
Non-iterative method for designing super-
resolving pupil filters 

Noé Alcalá Ochoa* and J. E. A. Landgrave 

Centro de Investigaciones en Óptica, A.C., Loma del bosque 115, Col. Lomas del campestre, 
37150 León, México 

*alon@cio.mx 

Abstract: We propose a method of designing pupil filters for transverse 
super-resolution without making use of recursive algorithms or the 
parabolic approximation for the point spread function (PSF). We represent 
the amplitude of the PSF as an expansion of orthogonal functions from the 
Fourier-Bessel transform of a Dini series. Their coefficients are related with 
desired features of the PSF, such as the transversal super-resolution gain 
and the intensity of the secondary maxima. We show the possibility to 
derive closed formulas to obtain large super-resolution gains with tolerable 
side-lobe intensities, at the expense of increasing the intensity of a chosen 
secondary lobe. 
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1. Introduction 

There are fields where it is crucial to improve the resolution limit of an optical system. For 
example, in laser ablation the PSF diameter needs to be reduced for femtosecond laser 
machining [1]; in microscopy, such improvement is required in confocal microscopes [2]; in 
high density data storage, super-resolving confocal readout systems are needed to retrieve the 
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data [3], etc. In general, super-resolution involves a transversal or a longitudinal reduction of 
the PSF, although these are not independent [4]. In particular, the design of super-resolving 
pupils demands the reduction of the PSF radius, the optimization of the Strehl ratio and the 
brightness of its rings. Toraldo Di Francia [5] proposed an interpolating method to design 
pupils with equally spaced rings, and proved the possibility of reducing the size of the PSF as 
much as desired by displacing the brighter secondary lobes farther from the central lobe. The 
cost was a drastic reduction of the Strehl ratio. Later, Sheppard and Hegedus [6] introduced 
the parabolic approximation of the PSF, which has been used to design pupils with iterative 
methods [7–9], or to derive closed expressions in the case of pupils with three zones [10]. 
More recently, the use of parabolic approximations has been abandoned, and instead accurate 
merit functions have been constructed to use in conjunction with iterative methods [11–13]. In 
any case, these methods require an initial guess, which in most cases determines the solution 
that we obtain. 

The aim of this work is to show the possibility of designing useful super-resolving pupil 
filters, without resorting to iterative schemes and second order approximations for the PSF 
(parabolic approximation). The desired pupil function is expanded into a Dini series, and its 
Fourier-Bessel transform is found analytically. This also leads to a series in terms of a set of 
orthogonal functions, but now representing the amplitude of the PSF. Previously, one of the 
authors used this kind of series to find super-resolving pupils with iterative methods [14]. 
What we want now is to avoid the iterative scheme, by relating the coefficient of the 
amplitude PSF series to parameters such as the super-resolving gain and the maximum 
intensity of the secondary lobes. In this form, we can readily obtain new super-resolving 
pupils by the simple expedient of providing the coefficients of the Dini series, which are 
found from simple algebraic expressions involving the parameters just mentioned above. 

Although the method becomes less accurate outside the interval 0.55 0.75ε< < , where 

0 1ε< < is the super-resolving gain parameter, we can still achieve with relative ease large 

reductions of the central lobe of the PSF, with tolerable side-lobe intensity ratios. For this we 
have to accept a drastic drop of the Strehl ratio, arising from channeling a large portion of the 
energy in the PSF to a predefined secondary lobe. This resembles, of course, the result 
obtained by Toraldo di Francia with binary pupils [5]. In the last part of the paper we present 
some examples that clearly show this kind of results. 

2. Methodology 

We shall start with a derivation of the expansion for the PSF, and its connection with the pupil 

function. Let ( , )G vδ  be the normalized complex amplitude distribution of an axially 

symmetric, complex pupil function ( )g ρ . Then 

 
1

2

0
0

( , ) 2 ( ) exp ( 2 ) ( ) ,G v g i J v dδ ρ πδρ ρ ρ ρ= −∫  (1) 

where ρ  is the normalized radial coordinate and ( ),vδ  are the axial and the transverse 

dimensionless optical coordinates, respectively, defined by the equations 2( ) 2NAδ ξ λ=  

and 2v r NAπ λ= , where z fξ = −  is the axial distance from the focus, NA is the numerical 

aperture, r is the radial distance and λ  the wavelength. Let us now suppose that we can 

describe the pupil function as a truncated Dini series: 
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where 
0
( )J x  is the Bessel function of the first kind and zero order, nα  are the roots of 

1
( )J x , 

Cn are the, possibly complex, coefficients to be calculated, and K + 1 the number of basis 
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functions that we adopt. We must recall here that the pupil function must satisfy the condition 

( ) 1g ρ ≤  in the interval [0, 1]. 

To obtain the corresponding transverse amplitude of the PSF we use Eq. (2) in Eq. (1) and 

set 0δ = . We obtain: 
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Evaluating the integrals as shown in [15], we can rewrite Eq. (3) as 
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From this equation it can be readily shown that ( )n k n kφ α δ= , where n kδ  is the kronecker 

delta; in other words, every basis function ( )nφ ν  nulls at the location of the maxima of the 

others [15]. Using this property in Eq. (4) we find 

 ( ) .k kCφ α =  (6) 

Therefore, the coefficients that we seek are the amplitudes of ( )φ ν  evaluated at the roots 

of 
1
( )J x . In general the location of the peaks of the PSF, 

2
( )φ ν , it is not at the roots nα , 

but it is close to them if 0.55 0.75ε< < , given that the basis functions ( )nφ ν have their 

principal maximum precisely at nα  [15]. 

We shall now proceed to adjust the shape of the function 
2

( )vφ , taking into account 

certain parameters. These are the super-resolving gain ε , the Strehl ratio S, and the relative 

intensity of the first lobe 
1
Γ  [12]. They are defined as follows: 
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where D is the diameter of the central lobe of the PSF, the sub index c stands for clear 

aperture, and nµ  is the “optical” radius of its nth-secondary maximum. Note that we have 

extended the definition of the parameter 
1
Γ  to all side-lobe intensities. 

We will now relate the coefficients of Eq. (4) with these parameters. Since n nµ α≃ , 

recalling that 
0

0α = , from Eqs. (6) and (9) we obtain: 
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with 
0

1Γ = . Assuming 
2

(0) 1cφ = , from Eq. (6) and (8) we have 
0

(0)C Sφ= = . 

Therefore 
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Γ
≃  (11) 

Since Eq. (11) only involves the modulus of the coefficients, in particular we can choose 

 exp( ) ( 1) , 0,..., .n
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C in n Kπ = − =
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≃  (12) 

Once we have related the values of nΓ  with the coefficients of the expansion, we turn our 

attention to the super-resolving gain parameter ε , pertaining to the reduction of the central 

lobe of the PSF. What we want is [Eq. (4)]: 
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In order to satisfy Eqs. (13) and (12), one of the coefficients in Eq. (13) must be calculated 
from the rest. For example, the last one: 

 
( )

( )
1

1

01

( 1)
.

nK

K n
nK n

S
C φ εα

φ εα

−

=

−
=

Γ
∑  (14) 

With this, we also fix the value of KΓ  [Eqs. (14) and (12)]. At this point we have obtained 

the coefficients nC that, substituted in Eq. (4), will give us the PSF with the desired 

modifications, namely, a reduced central lobe, and known side-lobe relative intensities. 

However, these coefficients must be scaled to ensure that the condition ( ) 1g ρ ≤  will be 

satisfied in the interval [0, 1]. The new coefficients, therefore, will be nk C , with 

1 max ( )k g ρ=    , where max ( )g ρ    is computed from Eq. (2) and the original 

coefficients; typically we obtain k < 1. This normalization procedure does not affect the 
relative intensities of the secondary lobes, which are given by ratios of the coefficients, nor 

the value of the super-resolution gain. But the actual Strehl ratio becomes 
2 2 2

0
k C k S= , 

where S was its intended value. Thus, with our method the parameters ε , S and 
1
Γ  of Eqs. 

(7), (8) and (9) cannot be satisfied independently, since the value of S must be used to ensure 

that ( ) 1g ρ ≤  in the interval [0, 1] [Eqs. (12), (14) and (2)]. For simplicity, therefore, we 

will set S = 1 to start the design of any pupil filter. 

3. Results and discussion 

We shall now present some examples to clarify further our method of design, and also to 
compare some of our results with those obtained in previous work. In the first example we 

used two coefficients (K = 1) and 0.60, 0.63 and 0.65ε =   , to show that two basis functions 

are sufficient to design pupil filters with moderate Strehl ratios and tolerable side-lobe 

intensities. Initially we set 
0

1C S= =  [Eq. (12)], and calculate 
1

C  for each value of ε  [Eq. 

(14)]. Substituting the values of these two coefficients in Eq. (2) we obtain the normalizing 

factors k, and from them the correct values for S. For example, in the case of 0.65ε =  we had 

S = 0.174, in agreement with the corresponding plot in Fig. 1. From the heights of the central 

and the first peaks in this plot we find 
1

2.6Γ ≃ . The pupil functions corresponding to the 

PSFs shown in Fig. 1 can now be obtained from Eq. (2). Figure 2 shows the pupil function for 

the case 0.65ε = . For the sake of comparison, we also included the case 0.80ε = . 
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Fig. 1. PSFs obtained with our method for different values of the super-resolution gain 

parameter: 0.80, 0.65, 0.63, 0.60ε = . Only two basis functions (K = 1) were 

employed in this example. 

 

Fig. 2. Pupil functions corresponding to the PSFs with 0.65ε =  and 0.80  in Fig. 1. 

In the second example we choose K = 2, to show how can we manipulate the intensity of 

one of the side lobes. Using again 0.65ε = , we assigned different values to 
1
Γ , obtaining in 

this form PSFs with different values of S and 
2KC =  - and thus of 

2
Γ . For example, setting 

1
3.0, 3.5 and 4.5Γ =     , after scaling the coefficients in each case we found that S = 0.131, 

0.155, 0.100 (Fig. 3). Note that a higher value of 
1
Γ  does not necessarily mean a lower value 

of S. In particular, the three coefficients which yielded S = 0.100 were (0.3147, −0.1484, 
0.0951). Substituting them in Eq. (4) and plotting the resulting PSF we can see that in fact 

0.65ε = , S = 0.100 but 
1

4.2Γ =  (curve with a dotted line). The value that we expected for 

1
Γ was [ ]2 2 2

0 1
0.3147 ( 0.1484) 4.5.C C = − ≃  As we mentioned before, the discrepancy 

between the expected and the actual value of 
1
Γ  arises from the fact that we assumed that nΓ  

could be obtained from the values of 
2

( )nφ α , instead of those of 
2

( )nφ µ , where nµ  is the 
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location of the nth maximum of the PSF. In practice, the tails of the basis functions adjacent 

to the nth basis function add small contributions to the PSF in the vicinity of nα , shifting the 

position of the local maximum of the PSF from nα , the position of the maximum of the nth 

basis function, to nµ , the actual location of the nth maximum of the PSF. We believe that this 

is not a serious drawback, however, giving that the desired value of nΓ  may be obtained by 

increasing slightly its intended value. There is no such problem with the super-resolving gain 

parameter ε , which is predicted accurately. Figure 4 shows the relative errors of 
1
Γ  for 

various nominal values of this parameter. In all cases 0.65ε =  and K = 2. Notice that the 

percentual error is under 20% in the range 0.55 0.75ε< < , for all the values of 
1
Γ  that we 

chose. 

 

Fig. 3. PSFs obtained with our method for 
1

3.0, 3.5, 4.5Γ = . In all cases K = 2 and 

0.65ε = . Notice that when 
1

4.5Γ ≃ , 
2 1

Γ Γ≃ . 

 

Fig. 4. Relative errors for various nominal values of the parameter 
1
Γ . In all cases 

0.65ε =  and K = 2. 
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The third example shows the possibility of further reductions of the super-resolution gain 
parameter, at the expense of a large increment in the intensity of a predefined side-lobe. 

Figure 5 shows a PSF with 0.50ε = , obtained with only four coefficients of the Dini 

expansion (K = 3). We set 
1 2

2.5Γ = Γ =  and calculated 
3

C  from Eq. (14). After scaling the 

resulting coefficients we had (0.0340, -0.0215, 0.0215, -0.0711)nC =     . Plotting the 

corresponding PSF we can see that in fact 0.50ε = , 2(0.0340) 0.0012S = = , but 
1

2.2Γ ≃ . 

The reason for the slight discrepancy in the value of 
1
Γ  was given above. 

 

Fig. 5. PSF designed for a high super-resolving gain parameter, 0.50ε = , with 

1 2
= = 2.5Γ Γ   . 

Finally, in Fig. 6 we compare our results (the curve with a dotted line of Fig. 3), with 
those of Canales and Cagigal (the curve with an interrumped line in Fig. 6) [12]. Both results 
were normalized to show the behavior of the secondary lobes. Our PSF shows a higher 
reduction of the secondary lobes, but this was achieved with a lower value of the Strehl ratio, 
S. Similar results were obtained by one of the authors when using an iterative method for the 
same design problem [14]. 

 

Fig. 6. Comparison of the PSF obtained with our method and the best PSF presented in ref 
[12]. For the purposes of comparison, both PSFs have been normalized. 
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4. Conclusions 

We have presented a non-iterative method to design super-resolving pupils based on Dini 
series, obtaining formulas which relate the coefficients of the series with relevant design 
parameters, like the super-resolution gain and the relative intensities of the side lobes of the 
PSF. Both, the pupil function and its corresponding PSF can be readily computed from these 
coefficients. 
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