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Abstract:  We propose a technique for ray tracing, based in the propagation 
of a Gaussian shape invariant under the Fresnel diffraction integral. The 
technique uses two driving independent terms to direct the ray and is based 
on the fact that at any arbitrary distance, the center of the propagated 
Gaussian beam corresponds to the geometrical projection of the center of 
the incident beam. We present computer simulations as examples of the use 
of the technique consisting in the calculation of rays through lenses and 
optical media where the index of refraction varies as a function of position. 
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1. Introduction 

The general problem of ray tracing, consisting of a series of refracting or reflecting surfaces, 
and/or homogeneous/inhomogeneous media (or a combination of them), can be determined by 
repeated application of common ray-tracing equations [1-4]. When light is strongly focussed 
well-known caustic theories are applied [5]. 

Evolved optical devices, as graded-index media, used for example in the design of 
inhomogeneous lenses, require new methods for ray tracing [6]. Moreover, today’s 
technological demands, as for example, the use of ultra-short laser pulses strongly focussed, 
require more versatile techniques [7, 8]. On these conditions, common ray tracing programs 
need to evolve to accurately describe the complete behavior of light through new optical 
devices and complex optical media. Examples on this issue can be found in Ref. [9], where 
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two commercially available programs, one for ray tracing and another that includes diffraction 
effects were combined for ray tracing of ultra-short focussed beams through optical devices. 

Common techniques for ray tracing relay in only one driving term that directs the ray 
properly, calculating it at each point of the optical path and then, updating this angle at each 
point of interest using mainly Snell’s law. More elaborate techniques has been proposed, 
based on finding the parameters for reflected and transmitted Gaussian beams (the waist, the 
center, the direction of propagation and the complex angle of rotation), using phase matching 
by approximating the refractive or reflective surface with a quadratic function [10]. 

The tracing technique that is proposed here provides more versatility from a computational 
point of view, in the sense that it presents two driving terms which give the direction of the 
ray at each point. Each of the two driving terms can be used independently or can be 
combined. The first driving term is related to the angle of propagation, but differently to 
common techniques, this term is included in the phase of our proposed Gaussian invariant. 
The second driving term consists in updating the value of the wavelength as a function of the 
index of refraction at each point. We describe bellow the use of the two driving terms and, in 
the sections that follow we describe our Gaussian shape invariant proposal and we give some 
simple examples of its use. 

2. Analytical description 

To simplify our analytical description, we will refer to one-dimensional waves (cylindrical-
like waves) generalization to more dimensions is straightforward. For the description of our 
Gaussian invariant, we will begin with some preliminary ideas. 

2.1 Motivation of changing ( )θsin by ( )θtan  

Before establishing our main results, let us motivate the reason why we have to change ( )θsin  

by ( )θtan in our model for a tilted Gaussian beam.  

Let us consider a one-dimensional Gaussian amplitude transmittance, centered at 0=z ( z  

being the optical axis), and placed along an axis x , in a coordinate system ( zx, ), illuminated 

by a plane wave with an angle of incidence θ . In an equivalent manner, it can also be viewed 

as a tilted real Gaussian amplitude distribution. 

In 0=z , this physical situation would be typically expressed as, 
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λ  being the wavelength of the illuminating beam, and 
0

r  the semi-width of the Gaussian, A  

being a real amplitude. However, if we introduce this tilted Gaussian into the Fresnel integral, 

we would not obtain the expected geometrical projection for large θ . However, we have 

found that changing ( )θsin  by ( )θtan  allow us to obtain the expected geometrical projection. 

With this change, the above equation reads, 
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In order to calculate the amplitude distribution at a plane with a coordinate system ( z,ξ ) 

located at a distance z , the well-known one-dimensional Fresnel diffraction integral will be 
used. This integral is expressed as, 
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By substituting Eq. (1) into Eq. (2), and calculating the integral involved, one obtains, 
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As it can be seen from Eq. (3), after propagation, the tilted beam in Eq. (1) preserves its 
Gaussian distribution; however it presents a complex amplitude factor and, additionally, a 
quadratic phase. This result is well known. 

The main point to notice in Eq. (3), is that the spatial center of the propagated Gaussian 

beam, ( )θξ tanzA = , for any arbitrary angle ( 2/πθ ≠ ), is located precisely at the geometrical 

projection of the incoming beam center. This result would fail if one maintains ( )θsin  for 

large angles, this change of ( )θsin  by ( )θtan  removes the paraxial limitation of the Fresnel 

diffraction integral in this particular case. 
Other interesting aspect to notice is that the above result is also true for any arbitrary 

distance of propagation even for very small ones. It also holds for any value of λ . 

Additionally it is important the fact that the center of the quadratic phase of the propagated 

beam, Bξ , does not coincide in general with the spatial center of the beam, Aξ . These are the 

key elements of our proposal that will be generalized in our description of our Gaussian shape 
invariant under Fresnel propagation. 

2.2 Gaussian shape invariant 

In order to generalize the above results, we propose a general (one-dimensional) Gaussian 

amplitude distribution at ( )0=z  to be represented as 
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where nA  is  the amplitude of the Gaussian beam (which can be complex) and nα  stands for 

the tilt or the direction of the proposed incoming beam, as described above. The quadratic 

phase involving nβ  is introduced to allow an arbitrary defocus factor in an independent 

manner. nxA  and nr  are parameters corresponding to the spatial center and to the semi-width 

of the Gaussian respectively. Finally, the term nγ  is a factor that includes the Gaussian 

curvature whose quadratic phase is centered at nxB . As shown above, the center of curvature 

does not coincide in general with the spatial center of the Gaussian. 
Equation (4), represents our proposed Gaussian (shape invariant) amplitude distribution at 

the origin ( 0=z ), that will be propagated a distance z , towards a coordinate system ( z,ξ ), 

by means of the Fresnel diffraction integral. One obtains for the propagated beam, after a 
straightforward but lengthy calculation, 
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where, 
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is the amplitude of the propagated beam, and,  
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The above equations can be seen to represent a set of recursive equations. It can be noticed 

that as ( )θ
λ
π

α tann

2
=  implies that 0

1
=+nα . Thus nα  can be identified as a driving term that 

permits changing the angle or the ray, or the direction of propagation when needed; this term 
must remain equal to zero all the way that the direction of the beam is maintained unchanged. 

When the direction of the beam needs to be changed, 
1+nα  is updated by means of a law of 

reflection or refraction; this has to be done for example at each interface, where the beam is 
reflected or refracted by a surface. In the case that the light passes from one medium to 

another, 
1+nα  is updated by applying Snell’s law to give the beam the appropriate direction 

and then it is propagated again by means of the recursive equations above. Near field 
calculations can be used instead for more precision [11, 12]. 
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The set of Eqs. (5A)-(5D) corresponds to exact calculations and can be applied in general. 
These equations represent the complete set of recursive equations needed in our proposal. It 
has to be mentioned however, that the Fresnel diffraction integral imposes restrictions because 
it corresponds to a paraxial theory and it is not considered accurate in the very-near field 
theory. Thus, in principle, the Fresnel integral demands that two restrictions have to be 
overcome: i) It is only valid for moderate angles of incidence, due to the paraxial restriction 
and ii) it is invalid for very-small distances of propagation.  

As shown above, in our proposal we are using two facts to overcome the mentioned 

limitations. First 
( )

λ
θπ

α
tan2

=  substitutes
( )

λ
θπ
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= , allowing arbitrary angles of 

propagation, to any value because, as we have shown, an accurate geometrical projection of 
the spatial center of the Gaussian is obtained at any arbitrary angle of incidence. Second, the 
moderate distance restriction can be seen to be overcome as we have shown that the 
geometrical projection of the ray is obtained independently of the values of z , additionally, 

also of λ . Thus the ray is properly projected even if both, z and λ , are very small.  

It is immediate to recognize that the second driving term to direct the ray is the 

wavelength, λ . For its use, at the beginning of the calculations an initial value 
0

α and 
0

λ  
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must be provided. The smaller the wavelength the more a ray-like behavior because the width 
of the beam will remain basically unchanged under propagation. Additionally, a very small 
semi-width can be chosen, thus actually propagating rays. 

In the cases where the index of refraction of the media varies continuously, it is sufficient 

to update the value of the wavelength as n/λ  (at each iteration), n  being the index of 

refraction. This automatically causes the ray to change its direction accordingly, making the 
calculations very easy. 

Thus, two driving direction terms are available, α  and λ . Which of them or which 

combination of them are to be used as the driving parameters in a specific ray tracing 
situation, depends on which parameter makes the calculations easier. For example, if a ray has 
to be traced when there is only a limited number of interfaces, it is easier to provide the new 

value of α  after refraction or reflection at an interface by applying Snell’s law. On the other 

hand, if a ray travels through an optical media where the index of refraction changes 

continuously, updating the value of λ  as a function of position results easier. 

Based on the above description, we proceed to show some simple simulations of ray 
tracing with the proposed technique. As indicated, the technique is applied in an iterative 
manner; the overall path of propagation is divided in small sub-paths. Each sub-path 
corresponds to a fraction of the total path length. The calculations are as follows: we calculate 
the path of the ray for a very small propagation (sub-path), and then to the next, using the 
former result, and so on until the ray arrives to the end of the path. When very high accuracy 
is needed, the length z  in each sub-path can be made as small as desired but of course the 
limit is the computer precision; additionally, very small values will require more iterations, 
thus, more computing time. Finally, for the easy of the calculations, the length of each sub-
path is considered equal, although this value can be made different as needed. In the next 
section we show some simple examples. 

3. Computer examples 

In the examples that follow the iterative Eqs. (5A)-(5D) are used, the spatial center of the 
Gaussian invariant, which represents the ray path, is plotted as described above. We have 

chosen arbitrarily very small values, =
0

r 10
-7 

m and =λ 10
-15 

m for a ray-like behavior, 

although this is not a necessary condition. We repeated the calculations with more realistic 
values, and we obtained the same ray tracing. 4000 iterations were performed for each ray 
trace. The total length of the optical axis was divided in 4000 equal sub-paths, thus, for each 

iteration, =z 4000/Tz , being Tz  the length of the optical axis. Due to the very small 

wavelength, the semi-width shows to remain basically constant in all the calculations. The 
simulations were performed in a personal computer running at 1.2 GHz, using commercial 
mathematical software, the total processing time for each ray being approximately 1/2 second. 
The results were compared with the one obtained by means of a commercially available 
program and found to coincide. 

Our first example, shown in Fig. 1, consists in rays in a gap between two reflective planes. 
The distance between planes can be chosen arbitrarily, very close or very far as desired, there 
are no limitations. In our example, the upper plane has a slope of 0.1 and is placed at a height 
of 1 cm. The lower plane is placed at a height of –2.0 cm with a slope of –0.1. The index of 
refraction in the gap is taken equal to one. For illustrative purposes only two rays are traced. 
The dash-dotted ray is launched at the origin at the left, with an initial inclination of  -0.7 rad. 
The solid ray is also launched at the left at a height -1.5 cm, with an angle of 0.8 rad. The 

length of the optical axis is, Tz = 0.5 m.  
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Fig. 1. Ray tracing in a gap between two reflective planes (units in m). 

Our second example consists in ray tracing through a selfoc media whose equation is 

given by 2410)8(15.1)( xxn −=  ( x  in units of meters). According to the Eikonal equation a 

ray launched at the origin, with an inclination 056.0=ϑ rad, will follow a sinusoidal path with 

a period 410)8(/cos2 ϑπ=T  and with amplitude 410)8(/ϑsinA = , Ref. [13]. Figure 2 

shows the path traced by means of the Gaussian invariant. The resulting path agrees well with 
the Eikonal theory, in this case, resulting in a period of 0.022m, and an amplitude (1.9)10

-4
 m.  

 

Fig. 2. Ray tracing in a selfoc media as described in the text. 

Our next example, shown in Fig. 3, consists in a ray tracing through a plano-convex lens. 

The convex surface is given as ( ) ( )24
15.010)64( −−= − xxz (units in meters). The indexes of 

refraction are 1.5 inside the lens and 1.0 for the optical media. 
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Fig. 3. Ray tracing through a convex lens as described in the text. 

In Fig. 4, the convex surface above was replaced by an aspheric in order to lower defocus. 

The equation of the aspheric surface is given as ( ) ( ) 6324
10)5(15.010)64( xxxz +−−= −

 

(units in meters). 

 

Fig. 4. Ray tracing through an aspheric lens as described in the text. 

In all of the above examples the driving factor α  remains equal to zero and it is updated 

by using Snell’s law only when the ray intersects a refractive surface. 

Our final example, Fig. 5, uses a combination of both driving terms, α  and λ . In this 

example, an inhomogeneous media is placed near the back focal plane of the above aspheric 

lens; the index of refraction as a function of z  being ( )2.0/2cos8.1)( zzn π−= . In this case 

we are using 8000 iterations for a better resolution. The driving term used in the 

inhomogeneous media is λ . When the ray enters the media an initial value of =λ 10
-15 

m is 

assigned and this value is then updated at each iteration as n/λ . It is only necessary to apply 

(C) 2009 OSA 22 June 2009 / Vol. 17,  No. 13 / OPTICS EXPRESS  10570
#107152 - $15.00 USD Received 4 Feb 2009; revised 13 Apr 2009; accepted 16 Apr 2009; published 9 June 2009



Snell’s law at the point where the beam enters the inhomogeneous media to provide an initial 
angle and then,α  remains zero in the entire region. This example shows the simplicity of the 

calculations in the inhomogeneous region as it is only necessary to update the value of the 
wavelength in each iteration. 

 

Fig. 5. Ray tracing through an aspheric lens and an inhomogeneous media placed near the back 
focal plane of the lens as described in the text. 

4. Comparison with traditional ray tracing 

In this section we establish the advantages of using our Gaussian shape invariant method over 
traditional ray tracing.  

In traditional ray tracing only two mathematical terms are tracked after the ray has 
traversed any given complex optical system; one is, the overall phase due to the whole optical 
path traveled; the other one is the output tilt of the ray at the output of the system. 
Additionally in standard ray tracing the amplitude of the ray remains unchanged as it travels 
throughout the system. In contrast in our proposed technique all the inherent (four) properties 
of the (physical) ray as it propagates are preserved. These are: 

1. The now (overall) complex amplitude which includes the amplitude of the entrance 

ray as well as its optical path traversed (let, ( )nnn iAA φexp= ) where 

nφ corresponds to the accumulated optical path. 

2. The output ray’s tilt (as in traditional ray tracing) is also included in our (physical) 

ray model in the term 
( )


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
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x
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λ
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exp . 

3. The propagated ray curvature is tracked throughout the whole optical system. This 
output value may be useful in interferometric and holographic applications where the 
overall ray phase is important. 

4. Finally, as one can select real values for the wavelength’s (physical) ray, the 
amplitude spread may also be tracked. In contrast, to obtain an estimation of the 
energy spread in traditional ray tracing it would be necessary to estimate the relative 
density of the rays over the image surface. 

All of the above comments are mainly valid in the paraxial approximation that includes 
most of the optical systems in use. 
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5. Conclusions 

We have described a technique for ray tracing in homogeneous and/or inhomogeneous media, 
based in the use of two driving terms to direct the ray in an appropriate direction. We have 
shown by means of simple examples how both driving terms can be used in an independent 
way or combined according to the optical situation, making apparent the versatility of the 
technique from a computational point of view. Although the technique is based in the 
propagation of a Gaussian shape invariant under the Fresnel diffraction integral, valid only in 
a paraxial region and not considered as a very-near field propagator, these two limitations 
were overcome by replacing the commonly used sine function by a tangent in the phase of the 
amplitude distribution of the Gaussian, and by showing that it possible to obtain an accurate 
geometrical projection at any arbitrary distance. With these considerations, we have shown 
the feasibility of the technique by means of simple examples of ray tracing through some 
imaging devices and optical media, where very small values of wavelengths and very small 
beam widths were used, so that very narrow like-rays beams were attained. Although not 
shown here, as the technique is based on the theory of diffraction, it can result useful in the 
study of ray tracing on systems where diffractive effects have to be included, this can be taken 
into consideration in future work.  
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