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Abstract: A novel sensing method is proposed for wavelength scanning
interferometry using multiple tunable light sources. As it is well known,
a deterioration of depth resolution usually occurs when multiple phase
intervals, corresponding to the multiple tunable light sources, are used for
distance measurement purposes. It is shown here, that it is possible to regain
depth resolution characteristics of a complete scan by means of a temporal
phase unwrapping extrapolation method. With the proposed method, the
resulting phase differences among multiple phase intervals can be success-
fully unwrapped to find out the intermediate phase. This effectively allows
the application of whole-scan phase sensing for distance measurement using
reduced scanning intervals, increased speed, and improved depth detection.
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1. Introduction

Wavelength scanning interferometry(WSI) and Optical Coherence Tomography (OCT) can be
seen as similar techniques that differ mainly in the hardware of their optical setups, and in
its signal processing approach. In particular, WSI is a volume imaging technique in which
2D image sequences are recorded as the wavenumber of the light source is tuned, ideally by
linear wavenumber increments. In this technique, the intensity of the light from a given scat-
tering point is modulated by a temporal carrier whose frequency is proportional to the optical
path difference between the object and reference waves. On the other hand, OCT is a well-
established technique for 3D analysis of internal structures in biological samples, and in inert
materials [1, 2] that performs volume imaging by scanning consecutively 1D signals (A scans)
using optical path differences over a 2D field of view. Both techniques have been, and still face
many challenges to find out the best technological components for improved performance in
3D structural analysis. To overcome these challenges, the techniques developed so far can be
summarized in three main categories: enhancement of depth resolution, depth range, and speed
of analysis. Besides the 3D structural analysis, the OCT has also evolved to detect internal
phase [2], and in WSI for phase contrast measurement [3] while in OCT and ultrasound similar
techniques are known as elastography [4–6] and [7] respectively. Light sources on the other
hand, are a critical component of the WSI and OCT systems, defining its overall performance.
One of the main drawbacks of using the current laser technologies, is that either they have low
power, or their wavelength scanning method also introduce phase noise or jitter, which limits
the WSI performance. The latest technologies of tuneable lasers with high laser power are the
Ti:Sapphire lasers, but still wide scan commercial ones with high resolution are hindered by
mode hoping. Custom configurations have avoided mode hoping using an acousto-optic filter,
and a prism with linewidths of 0.06 nm [8]. To achieve an enhanced depth of field, a mode
hoping limitation of another Ti:sapphire optical configuration has been reported in [9], this was
reported while trying to scan fine wavenumber steps of 0.001 nm with smaller linewidths. The
mode hoping of this laser introduced multiple and undesirable mode jumps that require further
processing using custom algorithms [10] to recover the depth resolution. The same limitation
has been reported for broader scanning steps in semiconductor lasers, and post-processing solu-
tions have been proposed to enhance depth resolution from multiple uncorrelated wavenumber
bands [11, 12] or by reduction of ripple error [13]. As phase can be obtained either from short
wavenumber scans or large wavenumber scans, the purpose of this work is to show a novel
method for distance sensing of transparent materials with known refractive index, removing the
depth resolution ambiguities introduced when a large wavenumber scan is divided into a se-
ries of short wavenumber scans (wavenumber bands or segments). With this approach, a direct
interpolated phase is obtained that reconstructs the signal properties corresponding to a large
wavenumber scan. Experimental results from a distance measurement of a glass plate confirm
the validity of the proposed method.

2. Fundamentals of wavelength scanning interferometry

For a wavelength scanned interval, the interference obtained from a single layer of a material
with two reflecting surfaces R and S, as represented schematically in Fig. 1(a), can be written
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as:
I (x,y,k−k) = [I0(x,y)+ I1(x,y) cos{(k−k)Λ0(x,y)+φ0}]W [k−k], (1)

where k is the central wavenumber of the whole scanned interval, Λ0 is the optical path of the
layer, φ0 is an initial phase shift, W is an spectral window, and the scanning is performed by
sampling the wavenumber at regular time intervals t according to k = k+ δk t, in which the
sampling rate is defined by the smallest wavenumber increment δk.

After obtaining the Fourier transform of Eq. (1) and removing the (x,y) dependency to sim-
plify, we obtain

Ĩ(Λ) = [I0δ (Λ)+
I1

2
δ (Λ−Λ0)e

iφ0 +
I1

2
δ (Λ+Λ0)e

−iφ0 ]⊗ [W̃ (Λ)e−ikΛ]. (2)

From this equation it can be observed that the maximum optical path range ΛM is

ΛM =
π
δk

, (3)

and the optical path resolution is given by

δΛ = γ
2π

Nkδk
, (4)

where γ is 1.207 for a rectangular window at full width half maximum, and Nk is the number of k
samples. The optical path and depth distance δ z, being related as usual by means of δ z=Λ0/2n
with n the refractive index of the layer material.

After Fourier transform of the interference signal, the location of the peak corresponding to
the single layer is shown in Fig. 1(b) and is given by Λ = Λ0. Except for the constant phase
terms kΛ0 and φ0, the peak maxima of Eq. (2) can be used to find out an approximation to
the linear phase of the cosinusoidal interference term of Eq. (1) given by the unwrapped phase
φu = (k − k)Λ0 + φ0. It can be seen from this equation that for a non-dispersive layer, the
phase is simply described by a linear phase change with slope Λ0 over the whole scanning
wavenumber range. In practice, the peak maximum location requires frequency interpolation
with the uncertainty given by the chosen interpolation method. As Nk samples are obtained in a
scan, the Fourier transform would give Nk/2 positive frequencies in which a given maxima can
be located at a frequency that is not necessarily an integer value. The frequency corresponding
to the maxima can be obtained by the derivative of the phase:

ν0 =
1

2π
∂φ
∂k

=
Λ0(x,y)

2π
, (5)

where the frequency corresponding to the maxima integer l is ν0 = (l − 1)/ΔK, with ΔK =
Nkδk, now we can calculate an approximated phase slope given by

Λ̂0(x,y) = 2π
(l−1)

ΔK
. (6)

As l can be found with floating precision using a variety of peak location methods [14], an
improved accuracy is usually obtained in location and phase when efficient location methods
are implemented, and when δΛ is decreased by decreasing γ , and increasing Nk and δk in
Eq. (4).

The corresponding wrapped phase obtained from this approximation is therefore given by:

φ̂w(x,y) = kΛ̂0(x,y), (7)
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Fig. 1. (a) Schematical diagram showing a single layer material with thickness Λ0/2n,
WS represents the light that is tuned at constant wavenumber rate, D is a photodetector
in which the interference of two reflected beams is registered, corresponding to reflections
from surfaces R and S. (b) Resolution δΛ and Depth range ΛM from the single layer of
non-dispersive transparent material, obtained for the positive frequencies corresponding to
the normalized power spectrum |Ĩ(Λ)|2 of an interference signal acquired by detector D.
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that appears wrapped, and differs from the original unwrapped phase φu = (k−k)Λ0(x,y)+φ0

in the wavenumber shift k, and the initial phase shift φ0, that are lost in the derivative process.
In the following section, the phase jumps of multiple sources with spectral gaps are first

analyzed when the wavenumber bands are uniformly spaced, as a preamble to illustrate the
case in which an exponential spacing method is proposed (section 4) to find out the respective
phase jumps using a temporal phase unwrapping approach [15].

3. Equally spaced multi-window spectrum

To illustrate the effects on optical path resolution when multi-window spectral are considered,
lets first assume that we have only two consecutive spectral windows that result from the use
of two scanning light sources. If we analyze the interference pattern in WSI of the same in-
ternal structure, that for simplicity is chosen as a single layer of non-dispersing material as in
Fig. 1(a). Then instead of a continuous signal we have two independent signals shown in each
column of Fig. 2, where each of the two consecutive spectral WSI signals are represented in
three ways: top plot as the interference signal, middle plot as the scanned phase, and bottom
as the positive frequencies corresponding to the absolute value of the Fourier transform of the
signal shown in the first row. As just the interference signal is only available in any measure-
ment, the intermediate and bottom plots are usually calculated from this measurements. In any
case, noise, quantization, imprecise sampling in wavenumber k, and refractive index dispersion
hinders the quality of the data represented in the bottom plot, while the middle plot can also be
affected by the same problems plus the phase extraction procedures.
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Fig. 2. Individual signals of two consecutive spectral windows shown in each column, from
top to bottom: WSI normalized interference signal, unwrapped phase in radians, normal-
ized power spectrum of interference signal shown in the first row. Samples are shown over
the interpolated signal.
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If we wish to obtain the phase difference among spectral windows from the intensity data,
we need to implement a phase extraction procedure for each scan. A simple choice is to obtain
a single phase value representing the scanned signal from the peak maxima complex value
by getting the arctangent of the imaginary over the real value. However any phase difference
greater than 2π among consecutive signals becomes wrapped. Another alternative is to obtain
the middle plots of Fig. 2 using phase extraction methods, but the spatial unwrapping always
starts from zero and the relative phase among spectral windows becomes dependent of the
sampling characteristics. If sampling is well defined as a precise and constant wavenumber
change, the phase jump from one spectral window to the next can be found by the number
of samples that span over the void spectral band among the last sample of the first spectral
window and the first sample of the second spectral window. However, experimental results
using tunable light sources such as the Ti:Sapphire laser show [10] that interpolation methods
are needed, as the tuning of this laser gives non-constant wavenumber increments, an example
of such nonlinear increments is presented in Fig. 3.

s
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k
(m

−
1
)

-100

-50

0

50

100

Fig. 3. Experimental wavenumber jumps δk generated by tuning a Ti:Sapphire laser in a
tuning section defined by 60 samples s. The random wavenumber jumps produced by this
laser cause an imprecise sampling of the interference signal, and even larger wavenumber
jumps were reported [10] for larger tuning sections that required custom signal processing
algorithms.

Most of the scanning methods are also frequently affected by imprecise sampling, e.g. due
to time quantization of regular intervals. If imprecise sampling is considered, it might be con-
venient to use interpolation methods and to calculate Eq. (7) from the detected peaks of the
two Fourier transforms of consecutive spectral windows, and from these to obtain the phase
difference. However, as each phase is wrapped, the phase difference among the two spectral
windows might have an integer number of 2π that is unknown. In any case of phase extraction,
the calculated phase values that are obtained from the intensity signals are wrapped. Therefore,
it is necessary to introduce a phase unwrapping algorithm to deal with the unknown number of
phase jumps of 2π that exist among consecutive phases of each spectral window.
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Fig. 4. Simulation of a wavelength scanning interferometer with object under inspection
conformed by two layers of constant refractive index. (a) Binary spectral shaping due to
multiple light sources with same spectral width and spacing in wavenumber. (b) Phase
differences in radians for three peaks of a two layer object, each peak denoted consecutively
by r = 1,2,3 with respect to the initial scanning wavenumber k0, notice that the spectral
shaping of (a) removes phase data from a continuous or full spectral windows showing
discontinuous phase data corresponding to the spectral windows m = 1,2,3. Each segment
of a labeled line has the same slope corresponding to a peak r, as a non-dispersive refractive
index was considered in this simulation.

To illustrate the multi-window spectrum in more detail, lets now assume that our object
under inspection is now formed by two layers of constant refractive index. In this case, the
phase term of Eq. (1) would need to be modified to include the two refractive indexes and its
combination, and Eq. (2) would give three peaks on the positive frequencies of the Fourier
transform, where we will indicate each peak of the Fourier transform using r as an index for
each peak. Figure 4(b) shows a simulation of this process for obtaining the phase produced by
interference of light from the two layers that were calculated with constant refractive indexes
n1 = 1.452 and n2 = 1.5, with respective thickness of d1 = 12.8mm and d2 = 8mm. The scanning
interval was of 100nm with a wavelength scanning starting at 700nm. Each peak phase can be
represented schematically by the linear plots shown in Fig. 4(b) where the spectral shaping
shown in Fig. 4(a) for m = 1,2,3 windows eliminates parts of the continuous linear phase in
Fig. 4(b). Therefore, the phase of the individual line segments corresponds to a simulation of
independent light sources centered at wavenumbers k(m).

Using the discontinuous phase data from a single line of Fig. 4(b) to obtain the interfer-

#254715 Received 6 Jan 2016; revised 7 Feb 2016; accepted 11 Feb 2016; published 2 Mar 2016 
© 2016 OSA 7 Mar 2016 | Vol. 24, No. 5 | DOI:10.1364/OE.24.005311 | OPTICS EXPRESS 5317 



Λ/Λ
0

0.998 0.9985 0.999 0.9995 1 1.0005 1.001 1.0015 1.002
0

0.2

0.4

0.6

0.8

1
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Fig. 5. Normalized power spectrum of the multiple signals shown in dash-dot line that
presents higher secondary lobes compared to the continuous signal shown in continuous
line. Even that the depth resolution remains the same for both signals, the secondary lobes
caused by the signal disruption makes the detection of the central lobe ambiguous.

ence signal, it can be shown that the depth resolution δΛ remains unaffected by the signal
gaps that appear due to the multiple light sources, however the secondary lobes are magnified
dis-proportionally with respect to the central peak as shown in the dotted line of Fig. 5 where
constant refractive index was assumed, and both signals spanned over the same scanning in-
terval. Therefore, peak detection in the case of multiple light sources is highly affected by the
secondary maxima, that starts to compete with the main lobe for thresholds higher than 0.6 of
our simulation. The peak ambiguity is even further deteriorated in the case of multiple sources
when refractive index dispersion is introduced altogether with sampling uncertainty e.g. with
experiments using a Ti:Sapphire tunable laser and sampling corresponding to the experimental
data presented in Fig. 3.

The problems introduced by multiple sources are the main drawbacks that deter the choice
of this technology, then most of the techniques available so far, prefer a whole scanning interval
to obtain unambiguous depth detection and resolution represented by the solid line of Fig. 5.

Having multiple windows spaced in wavenumbers intervals can be used as a priory informa-

tion to find out the phase jumps that occur among spectral windows. In particular if Δk(m=1,2)
1

is the known wavenumber spacing among the first two central wavenumbers of the phase φ1

of Fig. 4(b), it can be used to find the simplest linear phase jump Δφφφ (m=1,2)
1 = Δk(m=1,2)

1 Λ1.
In general terms we can define a phase φr, where r denotes each corresponding peak of the
spectrum, with phase jumps among the first central and the Q central wavenumbers given by

Δφφφ (m=1,Q)
r =Δk(m=1,Q)

r Λr that lead us to define the following equivalent constants for the whole
phase of each corresponding peak r as:

Λr =
Δφφφ (m=1,Q)

r

Δk(m=1,Q)
r

. (8)

The main problem is that the phase should be unwrapped to make this equation valid. Our
proposed approach uses this Eq. (8) for each phase difference to find out the best approximation
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of Λr, and it is based on the iterative use of an exponential spaced spectral windows combined
with a temporal phase unwrapping algorithm that match the phases of each spectral window
with high precision.

4. Phase unwrapping of multi-window spectrums

Considering a single peak in the Fourier transform represented by r = 1, lets now assume that
we have a phase difference among two spectral windows that is close enough -even overlapping-
to produce correctly unwrapped phase difference values for each consecutive sample of the two
spectral windows, as depicted in Fig. 6. With the spacing among spectral windows restricted to

an unwrapped phase difference Δφφφ (m=1,2)
1 < 2π . This can be seen in the samples presented in

Fig. 6: if we take the first sample and the 7th sample, the wavenumber jump is the same than
for the second sample and the 8th sample, and so on for the each sample of the two spectral

windows. In this case, Δkkk(m=1,2)
1 is a straightforward multiple of the sampling rate. In practice

the sampling is not uniform, and the phase difference should be obtained from wavenumber
averages corresponding to each spectral window to compensate the sampling uncertainties.

k-k(m=1) ( m -1)

-400 -300 -200 -100 0 100 200 300 400
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0.5
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I(k-k(m=1))
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Fig. 6. Normalized interference signal with uniform sampling and two spectral windows
spaced by a phase change less than 2π . The first spectral window is shown with point
markers, while the second spectral window with circle markers. The refractive index is
assumed constant due to the short scan.

To compare each sample of two consecutive spectral windows when the samples are not
related by an uniform phase jump, an average phase difference of each pair of samples can

be found through an approximated phase jump Δφ̂φφ (m=1,2)
u = Δk̂kk

(m=1,2)
1 Λ1, where Δk̂kk

(m=1,2)
1 =

k̂kk
(m=1)
1 − k̂kk

(m=2)
1 is calculated from the averaged central wavenumbers of each spectral window

to compensate the sampling uncertainties, and the phase is denoted with the subindex u to stress
the fact that the first phase difference is unwrapped.

Now the next unwrapped phase can be calculated from the initial phase by:

Δφ̂φφ (m=1,3)
u = ℜ1Δφ̂φφ (m=1,2)

u , (9)

where ℜ1 is a scaling factor. The phase calculated from this equation is also unwrapped as it is a
scaled version of the first unwrapped phase. However, any phase noise is also magnified by the

scaling factor. To avoid the noise magnification, we can measure the wrapped phase Δφ̂φφ (m=1,3)
w

that contains less noise, both phases should be equal except for a wrapping integer number that
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can be easily determined, this is found using the temporal phase unwrapping approach [15]
for each scaling. It is implemented by obtaining the integer number of 2π phase changes and
using it to unwrap the wrapped phase values. If we call this process as an unwrapping operator
� we can apply it to the first phase difference, to obtain the second phase difference using
the unwrapped (noisy) first phase difference and wrapped second phase difference (less noisy)
phases:

Δφ̂φφ (m=1,3)
u = �(Δφ̂φφ (m=1,3)

w ,ℜ1Δφ̂φφ (m=1,2)
u ). (10)

This unwrapped phase has lower noise levels, and can be used recursively by the following
equation:

Δφ̂φφ (m=1,n)
u = �(Δφ̂φφ (m=1,n)

w ,ℜn−2Δφ̂φφ (m=1,n−1)
u ), (11)

for n = 3,4...Q, so that the final phase difference Δφ̂φφ (m=1,Q)
u can be obtained at the end of the

recursive process.
In general terms, the recursive process using this equation returns an unwrapped phase that is

equivalent to the phase obtained from a full spectrum that covers the interval of all the multiple
spectral windows. Its main difference with the phase obtained of a single spectral window is in
its precision, that can be compared with the phase obtained from a full spectrum scan.

Up to now, this process as been assumed with phase differences among pairs of spectral
windows scaled by arbitrary constants ℜ. However, we can implement a design of the spectral
windows positions in advance, with all the corresponding scaling constants based on an ex-
ponential scaling: ℜ j = ℜ j for j = 1,2...Q− 2. With this scaling factors, the spectrum bands
become spaced with exponential increasing gaps covering within a few bands a large spectrum.
It can be noticed that with this exponential scaling, two consecutive spectral windows have
central wavenumber differences that are scaled by ℜ. Alternatively, if the constants ℜ j are no
related by the exponential scaling, they can be adjusted by using the central wavenumbers of
the consecutive spectral windows by means of:

ℜ j = (kkk(m=1)− kkk(m= j+2))/(kkk(m=1)− kkk(m= j+1)). (12)

Therefore even if non-exponential exact growing factor is used, the scaling constants can be
easily calculated using this last equation. Finally, the same unwrapping procedure can be used to
process each phase corresponding to the Fourier peaks. However, if more peaks are considered,
all their initial phase differences should also be restricted to less than 2π , such as a bandwidth
for the peaks should be taken into account, given by the proper sampling of the interference
patterns.

5. Experimental results

A wavelength scanning setup was built using three main components: a Ti:Sapphire laser, a
glass wedge made of fused silica, and a CCD camera in an optical setup as the shown in
Fig. 1(a). The laser was a CW Ti:Sapphire (M-Squared) with scanning δλ = 0.004nm oper-
ating at 390mW, a scan was performed starting at 749.512 nm. Figure 7 shows on the left
column the four intensities obtained on a a pixel camera after scanning 121 samples s for four
spectral windows m = 1,2,3,4. The laser is provided with a wavelength detector that was used
to monitor each wavelength step, and the respective wavelength scans are shown on the right
column of Fig. 7.

Using the averaged central wavenumbers k̂(m=1,2,3,4) we can replace them for the central
wavenumbers of Eq. (12) to obtain ℜ1 = 33.0790, and ℜ2 = 37.2061. Now using Eq. (11) re-
cursively we obtain the unwrapped phase values shown in the second column of table 1 for each
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Fig. 7. From top to bottom: interference signals I(k) in gray level units obtained using
WSI with a glass wedge as a testing target, for four spectral bands m = 1,2,3,4 on the
left column, with its respective wavelength scanned interval in the right column for each
sample s.

pair of spectral bands (m = 1,2), (m = 1,3) and (m = 1,4). From these values, and using the
wavenumber intervals |Δkkk(m)|, refractive index n of fused silica, and Eq. (8) as the approximated
optical path Λ̂1 we finally obtain the wedge thickness given by δ z = Λ̂1/2n.

Table 1. Glass wedge thickness measurement using, unwrapped phase |Δφφφ (m)
u |, wavenum-

ber intervals |Δkkk(m)|, and refractive index n for m = 2,3,4.

m |Δφφφ (m)
u | (rad) |Δkkk(m)| (m−1) n δ z (mm)

m = 1,2 6.0519 163.8974 1.45435214465974 12.70
m = 1,3 200.4780 5421.5673 1.45434290787548 12.71
m = 1,4 7461.66044 201715.6471 1.45399832086709 12.72

The experimental measurement of the glass wedge thickness was of approximately
12.75 mm, therefore the combined measurement error of the technique, and our experimen-
tal measurement was of approximately 20 μm. However, it can seen form table 1 that the error
tend to decrease when a larger number of spectral windows are considered. The obtained value
of optical path resolution from Eq. (4) was of 37.5 μm and our experimental error was almost
half of this value.

6. Conclusions

Phase from a whole scan has been synthesized from a series of shorts scans within spectral
windows, producing an equivalent hyperspectral phase of a whole scan. As shorter spectral
windows are used by the proposed technique, this technique allows an increment of processing
speed for WSI. Furthermore, it has been shown in the experimental results achieved by this
method, that the optical path error is even lower than the theoretical resolution obtained when a
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full scan is used with standard methods, and that improved depth resolution has been achieved,
overcoming the limitations caused by the shorts scans, the non-uniform sampling, and the sec-
ondary lobes caused by discontinuous intensity signals. The proposed technique can be used to
extend any spectral distribution beyond the common spectral ranges of some detectors, allow-
ing the combination of diverse detector technologies to achieve high precision measurement
in WSI and OCT. The technique can also use custom spectral bands to avoid humidity spec-
tral attenuation, or any other undesirable spectral segment that affects the measurement of a
continuous spectral scan.
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