESCRIPTION

Due to  the  gratings  are  periodic  structures  their  intensity  transmission function could  be

described using Fourier series, then the transmittance of the two gratings can be given by:

T 1�x , y �=a0��
m=1

�

amcos [m
1�x , y�] (2.1)

T 2�x , y �=b0��
n=1

�

bn cos [n
2 �x , y�] (2.2)

where a0, am, b0 and bn are the Fourier coefficients that determine the profile of the grating

lines (i.e., square wave, triangular, sinusoidal, etc.), and 
�x , y� is the function describing

the basic shape of the grating lines. Assuming that two gratings are oriented with an angle

2� between them with the y axis bisecting this angle, Figure 2.1, the two grating functions

can be written as:


1�x , y�=
2�

p
1

�[ x	 f 1�x , y �	�1]cos��ysin� �


2�x , y �=
2�

p
2

�[ x	 f 2� x , y�	�2]cos�	y sin� �
(2.3)

where p , f and � are the grating periods, the local deformations of the grating lines and

the  in-plane  grating  displacement,  respectively.  The  function f 1�x , y� represents  the

departure of grating lines from straightness. In strain analysis is the in-plane deformation of

the object under load, in moiré topography it is the out-of-plane deformation [3].
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Figure 2.1 Moiré pattern between two overlap gratings of the
same pitch at an angle �.

To make it possible to form moiré fringes of good visibility the following conditions should be

fulfilled: 

� The widths of the lines and spaces are equal.

� The  two  gratings  are  well  defined,  i.e., f 1�x , y� and f 2�x , y � are  smoothly varying

functions.

� The angle of intersection of the two gratings should be small. If the angle between gratings

is increased the separation of moiré fringes decreases.

� The ratio of the grating periods should be in the integer ratio, d 1�Md 2 .

When the gratings are superimposed, the resultant transmission is given by the product:

T 1�x , y �T 2�x , y �=a0b0�a0�
n=1

�

bn cos [n
2�x , y �]�b0�
m=1

�

am cos[m
1�x , y �]

��
n=1

�

�
m=1

�

ambncos [m
1�x , y�]cos [n
2�x , y �]
(2.4)

The  first  three terms  on Equation 2.4 represent  the  original gratings,  the last  term is  the

interesting one, and can be rewritten as:

Term 4=�
n=1

�

�
m=1

� ambn

2
{cos[m
1�x , y ��n
2�x , y �]�cos [m
1�x , y�	n
2� x , y�]} (2.5)

We are interested in the lowest beat frequency term that determine the moiré  fringes, then



Moiré and Fringe Projection Techniques 21

ignoring high frequency terms the general moiré fringe formula can be written as:

TM � x , y�=a0 b0��
n=1

�

�
m=1

� am bn

2
cos[m
1 �x , y �	n
2 �x , y �] (2.6)

from which can be deduced the fringe spacing, orientation and the fringe profile. The moiré

will be lines whose centers satisfy the equation:


1�x , y�	
2�x , y �=2�r

or using Equations 2.3:

1

p
1

�[x	 f 1�x , y�	�1] cos��ysin� �	
1

p
2

�[ x	 f 2 �x , y�	�2]cos�	y sin� �=r (2.7)

where r is an integer corresponding to the fringe order. 

Three special cases can be analyzed [2], considering straight lines, f 1 = f 2 = 0 , without in-

plane displacements �1 = �2 = 0.

Case 1: Pure rotation. Where equal gratings are superimposed with an angle between them,

p1 = p2 = p  and ��0.

Equation 2.7 is reduced to:

2ysin�=rp (2.8)

This equation represent equally spaced, horizontal lines.

Figure 2.2 Moiré patterns formed by: A) Two gratings of different pitches and
no tilt, B) Two gratings of different pitches and tilted.

Case 2: Pure extension. Gratings of slightly different periods are superimposed parallel to each

other, p1�p2 and �=0.
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The moiré fringes satisfy the equation:

x=
p1 p2

p2	p1

r (2.9)

This fringes are equi-spaced, vertical lines, Figure 2.2A.

Case 3:  General  case.  Where the two  gratings  have  different  line  spacings and  the  angle

between the gratings is nonzero:

x � 1

p1

	
cos�

p2
��y

sin�

p2

=r (2.10)

This is the equation of straight lines whose spacing and orientation is dependent on the relative

difference between the two grating spacings and the angle between the gratings, Figure 2.2B.

2.2 IN-PLANE DIPLACEMENTS

Consider a point P on the surface of a solid body that displaces to a point P', Figure 2.3, by a

deformation or by rigid-body movement, or by a combination of both. The displacement of P

is represented by vector �d and its components �i , �j , �k in the x, y, z directions respectively.

The  displacement  is  described  by  scalars  u,  v,  w which  are  the  magnitudes  of  the

corresponding vectors.

Figure 2.3 A three-dimensional displacement.

u and v are in-plane displacements since u and v lie in the original plane of the surface, w is

perpendicular  to  the  surface  and  it  is  called  the  out-of-plane  displacement.  In-plane
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displacements can be measure independently by geometric moiré and moiré interferometry [4,

5]. To measure in-plane deformations a grating is attached to the test surface, and a reference

grating is  fixed to the surface,  when the surface  is  deformed or experiences a  body rigid

translation the specimen grating will follow the deformation and the moiré pattern appear.

There are several methods to obtain the moiré pattern, the main difference is that in some of

them the intensities are added, and in other are multiplied.  For the additive type the moiré

pattern could be obtained by: (1) double exposure, first imaging the reference grating and after

deformation imaging  the  specimen  grating  onto the  same  film,  (2)  imaging  the  reference

grating onto the specimen grating by forming the reference grating by means of interference

between two plane waves. For the multiplicative type the moiré pattern could be obtained by:

(1)  placing  the  reference  grating  in  contact  with  the  specimen  grating,  (2)  imaging  the

specimen grating and placing the reference grating in the image plane, scaled according to the

image magnification, (3) imaging the reference grating onto a photographic film and thereafter

image the specimen grating after deformation onto another film, then the two films are laid in

contact.

As the frequency of the fringes increase the contrast is reduced, when high frequency gratings

are used the direct observation of moiré fringes is impossible. The observation of the moiré

effect  with incoherent  light  depends on the diffraction effect  caused by the gratings used.

Somewhere between 40 and 50 lines per mm, the moiré fringe modulation becomes very low,

due to dispersion of the different wavelengths of the white light. For frequencies higher than

50 lines per mm, coherent illumination must be used for the observation of moiré patterns in

the first  diffracted orders,  this is  the case of moiré interferometry.  The difference between

using incoherent or coherent illumination is that with incoherent light intensities are added,

and in the other case, light vectors are added with their respective phases [1]. 

Where strains are required, they can be extracted from the displacements fields. 
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2.3 OUT-OF-PLANE DISPLACEMENTS

Moiré techniques  are useful  to  contour  surfaces  that  are too  coarse  to  be  measured  with

standard interferometry.  Some of the advantages that this techniques offer are that the data

acquisition is fast so the analysis can be done in real-time, and the resolution may be varied.

There are three techniques: (1) shadow moiré, (2) projection moiré, and (3) reflection moiré.

The first two are for objects which reflect light diffusely, and the last one is used for objects

which give specular reflection. Another technique for obtain out-of-plane displacements is the

so called fringe projection, though this technique does not use the moiré effect has a lot of

similitude  with projection moiré.  Each of this  techniques will  be briefly described in  this

section.

2.3.1 Shadow moiré

Some of the first authors who gave a theoretical description and reported the use of shadow

moiré to measure the surface topography were Takasaki [6] and Meadows [7]. This technique

consists on place a linear amplitude grating, usually of binary or sinusoidal transmittance, over

an object under study. A method to use a computer generated grating (CGG) was developed

for Asundi [8], of course, the grating has to be created on a transparent display. A liquid crystal

display (LCD) projection panel could be used for this purpose, but become necessary to use

normal view because the low contrast of these panels. The advantage of use CGG is that the

period of the grating could be changed rapidly and thus instantaneously view the resultant

moiré fringes.
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Figure 2.4 Geometry of shadow moiré with: A) illumination and viewing at
infinity, B) illumination and viewing at finite distances.

Assuming that  the grating is  obliquely illuminated with collimated light  under an angle of

incidence � , and the light that is scattered by the specimen is viewed at infinity under an

angle � , both measured from the grating normal, Figure 2.4A. The specimen surface should

be prepared with a matte white paint in order to scatter enough light. The source do not need to

be coherent. The grating is coarse enough so that diffraction effects can be ignored, however,

the grating should be close enough to the object surface, when  surface height variations are

large compared to the grating period diffraction effects will occur, by these reason maximum

contrast of fringes is achieved for almost flat surfaces. 

The shadow of the grating casts on the object surface. The moiré pattern is observed between

the shadow and the grating lines.  the height  z between the object  and the grating can be

determined from Figure 2.4, and is given by:

z=
Np

tan��tan �
(2.11)

where p is the period of the grating, N is a number of grating lines between the point A and B

(N  is  fringe  number  is  expressed  by N=



2�
). The  contour  interval  in  a  direction

perpendicular to the grating is given by:

C=
p

tan�� tan�
(2.12)
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The contour interval decreases as the angle between observation and illumination increases. 

When plane wave illumination and observation from infinity is used the sensitivity is constant,

unfortunately large surfaces are impossible to cover with plane waves. Therefore it is possible

to derive the case of finite illumination and viewing distance from the general case. If a point

source is used to illuminate the object surface, and the viewing point is at a finite distance, the

sensitivity is not constant and depends on position of each point, Figure 2.4B, but when the

illumination source and observation are placed at a same distance  L  from the plane of the

grating and L>>z, even the angles vary point to point on the surface, the sum of their tangents

remains  constant, hence the sensitivity will be constant and the contour interval will be the

same as that given by Equation 2.12. 

Because of the finite distances there is also distortion due to viewing perspective. A point P on

the surface will be apparently at P' when viewed through the grating. By simple geometry the

actual coordinates (x,y) could be obtained from the measured coordinates (x',y'):

x=x ' �1� z

L � , y=y ' �1� z

L � (2.13)

this enables the measured surface to be mapped to the actual surface to correct for the viewing

perspective. 

The moiré pattern formed is crossed by the lines of the grating, this lines can be smeared out

by a few different methods [3, 4]. One method consist on translating the grating during the

time interval of the photographic exposure, the moiré fringes remain stationary because the

grating and it shadow are subject to identical phase change and the grating lines are averaged

making  them  invisible,  this  could  be  achieved  too  averaging  video  frames  during  the

translation of the grating. Another method for gratings with lines and spaces of equal widths

consists in use double exposure, translating the grating half period between exposures. Other

possibility is not to resolve the grating lines, while the coarser moiré fringes remain resolved.

The elimination of the grating lines become necessary for fringe processing. 

Shadow moiré has several industrial applications but not as many as it could be supposed. This
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method  has  the  disadvantage  of  offer  lower  measurement  sensitivity  than  the  accuracy

obtained  by mechanical  3D measuring  machines.  Patorski [3] gives a  lot  of references of

applications. Some of the applications that worth mention are:

� Strength of components.

� Deformation tests.

� Studies of vibrations.

� Contouring.

� Human body measurement.

2.3.2 Projection moiré

Projection moiré technique [9-12] consists on project fringes onto the surface under test and

then viewing through a second grating in front the viewer. The fringes can be projected on a

surface by means of interference between two coherent waves formed in a interferometer or by

imaging a grating  using a projection system, Figure 2.5. The grating used can be CGG or

physical, if phase shifting is required, to use a CGG has the advantage of effect easily the shift

via software instead than mechanically [8]. 

Figure 2.5 Geometry of
projection moiré.

Assuming collimated illumination and viewing at infinity the mathematical description is the

same as that for shadow moiré. The difference between projection and shadow moiré is that

two different gratings could be used in the first one. The contour interval is given by Equation

2.12, when both gratings have the same pitch d. This is not always the case, a wide theoretical

review of the projection technique is given by Benoit et al. [12]. 
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The moiré pattern could be obtained using different methods: (1) taking a photograph of the

object in its initial state,  after some change of the object another photograph is taken, then two

films are superimposed, (2) using a reference grating in the image plane of the observation

system, (3) recording the object on its original state to use it as a reference grating, after some

change the fringes will change and a second image is recorded, the moiré fringes appear from

the interaction of this image and the reference grating [13], (4) using two projection systems

[3, 4] from symmetrical angles with respect  to the normal of the reference plane,  lines of

individual gratings must be resolved by the camera in order to record moiré fringes. 

The first method is useful for detect changes of shape only,  contouring can not be achieved

since it is impossible to superimpose images that are recorded before and after the change [3].

The moiré fringes obtained by the second method are a contour map of the object respect to a

plane,  but  grating lines must  be resolved. When the third method is  used, it  is  possible to

obtain the out-of-plane deformation of an object, or a contour map if a plane surface is used as

the object in the first exposure.

The grating lines reduce the fringe visibility of the resultant moiré pattern, as in shadow moiré

the grating lines can be eliminated with moving gratings [14]. 

Projection moiré has the advantage to contour objects much larger than with shadow moiré,

and the fringe patterns are much easier to process. Some of the applications [11, 15-19] are:

� Measurement of strains.

� Selection of components comparing them with a master.

� Automation of technological processes.

� Vibration analysis.

� Human engineering.

2.3.3 Fringe projection

Fringe projection is  a technique based on projection moiré. The operating principle can be

described  as  follows.  A fringe  pattern  is  projected  onto  the  surface  under  test,  and  the
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deformed fringe pattern is viewed from another direction by a camera, it is a common practice

to set the viewing axis normal to the x-y plane. The main difference between both techniques

is that in fringe projection a reference object or plane can be evaluated first and the results of

the test object subtracted from this to give the desired contours. 

Figure 2.6 Projected fringes on an
object

For the case of collimated illumination and viewing at infinity, straight equally spaced fringes

are incident on the object, producing equally spaced contour intervals [2]. The viewer observes

fringes over the object surface, Figure 2.6, the departure of a viewed line from the straightness

shows the departure of the surface from a plane reference surface. When the projected fringes

with period  p are viewed at  an angle � have  a  spacing  d perpendicular  to  the  viewing

direction given by: 

d=
p

cos�
(2.14)

Assuming normal view, the height of the object above the reference plane will be:

z=



2�

p

sin�
=



2�

d

tan�
(2.15)

As  the  angle  between  illumination  and  observation  become  larger  the  contour  interval

decreases, even thought a large angle gives high sensitivity, either could produce unwanted

shadows on the object,  these shadows represent  areas with missing data where the object

cannot be contoured. 
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Figure 2.7 Geometry of fringe projection with
uncollimated light

For large objects is not possible to use collimated illumination, thus the period d will vary

with the x coordinate, Figure 2.7, the height will be a function of the distance from the source

and viewer to the object, a good approximation has been derived by Gasvik [13],  assuming

normal view:

z=



2�

d 0

sin�0 ��sin�0�
x

r 0
�

2

�cos
2
�0

(2.16)

where d 0 is the value of the period p at the origin, �0 is the angle between the optical

axis of the projection system and the z axis and r 0 is the distance from the image point of the

light source to the origin, x is the distance along the object measured from the origin which is

usually  the  center  of  the  object.  There  will  be  distortion  due  to  perspective,  the  same

correction factors given for shadow moiré in Equation 2.13 can be applied.

2.3.4 Reflection moiré

Reflection moiré [3, 19] method uses the superimposition of two grating images formed by a

beam reflected from the surface under test. The smoothness of the surface S makes it possible

to image the mirror image of the grating G by means of the lens L, Figure 2.8. The first image

corresponds to the surface in its reference state. The second image gives the variation of the

surface from the reference state. 
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Figure 2.8 Reflection moiré

The moiré can be produced as in previous methods: (1) by placing a grating in the image plane

of  L,  or  (2)  by double  exposure,  photographing  the  mirror  image  of  G before  and  after

deformation of S. The result gives the slopes and curvatures at all points of the surface, i.e. the

first and second derivatives of the out-of-plane displacement. This method can be applied on

shiny mirror-like surfaces and phase-objects.
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CHAPTER 3

PHASE MEASUREMENT

For many years, the analysis of interferograms was done manually, with the use of computers

the  analysis  of  interferograms  become  simple.  The main  advantages  of  digital  image

processing are: better accuracy, increase the speed, and automation of the process. 

Fringe analysis can be done from a single image or from multiple images.  Fringe analysis

methods  can be  divided  in  two  classes:  (1)  those that  first  reduce the image  to  a  list  of

digitized fringe  centers  and  (2)  those  that  directly  process  the  entire  fringe  to  obtain  the

measured  phase [1].  Fringe  analysis  from multiple  images  is  more  accurate  but  has  the

limitation of that air turbulence and mechanical conditions should remain constant over the

time required to obtain the images, when these requirements are not fulfilled, we can analyze

just one interferogram, because the image could be acquired over a brief time interval, but at

the cost of have less precision.

The  first  case  refers  to  intensity-based techniques,  and  before the  development  of phase-

measurement  techniques,  second case,  they were the only tools available for interferogram

analysis.  These techniques basically consist  of two steps: locating the fringe centers, either

manually  or  with  the  computer,  and  assigning  fringe  order  numbers.  The  fringe  centers

represent  discrete measurement points and some data interpolation is necessary to generate a

square grid of data that represent a map of the optical path difference. There are three main

problems associated with these techniques: (1) the accuracy of the measured positions of the

fringe centers is often less than desired, (2) not enough data points are obtained in most cases,

to increase the density of data points, more fringes could be generated, but then, the accuracy

is reduced because of the mistakes to  locate fringe centers, (3) the interpolation process to

obtain a square grid of data can introduce error into the results.

Phase-measurement technique most widely used is phase-measurement interferometry (PMI)

33
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and can be divided in  two main categories:  temporal and spatial.  Temporal PMI are those

which take the phase data sequentially, as phase shifting, and spatial PMI are those which take

the  phase  data  simultaneously,  as  multichannel  interferometers [2-4], spatial  synchronous

detection [5] and Fourier transform method (FTM) [6].

On the other hand techniques for determining phase can be split into two basic categories:

electronic and analytical. For electronic techniques, hardware is used to monitor interferogram

intensity data as the phase is  modulated [7]. The phase is  encoded in  the variations in  the

intensity  pattern  of  the  recorded  interferograms  and  a  simple  point-by-point  calculation

recover the phase [5]. Some electronic techniques are heterodyne  interferometry [8-11], phase

lock  or  AC  interferometry  [12-15],  and  zero  crossing  techniques  [8,  13].  For  analytical

techniques,  intensity data are recorded while the phase is  temporally  modulated,  sent  to  a

computer  and  then  used  to  compute  the  relative  intensity  measurements  [7].  Analytical

techniques use phase-shifting or the FTM,  although many authors consider FTM as a fringe

analysis technique instead of a phase-measurement technique. The phase obtained using any of

the above techniques is  in  modulo 2 ,  and is  necessary to remove these discontinuities to�

obtain the final phase map.

Developments and cost reduction in solid-sate-detector arrays and fast computers have favored

the use of analytical techniques.  When a solid-state-detector  array is  used for  acquire  the

image of the interferogram, this image is stored as an array of picture elements (pixels), with

each pixel represented as a  numerical value corresponding to  the image gray level at  that

location, this data are sent to a computer making possible measure the phase at every position

simultaneously, eliminating the need of scan or use a large number or redundant circuits as in

the past [7].

In this chapter analytical techniques will be described. In Section 3.1 phase-shifting technique

is described, in Section 3.2 we describe FTM is described, and finally in Section 3.3 phase

unwrapping is treated.
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3.1 PHASE SHIFTING

The main principle of phase shifting technique is that a suitable system shifts the phase by a

known amount between measurements to produce a time-varying signal at each point in the

fringe pattern.  There are two types of phase shifting techniques: (1) those that integrate the

intensity  while  the  phase  is  being  increased  linearly,  refereed  to  as  integrating-bucket

technique  [5],  Figure  3.1A, and  (2)  those  that  step  the  phase  a  known  amount  between

intensity  measurements,  known  as  phase-stepping  technique [5],  Figure  3.1B.  The  phase

stepping method is briefly described below.

Figure 3.1 Phase modulation and detected signal for: A)
integrating-bucket, and B) phase-stepping.

Some advantages of phase-shifting are: any type of fringe pattern can be analyzed including

closed fringes, unambiguously determination of the sense of the part (concave or convex ), is

insensitive to spatial variations of intensity, detector sensitivity, and fixed pattern noise.

The phase shift could be induced with various methods, like using a piezoelectric, moving a

grating, translating a mirror, tilting a glass plate, or rotating a half-wave plate or analyzer, to

mention a few [5, 7].

The intensity of a fringe pattern is given by: 
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I �x , y �=a �x , y ��b �x , y �cos �
�x , y���� (3.1)

where a �x , y � describes the background intensity variations in the fringe pattern, b �x , y �

describes the amplitude of fringes, 
�x , y� is the required phase information and � is the

introduced phase shift.  Equation 3.1 contains  three unknowns a , b , and 
 , so  at  least

three intensity measurements are required to determine the phase. 

Several algorithms have been developed, all of them share common characteristics: 

� A series of interferograms must be recorded as the reference phase is varied. 

� The phase modulo 2  is then calculated at each measurement point as the arctangent of�

a function of the interferogram intensities measured at that individual point. 

� The  final phase map is  then obtained  by unwrapping  the phase  to  remove  the 2�

discontinuities. 

Differences between the various algorithms are:

� The number of recorded interferograms.

� The phase shift between these interferograms.

� Susceptibility of the algorithm to errors in the phase shift or environmental noise such

as vibration and turbulence.

An example is the (N+1)-bucket  algorithm developed by Surrel [16], as the name say is for

N+1 images with a phase shift between each of the sequentially recorded images of:

�=
2�

N
(3.2)

So that between the first and the last image there is  a phase difference of  2 .�  The phase is

obtained from:


=arctan

I �0�	I �N �

2
cot� 2�

N �	�
n=1

N	1

I �n�sin �2�n

N �
I �0 ��I �N �

2
��

n=1

N	1

I �n �cos � 2�n

N �
(3.3)

where I �n � , is  the recorded intensity for a phase shift  equal to n� . This algorithm has

two advantages, a large quantity of images could be acquired to improve the signal-to-noise

ratio and is insensitive to phase shift miscalibration because an average of the first and the last
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image is taken.

As we mention above, there are a wide variety of algorithms for calculating the phase using

phase shifting technique.  But  contrary to what thought,  different  results  could be obtained

using different algorithms because some algorithms are more sensitive to a particular error

sources than others, an example of the results obtained to compare some algorithms is in Ref.

7. An extensive revision of other algorithms and their properties could be found in Ref. 17.

Anyway is important to make it clear that all of the algorithms are valid too for integrating-

bucket technique.

There are numerous sources of error that  affect  the accuracy of phase measurements.  The

errors  can be separated in  three categories:  (1) those associated  with the  data acquisition

process, this includes errors in the phase shift process, nonlinearities in the detection system,

amplitude and frequency stability of the source and quantization errors obtained in the analog-

to-digital conversion process, (2) environmental effects, such as vibration and air turbulence

and (3) those associated with defects in  optical and mechanical design and fabrication.  A

detailed description of the error sources is in Ref. 5.

3.2 FOURIER TRANSFORM METHOD

The FTM is a  well known method and widely used for obtaining phase,  this method was

developed for Takeda  et al. [18],  and a few years later the FTM was extended to the two-

dimensional (2D) space [19, 20]. 

The intensity of a fringe pattern given by Equation 3.1 could be rewritten as: 

g�x , y �=a �x ,y ��b �x , y �cos �
�x , y��2� f 0 x � (3.4)

where f 0  represent the carrier frequency. 

To describe the FTM Equation 3.4 most be rewritten as:

g�x , y �=a �x ,y ��c �x , y �e
2� if 0 x�c

�
e
	2� if 0x (3.5)
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where c �x , y �=
1

2
b�x , y�ei
�x , y�

First the Fourier transform of the interferogram, Equation 3.5, is taken with respect to x:

G� f , y �=A � f x , y��C � f x	 f 0 , y ��C
� � f x� f 0 , y � (3.6)

where capital letters  denote Fourier  spectra and  fx is  the spatial  frequency in  x direction.

Equation 3.6  represent a spectrum formed for one central lobe and two lobes that represent

the high frequency of the image or the fringes, Figure 3.2A. Using a filter function any of the

two spectra can be isolated and translated by f 0 towards the origin to remove the carrier and

obtain C(fx,y), Figure 3.2B.

Figure 3.2 A) Separated Fourier spectrum of a fringe pattern, B) Single spectrum selected and translated to the
origin.

Then the inverse Fourier transform of C(fx,y) with respect to fx is computed and as a result the

complex function  c(x,y)  is  obtained. Next, we calculate the complex logarithm of  c(x,y), to

obtain:

log[c �x , y �]=log [ 1

2
b �x , y�]�i
�x , y � (3.7)

Finally, the phase is obtained by:


�x , y�=arctan
Im[c � x , y�]

Re [c �x , y � ]
(3.8)

where Re and Im represent the real and imaginary part of c(x,y).



Phase Measurement 39

3.3 PHASE UNWRAPPING

The  phase  obtained  by either  method,  phase  shifting  or  FTM,  is  wrapped  in  modulo  2�

because the arc tangent function involved in the phase estimation process, Equations 3.3 and

3.8. Although the arc tangent function calculate the angle in the interval from - /2 � to /2, t� he

signs of the numerator �sin
� and denominator �cos
� allow the calculation of the angle

from -  � to . � The relationship between the wrapped and unwrapped phase can be stated as:


�x i , y j�=
w� xi , y j ��2�m� xi , y j�; 1�i�N ; 1� j�M (3.9)

where 
�x , y� is the unwrapped phase, 

w
�x , y� is the wrapped phase, and m �x , y� is

an integer-valued number known as the field number. M and N represent the rows and columns

of the image in pixels, respectively.

When the recorded fringe patterns satisfy the Nyquist  criteria [17] (at least  two pixels per

period), the phase unwrapping process is straightforward. Having at least two pixels per fringe

implies that the phase changes by no more than  per pixel spacing. This criteria is used to�

reconstruct the phase map. Unwrapping process only require to compare the phase between

adjacent pixels and add or subtract 2  or multiples of 2  when the difference is greater than .� � �

After this operation discontinuities are removed, Figure 3.3. 

Figure 3.3  A) Example of a wrapped phase, and B) the unwrapped
phase after remove discontinuities.
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The  unwrapping  procedure  consists  of  finding  the  correct  field  number  for  each  phase

measurement, Equation 3.9. Taking m �x1�=0, this field number has only three possibilities

at each pixel [17, 21]:

m �x1�=0

m �x i�=m� xi	1� if �
w � xi �	
w� xi	1����

m �x i�=m� xi	1��1 if 
w� xi�	
w� xi	1��	�

m �x i�=m� xi	1�	1 if 
w� xi�	
w� xi	1���

i=2,3,. .. , N

(3.10)

Several authors [17,  21, 22] have also  described methods for  unwrapping  in  one and two

dimensions. A difficult situation arises when the absolute phase difference between adjacent

pixels at points other than discontinuities in the arctangent function are greater than � ,

problem known as erroneous discontinuities or phase inconsistencies. This discontinuities can

be introduced by

� High-frequency, high-amplitude noise.

� Discontinuous phase jumps.

� Regional undersampling in the fringe pattern.

3.3.1 Unwrapping consistent phase maps

Unwrap consistent phase map is the easiest case, we describe two simple techniques to apply

to this case: (1) full-field wrapped phase data, and (2) wrapped phase data within an arbitrary

simple connected region.

For the first case we briefly describe a technique that consists of integrating phase differences

along a scanning path.  Assuming that  the full-field  phase map is given by 
w �x , y� in a

regular lattice of size M x  N pixels. We can unwrap this phase map by unwrapping the first

row (j=0) of it and afterward taking the last value of it as our initial condition to unwrap along

the following row of the phase map in opposite direction and so on, Figure 3.4. We can do this

by using the following formulas:


�x i�1 , y j�=
� x i , y j��V [
w� xi�1 , y j�	
� xi , y j� ]; 0�i�N	2


�xN	1 , y j�1�=
� xN	1 , y j ��V [
w� xN	1 , y j�1�	
�xN	1 , y j� ]
(3.11)
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�x i	1 , y j�1 �=
�x i , y j�1 ��V [
w� x i	1 , y j�1 �	
� xi , y j�1� ]; 1�i�N	1


�x 0 , y j�2�=
�x0 , y j�1��V [
w �x0 , y j�2�	
� x0 , y j�1�]
(3.12)

where the wrapping function is V �x �=arctan �sin �x �/cos �x �� , valid in the interval (- , ).� �

The scanning procedure described starts in  j=0,  as mentioned above, and it  is  followed by

incrementing j=2 until the full-field phase map is unwrapped. In Equation 3.11 we can use as

our initial condition 
�x0 , y0�=
0 .

Figure  3.4 Path followed by the
proposed algorithm.

Figure  3.5 Example of  a simple
connected region containing valid
phase data.

For  the  second  case  become  necessary  to  define  and  set  to  zero  an  indicator  function

�� x , y� , inside the domain (D) of valid phase data, Figure 3.5.

Then,  choose  a  starting  point  inside  D and  assign  to  it  an  arbitrary  phase  value  of


�x , y�=
0. Mark the visited site as unwrapped; that  is ��x , y�=1. One time that the

first pixel is defined, we can carry out the unwrapping process, that consist in choose a pixel

inside  D (in any order) and test if the visited site is wrapped and if any adjacent pixel has

already been unwrapped, if so the unwrapped pixel is used to unwrap the current pixel, and the

site is marked as unwrapped, and another pixel is tested. When any condition is not fulfilled

become necessary to test another pixel. The process is repeated until every pixel inside D is

marked as unwrapped.

3.3.2 Unwrapping inconsistent phase maps

Unfortunately some phase maps have errors as mentioned above and the algorithms described
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in the preceding section do not work. Although many algorithms for this problem have been

proposed, we will limit ourselves to briefly present the technique for 2D unweighted least-

squares phase unwrapping developed by Ghiglia [23].  

We need to  determine  the unwrapped phase values 
�x , y� from Equation 3.9,  with the

requirement that the phase differences of the 
�x , y� agree with those of 
w �x , y� in the

least-square sense. First, we define a wrapping operator W {
}=

w that wraps all values of

its argument into the range �	� ,�� .  

Next, we compute two sets of phase differences: those differences with respect to the i index

and those with respect to the  j index. Specifically,  from our known values of the wrapped

phase 
w �x , y� , we compute the following wrapping differences:

�
i , j

x
=W {


w
� x

i�1
, y

j
�	


w
�x

i
, y

j
�}; i=1,2,. .. ,M	1 ; j=1,2,... , N

�i , j

x
=0 ; otherwise

�i , j

y
=W {
w� xi , y j�1�	
w �x i , y j�}; i=1,2,. .. ,M ; j=1,2,... , N	1

�i , j

y =0 ; otherwise

(3.13)

where x and y superscripts refer to differences in the i and j indices, respectively.

The relationship between the wrapped phase differences, Equations 3.13, and the unwrapped

phase values 
�x , y� , in the least-squares-error sense is given by:


�x i�1 , y j��
�x i	1 , y j ��
� x i , y j�1��
� xi , y j	1�	4
� xi , y j�=

�
i , j

x 	�
i	1, j

x ��
i , j

y 	�
i , j	1

x (3.14)

where 

 � x
i
, y

j
�=�

i , j

x 	�
i	1, j

x ��
i , j

y 	�
i , j	1

x (3.15)

Compute the forward 2D discrete cosine transform (DCT) of Equation 3.15, to yield the 2D

DCT values � � x i , y j� . Calculate �
�x i , y j� from:

�
�x i , y j�=
� �x i , y j�

2 �cos
�i

M
�cos

� j

N
	2 � (3.16)

Finally perform the 2D inverse DCT of Equation 3.16 to obtain the least-squares unwrapped
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phase values 
�x , y� . Note that  Equation 3.16 is  indeterminate for  i=0 and j=0,  usually

�
�x0 , y0�= � �x 0 , y0� to leave the bias unchanged.

REFERENCES

1. Malacara D.,  DeVore  S.L.,  �Interferogram Evaluation and Wavefront  Fitting�,  Optical

Shop Testing, Malacara D., Editor, Wiley, New York (1992)

2. Kwon O.Y., �Multichannel Phase-Shifted Interferometer�, Opt. Lett., 9, pp. 59-61 (1984)

3. Kwon O.Y., Shough D.M., Williams R.A., �Stroboscopic Phase-Shifting Interferometry�,

Opt. Lett., 12, pp. 855-857 (1987)

4. Kujawinska  M.,  Robinson  D.W.,  �Multichannel  Phase-Stepped  Holographic

Interferometry�, Appl. Opt., 27, pp. 312-320 (1988)

5. Greivenkamp J.E., Bruning J.H.,  �Phase Shifting Interferometry�,  Optical Shop Testing,

Malacara D., Editor, Wiley, New York (1992)

6. Gasvik K.J., Optical Metrology, Chapter 11, Wiley, England (2003)

7. Creath  K.,  �Phase-Measurement  Interferometry Techniques�,  Progress  in  optics,  Vol.

XXVI, Wolf E., Editor, Elsevier, Amsterdam (1988)

8. Crane R., �Interference Phase Measurement�, Appl. Opt., 8, pp 538-542 (1969)

9. Koliopoulos C.L., �Radial Grating Lateral Shear Heterodyne Interferometer�,  Appl. Opt.,

19, pp. 1523-1528 (1980)

10. Sommargren G.E., �Optical Heterodyne Profilometry�, Appl. Opt., 20, pp. 610-618 (1981)

11. Barnes T.H., �Heterodyne Fizeau Interferometer for Testing Flat Surfaces�, Appl. Opt., 26,

pp. 2804-2809 (1987)

12. Moore  D.T.,  Murray  R.,  Neves  F.B.,  �Large  Aperture  AC  Interferometer  for  Optical

Testing�, Appl. Opt., 17, pp. 3959-3963 (1978)

13. Wyant J.C., Shagam R.N., �Use of Electronic Phase-Measurement Techniques in Optical

Testing�,  Proc.  ICO  11:  Optica  Hoy  y  Mañana,  Bescos  J.,  Hidalgo  A.,  Plaza  L.,

Santamaria J., Editors, Madrid (1978)

14. Moore D.T., Truax B.E., �Phase-Locked Moiré Fringe Analysis for Automated Contouring



Phase Measurement 44

of Diffuse Surfaces�, Appl. Opt., 18, pp. 91-96 (1979)

15. Matthews  H.J.,  Hamilton  D.K.,  Sheppard  C.J.,  �Surface  Profiling  by  Phase-Locked

Interferometry�, Appl. Opt., 25, pp. 2372-2374 (1986)

16. Surrel  Y.,  �Phase  Stepping:  A New  Self-Caibrating  Algorithm�,  Appl.  Opt.,  32,  pp.

3598-3600 (1993)

17. Malacara D., Servin M., Malacara Z., Interferogram Analysis for Optical Testing, Chapters

2 and 11, Taylor & Francis, Boca Raton (2005)

18. Takeda M., Ina H., Kobayashi S., �Fourier-Transform Method of Fringe-Pattern Analysis

for Computer-Based Topography and Interferometry�,  J. Opt. Soc. Am.,  72, pp. 156-160

(1982)

19. Nugent  K.A.,  �Interferogram Analysis  Using an Accurate Fully Automatic Algorithm�,

Appl. Opt., 24, pp. 3101- 3105 (1985)

20. Bone D.J.,  Bachor H.A.,  Sandeman R.J.,  �Fringe-Pattern Analysis Using a 2-D Fourier

Transform�, Appl. Opt., 25, pp. 1653-1660 (1986)

21. Kreis  T.  �Digital  Holographic  Interference-Phase  Measurement  Using  the  Fourier

Transform Method�, J. Opt. Soc. Am. B, 3, pp. 847-855 (1986)

22. Ghiglia D.C., Pritt M.D.,  Two-Dimensional Phase Unwrapping: Theory, Algorithms and

Software, Wiley (1998)

23. Ghiglia D.C., Romero L.A., �Robust Two-Dimensional Weighted and Unweighted Phase

Unwrapping That Uses Fast Transforms and Iterative Methods�, J. Opt. Soc. Am. A, 11, pp.

107-117 (1994)



CHAPTER 4

ANALYSIS OF GRATING PERIOD IN FRINGE PROJECTION TECHNIQUE

Fringe projection technique is used to obtain the 3D shape of an object. When a sinusoidal

fringe pattern is projected onto a test surface, the intensity distribution of the deformed fringe

pattern that is observed through a camera can be described by Equation 3.4. From the fringe

analysis,  such  as  phase  shifting  or  FTM,  the  modulated  phase  could  be  obtained.  After

demodulation of phase,  3D information about  the surface can be recovered of a phase-to-

depth-conversion.  This  relationship  involves  the  parameters  of  the  imaging  system,  the

inaccuracy in  measuring the experimental parameters is  the main source of the systematic

errors [1]. 

Systematic errors are not the only cause of error.  Almost  all phase shifting algorithms are

designed  for  sinusoidal  fringes,  unfortunately  in  practice  the  fringe  pattern often become

nonsinusoidal  [2]  and  is  not   described  by  Equation  3.4  as  we  mention  above,  so  the

algorithms give residual errors in calculated phase due to higher harmonic components. Phase

detection of nonsinusoidal signals is treated by Malacara et. al. [3].

In digital fringe projection, if  ideal sinusoidal fringe pattern is  sent  to projector, the fringe

image produced by the projector is  nonsinusoidal [4]. Even if  a sinusoidal fringe pattern is

projected over the object, distortion may appear for many reasons, for example: the discrete

sampling of the camera, the nonlinear response of the light detector with the signal, and the

noise introduced in the measurement  by the optical system. In this chapter we present  the

analysis of the error introduced in 3D shape reconstruction due to the lost of sinusoidality of

the signal, and the influence of the period of the projected grating.

45
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4.1 INTRODUCTION

A  real,  infinitely  extended  periodic  function can be  represented  by Fourier  series.  Let  us

consider a band-limited real function g(x) whose spectrum is G(f). The width, � f , of this

spectrum is equal to the maximum frequency f max  contained in the function. To sample the

function g(x) we need to multiply this function by the comb function h(x), with fundamental

frequency known as the sampling frequency f s .

If  the  sampling  frequency  of  the  function  h(x) decreases,  the  spectral  elements  in  the

convolution of the functions G(f) and H(f) get closer to each other. If these spectral elements

are completely separated without any overlapping, the inverse Fourier transforms recovers the

original function with full detail and frequency content. If the spectral elements overlap each

other the process is not reversible  and the original function may not be fully recovered after

sampling.

Hence the sampling frequency must be greater than twice the maximum frequency contained

in the signal or function to be sampled:

f s!2f max .

This  condition  is  known  as  the  Whittaker-Shannon  sampling  theorem,  and  the  minimum

sampling frequency is referred to as the Nyquist frequency.

We have assumed that the interval sampling function h(x) extends from 	� to �� . When

the sampling function extends only to a limited interval, is equivalent to multiply the function

g(x) by a window function w(x), before sampling. The spectrum W(f) of the window function

is a sinc function, as a consequence the spectrum of the sampled function have some overlap

and perfect recovery is not possible, as in most practical cases. 

There is only one exception will limited sampling leads to perfect recovery of the function. If

the sampled signal is periodic we may assume that the sampling pattern repeats itself outside

the sampling interval. A sampling interval with length equal to the period of the function and

the sampling  points  equally  distributed is  enough to  obtain full  recovery of the  function,
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because  sampling  may  be  mathematically  considered  as  extending  to  the  entire  interval

	� to �� .

We have consider the sampling of a periodical function using a detector that measures the

signal at one value of the phase; however, real detectors have finite size and take the average

value in one small phase interval. 

When recording  the image  of a  fringe  pattern with a  detector array,  such as a  CCD,  the

intensity over each pixel is averaged and displayed as a gray level value. The effect of this

signal averaging reduces the contrast of the fringes,  as the averaging interval increases the

contrast  reduction increases,  Figure 4.1.  When the averaging interval  is  a  multiple  of the

period of the signal,  the contrast is  reduced to zero and no signal is  detected,  but  the DC

component is detected [3]. 

Figure  4.1 shows  a  sinusoidal  signal  sampled  with  a  frequency:  A)  high  than  twice  the

frequency of this signal, three points per period, B) equal to the frequency of this signal, C)

less than the frequency of this signal and D) lower  than the frequency of this  signal,  one

sample per period.

A) B) C) D)

Figure 4.1 Contrast of a detected signal for a finite size of integration. The upper line is for small integration
interval, and the lower line for large integration interval. A) fs>2fmax, B) fs=2fmax, C) fs<2fmax and D) fs<<2fmax.
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This averaging process also may distort the signal (Figure 4.2, continuous line), causing lost of

sinusoidality in the fringe profile (Figure 4.2, dotted line), even the distortion varies depending

of the position of the signal over the pixel array. The lost of sinusoidality when the fringes are

detected  introduce an error in the resulting phase. 

Figure 4.2 Distortion of two signals of equal period, p=4 pix/fringe, and a phase shift between
them.

When a wide section of a signal falls over one pixel  is equivalent to have a large averaging

interval, and the distortion increases due to the averaging process. To avoid distortion effects

the signal has to be sampled by an appropriate quantity of pixels. As a small part of the signal

falls over the pixel the signal detected by the camera fits better to the original signal,  Figure

4.2 and 4.3.  

4.2 EXPERIMENT

The surface under test was a semi-spheric object. The radius of curvature of the object was

measured  using  a  spherometer  described  in  Appendix  A.  In  order  to  determine  the  error

obtained  with different  grating periods p1, p2, ...p5,  the object  topography is  obtained by

fringe projection technique  using CGGs and compared with a reference surface generated

from physical measurements obtained with the spherometer.
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A)

B)

Figure 4.3 Distortion of a signal with period: A) p=8 and B) p=16 pix/fringe.

The experimental arrangement  for 3D shape measurement is  shown in  Figure 4.4. For the

projection of CGGs a single-chip digital light processing (DLP) projector of 800x600 pixels is

used. The  acquisition of the deformed fringe patterns is made with a charge-coupled-device

(CCD) monochromatic camera with a resolution of 640x480 pixels. The view axis is normal to

the reference plane. The projector and the camera are placed at a distance L=79.95 cm from

the reference plane. The angle between the projector and the camera is �0=11.54º , Figure

4.5.  The  lateral  resolution  obtained  was  0.196  mm.  The  observation  area  was

66.6x66.6 mm.
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Figure 4.4 Experimental set up for three-dimensional shape
measurement: 1. Projector, 2. Object, 3. CCD camera, and 4. PC.

Figure 4.5 Schematic diagram of the experimental set up.

Sinusoidal gratings  of periods  4,  8,  12,  16  and  20 pix/fringe were generated.  These were

projected on the object surface to obtain the topography with each one of pitch. Due to the

sampling  process  and  the  noise  of  the  camera,  the  profile  of  the  observed  fringes  is

nonsinusoidal, Figure 4.6. 
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A)

B)

C)

Figure 4.6 Profile of projected fringes on the object surface, for a projected grating of periods: A) p1=4, 
B) p2=8, and C) p3=12 pix/fringe, respectively.
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D)

E)

Figure 4.6 (continued) Profile of projected fringes on the object surface, for a projected grating of periods:  
D) p4=16 and E) p5=20 pix/fringe, respectively.

The phase shifting technique was used to (N+1)-bucket algorithm, Equation 3.3, for  N=16

images. The shift  of CGGs is  made via software eliminating the possibility of phase shift

errors. The phase obtained is in modulo 2 ,  � Figure 4.7A, and then an unwrapping process is

required. One time that the phase has been demodulated, we subtract the measured phase map

of the object from measured phase map of a reference planar surface at z=0. Finally the height

of the object is obtained by Equation 2.16. Figure 4.7B shows the topography when the grating

pitch is 8 pix/fringe. 
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In order to determine the error obtained for each grating period, we calculate the standard

deviation of the difference between the obtained topography by fringe projection technique

and the reference surface by using spherometer, Table 4.1. 

Grating
Period of the

projected grating
(pix/fringe)

Period of the
observed grating

(pix/fringe)

Error
(mm)

p1 4 9.03 0.4988

p2 8 18.04 0.1358

p3 12 27.17 0.1684

p4 16 36.13 0.2245

p5 20 45.25 0.2347

Table 4.1 Error of the topography obtained

When the grating period is incremented, the fringe profile becomes more sinusoidal. However,

this occurs in the interval 8 to 12 pixel/fringe. To larger periods occur lost of sinusoidality. The

deviation from the  reference surface increases due to  the illumination produces  unwanted

shadows on the object surface. This causes lost of sinusoidality in the left side of the object,

Figure 4.6 and  4.8.  These results indicate that the grating period should be enough large to

observe a sinusoidal profile, but at the same time appropriate to give the necessary information

of the object. In other words, the projected fringes pitch must be selected from an interval. Of

course a perfect sinusoidal profile can not be achieved due to the noise of the camera.

 

A) B)

Figure 4.7 A) Wrapped phase and  B) Three-dimensional shape, for grating period p2= 8 pix/fringe.
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A)

B)

C)

D)

E)

Figure 4.8 Comparison between topography obtained by fringe projection against the reference surface wich
was measured with a spherometer. The period of the projected gratings is: A)  p1=4, B)  p2=8, C)  p3=12

pix/fringe, D)  p4=16, and E)  p5=20 pix/fringe, respectively.
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4.3 CONCLUSION

We  present  an analysis  of the  variation in  the  topography measured  by fringe  projection

technique when different grating periods are used. The results shown that the ideal period on

the reference plane should be between 15-30 pix/fringe, these results were reported in Ref 5.

The analysis shows the importance of determine the optimum period of the projected grating

to adequately sample the object and minimizing the  error in the result.
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CHAPTER 5

DYNAMIC MEASUREMENT OF OUT-OF-PLANE DEFORMATION IN TEST

SPECIMEN BY FRINGE PROJECTION

By  using  fringe  projection  technique  and  FTM,  the  out-of-plane  dynamic  deformation

measurements of sheet  metal  specimens  subjected to  uniaxial  tensile  test  is  obtained.  We

measure the displacement  field  in  the elastic  and plastic  zones during its  elongation until

fracture took place. The mechanical behavior of two different materials, stainless steel and hot

rolled  steel  are  studied.  Analysis  of material  behavior  under  loading  is  important  due  to

development of new materials.  The technique is applied to metal samples,  that have a well

known and widely studied behavior, but it can be applied to any other material, as composites,

or even to a manufactured members like sheet metal forming.  

5.1 INTRODUCTION

The study of mechanic fractures is very important due to the damage caused when complex

structures collapse. Usually existing procedures are enough to avoid failure, but negligence

during  design,  construction  or  operation  of  structure  could  cause  failure.  However  the

application of a new design or material can produce an unexpected and undesirable result.

When an improved design is introduced, there are invariably factors that the designer does not

anticipate. New materials can offer tremendous advantages, but also potential problems. 

Nowadays metals are being replaced with plastics, ceramics, and composites in a wide number

of applications.  Some of the  main  advantages  of engineering  plastics  are  low  cost,  ease

fabrication,  and corrosion resistance.  Ceramics provide superior  wear resistance  and creep

strength.  Composites  offer  high  strength/weight  ratios,  and  enable  engineering  to  design

materials with specific elastic, thermal and direction-dependent properties [1]. 

56
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Nonmetals, like metals, are not immune to fracture. The procedure of testing metals is well

established,  but  for  nonmetals  research  of  fracture  behavior  is  beginning.  A tensile  test

consists in measuring the deformation of a straight bar undergoing an axial load by using a

testing machine.  Specimen dimensions and testing methods are well established by various

standard  organizations  like  the  American  Society  of  Testing  Materials  (ASTM).  Some

mechanical properties of materials can be determined from the stress-strain diagram obtained

from the tensile test, because the elastic and plastic zones of a material are located. The stress-

strain diagram was described in chapter 1, Figure 1.3.

When an axial load is applied to the specimen, it elongates. Electromechanical extensometers

are mounted on the specimen to measure the change in length. This is  a way of measuring

local in-plane  displacement  by means  of mechanical sensors.  Although the  behavior  of a

metallic specimen undergoing tension is well known, there is not any mechanical method to

measure  out-of-plane  deformation  of  the  specimen.  During  a  tensile  test,  precise  load

increments and testing velocity must be carefully chosen, since material properties are quite

sensitive to the rate of loading.  At high rates, for example, inertia effects and material rate

dependence can be significant. 

Although many aspects of testing  are  similar  for  metals  and nonmetals,  there are several

important  differences because some materials  exhibit  a  nonlinear  time-dependent  behavior

such as viscoplasticity and viscoelasticity. Mechanical behavior of plastics can be highly time-

dependent. Composites are in  general discrete, piecewise nature with sharp interfaces. This

results in abrupt transitions on their thermal, mechanical and physical properties. Commonly,

these interfaces contain some defects due to imperfect  bonding,  residual stresses,  etc.  The

mismatch in properties across the interfaces leads to stress concentration and consequently the

interfaces become a favored site of cracking, debonding and spallation [2].
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5.2 EXPERIMENT

Metal sheet samples of stainless steel (SS) and hot rolled steel (HRS) are subjected to tensile

test. The samples have different thickness as described in Table 5.1 and were manufactured

according to the ASTM E8 testing standard [3]. To induce fracture in a specific region of the

sample a circular hole of 4 mm diameter was drilled at the geometrical center, since this area

presents a high stress concentration. The dimensions of the specimens are shown in  Figure

5.1A.

Material
Thickness

(mm)

Loading rate

(mm/min)

Final Lenght

(mm)

Elongation

%

Stainless Steel 1.90 10 216 8.0

Hot Rolled Steel C2 2.66 8 203 1.5

Hot Rolled Steel C10 3.42 8 202 1.0

      *C12 and C10 refers to thickness

Table 5.1 Specimen specifications.

A) B)

Figure 5.1 A) Specimen dimensions in mm, and B) Stress-strain diagram obtained from the tensile test.
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By using an Instron universal testing machine a uniaxial tensile load is applied along the  y

direction,  at  a  rate  of load  of  10 and  8  mm/min on SS and  HRS respectively.  The  load,

elongation, stress and strain are indicated by the display device of the testing machine, from

these data a variety of graphs can be constructed,  including a stress-strain diagram,  Figure

5.1B.

The applied load produces in-plane  and  out-of-plane  deformations,  in  order  to  follow the

changes  of the  samples  topography induced  by  the deformation  we  use  fringe  projection

technique. A binary CGG of period  2 pix/fringe is projected onto the specimen surface by a

single-chip DLP projector of 1024x768 pixels, the period was selected in order to have the

major quantity of fringes over the surface. The  acquisition of the deformed fringe patterns is

with a CCD camera of 640x480 pixels, placed at a distance L=39 cm from the reference plane

on optical axis.  The angle between the projector and the camera is �0=30.6º , obtaining a

lateral resolution of 0.045 mm. Our observation area is 21.36x12.80 mm. The experimental

setup is shown in Figure 5.2A.

A) B)

Figure 5.2 A) Experimental setup: 1. Projector, 2. CCD camera, 3. Testing machine and specimen and 4. PC,
 B) Elongated specimens after testing compared to non tested samples: 1. HRS C10, 2. HRS C12 and 3. SS.

Images that can be displayed in a monitor and are recorded by a camera with a video frame

rate 5 fps. Too, they are stored in a digital frame storage card for their processing. The sample

was subjected to a continue load and images were recorded at intervals of 200 ms. One time

that the test starts, a sequence of images is taken at the given rate, to follow the out-of-plane
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deformations of each specimen until the fracture occurs, Figures 5.3-5.5. The phase is obtained

using the FTM. However due to the geometry of our specimens (with hole) we have non full-

field fringe patterns and before applying the FTM is necessary extrapolate fringes outside the

boundaries by the method described in Appendix B to avoid errors in phase detection because

of boundary problems associated to Fourier transform. The phase obtained is in modulo 2 ,�

before the unwrapping process the unwanted information is removed from the phase map by a

mask generated from the original image. Once the phase has been demodulated, we subtract it

from the phase of the reference image and finally the deformation of the object is obtained by

Equation 2.16. 

The behavior of specimens in each zone is successfully followed. Special attention is paid in

the failure process, which takes place before necking begins, Figures 5.3-5.5. As expected both

materials, SS and HRS, exhibit different behavior due to their mechanical properties, specially

at the fracture process. 

SS alloys have low proportionality limits and extended strain-hardening capability. As shown

in Figure 5.1B, for the SS sample, the plastic zone is quite large. Even suddenly the fracture

occurs,  Figure 5.3E and F, due to mechanical properties of the material. From Table 5.1 and

Figure 5.2B we can notice that the elongation is  large, about  8%, and the hole is  displaced

while enlarging. Near the fracture point, the sample exhibits a weak necking and an abrupt

failure, in less than 0.2 sec.

Figure 5.1B also shows the results for the HRS samples. They present a small plastic zone and

has a progressive fracture process,  Figure 5.4E-H and  Figure 5.5E-H, because the slope is

small  after the ultimate strength.  From Table  5.1  we can appreciate that  the elongation is

proportional to  1%  (dependent  on thickness),  the hole stays at  the same position,  but  it  is

elongated. The specimen exhibits a lot of necking, and the fracture takes place slowly, about

0.8 sec for  C12 and  1.5 sec for C10.  Although both HRS specimens were tested in  same

conditions, due to their different thickness the fracture occurred  faster for C12 sample, about

3.2 sec before the fracture of C10 specimen.
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A)

B)

C)

Figure 5.3 Fringe pattern, wrapped phase and deformation of the SS specimen during tensile test: A) beginning
the test, B) elastic zone and  C) plastic zone
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.

D)

E)

F)

Figure 5.3 (Continued) Fringe pattern, wrapped phase and deformation of the SS specimen during tensile test:
D) necking, E) before fracture, and F) fracture.
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A)

B)

C)

Figure 5.4 Fringe pattern, wrapped phase and deformation of the HRS C12 specimen during tensile test: 
A) beginning the test, B) elastic zone and  C) plastic zone
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D)

E)

F)

Figure 5.4 (Continued) Fringe pattern, wrapped phase and deformation of the HRS C12 specimen during tensile
test: D) necking, E) crack formation, and F) fracture progression.
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G)

H)

Figure 5.4 (Continued) Fringe pattern, wrapped phase and deformation of the HRS C12 specimen during tensile
test: G) fracture progression and H) fracture.
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A)

B)

C)

Figure 5.5 Fringe pattern, wrapped phase and deformation of the HRS C10 specimen during tensile test: 
A) beginning the test, B) elastic zone, and C) plastic zone.  
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D)

E)

F)

Figure 5.5 (Continued) Fringe pattern, wrapped phase and deformation of the HRS C10 specimen during tensile
test:  D) necking, E) crack formation, and F) fracture progression.
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G)

H)

Figure 5.5 (Continued) Fringe pattern, wrapped phase and deformation of the HRS C10 specimen during tensile
test:  G) fracture progression and H) fracture.
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5.3 CONCLUSION

We followed and reported [4] the deformation progression of sheet metal specimens of two

different materials subjected to uniaxial tensile test by using fringe projection technique. By

analyzing  the  out-of-plane  displacements  during  the  test,  we  observed  that,  during  the

transition zone, both materials began to thin along a horizontal band. 

The detected behavior agrees with theory. The monitoring of the entire process allow us to

compare the  SS  and  HRS behavior.  As  mentioned above  HRS specimens  exhibited  more

necking and out-of-plane deformation while SS specimen shows higher elongation, as well

fracture process of both materials is quite different as highlighted earlier. 

The technique has potential  application for  dynamic  measurement  of deformation field  of

mechanical structures.  
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CHAPTER 6

FINAL CONCLUSIONS

All the contributions of this thesis work are enumerated in the following:

� We presented a bibliographic review of moiré methods and fringe projection technique, as

well as a theoretical description of a few phase detection and phase unwrapping techniques

used in the development of this work. During the realization of this thesis fringe projection

technique was implemented to measure shape and deformation.

� We analyzed the error in the topography measurement by fringe projection technique when

different  grating  periods are used.  The  use  of CGGs allowed  us  to  shift  the  phase  via

software,  eliminating  the  possibility  of  phase  shift  errors.  Has  been  showed  how  a

nonsinusoidal fringe profile affects the shape measurement of an object, and the importance

of determine the optimum period of the projected grating to adequately sample the object

and minimizing the  error in the result. From the obtained results we shown that an ideal

grating  period  on the  reference  plane  should  be  between  15-30  pix/fringe.  It  was  also

mentioned the limitations associated with the configuration of the optical system. It  was

observed that the oblique illumination produces unwanted shadows that affect the results.

� We  followed  the  deformation  progression  of  sheet  metal  specimens  of  two  different

materials  subjected  to  uniaxial  tensile  test  by  using  fringe  projection  technique.  By

analyzing  the  out-of-plane  displacements  during  the test,  we observed  that  the  detected

behavior agrees with theory,  and during the transition zone, both materials began to thin

along a horizontal band due to the stress concentration in the edges of the hole drilled in the

specimens. The monitoring of the entire process allow us to compare the behavior between

two different materials due to their different mechanical properties. The main differences

between both  materials was the elongation, as well as the fracture process. It was possible

by means of fringe projection technique to achieve the prediction of failure because that
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deformations in transition zone were well detected. 

� We determined that by using fringe projection technique any other material, as composites,

or even manufactured members can be tested, through a nondestructive testing, due to the

transition zone is successfully detected. 

The future work is to apply phase shifting technique in real-time. The basic principle is to use

a color pattern that is a combination of three phase shifted patterns. By using phase shifting

technique any non full-field fringe pattern can be analyzed without fringe extrapolation.



APPENDIX A: SPHEROMETER

A spherometer [1] is a mechanical device for measuring radius of curvature. The value of the

radius is calculated by measuring the sagitta, Figure A.1. A classical spherometer consists of

three equally spaced feet  with central moving plunger. The spherometer is first placed on top

of a flat surface and then on top of the surface to be measured. The difference in the position

of the central plunger is the sagitta of the spherical surface. Several practical problems may

arise. One is that sharp legs may scratch the surface, thus, a steel ball is placed at the end of

the legs as well as at the end of the plunger (Aldis spherometer). In this case if the measured

sagitta is z, the radius of curvature R of the surface is given by:

R=
z

2
�

y
2

2z
±r A.1

where r is the radius of curvature of the balls. The plus sign is used for concave surfaces and

the minus sign for convex surfaces.

The precision of this instrument may be obtained by differentiating Equation A.1, obtaining: 

�R=
� z

2 �1	 y
2

z
2 � A.2

This results is valid assuming that the spherometer is perfectly built and that the dimensional

parameters y and r are well known. The uncertainty comes only from the measurement of the

sagitta.

Figure A.1 Three-leg spherometer.

Another type of spherometer is  the so-called ring spherometer, which has a cup instead of
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three-legs.  The cup is  flat  in  the upper part  and has its  outside and external walls  with a

cylindrical shape, Figure A.2.  A concave surface touch the external edge of the cup, whereas

the convex surface touches the internal edge of the ring. Thus Equation A.1 may be used if a

different value of y is used for concave and convex surfaces, and r is taken as zero. In this

instrument  the cups may be  interchangeable,  with different  diameters for  different  surface

diameters and radii of curvature. The main advantage is that an astigmatic deformation of the

surface  is  easily  detected,  but  it  cannot  be  measured.  With the three-leg  spherometer  the

astigmatic deformations cannot be detected.

The spherometer accuracy may be improved in may ways, by different methods of taking the

readings of the sagitta.

Figure A.2 Ring spherometer
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APPENDIX B: EXTRAPOLATION OF FRINGES

A non full-field fringe pattern can cause some errors in the phase detection, to avoid these

errors fringe extrapolation outside the boundaries could be achieved [1] using the Gerchberg's

method [2] as suggested by Roddier and Roddier [3]. To describe the intensity of a non full-

field fringe pattern, Equation 3.4 must be multiplied by a function p � x , y � that describes the

domain on which the interferogram extends, which a value of one inside the domain and a

value of zero outside the domain. Then the intensity of the fringe patter can be written as:

g � x , y �=p �x , y � [a �x , y ��b �x , y � cos�2� f 0 x	
� x , y��] B.1

Now if we divide the irradiance by the background intensity and subtracts the domain we

obtain:

 g � x , y �=p �x , y � v � x , y�cos�2� f
0
x	
� x , y�� B.2

where v � x , y �=b� x , y �/a � x , y� represents the fringe visibility. If we use the complex fringe

visibility, u(x,y), defined by u �x , y�=v �x , y�e	i
�x , y� in Equation B.2 we obtain:

g � x , y �=
p � x , y �

2
[u � x , y�e

i2� f 0 x�u
� �x , y� e

	i2� f 0 x ] B.3

The Fourier transform of the function g(x,y) is:

G� x , y �=
P � f x , f y�

2
"[U � f x	 f 0 , f y��U

�
� f x	 f 0 , f y�] B.4

For a full-field fringe pattern, this spectrum would be concentrated in two circles with radii

equal to the spatial carrier frequency of U(f) centered at f0 and �f0. Due to the boundary, these

circles increase in size as the domain decreases. Extrapolation of the fringes is easily achieved

reducing the size of this two spots by cutting them around, setting to zero all the values outside

these two spots and then taking the inverse Fourier transform. However, this process distorts

the fringes a  little,  and to  avoid this distortion,  the original values are restored inside the

domain.  This  process  is  repeated  iteratively  several  times  until  the  fringes  are  totally

extrapolated outside the domain. Figure B.1 shows: A) A non full-field fringe pattern, B) the

domain p � x , y � of the image and C) Full-field fringe pattern obtained.
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A) B) C)

Figure B.1 A) Fringe pattern from a drilled specimen, B) Binary mask, C) Full-field fringe pattern obtained
from fringe extrapolation.
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