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Abstract: In Phase Stepping Interferometry (PSI) an interferogram
sequence having a known, and constant phase shift betweenténfero-
grams is required. Here we take the case where this constase shift
is unknown and the only assumption is that the interferogrdmhave a
temporal carrier. To recover the modulating phase fromnkerferograms,
we propose a self-tuning phase-shifting algorithm. Ouoaigm estimates
the temporal frequency first, and then this knowledge is usesktimate
the interesting modulating phase. There are several welvhkniterative
schemes published before, but our approach has the uniyaatade of
being very fast. Our new temporal carrier, and phase estinistcapable
of obtaining a very good approximation of their temporakiearin a single
iteration. Numerical experiments are given to show thegraréince of this
simple yet powerful self-tuning phase shifting algorithm.
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1. Introduction

Phase Stepping Interferometry (PSI), is one of the mostlissthniques in optical metrology
for estimating the modulating phase of interferograms|iijstandard PSI, an interferogram
sequence of N interferograms is taken having a known terhparger. When the actual tem-
poral frequency of the interferograms does not match withekpected carrier of the phase
shifting algorithm, a phase estimation error is introdycedietuning error [2, 3]. To mini-
mize most of this detuning error, people have proposed pbstsmation techniques robust to
this [2, 4, 5, 6, 7, 8]. One class of such methods are designbd tess sensitive to detuning
[2, 4]. In this way one tolerates small deviations betweerdttiual temporal frequency, and the
carrier of the phase-shifting algorithm. However, thes¢hods still assume that the temporal
frequency of interferograms is known but having a small utaiety region. The best known
example of this is the 5-steps phase-shifting algorithnppsed by Hariharan [2], which as-
sumes that the interferogram sequence has a temporal fregoér/2 radians, and tolerates
small detuning arountt/2 radians.

Another class of phase stepping techniques with much p&odyn carrier, estimates this
carrier from the interferometric data. These methods ameedlsself-calibrating, and are always
iterative [5, 6, 7, 8]. These algorithms work in such a wayt tt@ncurrently estimates the
modulating phase and their carrier frequency. The most comaf these methods uses the
least-squares approach [9]. They make a rough estimatitireahodulating phase by solving
a linear equation system, and guessing a temporal frequ&hey, using this initial phase
estimation, the tuning carrier is improved by solving otNeinear equation systems (one for
each interferogram). Iterating this process it eventuabgttles down in the actual carrier and
the searched modulated phase [5, 8]. A drawback if this igales, is that the background
illumination and contrast of the interferograms must beiafia constant. Otherwise we may
obtain erroneous results. We emphasize that this drawbagit ipresent in our method.

A desired goal in PSI is to recover the modulating phase franmgerferogram sequence
keeping the whole phase estimation process as simple ablgos3ur new algorithm obtains
good temporal carrier estimations in one stroke. Having ¢airrier estimation one then uses
it to obtain the searched modulating phase using a tunabieps slgorithm. This tunable 5
steps algorithm is also developed in this paper. Doing thesglestimation in this new way,
it is far simpler than solving several times (iterativelyyet of linear equations [5, 8]. The
algorithm herein presented is of the iterative class; h@wneén practice, it can obtain very good
modulating phase estimation in a single iteration.

The structure of the paper is as follows: in the next sectiensiwow two useful tunable
phase-shifting algorithms; these are not iterative, thveyjast plain PSI algorithms but may
be tuned anywhere in the spectral domain. After this, we shomalgorithm to estimate the
temporal carrier in a single stroke. Having this fairly ga@drier estimation we introduce this
result into our tunable 5 steps PSI algorithm to obtain tleed®ed modulated phase. Finally
we show some numerical experiments with the aim of seeingehfermance of this algorithm.

2. Tunable phase-shifting algorithms
In PSI, a discreet temporal interferogram may be mathemitidescribed using the following
mathematical expression:

li(xy) = a(xy) +b(x,y) cog@(xy) + ant), 1)

wherea(x,y) is the interferogram’s background illuminatiob(x,y) its contrast,g(x,y) its
modulating phase that we want to recover, apdts temporal frequency carrier, referred here
simply as the temporal frequency. The integer indegfers to then-interferogram taken at
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time t. For simplicity, in what follows the spatial depender{gey) of the temporal interfer-
ogram signal is not shown, however, the reader must takeaiotount that;, a, b, and ¢,
are scalar fields laying in a rectangular gridvéfx N pixels and equals the spatial size of the
interferograms.

A phase-shifting algorithm can be seeing as a complex quaerélter, and we said that it is
tunable because the temporal frequency of the algorithnibbeantroduced as a free parameter
of the algorithm [10]. For example, the following quadrattilter:

h(t) =[25(t) - 6(t—1) — d(t+1)]cogwn/2) +i[d(t — 1)+ O(t+1)]sin(awn/2),  (2)

whereay is its tuning frequencyd(t) is the Dirac delta function, and= +/—1. Using this
guadrature filter, the modulating phase is given by the ¥alg well knowntunable3-steps
phase-shifting algorithm:

. Im{[h=1](0)} li—h
Qo= arctan{Re{[h* I](O)}] = arctan{2IO ST tan(wn/2) |, 3)
where Ré[h=1](0)}, and Im{[hx1](0)} are the real and imaginary part of the convolutiem
evaluated at time zero, and is the algorithm'’s tuning frequency. Here, the interfeegs in
the sequence are ordered{&s, lo,l1}.
The quadrature filter of the 3-steps phase-shifting algorishown in Eq. (2), has the fol-
lowing frequency response [10]:

H(w) = Z[h(t)] =4sir‘(w/2)sin(w_2w0), )

whereH (w) is the Fourier transform of (2). By inspecting this frequgenesponse, into the
interval [— 71, 1], we can see that this filter has a zerouat 0, and atw = wy. In this way
this quadrature filter removes these frequency componemesefore, applying this quadrature
filter to the interferogram signal (1), it just let pass thengex signali; = ¢ - el?+@Y from
which the modulating phase is taken. The constantrelated with the frequency response of
H(w) at w = —ayp. This simple result shows what a quadrature fildlko) must do for real
interferogram signals like the given in Eq. (1). In genetlag spectraH (w) of a quadrature
filter for phase-shifting interferometry must have at letast following conditionsH (0) = 0,
H(wy) = 0, andH (—ax) # 0 in the spectral line.

Using this way of thinking, we may extend this attractiveahle feature of the 3 steps
algorithm to PSI algorithms of higher order. For example magy build a quadrature filter for
a 5 steps phase-shifting algorithm with the following twaicdilters [11]:

Hi(w) = sin(w), (5)

Hzo(w) = 1-—cow— ax). (6)
By simple evaluation, we can see that the fikafw) has a zero at frequeney = 0, and that
the filterH,(w) has a (tangential) zero at frequerwy= «y. This tangential touch ab = ap
of filter Hy, makes it more robust to detuning errors in a neighborhoad ef ayp [3]. Then,

the quadrature filter that we are looking for can be obtairsati@ product of these filters in the
following way:

H(w) = Hi(w)Hz(w)
= sin(w)[1—cofw— wp)]. (7)
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Having this, to obtain théormulafor our phase-shifting algorithm it is necessary to obthm t
inverse Fourier transform to get:
h(t) = [20(t)—d(t—2)—9d(t+2)]sin(awp)/2
+ i[20(t—1)—20(t+1)]/2—i[0(t—2)—d(t+2)]coq wp)/2. (8)
Taking the convolution of this filter operator with the sijgaven in Eq. (1), we have the
following complex signal:
It = h(t)xl

= [2—l—2—lts2]sin(an)/2+1(20t-1— 2lt11) /2= i(li-2 — lt42) cOLan) /2], (9)

which needs at least 5 interferograms in order to be applidithe t. Finally we obtain the

formula four our tunable 5 steps phase-shifting algorithm as theiragmnt of this complex
signal att = 0 in the following way:

® = arctan“:]eggﬂ
2l 3 -2l [l p—Iz]cogwy)
- a““a”{ Do 1o lsin@) |’ (10)

where Ré}, and Im{}, takes the real and imaginary part of the complex signah this
point, the reader can prove by direct substitution that itake the particular case wheg =
11/2, then you obtain the 5-steps phase-shifting algorithmigluéd by Hariharan in Ref. [2].
However, the formula given in (10), is therefore a more gahexpression of a 5-steps phase-
shifting algorithm.

3. Sdf-tuning phase-shifting algorithm

Consider that we have an interferogram sequence of five féntgrams ordered as
{l_2,1_1,1p,11,12}, and thatwy is its temporal carrier. Now suppose that we are going to re-
cover the modulating phase using the 3-steps phase shétgugithm shown in Eq. (3), and
that instead of have used as tuning frequency we have used a tuning frequémayot equal

to ap. Using this, we estimate two phase magsusing the interferogramis 1, lo, 1, and g
using the interferograms, I, 1,. Given thatay # wy, these phase maps will be obtained with
errors as follows:

® = ¢+, and

B = @+uwote, (11)
wheregy, ande; are the detuning errors. As shown in [3], we can see that thetsming errors
are given as:

sin2(¢-+ w)]. (12)

&R~ — H(ab))sin(Zqo), & ~ H ()

H(—aw H(— )
HereH () is the frequency response of the quadrature filter correipgro the 3-steps phase-
shifting algorithm (see Eg. (2)). From the previous sectiw@ must note that we would obtain
H(wo) = 0 only if ap would be used as tuning frequency of the 3-steps algorittaking

the phase difference betweey, and @, and using some trigonometric identities this phase
difference has the following form:

H (o)
H (-

@ — @~ w2 jlcos29 - o) sin(a)) (13)
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In this equation, we see that we can obtain a good estimatdinécactual temporal frequency
wyp by eliminating the contribution of the detuning error. Tox@hate this sinusoidal detuning
error, we can take the spatial mean. The spatial mean of tlusaidal detuning error is zero
if for complete spatial periods or fringes. We may have fplhtial periods in the sinusoidal
error if the interferograms of the sequence have severajds, as usually it occurs in practice.
Therefore we suggest the following temporal frequencyresior:

. 1 NM -
p = W Z ZW [(RI_(X,y) - (R)(Xay)} ) (14)
Xy

which takes the spatial mean of the wrapped phase diffetsetoeeng, andg, beingW|| the
wrapping operator. Here it is necessary to wrap the phafaelifce because we actually obtain
the phase mapgy, and @ wrapped. In this way, we have a good (in one stroke) frequency
estimator no matter ify, and¢, were given with detuning errors.

Having estimated the temporal frequerwy, we proceed to demodulate our 5-sample in-
terferogram sequence using Eq. (10). Thus, the self-tupiagse-shifting algorithm can be
given in the following way: Given an interferogram sequent® interferograms arrayed as
{1_2,1_1,lp, 11,12} with an unknown temporal frequency,

1. Use the 3-steps phase-shifting algorithm shown in (3),qress a reasonable temporal
frequency to estimate the phaggusing images$_1, lo, I1, and the phase, using images

lo, 11, 12.
2. Givengy, and, estimate the actual temporal frequetigyusing (14).

3. Using this last estimated temporal frequetgyas tuning frequency, obtain the modulat-
ing phasep using (10).

In our experience, this process is good enough to give a \@g ghase estimation in a single
stroke of this scheme. As expected, having noisy interferog this exactitude is reduced. To
increase the accuracy, one may iterate this scheme as amefib@rocess converging to the
actual phase map. Doing this, as we will see in the next sgdtiaving interferograms with a
low noise we can rapidly reach detuning errors of the ordé&oof radians in a single iteration.

4. Numerical experiment

To test the self-tuning phase-shifting algorithm devetbpere, we simulated 5 interferogram
sequences with differenttemporal frequencies. Each segueas five interferograms. For com-
parison purposes, we have added white noise with mean zé\ariance of @9 radians. An
example of these interferogram sequences is shown in Fithdse simulated interferograms
have very poor fringe visibility since we have added a nonstamt background illumination
and contrast. To reproduce the interferogram sequencewéhased in these tests, the reader
can use the following expressions: the discreet-timefietegram sequence was simulated as
follows:

lt(x,y) = a(x,y) + b(x,y) coge(x,y) + aot)] + ne(x.y), (15)

wherewy is the actual temporal carriem; (X,y) is a white noise random field with mean zero
and a variance of.09 radians that changes for each interferogram. The phagieds as a
simple plane in the following way:

4 4m
P(xy) = N WY (16)

#116560 - $15.00 USD Received 1 Sep 2009; revised 5 Nov 2009; accepted 5 Nov 2009; published 25 Jan 2010
(C) 2010 OSA 1 February 2010/ Vol. 18, No. 3/ OPTICS EXPRESS 2636



whereM = N = 256, and(x,y) are in a rectangular grid af x N. The background and the
contrast are given as

 (x=1282+(y-12872 (x—128)2+(y—128)2

axy)=5-¢ & , and bxy—e % (17)

considering that the upper left corner is the image origin.

I, I, Iy L I

Fig. 1. A sample of an interferogram sequence used for tgttimalgorithm.

We made two numerical tests, one without noise (the variahtiee white noisey (x,y) is
zero), and other with noise as described above. In table Tanweee the numerical results of
these two tests. The results of these two tests were obtairedingle iteration of the algo-
rithm shown in the previous section guessing the first temdoequency arbitrary aéy = 1.8
radians. We have three columns for each sequence testefirstheolumn indicates the ac-
tual temporal frequency of the interferogram sequencesétend is the absolute difference
between the actual temporal frequency and the estimatgddrey, and the third column indi-
cates the absolute phase error between the actual modupdtase, and the estimated phase.
These absolute phase errors are obtained as:

1

oSS IW[G(xy) ~Wie( )] (18)

Error=

<M z
<M=

being@(x, y) the estimated phase, aptk, y) the actual modulating phase that must be wrapped
since@(x,y) is given modulus 2. In the test without noise the numerical results are verarcle

Test without noise Test with noise
| w | Jao— | | Phaseerror | [ a |[|ap—ay[| Phaseerror |
0.5236] 0.000290] 1.237218x 1010 0.5236] 0.118162| 1.125428x 103
1.0472| 0.000257]| 3.237827x 10 11 1.0472] 0.025353| 2.050984x 103
1.5708| 0.000000| 8.529672x 10 17 1.5708] 0.032049| 5.955105x 10 4
2.0944 | 0.001101]| 5.950607x 10 10 2.0944 | 0.091089| 1.771106x 103
2.6180| 0.001500| 3.302402x 10°° 2.6180| 0.596645| 5.680754x 103

Table 1. Numerical results.

These results let us see the high accuracy of the self-tualgayithm shown here, obtaining
phase errors less than Tradians in a single iteration. On the other hand, the tes$t moise
obtains phase errors of the order of #0adians in a single stroke of the self-tuning algorithm
shown here. As the reader can anticipate, if we increasegtfience of the noise this accuracy is
reduced considerably. However, in practice when we hawen@sed image interferograms the
first tool that we use is a low-pass filter to remove the exeessvise from the interferograms.
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7 “

Using least-squares Using self-tuning
iterative method iterative method

Fig. 2. Phase maps obtained from image sequence of Fig. leftlme is obtained using
the method as is shown in Ref. [8], while the right one is ot®diusing the method as
depicted in this paper.

4.1. Difference with other works

In the works published before, we found the work given in R&J. Its approach uses iter-
atively the phase shifting least-squares technique, amd this class of methods this is one
of the fastest and more accurate self-tuning algorithmdighdxd before the work we are pre-
senting here. As shown in Ref. [8], to apply the algorithnsiassumed that the background
illumination, and contrast are spatially and temporallgstants. This is the principle of phase
shifting techniques that uses a least-squares approachl{8iefore if we apply the algorithm
shown in Ref. [8] to the interferograms sequence shown inTHgithout noise), this algorithm
only obtains mistaken phase maps and phase shifts. In Fig. && an example of this result
for the phase. There we show the phase map obtained withghataim shown in Ref. [8], and
the phase map obtained with the self-tuning algorithm shbene. The expected phase is as
the phase obtained with the self-tuning algorithm showre h@ur algorithm converges to this
phase map after two iterations with a relative phase errémebrder of 10° radians, that is,
the absolute phase difference between the phase obtaitiegléarrent iteration, and the phase
obtained in the previous iteration. On the other hand, usiadeast-squares approach after 55
iterations we see the mistaken phase shown in Fig. 2, wittaive error of 0405158 radians.
This simple test, let exposed that using least-squares[&%, we will not converge to the ac-
tual modulating phase if the background illumination andtcast are not spatially constants.
However, It is necessary to remark that the main importafdesowork published in Ref. [8]

is that it is able to obtain the phase shifting of all inteofgrams in the sequence, and it is not
necessary to have a linear temporal phase shifting. The draimback of this method is that
the background illumination and contrast must be spata@lystants.

5. Commentariesand conclusions

Summing up, we have show a new technique to estimate in aesitrglke the temporal carrier
frequency, and modulating phase of a set of 5 interferomé&trporal data, as well as its
modulating phase. As shown in the results section, thetselfiig phase-shifting algorithm
herein presented is very efficient and accurate. With a siitgtation, the algorithm obtains
pretty good approximations to the actual carrier and (asnaequence) the modulating phase
of the interferogram sequence. For all practical purpasescarrier and phase estimation far
exceeds the standard experimental sources of error. HowEtlee experimental application
requires more accuracy, this algorithm may be furthertiéeréo obtain even better estimations.
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