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Abstract: Synthesis of single-wavelength temporal phase-shifting 
algorithms (PSA) for interferometry is well-known and firmly based on the 
frequency transfer function (FTF) paradigm. Here we extend the single-
wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when 
several simultaneous laser-colors are present. The FTF-based synthesis for 
dual-wavelength (DW) PSA is optimized for high signal-to-noise ratio and 
minimum number of temporal phase-shifted interferograms. The DW-PSA 
synthesis herein presented may be used for interferometric contouring of 
discontinuous industrial objects. Also DW-PSA may be useful for DW 
shop-testing of deep free-form aspheres. As shown here, using the FTF-
based synthesis one may easily find explicit DW-PSA formulae optimized 
for high signal-to-noise and high detuning robustness. To this date, no 
general synthesis and analysis for temporal DW-PSAs has been given; only 
ad hoc DW-PSAs formulas have been reported. Consequently, no explicit 
formulae for their spectra, their signal-to-noise, their detuning and harmonic 
robustness has been given. Here for the first time a fully general procedure 
for designing DW-PSAs (or triple-wavelengths PSAs) with desire spectrum, 
signal-to-noise ratio and detuning robustness is given. We finally generalize 
DW-PSA to higher number of wavelength temporal PSAs. 

© 2016 Optical Society of America 
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1. Introduction 

Throughout this paper we assume that the frequency transfer function (FTF) paradigm is 
known [1]. As far as we know, the first researcher to use dual-wavelength (DW) 
interferometry was Wyant in 1971 [2]. Wyant used two fixed laser-wavelengths 1λ  and 2λ  

to test an optical surface with an equivalent wavelength of 1 2 1 2/ | |eqλ λ λ λ λ= −  [2]. Thus 

typically eqλ  is much larger than either 1λ  or 2λ  ( 1 2{ , }eqλ λ λ>> ). Dual-wavelength (DW) 

interferometry was improved by Polhemus [3], and Cheng and Wyant [4,5] using digital 
temporal phase-shifting. 

On the other hand, Onodera et al. [6] used spatial-carrier double-wavelength digital-
holography (DW-DH) and Fourier interferometry for phase-demodulation. This in turn was 
followed by many multi-wavelength digital-holographic (DH) Fourier phase-demodulation 
methods in such diverse applications as interferometric contouring [7], phase-imaging [8], 
chromatic aberration compensation in microscopy [9]; single hologram DW microscopy [10]; 
comb multi-wavelength laser for extended range optical metrology [11], and a two-steps 
digital-holography for image quality improvement [12]. DW-DH is already well understood. 

Switching back to temporal DW phase-shifting algorithms (DW-PSAs), Abdelsalam et al. 
[14] have recently reworked this technique. Even though Abdelsalam et al. [14] give working 
PSA formulas they do not estimate their spectra, their signal-to-noise ratio, or their detuning 
and harmonics robustness. Kumar et al. [15] and Baranda et al. [16] also provided valid 
temporal PSA formulas but also failed to characterize their PSAs in terms of signal-to-noise, 
detuning and harmonic rejection. Another different approach was followed by Kulkarni and 
Rastogi [17] in which they have demodulated the two interesting phases by fitting a low-order 
polynomial to each phase. Their approach [17] worked well for the example provided but we 
think their method could easily cross-talk between fitted polynomials for complicated 
modulating phases [17]. Yet another approach by Zhang et al. was published [18,19]. Zhang 
used a simultaneous two-steps [18], and principal component interferometry [19] to solve the 
dual-wavelength phase-shifting measurement. Zhang et al. used 32 randomly phase-shifted 
interferograms [19]. Even though Zhang [19] could demodulate the two phases, they used 32 
phase-shifted temporal interferograms. All these works on temporal DW-PSA [2–5,14–19] 
have given just specific DW-PSAs without explicit formulae for their spectra, signal-to-noise, 
detuning and harmonic robustness. 

In contrast to previous ad hoc temporal DW-PSA formulas [2–5, 14–19], here we give a 
general theory for synthesizing DW-PSAs mathematically formalizing their spectrum, their 
signal-to-noise, and their detuning-harmonic robustness; these are the most important 
characteristics of any PSA. 
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2. Spatial-carrier phase-demodulation for Dual-wavelength (DW) interferometry 

Dual-wavelength digital-holography (DW-DH) is well understood and widely used [6–10]. As 
shown in Fig. 1, in DW-DH the two lasers beams are tilted to introduce spatial-carrier fringes 
[7]. In Fig. 1 both lasers beams are tilted in the x direction, but in general, for a better use of 
the Fourier space, one may tilt them independently along the x and y directions [11–14]. 

 

Fig. 1. Schematics for DW-DH using a single tilted reference mirror [6]. The orange-color 
light-path corresponds to the spatial superposition of the red and green lasers. 

The DW-DH obtained at the CCD camera in Fig. 1 may be modeled by, 

 [ ] [ ]1 1 1 2 2 2( , ) ( , ) ( , ) cos ( , ) ( , ) cos ( , ) .I x y a x y b x y x y u x b x y x y u xϕ ϕ= + + + +  (1) 

Here 1 1(2 / ) tan( )u x x π λ θ=  and 2 2(2 / ) tan( )u x x π λ θ=  are the spatial-carriers of the DW-

DH. The reference mirror-angle with respect to the x  axis is θ . The searched phases are 

1 1 1( , ) (2 / ) ( , )x y W x yϕ π λ=  and 2 2 2( , ) (2 / ) ( , )x y W x yϕ π λ= ; being 1( , )W x y  and 2 ( , )W x y  
the measuring wavefronts. Figure 2 shows a schematic of the Fourier spectrum of Eq. (1). 

 

Fig. 2. The hexagons are the spatial quadrature filters which demodulate 1ϕ  and 2ϕ . 

The two hexagons in Fig. 2 are the spatial quadrature filters that passband the desired 
analytic signals. After filtering, the inverse Fourier transform find the demodulated phases [1]. 
The advantage of DW-DH is that only one digital-hologram is needed to obtain 1 2{ , }ϕ ϕ ; 

however its drawback is that just a fraction of the Fourier space ( , ) [ , ] [ , ]u v π π π π∈ − × −  is 
used (Fig. 2). This limitation makes DW-DH not suitable for measuring discontinuous 
industrial objects [7]. In contrast, in DW-PSAs the full Fourier spectrum 
( , ) [ , ] [ , ]u v π π π π∈ − × −  may be used. 
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3. Temporal dual-wavelength (DW) phase-shifting interferometry 

From now on only temporal interferometry is discussed. The temporal phase-shifting fringes 
for double-wavelength interferometry may be modeled as, 

 1 1 2 2

1 2

2 2
( , , ) ( , ) ( , ) cos ( , ) ( , ) cos ( , ) .I x y t a x y b x y x y d t b x y x y d t

π π
ϕ ϕ

λ λ
= + + + +

      
      
      

(2) 

Here ( , )t∈ −∞ ∞ , and 1 1 1( , ) (2 / ) ( , )x y W x yϕ π λ= , 2 2 2( , ) (2 / ) ( , )x y W x yϕ π λ=  are the 

measuring phases. The parameter d  is the PZT-step. The fringes background is ( , )a x y  and 

their contrasts are 1( , )b x y  and 2 ( , )b x y . Figure 3 shows one possible set-up for a DW 
temporal phase-shifting interferometer. 

 

Fig. 3. A schematic example of a temporal-carrier DW interferometer [2–5] for surface 

measured with equivalent wavelength eqλ ; the piezoelectric transducer is PZT. 

With 2-wavelengths measurements one can synthesize an equivalent wavelength eqλ  [2–

19], 

 1 2
1 2

1 2

; ( ) .eq eq or
λ λλ λ λ λ

λ λ
= >>

−
 (3) 

With large eqλ  one may measure deeper surface discontinuities or topographies than using 

either 1λ  or 2λ  [2–19]. For a given PZT-step d , the two angular-frequencies (in radians per 
interferogram) are given by, 

 1 2
1 2

2 2
, and .d d

π πω ω
λ λ

= =  (4) 

Using this equation one may rewrite Eq. (2) as, 

 [ ] [ ]1 1 1 2 2 2( , , ) ( , ) ( , ) cos ( , ) ( , ) cos ( , ) ,I x y t a x y b x y x y t b x y x y tϕ ω ϕ ω= + + + +  (5) 

Here we have 5 unknowns, namely 1 2 1 2{ , , , , }a b b ϕ ϕ . Therefore we need at least 5 phase-

shifted interferograms (5-equations) to obtain a solution for 1 2{ , }ϕ ϕ ; these are, 

 

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

0 1 1 2 2

1 1 1 1 2 2 2

2 1 1 1 2 2 2

3 1 1 1 2 2 2

4 1 1 1 2 2 2

( , ) cos cos ,

( , ) cos cos ,

( , ) cos 2 cos 2 ,

( , ) cos 3 cos 3 ,

( , ) cos 4 cos 4 .

I x y a b b

I x y a b b

I x y a b b

I x y a b b

I x y a b b

ϕ ϕ
ϕ ω ϕ ω
ϕ ω ϕ ω
ϕ ω ϕ ω
ϕ ω ϕ ω

= + +

= + + + +

= + + + +

= + + + +

= + + + +

 (6) 
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For clarity, most ( , )x y  coordinates were omitted. 

4. Fourier-spectrum for temporal DW-PSAs 

The Fourier transform of the temporal interferogram (with ( , )t ∈ −∞ ∞ ) in Eq. (5) is: 

 1 1 2 21 2
1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) .

2 2
i i i ib b

I a e e e eϕ ϕ ϕ ϕω δ ω δ ω ω δ ω ω δ ω ω δ ω ω− −= + − + + + − + +       (7) 

All ( , )x y  were omitted. As mentioned, 1 1(2 / )dω π λ=  and 2 2(2 / )dω π λ=  are the two 
temporal-carrier frequencies in radians/interferogram; Fig. 4 shows this spectrum. 

 

Fig. 4. Fourier spectrum of the DW temporal-carrier interferograms. 

Figure 5 shows two ideal frequency transfer functions (FTF), 1( )H ω  and 2 ( )H ω , that 

could passband the desired analytic signals 1 1( ) exp( )iδ ω ω ϕ−  and 2 2( ) exp( )iδ ω ω ϕ− . Note 
how each filter is able to passband the desired signals from the same N temporal 
interferograms. 

 

Fig. 5. Ideal spectra of two filters that passband the desired signals 
1

exp( )i ϕ  and 
2

exp( )i ϕ  

from N temporal phase-shifted interferograms; all crossed Dirac deltas are filtered-out. 

5. Synthesis of DW-PSAs using the FTF and 5-step temporal interferograms 

As we know from the FTF-based PSA theory, the rectangular filters in Fig. 5 require a large 
number N of temporal interferograms [1]. However we can synthesize 5-step bandpass 
quadrature filters by allocating just 4 spectral-zeroes at frequencies 2 1 2{ , ,0, }ω ω ω− −  for the 

FTF 1( )H ω , and 4-zeroes at 2 1 1{ , ,0, }ω ω ω− −  for the FTF 2 ( )H ω  as, 

 
( )
( )

2 2 1

1 1 2

( ) ( ) ( )
1

( ) ( ) ( )
2

( ) 1 1 1 1 ,

( ) 1 1 1 1 .

i i ii

i i ii

H e e e e

H e e e e

ω ω ω ω ω ωω

ω ω ω ω ω ωω

ω

ω

+ − +

− + +

     = − − − −     
     = − − − −     

 (8) 
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From Eqs. (7)-(8) one sees that 1( ) ( )HI ω ω  passband the signal 1 1exp( ) ( )iϕ δ ω ω− , while 

2( ) ( )HI ω ω  bandpass 2 2exp( ) ( )iϕ δ ω ω− . Their impulse responses 1( )h t  and 2 ( )h t  are, 

 
{ }

{ }

4
1

1 1 1, 1 2
0

4
1

2 2 2, 1 2
0

( ) ( ) ( , ) ( ) ,

( ) ( ) ( , ) ( ).

n
n

n
n

h t F H c t n

h t F H c t n

ω ω ω δ

ω ω ω δ

−

=

−

=

= = −

= = −




 (9) 

Here 1, 1 2( , )nc ω ω  and 2, 1 2( , )nc ω ω  are the 5 complex-valued coefficients that depend on the 

frequencies 1 2{ , }ω ω . Having 1 2{ ( ), ( )}h t h t  the searched DW-PSAs are, 

 

1

2

4
( , )

1 1 1 1, 1 2
0

4
( , )

2 2 2 2, 1 2
0

1
( ) ( , ) ( , ) ( , ) ,

2

1
( ) ( , ) ( , ) ( , ).

2

i x y
n n

n

i x y
n n

n

H b x y e c I x y

H b x y e c I x y

ϕ

ϕ

ω ω ω

ω ω ω

=

=

=

=




 (10) 

Where ( , )nI x y  are the 5 interferograms. The explicit 5-step DW-PSA to estimate 1( , )x yϕ  is, 

 

1 2 2 1

2 2 2 1

2 2 2 1 1 2 1

1 2 1 2 1

( )
0 1,1 1 2 1 1,2 1 2 2 1,3 1 2 3 4

2 ( )
1,1 1 2

2 ( ) (2 )
1,2 1 2

( ) ( )
1,

1

3 1 2

( , ) ( , ) ( , ) ,

( , ) 1 ,

( , ) 1 ,

( , ) 1

i i i

i i i

i i i i i

i i i

A e e I c I c I c I e I

c e e e

c e e e e e

c e e e

ϕ ω ω ω

ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω ω

ω ω

ω ω

ω ω

−

−

− − −

− − + −

= − + − + −

= + + +

= + + + + +

 = + + + 
2 .ie ω

(11) 

With 11 1 1(1/ 2) ( ) ( , )A H b x yω= . Conversely the 5-step DW-PSA to estimate 2 ( , )x yϕ  is: 

 

2 1 1 2

1 1 1 2

1 1 1 2 2 1 2

2 1 2 1 2

( )
0 2,1 1 2 1 2,2 1 2 2 2,3 1 2 3 4

2 ( )
2,1 1 2

2 ( ) (2 )
2,2 1 2

( ) ( )
2,

2

3 1 2

( , ) ( , ) ( , ) ,

( , ) 1 ,

( , ) 1 ,

( , ) 1

i i i

i i i

i i i i i

i i i

A e e I c I c I c I e I

c e e e

c e e e e e

c e e e

ϕ ω ω ω

ω ω ω ω

ω ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω ω

ω ω

ω ω

ω ω

−

−

− − −

− − + −

= − + − + −

= + + +

= + + + + +

 = + + + 
1 .ie ω

(12) 

Being 2 2 2 2(1/ 2) ( ) ( , )A H b x yω= . This is the basics for synthesizing DW-PSAs grounded on 
the FTF paradigm [1]. Previous papers on DW-PSAs [2–5,14–19] stop much shorter than this. 
They just show particular pairs of DW-PSAs [2–5,14–19] that work for just particular 
carriers, i.e. 1 2( , ) (1.2, 2.9)ω ω = . In this section, we offered DW-PSAs (Eqs. (11)-(12)) which 

work well (find 1ϕ  and 2ϕ ) for infinitely-many frequency-pairs 1 2( , ) ( , ) ( , )ω ω π π π π∈ − × − . 
Even if the theory of this paper would stop right here, this paper contains a substantial 
improvement against current ad hoc state of the art in DW-PSA [2–5,14–19]. 

6. Signal-to-noise power-ratio (SNR) for the FTFs 1( )H ω  and 2 ( )H ω  

Here we review the signal-to-noise power-ratio formulas for PSA quadrature filters [1]. The 
signal-to-noise power-ratios (SNR) for the FTFs 1( )H ω  and 2 ( )H ω  are given by [1]: 

 
2 2

1 1 2 2
1 2

2 2

1 2

( ) ( )
SNR , SNR .

1 1
( ) ( )

2 2

H H

H d H d
π π

π π

ω ω

ω ω ω ω
π π− −

= =

 
 (13) 
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These SNR-formulas give the power of the signals 
2

1 1 1( ) exp( )H iω ϕ  and 
2

2 2 2( ) exp( )H iω ϕ  

divided by their total noise-power 
2

1(1/ 2 ) ( )H dπ ω ω  and 
2

2(1/ 2 ) ( )H dπ ω ω . 

7. Non-optimized DW FTF-based design for 1λ = 632.8nm  and 2λ = 532.0nm  

Let us assume that we use a typical temporal frequency of 1 2 / 5ω π= radians per sample for 

the algorithm 1 ( , )
1 1( ) i x yH e ϕω . Having made this choice for 1ω , the frequency 2ω  is set to 

 1 2 1
1 2 2 1 2

2

radians
1.49 .

2 2 sample
d

λ λ λω ω ω ω ω
π π λ

    = =  = ∴ =    
     

 (14) 

Giving a PZT-step of 126.6nmd = . The DW-FTFs for the two frequencies 1 2{ , }ω ω  are: 

 
( )
( )

[ 1.49] [ 1.49] ( 1.26)
1

( 1.26) ( 1.26) [ 1.49]
2

( ) 1 1 1 1 ,

( ) 1 1 1 1 .

i i i i

i i i i

H e e e e

H e e e e

ω ω ω ω

ω ω ω ω

ω

ω

+ − +

− + +

     = − − − −     
     = − − − −     

 (15) 

Figure 6 shows the magnitude plot of these two quadrature filters 1 2{ ( ), ( )}H Hω ω . 

 

Fig. 6. Spectral plots for the two DW-FTFs 
1 2

{ ( ), ( )}H Hω ω . The crossed Dirac deltas are 

filter-out signals. These FTFs can demodulate 
1 2

{ , }ϕ ϕ  with poor signal-to-noise ratio. 

The signal-to-noise [1] for the signals 1 1 1( ) exp( )H iω ϕ  and 2 2 2( ) exp( )H iω ϕ  are: 

 
2 2

1 1 2 2
1 2

2 2

1 2

( ) ( )
0.94 ; 1.04 ; 1.26; 1.49.

1 1
( ) ( )

2 2

H H

H d H d
π π

π π

ω ω
ω ω

ω ω ω ω
π π− −

= = = =

 
(16) 

For comparison, a 5-step least-squares PSA has a signal-to-noise power-ratio of 5 [1]. Thus 

1 2 / 5ω π=  and 2 1.49ω =  were a bad choice. Even though we can estimate 1 2{ , }ϕ ϕ  without 
cross-talking, from Eqs. (11)-(12), they are going to have poor SNR. Previous efforts in DW-
PSAs [2–5,14–19] only provided numeric-specific formulas to obtain 1 2{ , }ϕ ϕ . However, they 
were absolutely silent about their Fourier spectra, their cross-talk, their signal-to-noise, their 
harmonics and detuning robustness. All this useful and practical formulae are given here for 
the first time in terms of the FTFs 1 1 2 2{ ( ), ( )}H Hω ω  for designing DW-PSAs. Moreover, in 
contrast to previous art in DW-PSAs, Eq. (11) and Eq. (12) give infinitely many DW-PSA 
formulas for continuous pairs of temporal frequencies 1 2( , ) ( , ) ( , )ω ω π π π π∈ − × − . 
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8. Synthesis of DW-PSAs optimized for signal-to-noise ratio 

To find a better selection for 1 1(2 / )dω π λ=  and 2 2(2 / )dω π λ= , we construct a joint 
product signal-to-noise ratio as, 

 ( )
2 2

1 1 2 2
SNR

2 2

1 2

( ) ( )
; [0, ].

1 1
( ) ( )

2 2

eq

H H
G d d

H d H d
π π

π π

ω ω
λ

ω ω ω ω
π π− −

  
  

= ∈  
    
   

 (17) 

( )SNRG d  has many local maxima, but fortunately it is one-dimensional. Then plot ( )SNRG d , 

look for a good maximum and take the PZT-step d. This PZT-step d is used to find 1 2{ , }ω ω , 
and the two specific DW-PSA (Eqs. (11)-(12)) which solves the DW interferometric problem. 

9. Example of SNR-optimized synthesis for 1λ = 632.8nm  and 2λ = 532nm  

The graph for the signal-to-noise power-ratio product ( )SNRG d  with 1 1(2 / )dω π λ= , 

2 2(2 / )dω π λ=  and [0, ]eqd λ∈  is shown next (Fig. 7). 

 

Fig. 7. Graph of ( )
SNR

G d . We kept the third (blue) local maximum at 0.225 751nm
eq

d λ= = , 

for which ( )
SNR

23.5G d = . Each DW-PSA thus have a signal-to-noise of 23.5 4.84≈ . 

The first good local maximum is ( )SNR 0.225 23.5eqG λ ≈  (in blue), being 0.225 eqd λ=  or 

751nmd = . Note that most of this graph is less than 20; i.e. ( )SNR 20G d < . This means that 

taking a PZT-step within [0, ]eqd λ∈  at random, the probability of landing in a very low 

signal-to-noise point is very high. The FTF graphs for 0.225 eqd λ=  are shown in Fig. 8. 

 

Fig. 8. Spectral plots for the FTFs 
1

)(H ω  and 
2

)(H ω  for the SNR-optimized DW-PSA. Note 

that 
1 1

[(2 ) ] 1/ .2W dπ λω = =  and 
2 2

[(2 ) ] 2/ .6W dπ λω = = ; with ( ) arg[exp( )]W x ix= . 
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Here we have shown that there is a high probability of having a low SNR for the 
demodulated phases 1( , )x yϕ  and 2 ( , )x yϕ  without optimizing for ( )SNRG d  (Eq. (17)). 

10. Example for DW-PSA phase-demodulation for 1λ = 632.8nm  and 2λ = 532.0nm  

Figure 9 shows five computer-simulated interferograms to test the DW-PSAs found in 
previous section. The PZT-step is 751nmd = , giving a good signal-to-noise ratio. As 
mentioned, for large PZT-steps, the angular frequencies 1 2( , )ω ω  are wrapped and given by, 

 ( ) ( )1 1 2 2arg exp 2 / 1.2, arg exp 2 / 2.6 .i d i dω π λ ω π λ= = = =          (18) 

Using these angular frequencies in Eq. (11), the specific formula to estimate 1( , )x yϕ  is, 

 1 2.6 1.4
1 0 1 2 3 41( ) (0.78 0.62 ) (0.5 ) (1 0.19 )i i iA e e I i I i I i I e Iϕω −= − + + − − − + −  (19) 

Also, from Eq. (12), the specific 5-step DW-PSA to estimate the signal 2 ( , )x yϕ  is, 

 2 1.2 1
2

.4
2 0 1 2 3 4( ) (0.8 0.6 ) (0.92 0.1 ) (0.65 0.77 ) .i i iA e e I i I i I i I e Iϕω = − + + − − + − − (20) 

 

Fig. 9. The upper row shows 5 simulated overlapped interferograms without noise. The lower 
panel shows the same interferograms corrupted with phase-noise uniformly distributed in [0,π]. 
The noisy fringes were low-pass filtered by a 3x3 averaging window. 

Figure 10 shows the demodulated signals 1( , )x yϕ  and 2 ( , )x yϕ . 

 

Fig. 10. The demodulated phases φ1(x,y) and φ2(x,y) corresponding to the noiseless (panel (a)) 
and noisy (panel (b)) 5-steps interferograms in Fig. 9. Please note that there is absolutely no 
cross-talking between the two demodulated phases φ1(x,y) and φ2(x,y). 
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Figure 10(a) shows the noiseless demodulated phases, while Fig. 10(b) shows the 
demodulated phases degraded with a phase noise uniformly distributed within[0, ]π . Note that 

absolutely no cross-talking between the demodulated phases 1( , )x yϕ  and 2 ( , )x yϕ  appears. 

11. Detuning-robust and SNR-optimized DW-PSA synthesis 

Let us assume that our PZT is poorly calibrated. Thus instead of having well-tuned 
frequencies at 1 2{ , }ω ω  we have detuned frequencies at 1 2{ , }ω ω+ Δ + Δ , being Δ  the amount 

of detuning. As Fig. 11 shows, the estimated (erroneous) phase 2
ˆ ( , )x yϕ  is now given by, 

 2 1 2 1 2ˆ
2 1 2 22 2 1 2 2( ) ( ) ( ) ( ) .i i i i iA e H e H e H e H eϕ ϕ ϕ ϕ ϕω ω ω ω− − −= − − Δ + − − Δ + + Δ + + Δ (21) 

The estimated phase 2
ˆ ( , )x yϕ  thus have cross-talking from the signals 1 1 2{ , , }i i ie e eϕ ϕ ϕ− − ; 

conversely 1̂( , )x yϕ  will have distorting cross-talking from 2 2 1{ , , }i i ie e eϕ ϕ ϕ− − . 

 

Fig. 11. The effect of detuning (Δ) greatly exaggerated for clarity. The amount of detuning is Δ 

(radians/sample). The well-tuned frequencies are
1 2 1 2

{ , , , }ω ω ω ω− − , while the detuned 

frequencies are 
1 2 1 2

{( ), ( ), ( ), ( )}ω ω ω ω− − Δ − − Δ + Δ + Δ . 

To have good detuning robustness we need double-zeroes at the rejected frequencies. 
Therefore, we transform the FTFs in Eq. (8) (5-steps) to detuning-robust FTFs (8-steps) as, 

 
( )
( )

2 2 1

1 1 2

2 2 2( ) ( ) ( )
1

2 2 2( ) ( ) ( )
2

( ) 1 1 1 1 ,

( ) 1 1 1 1 .

i i ii

i i ii

H e e e e

H e e e e

ω ω ω ω ω ωω

ω ω ω ω ω ωω

ω

ω

+ − +

− + +

     = − − − −     

     = − − − −     

 (22) 

Proceeding as before, we need to plot ( )SNRG d  and look for a local signal-to-noise 

maximum. This is shown in Fig. 12 for 1 632.8nmλ =  and 2 458nmλ = . 

 

Fig. 12. Joint signal-to-noise product ( )
SNR

G d  of the two detuning-robust FTF-filters 

1 2
{ ( ), ( )}H Hω ω  in Eq. (22). The second maximum has a PZT-displacement of d = 381nm. 
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We choose the second maximum (in blue) where ( )SNR 0.23 44eqG λ = , with 381d = nm. 

Each 8-step DW-PSA filter in Eq. (22) has a signal-to-noise ratio of about 44 6.6= . Figure 
13 shows the two 8-step detuning-robust FTFs. The spectral second-order zeroes are flatter, so 
they are frequency detuning Δ  tolerant. 

 

Fig. 13. Spectra of detuning-robust DW-PSA tuned at 
1
=2.5radω  and 

2
=1.05radω . The 

second-order zeroes tolerate a fair amount of frequency detuning Δ. 

12. Harmonic rejection for DW-PSAs 

The main source of fringe-distorting harmonics is the non-linear response of the CCD-camera 
used to digitize the interferograms [1]. Therefore instead of having perfect-sinusoidal fringe-
profile we may have saturated-distorted fringes containing high harmonic power [1]. Figure 
14 shows the harmonic response for the FTFs in Eq. (8). The red-sticks are the fringe 
harmonics at 1( )nω , and the green ones are the fringe harmonics at 2( )nω , | | 2n ≥ . 

 

Fig. 14. Harmonic amplitudes for 
1 1

| ( ) |H nω  in red, and 
2 2

| ( ) |H nω  in green. The ideal 

would be to bandpass just the Dirac-deltas at 
1

ω ω=  and 
2

ω ω= ; but this is not possible. 

The power of the desired analytic signals 2
1 1 1| ( ) exp( ) |H ω ϕ  and 2

2 2 2| ( ) exp( ) |H ω ϕ  with 
respect to the sum of their distorting harmonic power is given by, 
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= =
     +       





 (23) 

We assumed that the harmonics amplitude decreases as 2(1/ )n , so their power decreases as 
2 2(1/ )n . With this assumption the PSA-filters 1 1 2 2{ ( ), ( )}H Hω ω  have about 10-times more 

power than the total power-sum of their harmonics 1 1 1 2 2 1 2 2{ ( ), ( ), ( ), ( )}H n H n H n H nω ω ω ω . 
Figure 15 shows five saturated phase-shifted interferograms. These five temporal 

interferograms are phase demodulated using DW-PSAs, Eqs. (11)-(12). 

 

Fig. 15. Five DW phase-shifted temporal interferograms with high amplitude saturation. 

Figure 16 shows the distorted demodulated-phases 1 2{ , }ϕ ϕ  of the saturated fringes in Fig. 
15. 

 

Fig. 16. The demodulated distorted-phases 1 2{ , }ϕ ϕ  from the 5 saturated fringe patterns. 

Please note that there is a slight harmonics cross-talking between the distorted phases. 

13. Multi-wavelength { }K1 2λ ,λ , ...,λ  FTF-based phase-shifting algorithms synthesis 

Here DW-PSA is generalized to 3-walengths. A simplified schematic of an interferometer 
simultaneously illuminated with 3-wavelengths 1 2 3{λ ,λ ,λ }  is shown in Fig. 17. 
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Fig. 17. Simplified schematics for a temporal 3-wavelenght phase-shifting interferometer. 

The continuous-time phase-shifted interferogram is, 

 [ ] [ ] [ ]1 1 1 2 2 2 3 3 3( , , ) cos cos cos .I x y t a b t b t b tϕ ω ϕ ω ϕ ω= + + + + + +  (24) 

Now Eq. (24) have 7 unknowns 1, 2 3 1 2 3{ , , , , , }a b b b ϕ ϕ ϕ ; being 1 2 3{ , , }ϕ ϕ ϕ  the searched phases. 

Thus we need at least 7 phase-shifted interferograms (7-equations) to find 1 2 3{ , , }ϕ ϕ ϕ . Figure 

18 shows the spectrum (for ( , )t ∈ −∞ ∞ ) of this 3-wavelengths temporal-interferograms. 

 

Fig. 18. Fourier spectrum ( )I ω  for a 3-wavelength temporal phase-shifted interferograms. 

Therefore we need to construct 3-FTFs having at least 6 first-order zeroes (7-steps) as, 

 

( )
( )
( )

3 32 2 1

3 31 1 2

1 1

( ) ( )( ) ( ) ( )
1

( ) ( )( ) ( ) ( )
2

( ) ( )
3

( ) 1 1 1 1 1 1 ,

( ) 1 1 1 1 1 1 ,

( ) 1 1 1

i ii i ii

i ii i ii

i ii

H e e e e e e

H e e e e e e

H e e e

ω ω ω ωω ω ω ω ω ωω

ω ω ω ωω ω ω ω ω ωω

ω ω ω ωω

ω

ω

ω

+ −+ − +

+ −− + +

− +

        = − − − − − −        
        = − − − − − −        

  = − − − 
32 2 ( )( ) ( )1 1 1 .ii ie e e ω ωω ω ω ω ++ −      − − −       

(25) 

The FTF 1( )H ω  rejects the analytic signals at 3 2 1 2 3{ , , ,0, , }ω ω ω ω ω− − − ; the FTF 2 ( )H ω  

rejects the Dirac deltas at 3 2 1 1 3{ , , ,0, , }ω ω ω ω ω− − − ; and the FTF 3 ( )H ω  rejects the deltas at 

3 2 1 1 2{ , , ,0, , }ω ω ω ω ω− − − . Therefore 1( ( ))I H ωω  isolates 1 1exp( ) ( )i ϕ δ ω ω− ; 2( ( ))I H ωω  

isolates 2 2exp( ) ( )i ϕ δ ω ω− , and finally 3( ( ))I H ωω  obtains 3 3exp( ) ( )i ϕ δ ω ω− . 
The joint-product signal-to-noise ratio (SNR) optimizing criterion now reads, 

#260791 Received 8 Mar 2016; revised 15 Apr 2016; accepted 19 Apr 2016; published 26 Apr 2016 
© 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.009766 | OPTICS EXPRESS 9778 



 
2 2 2
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2 2 2
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ω ω ω

ω ω ω ω ω ω
π π π− − −

   
   

=    
      
     

(26) 

We then find a high local maximum for ( )SNRG d , obtaining a fixed PZT-step d , and three 

angular-frequencies 1 2 3( , , ) ( , ) ( , ) ( , )ω ω ω π π π π π π∈ − × − × −  as, 

 [ ]1 2 3
1 2 3

2 2 2
, , ; ( ) arg exp( ) .W d W d W d W x i x

π π πω ω ω
λ λ λ

    
= = = =    

     
(27) 

The three impulse responses { 1( ) , 2( ) , 3( )}h t h t h t  are then given by, 
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ω ω ω ω δ
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=
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=

= = −

= = −

= = −







 (28) 

Here 1, 1 2 3( , , )nc ω ω ω , 2, 1 2 3( , , )nc ω ω ω , 3, 1 2 3( , , )nc ω ω ω  are the complex coefficients of the 

PSAs, which now depend on the three temporal-carrier frequencies 1 2 3{ , , }ω ω ω . 
We now digitally capture 7 phase-shifted interferograms given by: 

 [ ] [ ] [ ]1 1 1 2 2 2 3 3 3cos cos cos ; 0,...,6.nI a b n b n b n nϕ ω ϕ ω ϕ ω= + + + + + + =   (29) 

With these 7 interferograms we obtain the three searched quadrature analytic signals as, 
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

 (30) 

where (1/ 2) ( ) ( , ), {1,2,3}nn n nA H b x y nω= = . By mathematical induction, one may see that a 

4-wavelength 1 2 3 4{ , , , }λ λ λ λ  phase-shifting algorithm would need at least 9 phase-shifted 
interferograms, requiring FTFs having 8 first–order zeroes, et cetera. 

14. Conclusions 

The problem that was solved here may be stated as follows: Having a laser interferometer 
simultaneously illuminated with fixed wavelengths 1 2{ , ,..., }Kλ λ λ  and a single PZT phase-

shifter, find K phase-shifting algorithms (PSAs) which phase-demodulate 1 2{ , ,..., }Kϕ ϕ ϕ  for 
each laser-color, with high signal-to-noise and no cross-taking among these phases. 

This was solved as follows (for K = 2 sections 3-12, and K = 3 in section 13), 

a) First we synthesized two FTF quadrature-filters (Eq. (8)) that bandpass 1exp( )iϕ  and 

2exp( )iϕ from 5 phase-shifted interferograms (Eq. (6)) as, 
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 (31) 

b) We then jointly optimize the FTFs 1 2{ ( ), ( )}H Hω ω  for high signal-to-noise SNR ( )G d  

(Eq. (17)) and obtain the PZT-step d at which that local maximum occurs (Fig. 7). 

c) Having an optimum PZT-step d , we then calculated the tuning frequencies 

1 1(2 / )dω π λ= , 2 2(2 / )dω π λ= , which substituted back into 1 2{ ( ), ( )}H Hω ω  gave 

us the specific DW-PSAs that demodulate 1( , )x yϕ  and 2 ( , )x yϕ  (Eqs. (11)-(12)). 

d) We plotted (Fig. 8) the SNR-optimized FTF designs 1 2{ ( ), ( )}H Hω ω  to gauge their 

spectral behavior within ( , )ω π π∈ − . We also plotted (Fig. 14) these optimized FTFs 

for an extended frequency range [ 20 ,20 ]ω π π∈ − , to gauge their harmonic-rejection. 

e) We used the SNR-optimized FTF-designs to phase-demodulate 5 phase-shifted 
interferograms (Figs. 9–10) with high signal-to-noise and no phase cross-talking. 

f) For poor PZT-calibration we modified the FTFs 1 2{ ( ), ( )}H Hω ω  by raising the first-

order zeroes to second-order ones, i.e. 2
1 1( ) ( )ω ω ω ω−  − , 2

2 2( ) ( )ω ω ω ω−  − , 

etc.; making 1 2{ ( ), ( )}H Hω ω  robust to detuning at the rejected frequencies (Fig. 13). 

g) With the SNR-optimized FTFs 1 2{ ( ), ( )}H Hω ω  we quantified the harmonic-rejection 

capacity for each 1 2{ ( ), ( )}H Hω ω  using Eq. (23). 

h) Finally in section 13, we extended the DW FTF-based theory to 3-wavelengths 

1 2 3{λ ,λ ,λ } ; further K-wavelengths 1 2{ , ,..., }Kλ λ λ  generalization of this FTF-based 
multi-wavelength PSA theory is just a matter of mathematical induction. 

As far as we know, previous art on DW-PSAs [2–5,14–19] only provided ad hoc multi-
wavelength PSA designs. Thus, this is the first time that a general theory for synthesizing and 
analyzing multi-wavelength temporal phase-shifting algorithms is presented, and from which 
one may derive quantifying formulas for: (a) the PSAs spectra for each wavelength, (b) the 
PSAs signal-to-noise robustness for each wavelength, (c) the PSAs detuning sensitivity, and 
(d) the PSAs harmonics rejection for each wavelength. Finally, we presented two computer 
simulated examples of 5 DW phase-shifted interferograms with 1 632.8nmλ =  and 

2 532nmλ =  in order to illustrate the behavior of our synthesized FTF-based DW-PSAs. 
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