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Abstract: Recently, pixelated spatial carrier interferograms have been used 
in optical metrology and are an industry standard nowadays. The main 
feature of these interferometers is that each pixel over the video camera may 
be phase-modulated by any (however fixed) desired angle within [0,2π] 
radians. The phase at each pixel is shifted without cross-talking from their 
immediate neighborhoods. This has opened new possibilities for 
experimental spatial wavefront modulation not dreamed before, because we 
are no longer constrained to introduce a spatial-carrier using a tilted plane. 
Any useful mathematical model to phase-modulate the testing wavefront in 
a pixel-wise basis can be used. However we are nowadays faced with the 
problem that these pixelated interferograms have not been correctly 
demodulated to obtain an error-free (exact) wavefront estimation. The 
purpose of this paper is to offer the general theory that allows one to 
demodulate, in an exact way, pixelated spatial-carrier interferograms 
modulated by any thinkable two-dimensional phase carrier. 
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1. Introduction 

The spatial phase modulation technique that uses a tilted plane reference is well known and 
useful technique to demodulate the measuring wavefront in an interferometer [1]. In this way 
one obtains the following spatial carrier interferogram, 

 ( , ) ( , ) ( , ) cos[ ( , ) ] .
x y

I x y a x y b x y x y x yϕ ω ω= + + +   (1) 

Where I(x,y) is the interferogram’s intensity as imaged over the CCD video camera. The 

functions φ(x,y), a(x,y) and b(x,y) are respectively the searched phase, the background 
illumination and the amplitude of the fringe pattern. Finally ωx and ωx are two constants 
proportional to the slope of the reference tilted plane. There are at least two ways of analyzing 
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these carrier interferograms; spatial phase-shifting techniques [1], and the Fourier transform 
based ones [2]. The main motivation behind spatial phase modulation is to measure a 
wavefront’s phase in hostile mechanical environments where the use of temporal phase 
shifting interferometry may be impossible [3–6]. 

Recently a very clever spatial carrier modulation technique that uses pixelated phase-shift 
was developed [7,8]. In this experimental approach one is totally free to define the 
mathematical form of the phase carrier. The only limitation is that the modulating phase-mask 
remains fixed, placed before the CCD light sensor [7,8]. A reasonable way to formally express 
a pixelated carrier interferogram modulated by pm(x,y) is, 

 ( , ) ( , ) ( , ) cos[ ( , ) ( , )] .I x y a x y b x y x y pm x yϕ= + +   (2) 

The modulating phase-mask pm(x,y) may have different forms. Millerd et al. [7] and Novak et 
al. [8] have used the 2x2 building block (or superpixel) shown amplified in Fig. 1. This 2x2 
superpixel is periodically repeated all over the CCD to form the phase-mask pm(x,y), 

 

Fig. 1. The basic building block (or superpixel) of the phase-mask proposed in [7,8]. The 

superpixel is periodically repeated over the entire CCD, giving the spatially homogeneous two 

dimensional carrier pm(x,y) required by Eq. (2). 

We can sort all the 0 degrees pixels to form a continuous 0-degree phase-shifted 
interferogram. The same is done for the other angles to obtain the 4 phase-shifted 
interferograms shown in Fig. 2. 

 

Fig. 2. Four phase-shifted interferograms obtained by sorting the phase-masked CCD pixels 
according to their phase-shift. The CCD has 2Nx2N pixels, and the four smaller interferograms 
have NxN pixels. 

As the expert eye would immediately see, one may use a very popular 4-step phase 
shifting algorithm [1] to estimate the modulating phase at each superpixel’s location. 
Assuming that the modulating phase varies little within the 2x2 superpixel (see Fig. 1). This 
4-steps PSI algorithm [7,8] gives a reasonably good estimate of the superpixel’s phase as, 

 
1 1(0) ( ) ( , ,0) ( , 1, )

ˆ( , ) tan tan .
( / 2) (3 / 2) ( 1, , / 2) ( 1, 1,3 / 2)

I I I x y I x y
x y

I I I x y I x y

π π
ϕ

π π π π
− −   − − +

= =   − + − + +   
 (3) 

The “hat” over the demodulated phase denotes its estimated value which may be a bit 

different from φ(x,y). A very important thing to notice is that these 4 pixels are not only 

#130068 - $15.00 USD Received 14 Jun 2010; revised 10 Jul 2010; accepted 10 Jul 2010; published 13 Aug 2010
(C) 2010 OSA 16 August 2010 / Vol. 18,  No. 17 / OPTICS EXPRESS  18493



phase-shifted but also spatially-displaced. This spatial displacement generates a significant 

detuning error on the superpixel’s estimated phase for fast spatial variations on φ(x,y). In Fig. 
3(a) we show the demodulated phase for a chirped wavefront using Eq. (3), and in Fig. 3(b) its 

estimated error, ),(),(ˆ),( yxyxyxerror φφφ −= , 

 

Fig. 3. In panel (a) we show the estimated phase (within [-π,π]) according to Eq. (3), and in 

panel (b) the phase demodulation error φerror(x,y) due to the use of this 4-steps algorithm. 

The gray-level’s contrast in panel 3(b) was multiplied by 5 for displaying purposes (i.e. 
gray-levels within [-π/5,π/5]). This figure shows the typical doubling fringe-pattern phase-
error associated with the 4-step algorithm’s detuning [1,7–9]. The most important drawbacks 
of the 4-step demodulation of phase-masked interferograms are, 

(a) One looses 3 pixels out of 4 that compose each 2x2 superpixel’s building block. 
However, Millerd et al. [7] comment that Eq. (3) may be used all over the CCD, 
demodulating almost all its pixels, just as one does with any windowed convolution 
filter. Unfortunately they have not published the details on how to do it. 

(b) The 4-step formula in Eq. (3) is very sensitivity to detuning [1,7–10]. The doubling 
fringe-pattern phase-error associated with this algorithm is clearly shown in Fig. 
3(b). 

This detuning error has been analyzed more carefully by Kimbrough [10] along with some 
higher (9-steps) order algorithms lowering the detuning error. Error-free pixelated 
interferogram demodulation has however not been achieved and was thought to be difficult. 

One way to absolutely remedy these two problems is presented in the next section as the 
general theory for the exact phase demodulation of pixelated interferograms. 

2. Error-free demodulation of pixelated carrier interferograms 

The general theory behind the error-free phase demodulation of pixelated interferograms is 
extremely simple yet elegant and mathematically rigorous. 

Let us start by observing that in order to experimentally generate the interference fringes I 

= a + bcos[φ + pm] in Eq. (2) one would require the following wavefront reference, 

 ( , ) exp[ ( , )] .R x y i pm x y=   (4) 

Where i = (−1)
1/2

. This complex reference may in turn be used to demodulate our fringe 
pattern I(x,y). The first step toward this end is to multiply our interferogram and our reference, 

 { }( , ) ( , ) ( , ) ( , )cos[ ( , ) ( , )] exp[ ( , )] .I x y R x y a x y b x y x y pm x y i pm x yϕ= + +   (5) 

The real and imaginary parts of this complex signal are, 

 
Re[ ( , ) ( , )] cos( ) ( / 2)cos( 2 ) ( / 2)cos( )

Im[ ( , ) ( , )] sin( ) ( / 2)sin( 2 ) ( / 2)sin( ) .

I x y R x y a pm b pm b

I x y R x y a pm b pm b

ϕ ϕ
ϕ ϕ

= + + +

= + + +
  (6) 
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Where the operators Re[.] and Im[.] take the real and the imaginary parts of their 
argument. The two real signals in Eq. (6) are shown in Fig. 4. 

 

Fig. 4. Here we show the real (in panel (a)) and the imaginary (in panel (b)) signals of the 
product I(x,y)R(x,y). The function I(x,y) is the measured interferogram in Eq. (2), and the signal 
R(x,y) is the reference wavefront exp[i pm(x,y)]. 

Using a narrow-band high-frequency reference exp[i pm(x,y)] one is able to separate the 
different diffracting orders in Eq. (6). To achieve this spectral separation one needs to keep 

with the following conditions between pm(x,y) and φ(x,y), 

 

max max

( , ) ( , ) ( , ) ( , )
, .

pm x y x y pm x y x y
and

x x y y

ϕ ϕ∂ ∂ ∂ ∂
> >

∂ ∂ ∂ ∂
  (7) 

Where |.|max denote the maximum magnitude for ∂φ(x,y)/∂x and ∂φ(x,y)/∂y. If the conditions 
stated in Eq. (7) are fulfilled, the three signals in Eq. (6) are spectrally separated. We then 
low-pass filter the signals in Eq. (6) to obtain, 

 
{ }
{ }

Re[ exp( )] ( / 2)cos( )

Im[ exp( )] ( / 2)sin( ) .

LPF I i pm b

LPF I i pm b

ϕ

ϕ

=

=
  (8) 

Where LPF{.} is a linear low pass filter. Finally the error-free estimated phase is given by the 
ratio of these two real signals, 

 
1 [ ( , ) / 2]sin[ ( , )]

ˆ( , ) tan .
[ ( , ) / 2]cos[ ( , )]

b x y x y
x y

b x y x y

ϕ
ϕ

ϕ
−  

=  
 

  (9) 

The technique just presented may be regarded as the generalization of what is sometimes 
called the “Direct” interferometric method [1]. But in this case instead of a tilted reference 
plane one uses a more complicated two dimensional carrier pm(x,y). In the next section we 
provide two examples of 2x2 superpixels’ masks; their spectra and their demodulated phase. 

3. Two illustrative examples 

Figure 5 graphically shows the proposed demodulation technique applied to a (computer 
generated) interferogram phase modulated by pm(x,y). Panel 5(a) shows the pixelated 
interferogram and in panel 5(b) its spectral magnitude. Note that the spectral distance between 

bcos[φ + pm] and the background a is π radians. Panel 5(c) shows the spectrum of the product 
I(x,y)exp[i pm(x,y)]. It is interesting to note in panel 5(c), that the searched complex signal is 
moved to the spectral origin. A linear low-pass filter selects the centered part of the spectrum 
shown in panel 5(c); we have implemented the low-pass filter in the Fourier domain. Finally, 
the error-free demodulated phase is shown wrapped in panel 5(d). 
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Fig. 5. Phase demodulation of the interferogram I = a + bcos[φ + pm], phase modulated by the 
periodic phase-mask pm(x,y). Panel (a) shows the pixelated interferogram. Panel (b) is the 
spectrum of the interferogram. Panel (c) shows the spectra of the product I(x,y)exp[i pm(x,y)]. 
Note that the conjugate spectra are separated π radians Finally Panel (d) shows the wrapped 
(error-free) demodulated phase. 

Note that the demodulated phase is error-free as long as their spectra in panel 5(c) remain 
well separated. Also note that the two information-rich spectra in panel 5(c) are separated a 
distance of π radians. 

Let us continue with a slightly different 2x2 periodic phase-mask. The question is: what 
would happen if we use the periodic phase-mask shown in Fig. 6 instead of the one in Fig. 1?. 

 

Fig. 6. Another possible phase-mask pm2(x,y) that may be used to modulate the wavefront 
under measurement. 

In Fig. 7 we see the consequences of using the alternative modulating carrier pm2(x,y). 
Panel 7(a) shows a computer generated pixelated interferogram, and in panel 7(b) we show its 
spectrum. Panel 7(c) shows the spectra of the product I(x,y)exp[i pm2(x,y)]. It is interesting to 

note in this panel that the searched complex signal (b/2)exp[i φ(x,y)] is also sent to the spectral 
origin. We finally keep the centered spectrum by low-pass filtering in the Fourier domain to 
obtain the error-free demodulated phase shown in panel 7(d). 
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Fig. 7. Phase estimation of the interferogram modulated by pm2(x,y); I = a + bcos[φ + pm2]. 
Panel (a) shows the pixelated carrier interferogram. Panel (b) shows the spectrum of the 

interferogram. Note that the conjugate spectra are separated (√2)π radians. Panel (c) shows the 
spectra of the product I(x,y)exp[i pm2(x,y)]. And finally Panel (d) shows the wrapped (error-
free) demodulated phase. 

As before, the demodulated phase in panel 7(d) is error-free as long as the centered spectra 
in panel 7(c) (signal in Eq. (8)) remain well separated from the other spectral components. 
Also the modulating phase was estimated all over the entire CCD’s pixels. 

Note that, phase detuning error arises because some undesired signal from the conjugate 
spectrum leaks into the desired analytical signal [9]. In our method this is not possible because 
we have filtered-out completely this conjugate spectrum in the Fourier domain. 

Also note that the spectral distance between the two conjugate spectra in panel 7(c) is 

(√2)π radians, while this separation in panel 5(c) due to pm(x,y) is π radians. This means that 
the spectral space is more efficiently used modulating by pm2(x,y) rather than by pm(x,y). 
Moreover, the spectral distance between the pixelated carrier and its two conjugate spectra are 
π radians. Pixelated carriers use the available spectral space more efficiently than a reference 
plane, because pixelated carriers have two-dimensional degrees of freedom, while a tilted 
reference are confined to a single dimension (a line in the plane). 

4. Conclusions 

We have presented a very easy, yet efficient and straightforward method to demodulate the 
phase of pixelated spatial-carrier interferograms without detuning error. As far as we know, 
demodulating pixelated phase-masked interferograms with no detuning error and without 
discarding valuable CCD pixels has not been reported before. We have presented two 
alternative phase modulating masks pm(x,y) and pm2(x,y) with good results graphically shown 
in Figs. 5 and 7. Finally we have driven the reader’s attention to the high efficient use of the 
available spectral space by the pixelated carriers reviewed in this paper. The spatial phase 

carrier pm2(x,y) separate the information-rich conjugate spectra a distance of (√2)π radians, 
while the pm(x,y) carrier separate them only π radians. In turn these two carrier masks use 
more efficiently the available spectral space than a single dimension carrier obtained by tilting 
a reference plane. 
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