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Abstract: In this work, it is presented a combination of temporal phase
unwrapping technique and Fourier-based quadrature transform to obtain
the dynamic phase map from a vibrating object. The proposed combination
results on a very simple algorithm which allows an accurate and versatile
3D reconstruction of the object under analysis.

© 2010 Optical Society of America
OCIS codes: (100.2650) Fringe analysis; (100.5070) Phase retrieval; (120.5050) Phase
measurement.

References and links
1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,”

Opt. Eng. 39, 10–22 (2000).
2. E. Stoykova, J. Harizanova, and V. Sainov, “Pattern Projection Profilometry for 3D Coordinates Measurement

of Dynamic Scenes,” in Three-Dimensional Television. Capture, Transmission, Display, H. M. Ozaktas and L.
Onural, eds. (Springer, Berlin & Heidelberg, 2008), pp. 85–164.
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1. Introduction

Noncontacting measurement of three-dimensional shape or object profile is important in many
areas, including medicine, on-line inspection, computer-aided design-manufacturing and re-
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verse engineering. With recent advances in computing technology, some of these techniques
have become automated, easier to use in applications and more efficient in data reduction,
which has resulted in the development of full-field optical techniques that are being used for
real-time profile measurements in a wide range of settings [1, 2].

One important task of real time measurement is the dynamic evaluation. Several optical
measurement techniques are used such as fringe projection, holography, moiré interferometry
and shearography. In the particular case of fringe projection, early setups were used to observe
time-averaged contours; however, these were not suitable to measure the transient deformation
of a vibrating object [3]. With the availability of high-speed digital recording, nowadays it is
possible to acquire a large sequence of images with the fluctuations of the projected fringe due
to the object deformations.

Several approaches can be found in the literature concerning the processing of a large se-
quence of images [4]. Among them, Fourier transform method [3, 5] is a popular one because
of its simplicity: just one fringe pattern is necessary for full-field analysis with high precision.
In this method, a fringe pattern with sinusoidal profile is projected onto the object surface;
then, the depth information of the object is encoded into a deformed fringe pattern, and it is
recorded by an image acquisition sensor. The surface shape can be decoded by calculating
Fourier transformation, filtering in spatial frequency domain, and calculating inverse Fourier
transformation. However, this method has some limitations; therefore, it can not be used in the
automatic processing of large fringe sequences.

In this work, a combination of temporal phase unwrapping technique [6] and Fourier-based
quadrature transform [7, 8] are used to obtain the dynamic phase map from a vibrating ob-
ject, where the aim of the present paper is to present the computational advantages of these
techniques. Section 2 describes the proposed method to implement an automatic processing
of a sequence of fringe patterns. Section 3 shows the results obtained on the processing of
sequences of fringe pattern, and the conclusions are given in Section 4.

2. Theoretical development

The equation which models the observed dynamic fringe pattern can be defined as

I(r, t) = a(r)+b(r, t)cos [ψ(r, t)] (1)

where r = (x1,x2), is a n-dimensional position vector, a(r) is the background illumination, and
b(r, t) is the amplitude modulation. One important remark of this equation is that the term a(r)
remains constant through the experiment. This means that the intensity of the projection unit
in the experimental setup is constant over the measurement, or at least it has slow variations in
their intensity.

The phase term ψ(r, t) is defined as

ψ(r, t) = φ(r)+ϕ(r, t)

where the term ϕ is related to the dynamic object at time t. The conversion from phase to height
are given by a transformation

z(r) = T [ϕ(r, t)]

where T [· ] is a function of the geometrical parameters of the experimental setup [3]. The term
φ is the carrier frequency of the fringe pattern, which is defined as

φ(r) = �ω · f (r)
where �ω = (ω1,ω2) is the n-dimensional carrier frequency vector, and f (r) is a function which
describes the changes on the carrier frequency due to the experimental setup [3].
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A sequence of N−frames are taken from the dynamic movement of the object in such a way
that

{I(r, t0), I(r, t0 +�t), I(r, t0 +2�t), . . . , I(r, t0 +[N−1]�t)}
where �t is the temporal period of the captured frame and is smaller than the temporal period
of the vibration cycle. Under this condition, every frame can be seen as

Ik(r) = a(r)+bk(r)cos [ψk(r)] (2)

where
Ik(r) = I(r, t0 + k�t)
bk(r) = b(r, t0 + k�t)
ψk(r) = ψ(r, t0 + k�t)

for k = 0,1, . . . ,N−1.
The demodulation process of a single fringe pattern defined like Eq. (2) is well-known: the

Fourier transform of the fringe pattern is computed, then the phase information is isolated by
filtering in the frequency plane, and finally the phase is recovered by computing the inverse
Fourier transform [3, 5]. To have this method working, the spatial variations of the frequency
must be smooth compared to the carrier frequency, and the information in the frequency space
has to be well separated [3].

2.1. The general n-dimensional quadrature transform

The conditions imposed at the Fourier-based demodulation method do not allow to implement
an automatic demodulation of a sequence of fringe patterns because it is not possible to use the
same filtering function for every acquired fringe pattern due to the different variations of the
object [2, 9, 10]. Instead, one has to select the appropriate filter to isolate the desired frequency
information for each fringe pattern and consequently, the processing of a sequence of patterns
using Fourier methods will be manual, becoming a time-consuming and error-prone process.

An alternative to these problems is to estimate the quadrature term of every fringe patterns [7,
8]. First, it is assumed that the background illumination a(r) is filtered from the fringe pattern
defined in Eq. (2), resulting in the following fringe pattern [9]

gk(r) = bk(r)cos [ψk(r)] (3)

The quadrature estimation consists of transforming the fringe pattern shown in Eq. (3) into
its quadrature term defined by

ĝk(r) =−bk(r)sin [ψk(r)] ,

and obtaining the following fringe complex pattern

gk− i ĝk(r) = bk(r)exp [i ψk(r)] (4)

where i =
√−1.

The n-dimensional quadrature transform for fringe patterns with carrier frequency is defined
as [8]

Qn {gk(r)} =−bk(r)sin [ψk(r)]

= F−1

{
−i

�ω ·q
|�ω ·q|F {gk(r)}

} (5)

where q = (u1,u2, . . . ,un) is the n-dimensional position vector on frequency domain, and F {·}
denotes Fourier transform. As it can be observed in this equation, the orientation of the carrier
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frequency is the only input parameter necessary to apply the quadrature transform, and this
parameter can be obtained from the experimental setup or it can be estimated easily.

Using Eq. (5), we can write the complex fringe pattern shown in Eq. (4) as

bk(r)exp [i ψk(r)] = gk(r)− i F−1
{
−i

�ω ·q
|�ω ·q|F {gk(r)}

}
(6)

Once the quadrature term was computed using Eq. (5), the wrapped phase is obtained with

ψ̂k(r) = W {ψk}= arctan

(−Qn {gk(r)}
gk

)
(7)

where W is the wrapping operator [11].
In addition to the well-known computation advantages of the discrete Fourier transform,

the quadrature transform shown in Eq. (5) has two significant features: One is the possibility
of using an rough estimation of the carrier-frequency orientation because the errors in this
term cause only second-order errors on the demodulated phase [7]. The second feature is the
demodulation of the fringe pattern without any ad-hoc designed filtering process, avoiding the
supervision and design of explicit demodulation-filter for each fringe pattern.

Both features result an important advantage used to implement the proposed automatic pro-
cessing of a sequence of fringe patterns: every frame acquired in the experiment is demodulated
using Eq. 6) given a rough estimation of the carrier-frequency orientation, and the resultant
phase is obtained without using the same process mentioned at the beginning of this subsection;
i. e. the phase term is demodulated without pointing out any specific location in the frequency
domain, reducing errors due to the filtering process.

2.2. Temporal Phase Unwrapping

Once the fringe patterns are demodulated using the quadrature transform, Eqs. (6) and (7), the
transient phase change occurring over time can be retrieved by unwrapping the phase maps.
The unwrapped phase map ϕM(r) can be computed by the sum of the M−1 phase differences
using the following equation [6, 12]

ϕM(r) =
M

∑
k=1

arctan

[
cos ψ̂k sin ψ̂k−1− sin ψ̂k cos ψ̂k−1

cos ψ̂k cos ψ̂k−1 + sin ψ̂k sin ψ̂k−1

]
(8)

As it noted, the unwrapping procedure becomes very simple. In addition, one significant ad-
vantage of the above procedure is that the carrier frequency and the systematic experimental
setup errors are removed from the dynamic phase information. The resultant phase map can be
related to the displacement of the dynamic object using a transformation given by the relation-
ship between the phase map and the geometrical parameters of the experimental setup at each
point [2, 3].

3. Experimental results

The proposed combination of temporal phase unwrapping technique and quadrature transform
used to process the sequence of frames are shown in Algorithm 1. To show the performance
of the above algorithm, two sequences of fringe patterns were processed in a 1.8 GHz Pentium
Dual Core PC with 8 GBytes of main memory using Ubuntu 9.04 as operative system. The al-
gorithm used to compute the discrete Fourier transform was the FFTW library [13]; in addition,
no computational optimization we made in the implementation of Algorithm 1.
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Algorithm 1: Retrieval of the dynamic phase φ(r, t0 + k�t)

Data: The carrier frequency direction �ω and the background term a(r)

k← 0

while a frame exists in the camera or in files do

read k-frame

F{gk}← DC Filter [F{Ik} ,F{a(r)}]
ψ̂k← arctan [−Qn {gk} ,gk] ; // Equation (7)

if k ≥ 1 then φk(r)← TempPhaseUnwrap [ψ̂k, ψ̂k−1] ; // Equation (8)
else φk(r)← 0

k← k +1

end

The first experiment was the processing of a sequence of 100 synthetic frames with resolution
of 256 x 256 pixels, where the dynamic phase was defined as

ϕk(r) = κ sin

(
2π k
25

)
x1 exp

[
−(x2

1 + x2
2)

1/2

2σ2

]
. (9)

The values of the terms κ and σ are selected arbitrarily to create the desired phase variation.
Examples of the fringe patterns generated by Eq. (9) and their resultant demodulated phase
maps using Eq. (7) are shown in Fig. 1. The resultant dynamic phase map and the differences
between the estimated phase map and the phase given by Eq. (9) are shown in Fig. 2, where
it can be observed the very low error obtained with the proposed algorithm. The frame rate
obtained to process this sequence was about 6 frames per second.

Fig. 1. Examples of the fringe patterns generated by Eq. (9) and their resultant demodulated
phase maps using Eq. (7): (a) k = 2, (b) k = 10, (c) k = 18, and (d) k = 24. The complete
sequence can be found here (Media 1).

The second experiment was the processing of a sequence of 400 frames with resolution
of 640 x 64 pixels, taken from an vibrating cantilever [14]. Examples of the acquired fringe
patterns and their resultant demodulated phase maps using Eq. (7) are shown in Fig. 3. The
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Fig. 2. Middle row of the estimated phase maps computed with Eq. (8) from the phase maps
shown in Fig. 1 and the differences found with the real phase map. The complete sequence
can be found here (Media 2).

Fig. 3. Examples of the fringe patterns acquired from the experiment and their resultant
demodulated phase maps using Eq. (7): (a) k = 3, (b) k = 12, (c) k = 20, and (d) k = 28. The
complete sequence can be found here (Media 3).

#119528 - $15.00 USD Received 5 Nov 2009; revised 17 Dec 2009; accepted 17 Dec 2009; published 25 Jan 2010

(C) 2010 OSA 1 February 2010 / Vol. 18,  No. 3 / OPTICS EXPRESS  2644

http://www.opticsexpress.org/viewmedia.cfm?URI=oe-18-3-2639-2
http://www.opticsexpress.org/viewmedia.cfm?URI=oe-18-3-2639-3


Fig. 4. Estimated phase maps computed with Eq. (8) from the phase maps shown in Fig. 3.
The complete sequence can be found here (Media 4).

resultant dynamic phase map are shown in Fig. 4. As it can be compared with the results shown
in Ref. [14], the estimated phase maps are consistent with the reported phase maps. The frame
rate obtained to process this sequence was about 16 frames per second.

4. Conclusions

In this work, it is presented a combination of temporal phase unwrapping technique and Fourier-
based quadrature transform to obtain the dynamic phase map of a vibrating object. The pro-
posed combination results on a very simple algorithm, as it can be observed in Algorithm 1,
which allows an accurate and versatile 3D reconstruction of the object under analysis, and it
is based on simple and computational efficient techniques. An extra advantage of the proposed
method is its feasibility to be implemented on a dedicated hardware for processing in real-time,
which is the aim of future research.
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