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Abstract: In Phase Stepping Interferometry (PSI) an interferogram
sequence having a known, and constant phase shift between the interfero-
grams is required. Here we take the case where this constant phase shift
is unknown and the only assumption is that the interferograms do have a
temporal carrier. To recover the modulating phase from the interferograms,
we propose a self-tuning phase-shifting algorithm. Our algorithm estimates
the temporal frequency first, and then this knowledge is usedto estimate
the interesting modulating phase. There are several well known iterative
schemes published before, but our approach has the unique advantage of
being very fast. Our new temporal carrier, and phase estimator is capable
of obtaining a very good approximation of their temporal carrier in a single
iteration. Numerical experiments are given to show the performance of this
simple yet powerful self-tuning phase shifting algorithm.
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1. Introduction

Phase Stepping Interferometry (PSI), is one of the most useful techniques in optical metrology
for estimating the modulating phase of interferograms [1].In standard PSI, an interferogram
sequence of N interferograms is taken having a known temporal carrier. When the actual tem-
poral frequency of the interferograms does not match with the expected carrier of the phase
shifting algorithm, a phase estimation error is introduced; a detuning error [2, 3]. To mini-
mize most of this detuning error, people have proposed phaseestimation techniques robust to
this [2, 4, 5, 6, 7, 8]. One class of such methods are designed to be less sensitive to detuning
[2, 4]. In this way one tolerates small deviations between the actual temporal frequency, and the
carrier of the phase-shifting algorithm. However, these methods still assume that the temporal
frequency of interferograms is known but having a small uncertainty region. The best known
example of this is the 5-steps phase-shifting algorithm proposed by Hariharan [2], which as-
sumes that the interferogram sequence has a temporal frequency of π/2 radians, and tolerates
small detuning aroundπ/2 radians.

Another class of phase stepping techniques with much poorlyknown carrier, estimates this
carrier from the interferometric data. These methods are named self-calibrating, and are always
iterative [5, 6, 7, 8]. These algorithms work in such a way that concurrently estimates the
modulating phase and their carrier frequency. The most common of these methods uses the
least-squares approach [9]. They make a rough estimation ofthe modulating phase by solving
a linear equation system, and guessing a temporal frequency. Then, using this initial phase
estimation, the tuning carrier is improved by solving otherN linear equation systems (one for
each interferogram). Iterating this process it eventuallyit settles down in the actual carrier and
the searched modulated phase [5, 8]. A drawback if this techniques, is that the background
illumination and contrast of the interferograms must be spatially constant. Otherwise we may
obtain erroneous results. We emphasize that this drawback is not present in our method.

A desired goal in PSI is to recover the modulating phase from an interferogram sequence
keeping the whole phase estimation process as simple as possible. Our new algorithm obtains
good temporal carrier estimations in one stroke. Having this carrier estimation one then uses
it to obtain the searched modulating phase using a tunable 5 steps algorithm. This tunable 5
steps algorithm is also developed in this paper. Doing the phase estimation in this new way,
it is far simpler than solving several times (iteratively) aset of linear equations [5, 8]. The
algorithm herein presented is of the iterative class; however, in practice, it can obtain very good
modulating phase estimation in a single iteration.

The structure of the paper is as follows: in the next section we show two useful tunable
phase-shifting algorithms; these are not iterative, they are just plain PSI algorithms but may
be tuned anywhere in the spectral domain. After this, we showour algorithm to estimate the
temporal carrier in a single stroke. Having this fairly goodcarrier estimation we introduce this
result into our tunable 5 steps PSI algorithm to obtain the searched modulated phase. Finally
we show some numerical experiments with the aim of seeing theperformance of this algorithm.

2. Tunable phase-shifting algorithms

In PSI, a discreet temporal interferogram may be mathematically described using the following
mathematical expression:

It(x,y) = a(x,y)+b(x,y)cos(φ(x,y)+ ω0t), (1)

wherea(x,y) is the interferogram’s background illumination,b(x,y) its contrast,φ(x,y) its
modulating phase that we want to recover, andω0 its temporal frequency carrier, referred here
simply as the temporal frequency. The integer indext refers to then-interferogram taken at
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time t. For simplicity, in what follows the spatial dependence(x,y) of the temporal interfer-
ogram signal is not shown, however, the reader must take intoaccount thatIt , a, b, andφ ,
are scalar fields laying in a rectangular grid ofM×N pixels and equals the spatial size of the
interferograms.

A phase-shifting algorithm can be seeing as a complex quadrature filter, and we said that it is
tunable because the temporal frequency of the algorithm canbe introduced as a free parameter
of the algorithm [10]. For example, the following quadrature filter:

h(t) = [2δ (t)− δ (t−1)− δ (t +1)]cos(ω0/2)+ i[δ (t−1)+ δ (t +1)]sin(ω0/2), (2)

whereω0 is its tuning frequency,δ (t) is the Dirac delta function, andi =
√
−1. Using this

quadrature filter, the modulating phase is given by the following well knowntunable3-steps
phase-shifting algorithm:

φ̂ = arctan

[

Im{[h∗ I ](0)}
Re{[h∗ I ](0)}

]

= arctan

[

I−1− I1
2I0− I−1− I1

tan(ω0/2)

]

, (3)

where Re{[h∗ I ](0)}, and Im{[h∗ I ](0)} are the real and imaginary part of the convolutionI ∗h
evaluated at time zero, andω0 is the algorithm’s tuning frequency. Here, the interferograms in
the sequence are ordered as{I−1, I0, I1}.

The quadrature filter of the 3-steps phase-shifting algorithm shown in Eq. (2), has the fol-
lowing frequency response [10]:

H(ω) = F [h(t)] = 4sin(ω/2)sin

(

ω −ω0

2

)

, (4)

whereH(ω) is the Fourier transform of (2). By inspecting this frequency response, into the
interval [−π ,π ], we can see that this filter has a zero atω = 0, and atω = ω0. In this way
this quadrature filter removes these frequency components.Therefore, applying this quadrature
filter to the interferogram signal (1), it just let pass the complex signalÎt = c · e(φ+ω0t) from
which the modulating phase is taken. The constantc is related with the frequency response of
H(ω) at ω = −ω0. This simple result shows what a quadrature filterH(ω) must do for real
interferogram signals like the given in Eq. (1). In general,the spectraH(ω) of a quadrature
filter for phase-shifting interferometry must have at leastthe following conditionsH(0) = 0,
H(ω0) = 0, andH(−ω0) 6= 0 in the spectral line.

Using this way of thinking, we may extend this attractive tunable feature of the 3 steps
algorithm to PSI algorithms of higher order. For example, wemay build a quadrature filter for
a 5 steps phase-shifting algorithm with the following two basic filters [11]:

H1(ω) = sin(ω), (5)

H2(ω) = 1−cos(ω −ω0). (6)

By simple evaluation, we can see that the filterH1(ω) has a zero at frequencyω = 0, and that
the filterH2(ω) has a (tangential) zero at frequencyω = ω0. This tangential touch atω = ω0

of filter H2, makes it more robust to detuning errors in a neighborhood ofω = ω0 [3]. Then,
the quadrature filter that we are looking for can be obtained as the product of these filters in the
following way:

H(ω) = H1(ω)H2(ω)

= sin(ω)[1−cos(ω −ω0)]. (7)
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Having this, to obtain theformulafor our phase-shifting algorithm it is necessary to obtain the
inverse Fourier transform to get:

h(t) = [2δ (t)− δ (t−2)− δ (t +2)]sin(ω0)/2

+ i[2δ (t −1)−2δ (t +1)]/2− i[δ (t−2)− δ (t +2)]cos(ω0)/2. (8)

Taking the convolution of this filter operator with the signal given in Eq. (1), we have the
following complex signal:

Ît = h(t)∗ It
= [2It − It−2− It+2]sin(ω0)/2+ i(2It−1−2It+1)/2− i(It−2− It+2)cos(ω0)/2], (9)

which needs at least 5 interferograms in order to be applied at time t. Finally we obtain the
formula four our tunable 5 steps phase-shifting algorithm as the argument of this complex
signal att = 0 in the following way:

φ̂ = arctan

[

Im{Î0}
Re{Î0}

]

= arctan

[

2I−1−2I1− [I−2− I2]cos(ω0)

[2I0− I−2− I2]sin(ω0)

]

, (10)

where Re{}, and Im{}, takes the real and imaginary part of the complex signalÎt . In this
point, the reader can prove by direct substitution that if wetake the particular case whenω0 =
π/2, then you obtain the 5-steps phase-shifting algorithm published by Hariharan in Ref. [2].
However, the formula given in (10), is therefore a more general expression of a 5-steps phase-
shifting algorithm.

3. Self-tuning phase-shifting algorithm

Consider that we have an interferogram sequence of five interferograms ordered as
{I−2, I−1, I0, I1, I2}, and thatω0 is its temporal carrier. Now suppose that we are going to re-
cover the modulating phase using the 3-steps phase shiftingalgorithm shown in Eq. (3), and
that instead of have usedω0 as tuning frequency we have used a tuning frequencyω̂0 not equal
to ω0. Using this, we estimate two phase maps:φ̂0 using the interferogramsI−1, I0, I1, andφ̂1

using the interferogramsI0, I1, I2. Given thatω̂0 6= ω0, these phase maps will be obtained with
errors as follows:

φ̂0 = φ + ε0, and

φ̂1 = φ + ω0+ ε1, (11)

whereε0, andε1 are the detuning errors. As shown in [3], we can see that thesedetuning errors
are given as:

ε0 ≈− H(ω0)

H(−ω0)
sin(2φ), ε1 ≈− H(ω0)

H(−ω0)
sin[2(φ + ω0)]. (12)

HereH() is the frequency response of the quadrature filter corresponding to the 3-steps phase-
shifting algorithm (see Eq. (2)). From the previous section, we must note that we would obtain
H(ω0) = 0 only if ω0 would be used as tuning frequency of the 3-steps algorithm. Taking
the phase difference betweenφ̂0, and φ̂1, and using some trigonometric identities this phase
difference has the following form:

φ̂1− φ̂0 ≈ ω0−2
H(ω0)

H(−ω0)
[cos(2φ −ω0)sin(ω0)]. (13)
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In this equation, we see that we can obtain a good estimator for the actual temporal frequency
ω0 by eliminating the contribution of the detuning error. To eliminate this sinusoidal detuning
error, we can take the spatial mean. The spatial mean of the sinusoidal detuning error is zero
if for complete spatial periods or fringes. We may have full spatial periods in the sinusoidal
error if the interferograms of the sequence have several fringes, as usually it occurs in practice.
Therefore we suggest the following temporal frequency estimator:

ω̂0 =
1

MN

N

∑
x

M

∑
y

W
[

φ̂1(x,y)− φ̂0(x,y)
]

, (14)

which takes the spatial mean of the wrapped phase differencebetweenφ̂0, andφ̂1, beingW[] the
wrapping operator. Here it is necessary to wrap the phase difference because we actually obtain
the phase mapsφ0, andφ1 wrapped. In this way, we have a good (in one stroke) frequency
estimator no matter if̂φ0, andφ̂1 were given with detuning errors.

Having estimated the temporal frequencyω0, we proceed to demodulate our 5-sample in-
terferogram sequence using Eq. (10). Thus, the self-tuningphase-shifting algorithm can be
given in the following way: Given an interferogram sequenceof 5 interferograms arrayed as
{I−2, I−1, I0, I1, I2} with an unknown temporal frequency,

1. Use the 3-steps phase-shifting algorithm shown in (3), and guess a reasonable temporal
frequency to estimate the phaseφ̂0 using imagesI−1, I0, I1, and the phasêφ1 using images
I0, I1, I2.

2. Givenφ̂0, andφ̂1, estimate the actual temporal frequencyω̂0 using (14).

3. Using this last estimated temporal frequencyω̂0 as tuning frequency, obtain the modulat-
ing phaseφ̂ using (10).

In our experience, this process is good enough to give a very good phase estimation in a single
stroke of this scheme. As expected, having noisy interferograms this exactitude is reduced. To
increase the accuracy, one may iterate this scheme as a refinement process converging to the
actual phase map. Doing this, as we will see in the next section, having interferograms with a
low noise we can rapidly reach detuning errors of the order of10−3 radians in a single iteration.

4. Numerical experiment

To test the self-tuning phase-shifting algorithm developed here, we simulated 5 interferogram
sequences with different temporal frequencies. Each sequence has five interferograms. For com-
parison purposes, we have added white noise with mean zero and a variance of 0.09 radians. An
example of these interferogram sequences is shown in Fig. 1.These simulated interferograms
have very poor fringe visibility since we have added a non constant background illumination
and contrast. To reproduce the interferogram sequences that we used in these tests, the reader
can use the following expressions: the discreet-time interferogram sequence was simulated as
follows:

It(x,y) = a(x,y)+b(x,y)cos[φ(x,y)+ ω0t)]+ ηt(x,y), (15)

whereω0 is the actual temporal carrier,ηt(x,y) is a white noise random field with mean zero
and a variance of 0.09 radians that changes for each interferogram. The phase isgiven as a
simple plane in the following way:

φ(x,y) =
4π
N

x+
4π
M

y, (16)
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whereM = N = 256, and(x,y) are in a rectangular grid ofM ×N. The background and the
contrast are given as

a(x,y) = 5 ·e−
(x−128)2+(y−128)2

602 , and b(x,y) = e
− (x−128)2+(y−128)2

952 , (17)

considering that the upper left corner is the image origin.

I−2 I−1 I0 I1 I2

Fig. 1. A sample of an interferogram sequence used for testing the algorithm.

We made two numerical tests, one without noise (the varianceof the white noiseηt(x,y) is
zero), and other with noise as described above. In table 1, wecan see the numerical results of
these two tests. The results of these two tests were obtainedin a single iteration of the algo-
rithm shown in the previous section guessing the first temporal frequency arbitrary aŝω0 = 1.8
radians. We have three columns for each sequence tested; thefirst column indicates the ac-
tual temporal frequency of the interferogram sequence, thesecond is the absolute difference
between the actual temporal frequency and the estimated frequency, and the third column indi-
cates the absolute phase error between the actual modulating phase, and the estimated phase.
These absolute phase errors are obtained as:

Error=
1

MN

N

∑
x

M

∑
y
‖W

[

φ̂ (x,y)−W[φ(x,y)]
]

‖, (18)

beingφ̂ (x,y) the estimated phase, andφ(x,y) the actual modulating phase that must be wrapped
sinceφ̂(x,y) is given modulus 2π . In the test without noise the numerical results are very clear.

Test without noise Test with noise
ω0 |ω0− ω̂0| Phase error

0.5236 0.000290 1.237218×10−10

1.0472 0.000257 3.237827×10−11

1.5708 0.000000 8.529672×10−17

2.0944 0.001101 5.950607×10−10

2.6180 0.001500 3.302402×10−9

ω0 |ω0− ω̂0| Phase error

0.5236 0.118162 1.125428×10−3

1.0472 0.025353 2.050984×10−3

1.5708 0.032049 5.955105×10−4

2.0944 0.091089 1.771106×10−3

2.6180 0.596645 5.680754×10−3

Table 1. Numerical results.

These results let us see the high accuracy of the self-tuningalgorithm shown here, obtaining
phase errors less than 10−8 radians in a single iteration. On the other hand, the test with noise
obtains phase errors of the order of 10−3 radians in a single stroke of the self-tuning algorithm
shown here. As the reader can anticipate, if we increase the variance of the noise this accuracy is
reduced considerably. However, in practice when we have very noised image interferograms the
first tool that we use is a low-pass filter to remove the excessive noise from the interferograms.
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Using self-tuning

iterative methoditerative method

Using least-squares

Fig. 2. Phase maps obtained from image sequence of Fig. 1. Theleft one is obtained using
the method as is shown in Ref. [8], while the right one is obtained using the method as
depicted in this paper.

4.1. Difference with other works

In the works published before, we found the work given in Ref.[8]. Its approach uses iter-
atively the phase shifting least-squares technique, and from this class of methods this is one
of the fastest and more accurate self-tuning algorithms published before the work we are pre-
senting here. As shown in Ref. [8], to apply the algorithm it is assumed that the background
illumination, and contrast are spatially and temporally constants. This is the principle of phase
shifting techniques that uses a least-squares approach [9]. Therefore if we apply the algorithm
shown in Ref. [8] to the interferograms sequence shown in Fig. 1 (without noise), this algorithm
only obtains mistaken phase maps and phase shifts. In Fig. 2 we see an example of this result
for the phase. There we show the phase map obtained with the algorithm shown in Ref. [8], and
the phase map obtained with the self-tuning algorithm shownhere. The expected phase is as
the phase obtained with the self-tuning algorithm shown here. Our algorithm converges to this
phase map after two iterations with a relative phase error ofthe order of 10−6 radians, that is,
the absolute phase difference between the phase obtained inthe current iteration, and the phase
obtained in the previous iteration. On the other hand, usingthe least-squares approach after 55
iterations we see the mistaken phase shown in Fig. 2, with a relative error of 0.405158 radians.
This simple test, let exposed that using least-squares as in[8], we will not converge to the ac-
tual modulating phase if the background illumination and contrast are not spatially constants.
However, It is necessary to remark that the main importance of the work published in Ref. [8]
is that it is able to obtain the phase shifting of all interferograms in the sequence, and it is not
necessary to have a linear temporal phase shifting. The maindrawback of this method is that
the background illumination and contrast must be spatiallyconstants.

5. Commentaries and conclusions

Summing up, we have show a new technique to estimate in a single stroke the temporal carrier
frequency, and modulating phase of a set of 5 interferometric temporal data, as well as its
modulating phase. As shown in the results section, the self-tuning phase-shifting algorithm
herein presented is very efficient and accurate. With a single iteration, the algorithm obtains
pretty good approximations to the actual carrier and (as a consequence) the modulating phase
of the interferogram sequence. For all practical purposes,our carrier and phase estimation far
exceeds the standard experimental sources of error. However, if the experimental application
requires more accuracy, this algorithm may be further iterated to obtain even better estimations.
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