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Abstract: We present a technique to solve numerically the Fresnel 
diffraction integral by representing a given complex function as a finite 
superposition of complex Gaussians. Once an accurate representation of 
these functions is attained, it is possible to find analytically its diffraction 
pattern. There are two useful consequences of this representation: first, the 
analytical results may be used for further theoretical studies and second, it 
may be used as a versatile and accurate numerical diffraction technique. The 
use of the technique is illustrated by calculating the intensity distribution in 
a vicinity of the focal region of an aberrated converging spherical wave 
emerging from a circular aperture. 
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1. Introduction 

As is well known, the Fresnel diffraction integral is the key tool to calculate the amplitude 
distribution of propagated fields. However, due to the presence of a quadratic phase in the 
integrand, the integral is in general not analytically integrable and it is not possible to attain a 
closed calculation. Thus, several numerical methods have been developed as is the case of the 
Fast Fourier Transform (FFT), Lommel integrals, sampling expansions and techniques 
involving methods of stationary phase [1–7]. 
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Sampling expansions consists basically in three steps: First, the diffraction integral is 
written in cylindrical coordinates giving rise to a Bessel function of the first kind and zero 
order in the integrand. Then, the product of the quadratic phase by the Bessel function is 
represented by a sampling series whose coefficients must be determined. Finally, the resulting 
integrals are evaluated. Unfortunately, sampling expansions as well as Lommel integrals are 
only applicable to situations with axial symmetry. 

The numerical techniques mentioned above are limited when the quadratic term in the 
integrand oscillates rapidly imposing severe sampling (Nyquist) conditions; for example, for 
calculating the amplitude distribution of a converging lens, with a focal length of 5cm and an 
aperture of 2.5cm at a plane located 1cm away from the focal plane, would require sampling 
the quadratic term with approximately 17000 by 17000 pixels, resulting in a large computing 
time. If additionally, a system require multiple calculations the computing time may become 
prohibitive. 

The above number of sampling pixels can be estimated as follows: Let the illuminating 
wavelength be 0.6µm. The real part of the quadratic phase corresponds to a cosine function; 
then, taking a line scan over one diameter results in 868 cycles with different widths, being 
the length of the narrower period 14.4 µm. If we assign ten pixels homogeneously distributed 
to this zone, then it will require 17000 pixels to homogeneously sample the whole diameter. 
Additionally, an equal number of pixels will be also necessary for the imaginary part. For 
interferometric and holographic applications where the complex phase has to be calculated 
with precision, it will be necessary to increase the number of pixels even more. 

To overcome the above limitations we present a technique that is based in representing 
one or several terms in the integrand inside the Fresnel diffraction integral as a superposition 
of Gaussian functions. This allows us to calculate the integral in an analytical (closed) form. 
As in general the terms in the integral (not the quadratic phase) require a low sampling rate, 
the numerical calculations are performed faster. As indicated, this is especially important 
when considering multiple optical diffractive systems. 

Although the possibility of representing a function by a superposition of Gaussians has 
previously been mentioned [8–10], it has not yet been used in the form presented in this 
report. The only restriction that will be imposed is that the functions to be represented by the 
superposition of Gaussians have to be band-limited. 

2. Analytical description 

In this section we describe the process of assigning a superposition of Gaussians to an 
arbitrary band-limited function. In order to illustrate how to assign the Gaussian functions to a 
particular case and also to find the limitations of the technique, it is convenient first to 
consider intuitively the consequences of applying the method to a non-band limited function. 

For this, let us consider a rectangle function ( ),rect x A  defined as usual, unitary in the 

interval / 2 / 2A x A− ≤ ≤  and zero otherwise. 

For our intuitive approach an odd number of Gaussians will be assigned. Each Gaussian 
assigned will have the same width and will be placed following a Rayleigh-like criterion. Let 

us begin with three Gaussians, one Gaussian centered at the origin, one centered at / 2A−  

and the other at / 2A . The amplitude of each Gaussian is chosen equal to the value of the 

function to be represented at this point, in this case, to unity. Our superposition of Gaussians 
then reads Eq. (1), 

 ( )
( ) ( ) ( )2 2 2

2 2 2

/ 2 / 2
exp exp exp .

x A x x A
f x

σ σ σ

     + −
     = − + − + −
     
     

  (1) 

As a Rayleigh-like criterion is proposed the width achieves 2 Aσ = . Proceeding in this 

manner, we assign five Gaussians thus Eq. (2), 
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 ( )
( ) ( ) ( ) ( ) ( )2 2 2 2 2

2 2 2 2 2

2 /4 /4 /4 2 /4
exp exp exp exp exp ,

x A x A x x A x A
f x

σ σ σ σ σ

         + + − −
         = − + − + − + − + −
         
         

 (2) 

and now, 4 Aσ = . 

For N  Gaussians one gets the general equation [Eq. (3)], 

 ( )

2

1

2

2
1

2

1
exp ,

1

N

N
n

A
x n

N
f x

A

N

−

−
=−

  −  −  = −     −  

∑   (3) 

N  being an odd integer. 

Now, let ( )F u  be the Fourier transform of ( )f x  as Eq. (4), 

 ( ) ( ) ( )exp 2 ,F u f x i ux dxπ
∞

−∞
= −∫   (4) 

then, 

 ( )

1
2

2

1

2

2
exp exp .

1 1 1

N

N
n

nAuA Au
F u i

N N N

ππ
π

−

−
=−

    = − −     − − −    
∑   (5) 

The summation in Eq. (5) is well known and can be written in closed form, see for 
example [11]. Thus, Eq. (5) can be written as, 

 ( )
2 sin

1
exp .

1 1
sin

1

N
Au

A Au N
F u

AuN N

N

π
π

π
π

 
   −   = −   − −      − 

  (6) 

For N  large, and u bounded, Eq. (6) can be written in a good approximation as, 

 ( )
( )sin

.
Au

F u A
Au

π
π

π
=    (7) 

Aside of the term π , Eq. (7) is the exact Fourier transform of our rectangle function with 

arbitrary width A . 
From the above description the following can be concluded: 

First, the superposition of equally spaced Gaussians following a Rayleigh-like criterion 
represents, with a reasonable accuracy, a band-limited function. Second, the amplitude of 
each Gaussian is taken equal to the value of the function under representation at its 

corresponding point (or pixel) multiplied by1/ π . Obviously when the function under 

representation is complex, actually two superposition of Gaussians are used, one for the real 
part and another for the imaginary part. 

To generalize the above results let us consider an arbitrary band-limited function f  

exhibiting a maximum frequency
M

U , sampled with a function g  as, 

 ( ) ( ) ( ) ,
s

n

f x f n g x n
∞

=−∞

= ∆ − ∆∑   (8) 
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where ∆ is the sampling interval. 
Fourier transforming Eq. (8) one gets, 

 ( ) ( ) ( ) ( )exp 2 ,
s

n

F u G u f n i n uπ
∞

=−∞

= ∆ − ∆∑   (9) 

where ( )
s

F u  and ( )G u  are the Fourier transforms of ( )s
f x  and ( )g x  respectively. 

By using Poisson’s formula, Eq. (9) can be rewritten as, 

 ( ) ( ) ( )1
/ .

s

n

F u G u F u n
∞

=−∞

= − ∆
∆ ∑   (10) 

In our case the sampling function is a Gaussian Eq. (11), 

 ( )
2

2
exp ,

x
g x A

σ

 
= − 

 
  (11) 

then its Fourier transform is given by Eq. (12), 

 ( ) ( )2 2 2
exp .G u A uπσ π σ= −   (12) 

Thus, Eq. (10) can be written as 

 ( ) ( ) ( )2 2 2
exp / .

s

n

A
F u u F u nπσ π σ

∞

=−∞

= − − ∆
∆ ∑   (13) 

The Gaussian function in Eq. (13) has a cut-off frequency equal to1/πσ . Then in order to 

limit aliasing, due to the properties of the Gaussian function, one can impose, 

 ( )1/ and 1/ 1/ with 1,
M M

KU U K Kπσ πσ= ∆ − = >   (14) 

being K  a real number. 

To fit with the conditions given by Eq. (14) one suitable value is 
2

4
2.78

2
K

π π+ −
= = , 

implying σ∆ = . This choice stands for the Rayleigh-like criterion and additionally 

fixes 1/A π= , as in the case of the rectangle function above. Obviously other suitable 

conditions or values of K  can be chosen giving other characteristics to the superposition of 
Gaussians but the Rayleigh-like criterion is the most straightforward way to implement. 

In the next section we present some applications of the superposition of Gaussians. 

3. Amplitude distribution in a vicinity of a focal region 

To illustrate the use of the superposition of Gaussians we have chosen some examples on the 
calculations of the amplitude distribution near the vicinity of the focal region of a focused 
wave emerging from a circular aperture. We have chosen this problem due to the complexity 
of the calculations. As indicated above, in this problem Lommel integrals and sampling 
expansions are commonly used. 

Let us consider the physical situation depicted in Fig. 1, where a spherical wave with 

amplitude distribution ( ),g x y  is incident on a circular aperture of radius a , centered at the 

origin of a plane ( ),x y . 
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Fig. 1. Schematic diagram of the physical situation. 

In writing the incident amplitude distribution as an arbitrary smooth function ( ),g x y  will 

allow us to consider different situations as is the case of apodization, tilted and/or defocused 
beams as well as different types of aberrations. Thus, at the incident plane with coordinates 

( ),x y  the amplitude distribution can be written as Eq. (15), 

 ( ) ( ) ( ) ( )2 2
, , , exp ,IN x y circ r a g x y i x y

f

π
λ

 
Ψ = − + 

 
  (15) 

where, 2 2r x y= + , λ  is the wavelength of the illuminating beam and ( ),circ r a  

represents the usual circular aperture function of radius a  centered at the origin. 

As indicated above, we will use the Fresnel diffraction integral to calculate the amplitude 

distribution at the plane ( ),ξ η  situated at a distance z  of the incident plane. In order to 

compare our results with [1,2] we will limit ourselves to the case ( ) / 1f z f− << .Thus, the 

amplitude distribution in the coordinate plane ( ),ξ η  can be written as Eq. (16), 

 ( ) ( ) ( ) ( ){ }2 2

2
exp

, , exp .
IN

i z

x y i x y dx dy
i z z

π
λ π

ξ η ξ η
λ λ

∞ ∞

−∞ −∞

 
 

  Ψ = Ψ − + − 
 

∫ ∫  (16) 

Due to the presence of the circular aperture, we will use cylindrical variables Eq. (17), 

 ( ) ( ) ( ) ( )cos , sin ; cos , sin ,x r y rθ θ ξ ρ ϕ η ρ ϕ= = = =   (17) 

where ϕ  and θ  are defined as usual (Fig. 1). Thus, Eq. (16) can be rewritten as, 

 
( )

( )

( ) ( )

( )
( ) ( )

( )

2 2

1 2 2

2

0 0

2
exp

, exp

2
, exp exp cos .

i f z

a i
i f z f z

a z a
g s i s i s s ds d

f f z f z

π

π
πλ

ρ ϕ ρ
λ λ

π π
θ ρ θ ϕ θ

λ λ

 +∆    Ψ = ×  +∆ +∆ 

   ∆
− − −   

+∆ +∆      
∫ ∫

 (18) 
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In Eq. (18) we have introduced z z f∆ = −  and the dimensionless variable /s r a= . 

We will approximate f z f+ ∆ ≈  in all the denominators of Eq. (18), this approximation 

will result in the well known Debye integral. This approximation is not a limitation of our 
technique and is introduced only for comparative purposes. 

By introducing the following dimensionless variables Eq. (19), 

 
2

2

2 2
; .

a z a
u v

ff

π π ρ
λλ

∆
= =   (19) 

Equation (18) can now be approximated as, 

 
( )

( )

( ) ( )

2 2

1 2 2

0 0

2
exp

, exp

, exp exp cos .
2

i f z

a i
i f f

us
g s i ivs s ds d

π

π
πλ

ρ ϕ ρ
λ λ

θ θ ϕ θ

 + ∆    Ψ = × 
 

 
− − −    
 

∫ ∫

  (20) 

Equation (20) represents the well known amplitude distribution previously reported in the 
literature [1,2] and, the methods above described (Lommel integrals and sampling 
expansions) are commonly used for its evaluation 

Now the superposition of Gaussians will be applied to represent one of the integrands in 
Eq. (20). In this case, let 

 ( ) ( )
( )22

2
00

, exp cos exp ,
NG

n

n

n

s s
s g s ivs d A

π

θ θ ϕ θ
σ=

 −
 − − = −    
 

∑∫   (21) 

where 1NG +  is the total number of Gaussian functions needed to represent the terms at the 

left of Eq. (21). The number of Gaussians has to be chosen by trial and error until a desired 
accuracy is obtained. 

In general, the terms in the Fresnel integral aside of the quadratic phase are slow varying 
functions. In our example, this can be confirmed by plotting the term at the left of the equal 
sign of Eq. (21) as a function of s . Figure 8 bellow shows a plot of one of these functions. 

We have found that 50 terms are sufficient to make the maximum error less than 2/1000. For 
an even better accuracy we are using 60 Gaussians in our calculations. Clearly, a much greater 
number of pixels would be required for sampling the quadratic phase in Eq. (20). 

Now the numerical part of our technique is performed. It is necessary to calculate 
numerically the integral involved in Eq. (21). This task is performed with precision by using 
the numerical integration technique of three point Simpson’s rule of parabolic segments [12]. 

Once the numerical integration is performed, we proceed by substituting the Gaussian 
superposition representation given by Eq. (21) into Eq. (20) to obtain, 

 

( )
( )

( )

2 2

21 2

2
0 0

2
exp

, exp

exp exp .
2

NG
n

n

n

i f z

a i
i f f

s sus
A i ds

π
πλ

ρ ϕ ρ
λ λ

σ=

 + ∆    Ψ = × 
 

 − 
 − −      

∑ ∫

  (22) 

As we are interested only in normalized intensity distributions, without loss of generality, 
the terms at the left of the summation symbol, for brevity, will not be considered; if desired 
these terms can be maintained to obtain the overall amplitude distribution. Thus, aside of the 
mentioned terms, Eq. (22) can be written as, 
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( )
( )

2 2

2 2 2
0

21 2

2 2

0

2
, exp exp

2

22
exp .

2 2

NG
n n

n

n

n

s s
A

i u

si u
s ds

i u

ρ ϕ
σ σ σ

σ
σ σ

=

  
 Ψ = − × 
 +   

  +  
− −    +    

∑

∫

  (23) 

To perform the integral in Eq. (23), we introduce the change of variable Eq. (24), 

 
2

2
.

2

n
s

p s
i uσ

= −
+

  (24) 

Equation (23) can now be written as Eq. (25), 

 ( )
( )

( )

2

2

2
1

2 2 2
22

2

22 2
0 2

2

2 2 2
, exp exp .

22

n

n

s

i uNG
n n

n

n s

i u

i u s s i u
A p dp

i u

σ

σ

σ σ
ρ ϕ

σσ σ

−
+

=  
− 

+ 

 + +  + Ψ = − −  +   
∑ ∫  (25) 

Next, by introducing a new change of variable Eq. (26), 

 
2

2

2
,

2

i u
q p

σ
σ
+

=   (26) 

Equation (25) becomes, 

 ( )

2

2 2

2

2 2

2 2
1

2 2 22
2

2 2
0

2 2

2 2

2
, exp exp .

2 2

n

n

s i u

i uNG
n

n

n
s i u

i u

ius
A q dq

i u i u

σ

σ σ

σ

σ σ

σ
ρ ϕ

σ σ

+
−

+

= + 
− 

+ 

 
 Ψ = − −   + + 

∑ ∫  (27) 

Finally, using well known properties of the error function, ( )erf x , Eq. (27) is written as, 

 

( )
( )

22

2 2
0

2 2

2 2 2 2

2
, exp

2 2 2

2 22 2
1 .

2 2 2 2

NG
n

n

n

n n

ius
A

i u i u

s si u i u
erf erf

i u i u

π σ
ρ ϕ

σ σ

σ σ
σ σ σ σ

=

 
 Ψ = − ×
 + + 

    + +  
− +     + +         

∑
 (28) 

Equation (28) represents the final step of the method. It will be noticed that the result is an 
analytical (closed) form. For our particular problem, Eq. (28) represents the main equation to 
calculate the amplitude distribution at any arbitrary meridional plane. 

It will be noticed in Eq. (28) the existence of two error functions with complex arguments. 
As most programs do not accept complex arguments for calculating the error function, for 
completeness of our presentation, we will use the following Eqs. (29), (30a) and (30b) given 
in [13], 

 ( ) ( )
( )

( ) ( )

( ) ( ) ( )

2
2

2

2 2
1

1 cos 2 sin 2

exp
,exp

2 42
exp , , , ,

4n

xy i xy

x n
erf x iy erf x

x
x f n x y ig n x y

n x

π

π

∞

=

− + + 
 −   + = + −  

  − +   + 
∑

  (29) 

where, 

 ( ) ( ) ( ) ( ) ( ), , 2 2 cosh cos 2 sinh sin 2 ,f n x y x x ny xy n ny xy= − +   (30a) 
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 ( ) ( ) ( ) ( ) ( ), , 2 cosh sin 2 sinh cos 2 .g n x y x ny xy n ny xy= +  (30b) 

The above set of equations to calculate the error function of a complex number is very 
convenient for the present application as it avoids using factorials which are difficult to 
calculate and diverges for large numbers. Additionally, the summation over n  in the above 

equations can be truncated to moderate values due to the properties of the error function. To 
compare the results obtained with the above equations, and only for comparative purposes, we 
verified the accuracy of the results with those obtained with Wolfram’s Mathematica®. 

In the following section, we present numerical calculations of some interesting cases. For 
brevity we will limit ourselves to only some descriptive examples. 

3.1 Numerical examples 

For our examples ( ),g s θ  in Eq. (21) will be written as Eq. (31), 

 ( ) ( ) ( ) ( ) ( )3 3
, exp cos sin 1 cos 2 sin ,g s ias ibs ic s ic sθ θ θ θ θ = + + +    (31) 

where a  and b  stand for a tilted beam in the x  and y  axes respectively and 1c  and 2c  for 

coma in x  and y  respectively. Note however that our method may be applied to a far more 

general aberrated and/or apodizated wave-front. Our results shown bellow are normalized in 
intensity. 

We start with the simpler case of a spherical aberration-free wave. The corresponding 

parameters are 1 2 0a b c c= = = = . The intensity distribution obtained with the superposition 

of Gaussians is shown in Fig. 2A. The accuracy of the proposed technique may be verified by 
comparing Fig. 2A with the corresponding figures reported in [1,2,6] obtained by other 
techniques. We have calculated the same distribution using Lommel integrals as done in [1,2]. 
In Fig. 2B we present contours resulting from calculating the absolute value of the difference 
between both techniques. 
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Fig. 2. A. Isophotes for an aberration-free focusing wave, 0; 1 2 0.a b c cϕ = = = = =  B. 

Absolute value of the difference of the isophotes obtained by Gaussian sampling and by 
Lommel integrals. 

From Fig. 2B, it can be appreciated the accuracy of the Gaussian sampling technique. 
As Fig. 2A is plotted in adimensional units, its application to a particular case requires  

Eq. (19). As an example of the use of Fig. 2A, we notice that the airy disk exhibits its first 

minimum at ( 0, 3.77u v= = ). Thus, for a lens with an aperture of 2.5 cm, a focal length of 5 

cm and an illuminating wavelength of 0.6µm, using Eq. (19), one obtains an Airy disk 
diameter of approximately 2.88 µm. 

Figure 3 shows isophotes due to a tilted beam in the x axis, with corresponding values, 

; 1 2 0a b c cπ= = = = . The meridional plane is placed at 0ϕ = . 
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Fig. 3. Isophotes for a tilted focusing wave, 0, ; 1 2 0.a b c cϕ π= = = = = . 

The next simulation, Fig. 4, corresponds to the above tilted wave, but now the meridional 

plane is placed at / 2ϕ π= . 
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Fig. 4. Isophotes for a tilted focusing wave. / 2, ; 1 2 0.a b c cϕ π π= = = = =  

The following case, Fig. 5, consists of a wave with coma in the x axis. The corresponding 

values are, 0, 1 ; 2 0.c a b cϕ π= = = = =  
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Fig. 5. Isophotes for a focused wave with coma, 0, 1 ; 2 0.c a b cϕ π= = = = =  

Finally, the two following simulations, Figs. 6 and 7, correspond to the above case but 

now for meridional planes rotated at / 4ϕ π=  and / 2ϕ π=  respectively. These values were 

chosen arbitrarily only for illustrative purposes as basically any value can be chosen. 
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Fig. 6. Isophotes for a focused wave with coma, / 4; 1 ; 2 0c a b cϕ π π= = = = = . 
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Fig. 7. Isophotes for a focused wave with coma, / 2, 1 ; 2 0c a b cϕ π π= = = = = . 

As for our knowledge, the plots given in Figs. 4–7 have not yet been reported; this 
confirms the merit of our technique. 

The simulations were performed in a dual-core PC at 3.00 GHz. Each simulation consisted 
of a matrix of 60x60 pixels, and took approximately 4 minutes. 

Figure 8 shows one of the slow-varying functions given by Eq. (21), for the aberration-
free case and its corresponding superposition of Gaussians for one arbitrary line scan.  
Figure 9 shows the absolute value of the difference of both plots. 
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Fig. 8. Amplitude of Eq. (21) after performing the integral compared vs. its representation by 
superposition of 60 Gaussians for one of the line scans. The solid line corresponds to the 
integral, the circles to the superposition of Gaussians. 
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Fig. 9. Plot of the absolute value of the difference between the plots of Fig. 8. 

It will be noticed from Fig. 9 that the maximum error is less than 2/1000. For the 
simulations presented above, this error can be considered negligible and it can be lowered by 
increasing the number of Gaussians. 

Finally, in order to illustrate the accuracy and versatility of the technique, we present an 
example on the calculation of the intensity distribution due to a one-dimensional sinusoidal 
transmittance grating with a period of 1.0 µm and width 20 µm. The grating is illuminated by 
a plane wave with wavelength equal to 0.5 µm. The plane of detection is placed at a distance 
of 80 µm. In Fig. 10, the transmittance of the grating is plotted in a solid line. The red circles 
correspond to the plot of the transmittance represented by a superposition of 1000 Gaussians. 
For the simulation we used 1000 sampling pixels. Figure 11 depicts the normalized intensity 
distribution at the plane of detection. The processing time was 20 seconds. 

1 10
5

8 10
6

6 10
6

4 10
6

2 10
6

0 2 10
6

4 10
6

6 10
6

8 10
6

1 10
5

0

0.5

1

P os it ion on obj ect pl ane (m)

T
ra

ns
m

it
ta

nc
e

 

Fig. 10. Sinusoidal transmittance grating (solid line), superposition of Gaussians (red circles). 
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Fig. 11. Intensity distribution at the plane of detection due to the transmittance grating. 

To show an additional feature of our method, we performed again the calculation of the 
intensity distribution for the grating in the conditions described above, but this time with a 
field of view around the first diffraction order. The same number of pixels and Gaussians 
were used. Figure 12 shows the resulted intensity normalized with respect to Fig. 11. 
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Fig. 12. Intensity distribution at the plane of detection due to the transmittance grating in a 
region around the first diffraction order. 

It can be appreciated in Fig. 12 the structure of the diffraction pattern with high precision. 
This can be useful for applications where fine details of the diffraction pattern play an 
important role. 

Before finishing this report it is worth mentioning that, as computer systems are becoming 
larger and faster, FFT techniques benefit by using larger sets of sampling pixels and speeding 
up the processing time [7]. However, by using FFT one is essentially calculating a 
convolution between pixels which may result in inaccuracies in the calculation of the complex 
phase. This has to be considered, especially in interferometry and holography, where the 
complex phase has to be calculated with high accuracy. The herein superposition of Gaussians 
avoids, in principle, this inherent convolution, as the integral that results can be calculated as 
a closed-form expression. 

4. Conclusions 

We have presented a technique for calculating the amplitude distribution of a propagated 
wave by means of the Fresnel diffraction integral by representing a given complex function as 
a finite superposition of complex Gaussians. We have shown that, once the superposition of 
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Gaussians is obtained, it is possible to calculate analytically the amplitude distribution of the 
propagated field. We have illustrated the use and accuracy of the technique by calculating the 
intensity contours in the vicinity of the focal region of a focused, aberrated wave-front 
emerging from a circular aperture. Additionally, the technique has probed to be versatile and 
accurate and applicable to diffraction calculations when band-limited functions are present in 
the related integrals. 
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