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Abstract: Transparent BaTiO3:Eu3+ films were prepared via a sol-gel method and  

dip-coating technique, using barium acetate, titanium butoxide, and polyvinylpyrrolidone 

(PVP) as modifier viscosity. BaTiO3:Eu3+ films ~500 nm thick, crystallized after thermal 

treatment at 700 ºC. The powders revealed spherical and rod shape morphology. The 

optical quality of films showed a predominant band at 615 nm under 250 nm excitation. A 

preliminary luminescent test provided the properties of the Eu3+ doped BaTiO3. 
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1. Introduction  

 

In recent years, lanthanide-doped ultrafine and nanocrystalline oxide materials have been widely 

investigated due to their optical properties, which make them promising candidates for applications in 

optoelectronic devices and flat panel displays [1-3]. Additionally, perovskite-structure materials are 

attractive as host matrices for rare earth doping because they present promising properties in integrated 

light-emission devices, field emission displays (FEDs), all-solid compact laser devices operating in the 

blue-green region, and positive coefficient (PCT) resistors [4-7]. Research has been particularly active 

for binary oxides systems such as cubic Y2O3 [8] and Lu2O3 [9], mainly doped with the technologically 

important Eu3+ ions. These investigations have been extended to mixed oxides and, in particular, the 

optical spectroscopy of BaTiO3 powders doped with Eu3+ has been extensively studied [10-14]. The 

formation of Eu3+ doped BaTiO3 films is attractive due to its revealed luminescent properties [15]. 

BaTiO3 thin films have previously been prepared by different methods such as MOCVD [16], 

sputtering [17], electrophoretic deposition [18] and sol-gel [19-21]. Among these methods, the sol-gel 

route has been intensively studied because, in general, this process is flexible enough to produce 

ceramic powders, fibers, and monoliths, as well as advantageously elaborate films of complex oxides 

[22-25]. This method implies the formation of a colloidal (‘sol’) solution which is traditionally based 

on dissolved organometallic molecular precursors. In the hydrolysis and polycondensation reactions, 

the macromolecular oxides species M-O-M occurs via oxolation [26]. The formation of M-O-M 

products degrades the stability of the precursors and fails to yield the final ceramic products: 

precipitate, gel or stable colloidal solution. The hydrolysis problem has been investigated by the 

addition of glacial acetic acid and acetylacetone to Ti(OR)4 [27,28]. 

The present study describes a modified sol-gel process for preparing europium doped BaTiO3 films 

using monosubstituting agents like acetic acid [29] and acetylacetone [11] to change the precursors 

formed in the conventional sol-gel process [30], and using polyvinylpyrrolidone (PVP), which has 

proved to have significant advantages in the elaboration of uniform non-doped BaTiO3 thick films  

[31-33]. Juan Li et al. reported the elaboration of BaTiO3:Eu3+ crack-free films by sol-gel process [15]; 

nevertheless, there have been no reports related on BaTiO3:Eu3+ sol-gel films in presence of PVP. The 

aim of this study is to provide the ability to disperse europium ions in the BaTiO3 film structure and 

investigate the effect of PVP on structure, morphology, thickness and luminescence properties.  

 

2. Results and Discussion 

 

2.1. Chemical Studies 

 

TG and DTA curves of the europium-doped BaTiO3 powders dried at 100 °C for 24 h are presented 

in Figure 1. In the first temperature region up to 200 °C, the endothermic peak situated at 115 °C 

results from the evaporation of alcohol and excess water. One endothermic peak situated at ~350 °C 

represents the decomposition of organic compounds. The third weight loss at 700-750 °C, associated 

with an exothermic peak, points out the transformation of amorphous decomposition products in 

BaTiO3. During decomposition, there is not significant loss of titanium according to Madarász [34] for 

the TiO(acac)1.0 hydroxo complexes for samples with acetylacetone content higher than 0.49. The 
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acetylacetone anion deficiency is compensated with hydroxide ions considered products of hydrolysis 

(acac-Ti, + H2O-Ti.. + acacH) according to the following reaction [35]: 

M(OR)4 + (AcAc)H  M(OR)3(AcAc) + R-OH 

where M represent the metal atom M and ROH the leaving group. According to the XRD results, 

crystallization of barium titanate starts at 700 °C Moreover, the weight loss is minimal and the weight 

remans unchanged afterwards. It was stated that Ba2+ ions in the A site are mainly replaced by rare 

earth elements [36]. Eu3+ ions (0.098 nm) are most probably replaced Ba2+ (0.156 nm) cations rather 

than Ti4+ (0.065 nm). When Eu3+ was introduced to BaTiO3, three Ba2+ sites were substituted by two 

Eu3+ neighbors to maintain electrical neutrality, and so one vacancy was created, then the composition 

expected is Ba(1-0.05)Eu0.05TiO3, as observed by Rath [14]. 

  

Figure 1. DTA and TGA curves for BaTiO3:Eu xerogel powder.  
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Figure 2 shows the FTIR spectrum of BaTiO3:Eu powders, calcined at 700 °C for 2 h. The IR 

spectrum consisted mainly of three regions: the first region (Figure 2 inset) shows bands at 3,428 and 

1,630 cm-1, which are due to the OH stretching vibration () and OH deformation vibration (), 

respectively, arising from the water and isopropanol present in the porous structure of the barium 

titanante xerogel. The second region corresponds to the absorption bands at 1,423 and 869 cm-1, 

characteristic for the symmetrical vibrations and bending vibrations (in plane) of COO- groups arising 

from two types of ligands (the acetylacetone and acetic acid).The third region, 600-380 cm-1, 

represents the characteristic infrared absorptions of the Ti-O vibrations. The band situated around  

565 cm-1 is due to TiO6 stretching vibration connected to the barium [37]. Finally, the peak at 414 cm-1 

can be attributed to normal TiOII bending vibrations [38].  
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Figure 2. FTIR spectrum of BaTiO3:Eu3+ sol-gel powder calcined at 700 °C. 
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Figure 3. Raman spectra of BaTiO3:Eu3+ powder (a) and film (b). 
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In order to complete the investigations of the local structure of the sol-gel BaTiO3:Eu3+ derived 

powders (Figure 3a) and films (Figure 3b), Raman spectra were used to measure the samples annealed 

at 700 °C. Both recorded spectra contain characteristic bands: (a) one weak band [A1(TO), E(LO)] at 

192 cm-1, and (b) two intense broad bands A1(TO1) at ~253 cm-1 and A1(TO4) at 524 cm-1, with sharp 

peaks at ~313 cm-1 (TO3-LO3) and for the LO4 band at ~723 cm-1. Referring to Amami et al. [39], the 

sharp peaks situated at ~185 and ~235 cm-1 are associated with the cubic phase. Nevertheless, it is 

accepted by many researchers that the Raman peak at around 260 cm-1, which is somewhat variable in 

relation to particles size, shape, and aggregation, is due to the characteristics of tetragonal BaTiO3  
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[40-43]. Finally, the origin of the above described bands in the cubic phase has been disputed due to 

the presence of Raman modes in this phase, indicating that it does not have perfect cubic symmetry but 

has small distortions [44]. By using the Raman-active modes discussed above, it was observed that the 

tetragonal phase is present in both BaTiO3 powder and film. However, the Raman band positions in the 

powder spectrum do not exactly match the peak positions in the films, which could be attributed to the 

internal stress from the surface tension in the nanocrystals [45]. 

 

2.2. HT-XRD and XRD Studies 

 

HT-XRD is used to follow in situ the formation of the BaTiO3:Eu3+ oxide from the BaTiO3 

precursor gel as powder and film (see Figures 4a and b, respectively). The first scan is the pattern for 

the as-synthesized xerogel at room temperature, along with the intense peaks at 2 values of about 40, 

46 and 67 (results from the Pt sample holder). In the scan corresponding to 600 °C (Figure 4a), it is 

shown that some barium carbonate is formed during the decomposition of the precursor into  

the BaTiO3.  

 

Figure 4. HT-XRD patterns of BaTiO3:Eu3+ powders (a) and films (b). Diffraction peaks 

related to the platinum ribbon are noted with a cross. 
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Figure 4. Cont.
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Figure 5. XRD patterns of BaTiO3:Eu3+ film calcined at 500 °C (a), 700 °C (b) and powder 

calcined at 700 °C (c). 
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This carbonate decomposes between 650 and 700 °C. This led to our conclusion that pure BaTiO3 is 

fully crystallized after 2 h at 700 °C. Figure 5c shows the full XRD 2 range of the crystallized 

powders, showing that two distinct peaks characterize BaTiO3 tetragonal structure [46]. Additionally, 

in situ HT-XRD experiments were performed to understand the phase stability of nanocrystalline 

BaTiO3:Eu3+ sol-gel films. Figure 4b shows the multiple plots of the barium titanate gel films scanned 

in air at various temperatures; from room temperature to 1000 °C, and again at room temperature after 

cooling. The gel film patterns indicate presence of an amorphous structure character up to 600 °C 

(Figure 5a) and the crystallization of BaTiO3:Eu3+ after the films were heated to 700 °C (Figure 4b and 

Figure 5b), in agreement with DTA analyses. The patterns of films calcined from 700 °C to 1000 °C 

are characterized by nanocrystalline BaTiO3 samples. Due to the very broad diffraction peaks 

attributed to the presence of the support or to the film thickness, it is not a sensitive enough technique 

to easily distinguish between ferroelectric tetragonal and paraelectric pseudocubic structure  

(Figure 5b). Nevertheless, it was found that after cooling from 1000 °C to room temperature, the 

BaTiO3:Eu3+ films transform from (1 1 0) orientation dominated to (1 0 0) dominated orientation, 

probably due to the textured densified films. The rates of cooling are mainly responsible for the high 

preferential orientation achieved in the BaTiO3 films. The transformation of orientation has been also 

observed in the case of PBxT layers films deposited on MgO (1 0 0) substrates [47]. 

 

2.3. Microscopy Observations 

 

The morphology of BaTiO3:Eu3+ powder and film calcined at 700 °C was investigated by SEM and 

is shown in Figure 6. The SEM images of BaTiO3:Eu3+ powders shown in Figures 6a and 6b reveal 

closely-packed fine equiaxed particles, about 100 nm in size. Aditionally, non-equiaxed powders 

(nanorod shaped structures) reaching ~800 nm in length were observed. On the other hand, equiaxed 

particles consisted of the approximately spherical type. For example, the shape of BaTiO3:Eu3+ 

powders at 700 °C results in a combination of non-equiaxed and equiaxed morphology due to the 

coexistence of the tetragonal and cubic phase. From the surface images of BaTiO3:Eu3+ films shown in 

Figures 6c and 6d, the microstructures were homogeneous, continuous and crack-free. At high 

magnification, as shown in Figure 6d, there was no evidence of cracks; however, the presence of pores 

can be associated with the presence of PVP. Kozuka et al. [48] have reported that when the film is 

heated directly at 700 °C, the decomposition of PVP and the crystallization of the film may occur 

concurrently. This can lead to crystallization with much less densification, which provides higher 

porosity and smaller tensile stress. Profilometry is a very common method of post-process 

measurement of films thickness [49]. The thickness of BaTiO3:Eu3+ calcined at 700 °C thin film was 

about 500 nm is in agreement with the determined by cross section SEM, as can be observed in  

Figure 7. 
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Figure 6. SEM micrographs of BaTiO3:Eu3+ of films (a), (b) and powders (c), (d) calcined at 700 °C. 

(a) (b) 

(c) (d) 

 

Figure 7. Cross section SEM micrograph of BaTiO3:Eu3+ film calcined at 700 °C. 

 

2.4. Luminescence Properties 

 

The room temperature photoluminescence emission spectrum of BaTiO3:Eu3+ (5 mol %) film in the 

range of 550-700 nm and excited at 250 nm wavelength is shown in Figure 8. The red emission from 

the film is easily seen to the naked eye when excited with 254 nm from UV lamp (see the inset of  

Figure 8). Peaks centered at 595, 615 and 645 nm are assigned to 5D0 7F1, 
5D0 7F2 and 5D0 7F3, 

respectively, arising from the lowest excited 5D0 level into the split by the crystal field 7FJ (where  

500 nm 
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J = 0, 1, 2, 3, 4, 5, 6) as observed by other authors and is in agreement with results reported for bulk 

Eu3+ doped cubic yttria [50-51].  

 

Figure 8. PL emission spectrum of BaTiO3:Eu3+ film annealed at 700 °C under UV 

excitation. The inset shows a picture of the strong emission.  
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In most cases, transitions to the higher laying levels (7F5, 
7F6) are difficult to detect due to their low 

intensity [52]. The 5D0 → 7F1 band originates from magnetic-dipole transition and, in this case, the 

change of the crystal field strength has very little influence on it. The dominant peak is observed 

around 615 nm (5D0 → 7F2) and is attributed to the forced electric-dipole transition allowed only at low 

symmetries with no inversion center. Its intensity is sensitive to the local structure surrounding the 

Eu3+ ions. Thus the ratio R = (5D0 7F2)/(
5D0 7F1) > 1 suggest that Eu3+ occupy sites with low 

symmetry. The origin of these transitions (electric dipole or magnetic dipole) from emitting to 

terminating levels depends upon the site where Eu3+ is located in the host lattice, and the type of these 

transitions is determined by the selection rules. It must be mentioned that the signal emitted of 

BaTiO3:Eu3+ films are not very strong, probably due to the final thickness, influencing directly the 

suitable effective value of providing high emission [11].  

 

3. Experimental Section 

 

3.1. Experimental Procedure 

 

Europium doped BaTiO3 films were prepared using the sol-gel process and the dip-coating 

technique. The starting materials were: barium acetate, Ba(CH3COO)2 [Aldrich], titanium butoxide, 

Ti(C4H10O)4 [Aldrich], europium III chloride, EuCl3 [Alfa Aesar] acetylacetone, C5H8O2 [Aldrich], 

acetic acid, C2H4O2, [99.8%, Fermont], distilled water, H2O, isopropyl alcohol, C3H7OH [99.9%, 

Fermont] and polyvinylpyrrolidone, PVP; FW: 630,000 g mol-1 [Alfa Aesar]. Barium acetate and 
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europium chloride were dissolved in water in the following molar ratio: Ba:Eu:H2O [1:0.05:40]. 

Titanium butoxide was mixed with acetylacetone in a molar ratio [1:1], and the reaction was continued 

under reflux at 60 °C for 6 h. PVP was dissolved in isopropyl alcohol in a molar ratio [1:18] for  

2 hours at room temperature. The molar ratios were calculated with respect to Ba. The titanium and 

barium solutions were mixed and stirred for 2 h. Thereafter, the PVP solution was added to the 

previous solution drop by drop under vigorous magnetic stirring for 2 h at room temperature. In this 

step, a transparent and stable BaTiO3:Eu3+ sol was formed. Uniform coatings of BaTiO3:Eu3+ were dip 

coated on high polished and carefully cleaned silica substrates (Herasil from Heraeus®) with a 

constant withdrawal speed of 5 cm min-1 for five cycles. BaTiO3:Eu3+ films were dried at 100 °C 

between each coating under O2 flow for 10 min. In this step, one film was taken for HT-XRD studies. 

The BaTiO3:Eu3+ films were finally calcined at 700 °C for 10 min. The remaining solution was dried 

in order to obtain a xerogel at 100 °C for 24 h (xerogel was analyzed in HT-XRD). After drying, the 

xerogel was thermally treated at 700 °C for 2 h in order to densify and crystallize the sol-gel powders. 

 

3.2. Apparatus 

 

The xerogel was investigated by Thermogravimetric (TGA)-Differential Thermal (DTA) and  

High-Temperature X-Ray Diffraction (HT-XRD) analyses. The thermograms were recordered from  

23 °C to 1000 °C using a Mettler Toledo TGA/SDTA 851e apparatus at a scan rate of 2 °C min -1 in a 

flux of nitrogen. The HT-XRD studies were carried out on a Philips Xpert Pro diffractometer operating 

with the Cu K radiation and equipped with a high temperature chamber, over a temperature range 

from 25 to 1000 °C in air atmosphere. The structural phases of the crystallized powder and film were 

recorded on a Siemens D5000 powder diffractometer using the Bragg–Brentano configuration and the 

Cu K radiation. The IR transmittance spectra were recorded on the crystallized powders calcined at 

700 °C using a FTIR 2000 Perkin-Elmer in the range 4,000-400 cm-1, with the aim of completing DRX 

and DTA-TGA experiments. In order to determine the powder microstructure and quality of the 

derived BaTiO3:Eu3+ crystallized sol-gel films, SEM images were obtained using a JEOL 3200 

scanning electron microscope (SEM) with a field emission gun operating at 15 and 8 kV. The 

thickness of BaTiO3 films was determined via an Alpha-step IQ profilometer (Tencor Instruments). 

The fluorescence emission spectra for BaTiO3:Eu3+ film as obtained with a modular Spectra Pro 

(Acton Research) fluorometer with a PM tube R955 (Hamamatsu). 

 

4. Conclusions  

 

The sol-gel method and dip-coating techniques have been successfully employed to prepare 

BaTiO3:Eu3+ (5 mol%) powder and film incorporating a viscosity modifier (PVP) in the sol. Both 

systems exhibited crystalline BaTiO3 phase at 700 °C within 2 h as revealed the HT-XRD studies. The 

powders were mainly spherical with some rod shapes; however, the films presented good surface 

morphology as detected by SEM. The obtained films exhibit the room temperature photoluminescence 

of the europium ions, with the predominant band at 615 nm (5D07F2 transition). The obtained 

thickness (~500 nm) of BaTiO3:Eu3+ films must be optimized to be promising for  

luminescent applications. 
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