
X-ray optics simulation using Gaussian 
superposition technique 

Mourad Idir,1,* Moisés Cywiak,2 Arquímedes Morales,2 and Mohammed H. Modi3 
1Brookhaven National Laboratory – NSLS II 50 Rutherford Dr. Upton 11973-5000, New York, USA 

2Centro de Investigaciones en Óptica A.C.Loma del Bosque No. 115 León Gto., Mexico 
3X-ray Optics Section, Raja Ramanna, Centre for Advanced Technology, Indore 452013, India 

*midir@bnl.gov 

Abstract: We present an efficient method to perform x-ray optics 

simulation with high or partially coherent x-ray sources using Gaussian 

superposition technique. In a previous paper, we have demonstrated that full 

characterization of optical systems, diffractive and geometric, is possible by 

using the Fresnel Gaussian Shape Invariant (FGSI) previously reported in 

the literature. The complex amplitude distribution in the object plane is 

represented by a linear superposition of complex Gaussians wavelets and 

then propagated through the optical system by means of the referred 

Gaussian invariant. This allows ray tracing through the optical system and 

at the same time allows calculating with high precision the complex wave-

amplitude distribution at any plane of observation. This technique can be 

applied in a wide spectral range where the Fresnel diffraction integral 

applies including visible, x-rays, acoustic waves, etc. We describe the 

technique and include some computer simulations as illustrative examples 

for x-ray optical component. We show also that this method can be used to 

study partial or total coherence illumination problem. 
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1. Introduction 

In recent years a steadily growing interest has been made in the design of electron accelerators 

in order to reduce the beam emittance and to increase the photon brilliance. This has increased 

the coherent properties of the beam and has opened up new branches of microscopy and 

spectroscopy at nano meter length scales. X-ray nano probe is going to be an important tool 

for future research, hence numerous work have been carried out to develop nano focusing 

optics of diffraction limited performance. However, there is no simple way to describe the 

wave-front propagation through x-ray optical component. Traditionally, Monte Carlo ray 

tracing, based on geometric optics, has been used to model the x-ray components that 

transport the x-ray beam radiation from the source to the sample [1,2]. With these new 

installations, these simulations tools cannot be used to accurately simulate the high or 

partially coherent beam and wave-optical calculations are essential for predicting the x-ray 

optics performances [3–8]. 

In this paper, we will use wavefront propagation by Gaussian superposition to simulate 

some x-ray optical components. The presented technique can be used to characterize from 

simple (slit, double slits) to more complex x-ray optical components (Fresnel zone plate 

(FZP), refractive lenses and mirrors) using full or partial coherence of the incoming beam. 

Our proposed technique is based in the propagation of a Gaussian shape invariant under the 

Fresnel diffraction integral [9–12]. This paper is organized as follows. In Section 2, we 

outline the mathematical description of the Gaussian superposition technique and in Section 3 

we describe its applicability to problems related to x-ray optics simulation and show some 

simulation results and discussion. Finally, conclusions are drawn in Section 4. 
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2. Theoretical framework - Mathematical description of the Gaussian superposition 

technique 

In this section we give a short overview of the simulation tools used. Our method is divided in 

two approaches: 

2.1 Gaussian superposition 

The Gaussian superposition can be applied for the Young slits and for the FZP propagation. 

This is because rays are not needed here. Thus, the front-wave is sampled and Fresnel 

propagated. 

Let an object field being located at a coordinate plane ( ),x y . We will represent this 

wavefront as a superposition of Gaussian wavelets equally spaced following a Rayleigh-like 

criterion, with each wavelet having the same semi-width describe by 

 ( ) ( ) ( )
2 2

2 2

0 2

( ) ( )
, exp exp ( ) exp ( ) .m m

m m m
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In Eq. (1), σ  is the semi-width of each Gaussian wavelet in the superposition process. 

mα , mβ  represent defocus and tilting factors respectively. The spatial centers of each 

Gaussian function are located at ( ),m mx y  and mP  are the amplitudes of each Gaussian 

wavelet, selected as the height of its corresponding pixel. 

To calculate the amplitude distribution of the propagated wave-front at a coordinate 

plane ( ),ξ η , parallel to the ( ),x y  plane, located at a distance z  from the object plane, we 

will use the Fresnel diffraction integral given by, 
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Substituting Eq. (1) into Eq. (2) gives the amplitude distribution of the propagated field 
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In Eq. (3), for brevity we have defined, 
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and 
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Equations (3-5) will be used to calculate the amplitude distributions at a plane of 

observation for FZPs and Young slits diffraction where ray tracing is not necessary. 

2.2 The Fresnel Gaussian Shape Invariant (which requires Gaussian superposition) 

FGSI is necessary when tracing rays. For example, if we need to calculate the focusing 

performances of a reflective mirror, we need first to perform ray tracing. Then based in these 

rays, the diffraction pattern is calculated by means of FGSI. 

For the cases where ray tracing is required, for example in refraction or reflection, we will 

apply the Gaussian superposition process to our FGSI in the following manner. 

First, we represent each Gaussian wavelet at an arbitrary plane n  as, 
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By applying the Fresnel diffraction integral, Eq. (2) to Eq. (6), the amplitude distribution 

at a plane 1n +  located at a distance z  is given as, 
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In Eq. (7), 
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Each FGSI, aside of being part of the process of superposition, represents a traveling 

wavelet that can be viewed as a ray whose trajectory coincides with the spatial center of each 

FGSI. When a ray changes direction due to a reflection or refraction, to an angle nθ  it is 

necessary first to update the driver parameter nα as, 

 ( )2
tan ,n n

n

π
α θ

λ
=  (9) 

and then, accordingly, 
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 (10) 

After the overall ray tracing is performed, the superposition process is applied to calculate 

the diffraction pattern at the image plane. 

The method suggested is based on the Fresnel integral transformations, this approximation 

results from paraxial conditions of the Fresnel integral, or, in other words, from parabolic 

differential equation (PDE) restrictions. 

The principle of our technique for x-ray components simulation is illustrated by means of 

several different examples. In order to validate at least some of the modeling abilities of the 

program, it was decided to carry out a case study on typical x-ray components like, slits, 

double slits, diffractive lenses and refractive optics. 

3. Application of the Gaussian superposition method to x-ray optics simulation 

In this section we introduce several examples where different geometries and configurations 

of x-ray optical components are illustrated. These examples include single slit diffraction, 

Young slits interference experiment, x-ray diffractive lenses (Fresnel Zone Plate FZP). 

3.1 Slit diffraction 

The first example is the single slit diffraction with the aperture centered at x = 0 with a size 

equals to b = 20 microns. The incident wavefront is a plane wave and the wavelength used for 

this simulation is λ = 0.1 nm. Figure 1 shows the diffraction profile of a 20 micron slit versus 

the distance z between the slit and the detector. 
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Fig. 1. 20 microns slit diffraction profile versus the distance z between the slit and the detector 

position for λ = 0.1 nm. 

In Fig. 1, we clearly see the transition from Fresnel to Fraunhofer diffraction. 

3.2 Young double slit modeling 

In this example, the Young double slit experiment is modeled. The geometry is described in 

Fig. 2. The incident wavefront is a plane wave, and the wavelength used for this simulation is 

λ = 0.1 nm. The slit aperture is 5 microns and the center to center distance b = 30 microns. 

 

Fig. 2. Double slit diffraction geometry (slit size 5 microns, b = 30 microns and L vary from 1 

cm to 300 cm) 

Figure 3 shows the calculated interference patterns for several screens to slit distances. 
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Fig. 3. Double Slit diffraction profile versus the distance z (from 1 mm up to 3 m) between the 

slit and the detector position for λ = 0.1 nm. 

Our very powerful technique based on Wave-front propagation by Gaussian superposition 

can be used to simulate x-ray optical components under fully or partially coherent 

illumination. Young’s double slit experiment is one of the most efficient and widely used 

methods for measuring the transverse coherence properties of wavefields [13]. Using the 

geometry describe in Fig. 4, we have calculated the normalized intensity distribution due to 

Young slits illuminated by two point sources with same intensity and variable coherence 

(from full to incoherent situation). 

 

Fig. 4. Double Slit diffraction geometry using two points sources. 
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Two points source are separated by 5 microns and are illuminating two slits located at l = 

3 m. The slit separation b is equal to 30 microns and the distance L where the detector is 

located varied from 30 cm to 3 m. The Coherence factor (COH) between the two sources is 

changed from fully coherent COH = 1 to fully incoherent COH = 0. 

 

Fig. 5. Double Slit diffraction profile versus the distance z (from 1 mm up to 3 m) between the 

slit and the detector position for λ = 0.1 nm. 

From Fig. 5, we can see that our model can be used to simulate interference patterns using 

x-ray partially coherent incoming beam. Some experimental results on x-ray pinhole 

diffraction [14] and hard and soft x-ray double slits experiments can be found in [15–17]. 

3.3 Focusing optics FZP – Refractive lenses 

3.3.1 Fresnel zone plate 

Among many x-ray microfocusing optics developed so far, FZPs have been demonstrated as 

one of the most promising for hard and soft x-ray spectral regions. FZPs are vastly used for 

X-rays focusing and are the key optical components in most x-ray microscopes [18–21]. The 

ultimate transverse spatial resolution tδ for the m -th order diffraction on the focal plane is 

equal to 1.22 /N mδ , where the suffix N  is the total number of zones and Nδ  is the 

outermost zone width. In our simulation, we will assume that the FZP is illuminated by a 

plane wave so the focal point size will be diffraction limited and equal to 1.22 /N mδ . We 

have chosen arbitrarily a zone plate with a principal focal length p  = 1 m and a diameter D  

= 140 µm and an illuminating wavelength λ  = 0.1nm (12.4 keV). 

Our FZP is represented by the following equation, 

 
( ) 2 2

0

sin / 2 2
( ) exp .

2 n

n AA n
ZP x i p x p

n

π π
π λ≠

  = + − + −   
∑  (11) 

In the Eq. (11), A  is introduced to allow us to change the FZP duty cycle. When 1A =  

the usual FZP is obtained, see for example [22]; we assign to this FZP a duty cycle of one or 

100% in order to make easier the comparisons among different FZP. When 1A < , the duty 

cycle is less than one, for example, if 0.9A = , the FZP will exhibit a duty cycle of 0.9 or 90% 
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of the common FZP. For our simulations, the above equation is expressed as a superposition 

of Gaussian functions, and then propagated by means of the Fresnel diffraction integral. 

Figure 6 shows the intensity distributions obtained at the first and second focal planes 

respectively for a FZP with a duty cycle of one. The width at the first focal plane is 0.2 µm 

FWHM with an integrated power of 0.12. 
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Fig. 6. Intensity distribution at the 1st and second focal plane (p = 1 and p = 2) for a ZP with 

duty cycle of one. 

As anticipated because the duty cycle of the FZP is equal to 1, the second order diffraction 

is equal to zero. One possibility to overcome this problem is to modify the duty cycle. For 

example, Fig. 7 shows the intensity distributions at the first focal plane p = 1, and p = 1/2 

respectively for a FZP with a duty cycle of 1/2 or 50%. 
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Fig. 7. Intensity distributions at the first and second focal plane (p = 1 and p = 2) for ZP with a 

duty cycle of 1/2. 

For the 1st order diffraction, the total power under the central peak is 0.066 compare to the 

0.12 (classical FZP). As it can be seen from the resulting figures, decreasing the duty cycle of 

the FZP improves the focusing performance without disturbing the principal focal region. 

Additionally, decreasing the duty cycle makes possible the use of the second order focal plane 

that normally cannot be used. With this approach, we can clearly see that the reduction of the 

duty cycle in a FZP results in a better focusing performance for the second order foci by 

reducing the FWHM of the focused spot size while maintaining reasonable efficiency. 

3.3.2 Refractive lenses 

Since the first successful observation [23,24] of synchrotron x-ray beam focusing with 

compound refractive lenses (CRL), the x-ray refractive optics was developed rapidly. 

Parabolic refractive x-ray lenses, made of light elements like beryllium and aluminum, are 

now commonly used as optical components for hard x-ray microscopy and analysis [25,26]. 

The parabolic profile guarantees that they image free of spherical aberrations. 

In thin lens approximation, the focal distance of the lenses is given by f = R/(2δN), where 

N is the number of single lenses and δ the index of refraction decrement (n = 1−δ + iβ). For 

Beryllium at λ = 0.1 nm, the index of refraction is (1-2.213e-6) + i3.177e-10. If we set R = 

100 microns, the focal length can be expressed as: f (m) = 45.1875/N. 

For our simulations, the geometry is described in Fig. 8. 

 

Fig. 8. Parabolic-Spherical Refractive lenses geometry. N = 1, f = 45.1875 m 
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Figure 9 shows the calculated diffraction pattern for N = 1 (f = 45.1875 m), R = 100 

microns Be refractive lens. The lens exhibits double parabolic surfaces and the distance 

between surfaces is 10 microns. 

 

Fig. 9. Calculated diffraction pattern for a Be parabolic refractive lens (N = 1 (f = 2.2594 m), R 

= 100 microns). 

4. Conclusions 

We have demonstrated successful applications of our Gaussian superposition methods to 

simulate x-ray optical components from slits diffraction to x-ray lenses. These very powerful 

techniques based on wavefront propagation by Gaussian superposition can be used to simulate 

x-ray optics under fully or partially coherent illuminations. Our next step will be to use this 

technique in order to perform simulations of reflective optics and try more complex x-ray 

optical layout and compare our simulations with real measurements. We expect further 

applications of these interesting simulation tools. 
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