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Abstract: The combination of a high-speed TV holography system and a 
3D Fourier-transform data processing is proposed for the analysis of 
multimode vibrations in plates. The out-of-plane displacement of the object 
under generic vibrational excitation is resolved in time by the fast 
acquisition rate of a high-speed camera, and recorded in a sequence of 
interferograms with spatial carrier. A full-field temporal history of the 
multimode vibration is thus obtained. The optical phase of the 
interferograms is extracted and subtracted from the phase of a reference 
state to yield a sequence of optical phase-change maps. Each map represents 
the change undergone by the object between any given state and the 
reference state. The sequence of maps is a 3D array of data (two spatial 
dimensions plus time) that is processed with a 3D Fourier-transform 
algorithm. The individual vibration modes are separated in the 3D 
frequency space due to their different vibration frequencies and, to a lesser 
extent, to the different spatial frequencies of the mode shapes. The 
contribution of each individual mode (or indeed the superposition of several 
modes) to the dynamic behaviour of the object can then be separated by 
means of a bandpass filter (or filters). The final output is a sequence of 
complex-valued maps that contain the full-field temporal history of the 
selected mode (or modes) in terms of its mechanical amplitude and phase. 
The proof-of-principle of the technique is demonstrated with a rectangular, 
fully clamped, thin metal plate vibrating simultaneously in several of its 
natural resonant frequencies under white-noise excitation. 

© 2009 Optical Society of America 
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Digital image processing. 
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1. Introduction 

TV holography, also known as ESPI, is a well-established speckle interferometry technique 
based on the electronic recording of full-field interferograms, formed from the interference of 
a reference beam and the light scattered by the object to be measured [1]. Among the wide 
range of applications, vibration analysis of resonant modes has been carried out with a variety 
of illumination schemes and phase evaluation methods [2, 3]. Several authors have already 
addressed the problem where an excited object vibrates in several modes simultaneously. This 
is a realistic scenario for an object that is subjected to natural excitation under its normal 
operating conditions. Different approaches have been proposed to separate the vibration into 
its constituent resonant modes by using time-average [4, 5] or stroboscopic methods [6]. 
However, difficulties usually arise if more than two modes are present or if the ratio of the 
frequencies is an integer number, though a solution for the latter has been proposed for time-
averaging [7]. The outputs are fringe patterns or one map of the amplitude and phase of the 
vibration obtained with a phase-stepping procedure. 

TV holography is a full-field technique, so the measurement is performed simultaneously 
in all the field of view, without the need to scan the surface. The spatial sampling rate is then 
very high, but the temporal sampling rate achievable with standard cameras is rather low 
(usually 30 frames per second (fps) or less). With the advent of high-speed cameras, the 
acquisition of time-resolved measurements was possible. Naturally, they were applied to the 
study of transient or random vibrations [8]. Buckberry et al. [9] have reported the use of a 
high speed camera for the time-resolved measurement of multimode vibrations, but no 
attempt was made to separate the contributions of the constituent resonant modes. 

In this work we present the combination of a high-speed TV holography system and a 3D 
Fourier-transform processing of the data for the analysis of multimode vibrations in plates. In 
a first stage, the out-of-plane displacement of the multimode vibration is resolved in time by 
the fast acquisition rate of a high-speed camera, and recorded in a sequence of interferograms. 
These are processed with a 2D-Fourier transform method to obtain their optical phase and a 
sequence of optical phase-change maps, that are proportional to the out-of-plane 
displacement undergone by the object between any given state and a reference state. In a 
second stage, these data are processed with a 3D Fourier transform that separates the 
constituent modes of the multimode vibration in the frequency space, and permits their 
isolation by means of bandpass filters. Contributions to the dynamic behaviour of the object 
due to single resonant modes or the superposition of several modes can be isolated and 
studied separately. The structure of the paper is as follows: first, a brief overview of resonant 
modes and their nomenclature is given in section 2.1. The method used to calculate the optical 
phase-change maps is sketched in section 2.2. Section 3 is devoted to the 3D Fourier 
transform processing applied to the data. Section 4 contains a detailed explanation of the 
experimental setup and procedure. Finally, some results obtained with a rectangular, fully 
clamped, thin metal plate excited with white noise are presented and discussed in section 5. 
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Fig. 1. Scheme of the reference system and nomenclature of some vibration modes. The dotted 
lines represent nodal lines. 

2. Background 

2.1 Vibration modes 

The equation of the deflection of a simply supported rectangular plate during vibration [10] 
can be written as 
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where u3=u3(x1,x2,t,l,m) is the deflection of the plate along direction x3 (see Fig. 1), a and b are 
the horizontal and vertical dimensions of the plate respectively, E and ν are the Young’s 
modulus and Poisson’s ratio, h is the plate thickness and ρ is the mass per unit volume or 
volumetric mass density. Each pair of integers (l,m) corresponds to a particular vibration 
mode, that we name according to the number of nodes (out of the edge of the plate) in the 
horizontal and vertical directions. For example, for l=0 and m=0 we have the vibration mode 
(0,0), designated as M00 henceforth. Although our object is a fully clamped plate, its thickness 
is much smaller than its transversal dimensions, so the simpler model of a simply supported 
plate can be used to a first approximation to the problem. 

2.2 Measurement method. Calculation of optical phase-change maps 

The general expression of an interferogram with spatial carrier, recorded with single-pulse 
illumination, for a given instant tn is given by [1] 

 0, p, o, r,{1 cos( 2 )}n n n n n nI gI V ψ φ φ π= + + − + ⋅cf x  (3) 

where x=(x1,x2) is the position on the image plane expressed in terms of the plate coordinates, 
In=In(x) is the n-th interferogram recorded at the instant tn, g=g(λ) is the spectral sensitivity of 
the camera at the wavelength λ of the laser source, I0,n=I0,n(x) is the local central value of the 
intensity, Vn=Vn(x) is the local visibility, ψp,n=ψp,n(x) is the random phase due to the speckle, 
φo,n=φo,n(x, tn) is the object phase related to the displacements of the object, and φr,n=φr,n(x, tn) 
is the reference phase. The term 2π fc⋅⋅⋅⋅x, with fc=(fc1, fc2), is the spatial carrier that allows 
extraction of the optical phase from the interferogram. 

With the illumination and observation geometry that we have selected for our 
experiments, the term φo,n is proportional to the instantaneous out-of-plane displacement field 
u3 at the plate surface 

 o, 3

4
n u

π
φ

λ
= −  (4) 

Taking into account Eq. (1), this dependency can be rewritten as 
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where φ3e,lm=φ3e,lm(x1,x2,l,m) is the mode shape (only the factors with spatial dependence) 
expressed in optical terms. 

An established procedure based on the spatial Fourier transform method [11] is then used 
to calculate the optical phase-change ∆Φ between two interferograms, as described by Eq. (3), 
one of them taken as a reference state. The result is a 2D map of the instantaneous out-of-
plane displacement field between the state at the instant tn and the reference state 
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with ∆Φn=∆Φn(x1, x2, tn, l, m). A time sequence of these optical phase-change maps is the 
input for the second stage of the measurement method that we will explain in the following 
section. 

3. Theory. Data processing with a spatiotemporal 3D Fourier transform 

This data processing method was first devised for ultrasonic travelling waves [12] but it can 
be applied to any 3D array of data with spatial and/or temporal carriers. A scheme of the 
procedure is shown in Fig. 2. A sequence of N 2D optical phase-change maps of the vibration, 
acquired in consecutive instants, constitute a 3D set of data that fulfil these requirements. 
Indeed, Eqs. (5) and (6) show that the data have a spatial carrier and, more importantly in our 
present case, that there is one or several temporal carriers given by the vibration frequencies 
ωlm/2π of the modes. 

The discrete 3D set of experimental data of P×Q×N sampled points can be expressed as 

 1 2 10 1 20 2 0( , , , , ) ( , , , , )p q nx x t l m x p x x q x t n t l m∆Φ = ∆Φ + ∆ + ∆ + ∆  (7) 

with p=0 … P-1, q=0 … Q-1 and n=0,…, N-1. ∆x1 and ∆x2 are the spatial sampling distances 
in the horizontal and vertical directions respectively, and ∆t is the temporal sampling interval. 
The discrete spatial and temporal sampling frequencies in x1, x2 and t are given by 
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respectively, with p'=-P/2,…, P/2, q'=-Q/2,…, Q/2 and n'=-N/2,…, N/2. 
The 3D discrete Fourier transform of this set of data is then 

 

( ) ( ) ( )

11 1

3e, 3e, 0
0 0 0 1 1

' ( ) cos( ) cos( )

exp 2 '/ exp 2 '/ exp 2 '/

QP N L M

lm lm n lm lm
p q n l m

DFT t t

j pp P j qq Q j nn N

φ ω φ ω

π π π

−− −

= = = = =

 
 ∆Φ = ∆Φ = −  

 

×

∑∑∑ ∑∑
 (9) 

This is equivalent to calculating the sum of the 3D discrete Fourier transforms of each 
mode (l,m) so, in the following, we restrict the calculation to just one mode for simplicity. 
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Fig. 2. Scheme of the spatiotemporal 3D Fourier transform method. (i) Sequence of optical 
phase-change maps of a multimode vibration. (ii) Several planes of the spatiotemporal 3D 
spectrum. The spectral content of one mode (with temporal frequency fk) of the multimode 
vibration is shown in planes ±fk. Planes with the spectral content of other modes are omitted. 
Planes at temporal frequencies f0 and fmax do not contain information. The filter used to select 
one of the side lobes is also shown. (iii) Mechanical amplitude and phase of the selected mode 
(modulus and argument of the complex data respectively). 

Since φ3e,lm does not depend on time, the Fourier transform may be separated 
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and we can write 
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where n'lm is the frequency index of the discrete temporal frequency which is nearest to the 
temporal frequency flm of mode (l,m). The spectral content of the mode is thus symmetrically 
shifted with respect to the zero temporal frequency, and a bandpass filter can be applied to 
select one of the side lobes 
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The inverse Fourier transform of the filtered data in Eq. (12) yields N complex-valued 
maps corresponding to the instants tn 

 1
1 2 3e, 1 2

1
( , , , , ) ( ' ) ( , , , ) exp( 2 )

2
F

lm p q n lm lm p q lm nΑ x x t l m DFT x x l m j f tφ π−= ∆Φ =  (13) 

The modulus of this complex amplitude is proportional to the mechanical amplitude of the 
mode 
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The argument yields the mechanical phase 
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and the real part is proportional to the instantaneous plate deflection 
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If the same process is applied to all the modes in the corresponding temporal frequencies, 
Eq. (13) becomes 
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4. Experimental procedure 

4.1 Experimental setup 

The TV holography system is shown in Fig. 3. It consisted of a continuous wave laser 
Coherent Verdi v6 (λ=532 nm), a high-speed camera NAC Memrecam GX-1 and a speckle 
interferometer with sensitivity to out-of-plane displacements. The test object was a thin 
aluminium plate with clamped edges and dimensions 190 mm × 140 mm × 1 mm, sprayed 
with dry developer powder. A rectangular aperture and a lens of focal length 100 mm were 
used to form an image of the plate on the CMOS sensor. The pixel size of the camera was 
21.7 µm × 21.7 µm. A spatial carrier to extract the optical phase was introduced in every 
interferogram by tilting the reference beam slightly off axis. 

Several of the lowest frequency vibration modes of the plate were simultaneously excited 
by means of a loudspeaker driven by an audio amplifier. The audio signal was white noise, 
generated with the free software Audacity and exported to a .wav file of duration 40 s. An 
ordinary mp3/wav player connected to the amplifier was used to play the file. The frequencies 
of the first four vibration modes were known to be approximately 320 Hz for M00, 560 Hz for 
M10, 777 Hz for M01 and 890 Hz for M20. 

4.2 Data acquisition and processing of optical phase-change maps 

A full-field temporal history of the vibration was recorded during a time interval of 272.47 ms 
in Nrec=970 interferograms with a bit depth of 12 bits per pixel. The frame rate of the camera 
fframe is programmable in steps of one frame per second and was set to fframe=4f20=3560 frames 
per second, four times the frequency of M20. To freeze the vibration, the exposure time during 
each frame (Texp) was set to 100 µs by the electronic shutter of the camera. The effective 
integration time was thus kept below 10% of the vibration period Tlm=1/flm for modes up to 
M20, so the condition of pulsed illumination assumed in section 2.2 is acceptable. The 

#113632 - $15.00 USD Received 1 Jul 2009; revised 3 Sep 2009; accepted 7 Sep 2009; published 23 Sep 2009

(C) 2009 OSA 28 September 2009 / Vol. 17,  No. 20 / OPTICS EXPRESS  18019



acquisition of the interferograms was manually triggered several seconds after starting the 
excitation, to ensure that the vibration modes had time enough to build up. Therefore, a 
stationary motion was assumed and an small subset Nset<Nrec of consecutive interferograms 
was used for the calculations. The first interferogram of the subset was taken as the reference 
state. 

 

Fig. 3. Experimental setup. 

To compute the Fourier transform (both 2D and 3D), a fast Fourier transform (FFT) 
algorithm was used [13]. It required that all the dimensions were integer powers of two, so the 
interferograms were padded with zeroes from the original size of 856 pixel×848 pixel up to 
1024 pixel×1024 pixel, and a value of Nset=65 was selected. The optical phase-change ∆Φn 
between the reference and the remaining interferograms was calculated as explained in 
section 2.2, and N=64 optical phase-change maps were obtained. The value of the optical 
phase-change in the padded region of every map was deliberately set to zero, because it 
contained spurious values that affected the subsequent computation of the 3D Fourier 
transform. Figure 2(i) shows five of these optical phase-change maps for consecutive instants. 
It can be noticed that white noise was capable of exciting simultaneously several low-order 
modes with enough amplitude to be detected by our system. 

4.3 Data processing with the spatiotemporal 3D Fourier transform 

A 3D Fourier transform was applied to the N maps, and a set of 64 2D complex-valued 
spectra were obtained. Each 2D spectrum corresponds to a set of spatial frequencies fp’ and fq’ 
and one temporal frequency fn’ (see Eq. (8)). Figure 4 shows the modulus of several spectra 
for different values of n’. The dots replace planes corresponding to intermediate values of n’ 
that were removed from the figure, and also indicate that the represented spectra are not 
equally spaced in the temporal frequency axis. In Fig. 4(i) black and white represent zero and 
the maximum value of the modulus respectively. Peaks near the center of the frequency 
spectrum appear for n’=0 (DC term), n’=6 (f6=333,75 s−1) and n’=14 (f14=778,75 s−1). The 
latter are the spectral content of modes M00 and M01, whose natural frequencies are very close 
to f6 and f14 respectively. Figure 4(ii) is a 3D representation that makes it easier to compare the 
relative height of the maxima. 

The proposed 3D spatiotemporal Fourier transform method permits, in general, mode 
separation in space and time. For example, Deán et al. [14] separated spatially two 
propagating Lamb modes with the same temporal frequency taking advantage of their 
different wavelengths. The case herein presented is the opposite: the spatial frequencies of the 
excited modes are very low (see Fig. 4); therefore, the separation of different modes is 
generally possible only if their spectral content is distributed in different temporal 
frequencies. The number N of optical phase-change maps necessary to achieve the required 
resolution in temporal frequency depends then on the excited modes and their relative 
temporal frequencies. The higher the value of N, the better the resolution in the temporal 
frequency axis, at the cost of more RAM memory requirements and computational effort. 
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Fig. 4. (i) Modulus of several complex-valued spectra obtained after processing N=64 optical 
phase-change maps with the spatiotemporal 3D Fourier transform. The images were equalized 
and only a small region of 225 pixel × 225 pixel around the center of the spectra is shown. 
Black and white represent zero and the maximum modulus respectively. A filter is shown on 
plane n’=14. (ii) 3D representation of a smaller region of 25 pixel×25 pixel. 

To assess the suitability of the chosen value N=64, the maximum modulus of the spectra 
was plotted versus n’ in Fig. 5. Peaks for n’=6, 14, 16 (f16=890 s−1) and 26 (f26=1446.25 s−1) 
are apparent. The first three match with the known frequencies of M00, M01 and M20. The last 
one turned out to be M02. On the contrary, M10 was not properly excited, since the peak at the 
expected frequency (n’=10) was not discernable. The separation between peaks indicates that 
N=64 optical phase-change maps is enough to separate the different excited modes in the 
frequency space. 

 

Fig. 5. Maximum modulus of the spectra versus n’. The values of temporal frequency 
(computed for ∆t=(1/3560) s, N=64) for the main peaks are indicated. They correspond to M00, 
M01, M20 and M02. 

4.4 Data processing: separation of vibration modes 

The resonant modes M00, M01, M20 and M02 were separated from the same set of spectra by 
the repeated application of the following two steps: firstly, a filtering stage; secondly, an 
inverse Fourier transform of the filtered data. To separate each individual mode, a single filter 
of rectangular shape and profile, located on the corresponding frequency plane, was used (see 
for example Fig. 4, n’=14). Two different combinations of resonant modes were also 
separated, following the same two-step procedure. However, in this case, multiple filters 
located on the corresponding frequency planes were simultaneously applied. In all the cases, 
square filters of size 14 pixel×14 pixel, symmetrical with respect to the center of the spectra, 
were used. As a result, six sequences of N=64 complex-valued maps, corresponding to the 
same instants than the original sequence of optical phase-change maps, were obtained. Table 
1 summarizes the information regarding this data processing and labels the obtained 
sequences. SM stands for “single mode” and MM for “multimode”. 
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Table 1. Summary of results 

 Filters  
Sequence Number Position Selected mode/s 
SM1 1 n’=6 M00 
SM2 1 n’=14 M01 
SM3 1 n’=16 M20 
SM4 1 n’=26 M02 
MM1 4 n’=6,14,16,26 M00+M01+M20+M02 
MM2 3 n’=6,14,16 M00+M01+M20 

The modulus of the complex data is proportional to the mechanical amplitude and the 
argument is equal to the vibration phase at the recording instant. The real part combines 
amplitude and phase and is proportional to the instantaneous deflection of the plate. An 
example of the modulus and argument of the complex data was shown in Fig. 2(iii). In the 
following figures, only a pseudo 3D representation of the real part of the complex-valued data 
is shown. 

Regarding the data processing time, the calculation of the N=64 optical phase-change 
maps from the 65 interferograms (section 4.2) takes about 60 s, whereas each 3D Fourier 
transform takes about 30 s. The whole procedure (which also involves reading from and 
writing data to disk) takes less than 4.5 minutes. These calculation times were obtained with a 
personal computer equipped with an AMD Athlon 64 3000+ processor at 1.81 GHz and 1 GB 
of RAM. 

5. Results and discussion 

Figures 6(a), 6(b), 6(c) and 6(d) show the instantaneous displacement of modes M00, M01, M20 
and M02 respectively. The data were taken from sequences SM1, SM2, SM3 and SM4 and 
correspond to the same instant. The out-of-plane displacement shown in Fig. 6(e) was taken 
from sequence MM1, and is due to the superposition of all the modes at that same instant. 
Since, according to Fig. 5, these are the main resonant modes that were excited in the plate, 
Fig. 6(e) is the operating deflection shape (ODS) of the plate at that instant. 

Rows (i), (ii) and (iii) in Fig. 7 show respectively the instantaneous displacement of modes 
M00, M01 and M20 in three consecutive instants. Row (iv), taken from sequence MM2, shows 
the superposition of those three modes in the same instants. This result is what we call a 
filtered deflection shape (FDS), since it is an ODS where the contribution of one of the modes 
present in the plate has been removed. Four multimedia files that show the 64 frames of the 
temporal history in these four cases are available in the online version of the journal. 

All the images have a 160 mm×159 mm field of view, and were trimmed to remove the 
padded region. In all cases, the displacement (in nm) was obtained by applying a scale factor 
of λ/2π (see Eq. (16)) to the real part of the complex-valued maps. 

These results show that the proposed technique can be used to analyze multimode 
vibrations. Individual vibration modes can be extracted from the multimode vibration and 
studied separately. Also, the instantaneous displacement due to any superposition of modes 
can be obtained by the simultaneous application of multiple filters to the data. This filtering 
stage also improves significantly the signal to noise ratio of the final output compared to the 
original optical phase-change maps. 

The method does not require the synchronization of acquisition and vibration to separate 
the modes, neither does it impose conditions on the relative ratios of the mode frequencies. 
The only requirement is that the frame rate of the camera is at least twice the frequency of the 
highest mode of interest, to comply with the sampling theorem. In principle, no repetitions of 
the experiment are required to obtain a true temporal history of the vibration and, therefore, 
the technique is promising for the study of nonrepetitive phenomena. 
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Fig. 6. Instantaneous displacement of (a) mode M00, (b) mode M01, (c) mode M20 and (d) mode 
M02. (e) Operating deflection shape (ODS) due to modes M00, M01, M20 and M02. 

 

Fig. 7. Instantaneous displacement of (i) mode M00 (Media 1), (ii) mode M01 (Media 2) and (iii) 
mode M20. (Media 3). (iv): Instantaneous displacement due to the superposition of modes M00, 
M01 and M20 (Media 4). 

There is an intrinsic limitation on the highest-frequency mode that can be measured, due 
to the tradeoff between image size and frame rate: the higher the frame rate, the smaller the 
image size. This limitation may be overcome up to a point by making a smaller image of the 
object on the CMOS sensor. For example, if our current interferograms of 856 pixel × 848 
pixel were fitted into an area of 512 pixel × 512 pixel, the frame rate could be increased up to 
8000 fps. In any case, there would still be difficulties for combinations of very large fields of 
view and high order modes. However, if the phenomenon were repetitive, the herein proposed 
technique could still be applied to small patches of the large area that could be sequentially 
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inspected and subsequently stitched. Another consideration is that phase wrapping in the 
optical phase-change maps introduces artifacts in the spatiotemporal spectra that degrade the 
results. Therefore, the technique is better suited to vibrations of low amplitude (below 133 nm 
for our experimental conditions), that lead to non-wrapped optical phase-change maps. If 
vibrations of larger amplitude are to be studied, a phase unwrapping stage previous to the 
application of the 3D Fourier transform would be necessary. 

Finally, to assess the power requirements of the system, a schematic power budget is 
presented. Preliminary measurements in our experimental setup showed that the illumination 
and reference beams carried roughly 70% and 15% of the total output power respectively. The 
reference beam had to be attenuated with a neutral filter. The efficiency in this stage could be 
improved by the use of higher quality optics that minimize losses and reduce the power 
diverted to the reference beam. The light impinging on the object is partly absorbed and 
scattered equally in all directions if the surface of the object can be considered Lambertian. 
Therefore, the irradiance on the image plane (i. e. the sensor) is in general a small fraction of 
the radiance of the object, and it is further reduced by the need to use a relatively small 
aperture in the optical system to resolve the speckle. The irradiance on the sensor is 
proportional to 1/(f/#)2, being f/# the f-number [15]. f/# is also related to the speckle size ds by 
ds≈1.22 λ f/#. For a given λ, the minimum value of ds that can be resolved (and therefore the 
maximum irradiance on the sensor) is determined by the pixel size. Assuming the f/# used in 
the experiments is near its optimum value, the irradiance on the sensor could be increased by 
tailoring the reflective properties of the object (for example, by covering it with retroreflective 
tape). Another feature of our system that demands high optical power is the very short 
exposure time Texp (see Fig. 3 and section 4.1), which determines the fraction of collected 
light that is effectively integrated by the sensor. The selected value Texp≈Tlm/10 lets us assume 
that the vibration of the object is frozen during the exposure time, being Tlm the temporal 
period of the highest mode that we want to measure confidently. In our experiments, the 
sampling period Tframe=1/fframe is set to Tlm/4, which is a convenient value for our phase 
evaluation method, as explained in Trillo et al. [12, p. 63410M-4]. The duty cycle in each 
frame is Texp/Tframe=(0.1 Tlm)/(0.25 Tlm) and about 40% of the collected light is integrated by 
the sensor. Compared to an ideal optimum illumination scheme, i. e., a coherent pulsed laser 
capable of working at the frame rate of the camera (which would concentrate the light in the 
interval Texp) our system would need only 2.5 times more power to obtain the same irradiance 
on the sensor. 

6. Conclusions 

We have presented a novel technique for the analysis of multimode vibrations in plates. 
Firstly, a TV holography setup equipped with a high speed camera records a full-field 
temporal history of the plate deflection —i. e., its operating deflection shape, ODS— as a 
sequence of interferograms, from which a sequence of optical phase-change maps is 
calculated. A 3D array of data (two spatial dimensions and time) is thus obtained. Secondly, a 
3D Fourier transform of these data separates the modes in the frequency space and allows the 
extraction of the individual resonant modes (or any combination of resonant modes) by means 
of bandpass filters. An inverse Fourier transform of the filtered data yields a sequence of 
complex-valued maps that contain the mechanical amplitude and phase of the selected mode 
or modes in the recording instants. If all the modes are considered, a smoother version of the 
originally ODS is obtained. The technique was successfully tested with a fully clamped 
aluminium plate excited with white noise and vibrating simultaneously in several of its natural 
resonant modes. 
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