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Abstract

In this thesis, I study theoretically the applicability of the method for
controlling multistability by parametrical and stochastic modulation. The
method for controlling multistability was suggested by Pisarchik and Goswami
in 2000. It implies additional harmonic modulation to a system parameter
that allows annihilation of undesirable attractors in a multistable system. I
begin from a study of the attractor annihilation in the bistable Hénon map
subject to additive noise. The Hénon map is one of the simplest dynami-
cal systems which exhibits coexistence of attractors. First, I focus on the
parameter region where two different periodic orbits coexist (period 1 and
period 3) and apply additional harmonic modulation to a system parameter
to destroy the period-3 attractor.
I demonstrate that additive noise can facilitate the attractor annihilation for
some modulation frequencies, in the sense that an undesired attractor can be
destroyed with a smaller amplitude of the control modulation. On the other
hand, for other modulation frequencies noise can stabilize the attractor. In
the latter case, noise induces multistability in the system with parameter
modulation.
Then, I explore the parameter region in the map where a periodic orbit
coexists with a chaotic orbit and study the influence of noise on attractor
annihilation.
Finally, I study resonance phenomena in the volume of basins of attraction
of coexisting period-1 and period-3 attractors in the Hénon map, subject
to normally distributed noise added to both variables. As the noise level
is increased, the volume of the basin of attraction of the period-1 attractor
grows up, while the volume of the basin of the period-3 attractor drops
down. At a certain level of noise the volume of the basin of the period-1
attractor reaches its maximum value.
In the second part of the thesis, I study numerically attractor annihilation in
an erbium-doped fiber laser (EDFL) with three coexisting attractors. The
annihilation curves are analyzed with codimensional-one and codimensional-
two bifurcation diagrams. The results of this study are in good agreement
with experimental results reported previously by Pisarchik et.al.
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Chapter 1

Introduction.

Many nonlinear systems exhibit the coexistence of multiple dynamical equi-
librium states (attractors) in some regions of parameter space. This phe-
nomenon, referred to as generalized multistability, has been found in a variety
of systems in different fields, including electronics, optics, mechanics and bi-
ology, in addition to some standard models like the Hénon map, Duffing,
Rössler, van der Pol, and Lorenz equations. In such multiattractor sys-
tems a final state depends crucially on initial conditions. However, in many
practical situations multistability can create inconvenience, for instance, in
construction of optical devices with determined characteristics. A method
for controlling multistability was suggested by Pisarchik and Goswami in
2000 [1]. The authors called up the idea of complete annihilation of undesir-
able attractors in order to make the system monostable. They showed that
undesirable states can be destroyed by a weak periodic modulation applied
to a system parameter. Later the method has been applied to control mul-
tistability in coupled Duffing oscillators [2], a time-delayed logistic map [3],
and lasers [4]. The method has been realized experimentally in a CO2 laser
[1] and in a fiber laser [5].
In this thesis I study numerically the application of the method for control-
ling multistability to discrete and continuous systems. As a paradigm of a
discrete-time dynamical system I select the Hénon map. It is one of the most
studied examples of dynamical systems that exhibit chaotic behavior. The
Hénon map takes a point (x, y) in the plane and maps it to a new point.
The canonical Hénon map is interesting because, unlike the logistic map,
its orbits are defined by a simple description. The change in the dynamical
behavior of the map can be illustrated through a bifurcation diagram, which
demonstrates the evolution of the map variables through different critical
points where the dynamics is qualitatively changed, as a parameter is varied.
It is very important for any control method to consider its robustness against
noise. Noise is generally associated with hindrance, with something that is
irregular and cannot be perfectly controlled. Furthermore, noise is virtu-
ally unavoidable since it is impossible to isolate a system perfectly from its
environment. We are taught by conventional wisdom that the transmission
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Chapter 1. Introduction.

and detection of signals is hindered by noise. However, during the last two
decades, the paradigm of stochastic resonance (SR) proved this assertion
wrong: indeed, the addition of the appropriate amount of noise can boost a
signal and hence facilitate its detection in a noisy environment. Due to its
simplicity and robustness, SR has been implemented by mother nature on
almost every scale, thus attracting interdisciplinary interest from physicists,
geologists, engineers, biologists and medical doctors, who nowadays use it
as an instrument for their specific purposes [6].
In stochastic resonance, the signal-to-noise ratio (SNR) is nonmonotonic
with respect to noise level. This cannot occur in linear systems. Most
recent studies of stochastic resonance involve bistable systems with a weak
external periodic forcing [7].
As an example, I explore the noisy Hénon map, since the Hénon map is one
of the simplest systems which can display generalized multistability. All the
analysis is performed with MATLAB. The system dynamics is studied with
time series, power spectra, bifurcation diagrams, and basins of attraction of
coexisting attractors.

In the second part of thesis I study the applicability of the method for at-
tractor annihilation to continuous system on an example of a laser system. I
consider an erbium-doped fiber laser (EDFL). The advantages of these lasers
are the long interaction length of pumping light with the active ions, which
leads to high gain and to single-transversal-mode operation produced by a
suitable choice of fiber parameters. These properties make EDFLs excellent
light sources for optical communications, reflectometry, sensing, medicine,
etc. Meanwhile, these lasers are quite sensitive to any external perturba-
tion that may destabilize their normal operation. Therefore, the knowledge
of the dynamic behavior of these lasers is of great importance and can be
important for many applications.

From the viewpoint of nonlinear dynamics, rare-earth-doped fiber lasers,
along with solid-state, semiconductor, and electric discharge CO2 and CO
lasers, belong to class-B lasers. In these class of laser, polarization is adia-
batically eliminated and the dynamics can be ruled by two rate equations
for field and population inversion. In spite of an impressive array of research
on complex dynamics in lasers, the nonlinear dynamics of EDFLs has be-
gun to be studied only recently. Only few papers have been devoted to
a study of the nonlinear response of the EDFL to parametric modulation.
The main features of the dynamic behavior of these lasers are similar to
those of other class-B lasers. First, a period-doubling route to chaos was

2



Chapter 1. Introduction.

observed by Lacot et al. [8] in a bipolarized two-mode EDFL with harmonic
pump modulation. The authors have also developed a model based on two
coherently pumped coupled lasers. Later, a quasi-periodic route to chaos
was found by Sanchez et al. [9] in a dual-wavelength EDFL. Eventually Luo
et al. [10] revealed the coexistence of period-doubling and intermittency
routes to chaos in a pump-modulated ring EDFL. They also reported on
bistability (the coexistence of two periodic attractors) in this laser. More
recently, optical bistability (coexistence of a limit cycle and a fixed point)
was detected by Mao and Lit [11] in the vicinity of the first laser threshold
in a dual-wavelength EDFL with overlapping cavities.

Recently, the coexistence of multiple periodic attractors (generalized multi-
stability) has been found both theoretically and experimentally in EDFLs
subjected either to loss or pump modulation [2]. Many papers have been
devoted to a study of self-pulsation behavior of EDFLs. Such behavior has
been suggested to be due to the presence of a saturable absorber in the
fiber in the form of ion pairs or pump depletion. The Q-switching behav-
ior can also be attributed to excited-state absorption (ESA) at the lasing
wavelength and to a thermo-lensing effect that is due to ESA at the pump
wavelength.

In this thesis I explore the theoretical model of 1560-nm EDFL developed
recently by Dr. A. V. Kiryanov [12] which displays multistability under
harmonic modulation of a diode pump laser. I study laser dynamics over a
wide range of frequencies and amplitudes of pump modulation. Then I apply
the control technique for attractor annihilation to simulate the experiments
reported in Ref. [2]. Finally, I find good agreement between the numerical
and experimental results.

The thesis contains five chapters.
Chapter 1. Introduction.

Introduction contains the justification, objectives, methodology and de-
scribes the structure of the thesis.

Chapter 2. Basic concepts of nonlinear dynamics.
This chapter briefly introduces the reader to basic concepts and definitions
of nonlinear dynamics, such as discrete and continuous systems, periodic or-
bits, attractors, bifurcations, stochastic resonance, deterministic resonance,
and coherence resonance.
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Chapter 1. Introduction.

Chapter 3. Control of multistability in the Hénon map.
In this chapter I study the Hénon map in the parameter region where period-
1 and period-3 attractors coexist, the influence of noise and parametric mod-
ulation on the coexistence of the attractors. I start with the case where noise
is added to a single variable and investigate the effect of additive noise with
either uniform or normal distribution. Then, I consider the case when nor-
mal noise is added to both map variables and search for the noise threshold
for attractor annihilation. I also study volumes of the basins of attraction of
the coexisting attractors in the presence of normally distributed noise. Fi-
nally, I present the dependence of the basin’s volumes on noise and demon-
strate the existence of a noise-induced resonance refered to as generalized
coherence resonance.

In this chapter I also consider the range of the coexistence of period-3 and
chaotic attractors and apply small harmonic modulation to the control pa-
rameter when the system stays initially in one of the states.

Chapter 4. Control of multistability in an erbium-doped fiber
laser.
This chapter is devoted to a numerical study of dynamics of a multistable
erbium-doped fiber laser with three coexisting attractors. I demonstrate
with codimentional-one and codimentional-two bifurcation diagrams where
the method for attractor annihilation can be used to control multistability
in this laser.

Chapter 5. Conclusions.
This chapter contains general conclusions of the thesis.
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Chapter 2

Basic Concepts of Nonlinear
Dynamics.

Introduction

In this chapter I will describe briefly several concepts of nonlinear dynamics
which I will use in the rest of the thesis. I will give definitions of such
fundamental concepts as discret and continuous systems, periodic orbits,
attractors, bifurcations, stochastic resonance, deterministic resonance, and
coherence resonance.
Since the material of this chapter is standard, it can be found in many
textbooks on nonlinear dynamics (see, e.g., [13, 14, 15, 16, 17, 18]).
I will give only basic descriptions of these concepts, which will be enough to
understand the remaining chapters.

2.1 Definitions

Nonlinear dynamics
Dynamics is a concept that deals with a system change, i.e. with systems
which evolve in time. Whether the system in question settles down to equi-
librium, keeps repeating in cycles, or does something more complicated, so
it is dynamics that we use to analyze the behavior. So, a dynamical sys-
tem consists of a set of possible states, together with a rule that determines
present states in terms of past states. Some examples of dynamical systems
are swinging pendulums, bouncing balls, robot arms, reactions in a chemical
process, water flowing in a stream, or an airplane in flight. In the case of
the pendulum, both position and velocity vary in time, so we would focus in
these states and the rules that determine how they change over time. Usu-
ally, we have a mathematical model that can be derived from a set of laws,
that tell us how a real dynamical system works. The model will typically
have equations that may be parameterized by time and the previous states
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Chapter 2. Basic Concepts of Nonlinear Dynamics.

of the system. These equations can be used to get the future state of a
dynamical system. Whenever parts of a dynamical system interfere, or co-
operate, or compete, there are nonlinear interactions going on, and therefore
the behavior of such systems is non-linear. We may say that linear systems
do not occur very often in nature.
Thus, a rough definition of a nonlinear dynamical system is a system whose
time evolution equations are nonlinear, that is, the dynamical variables de-
scribing the properties of the system appear in the equations in a nonlinear
form, and the superposition principle does not apply.

Discrete system
There are two types of dynamical systems: discrete and continuous systems.
A discrete time system takes the current state as input and updates its
variable by producing a new state as output. Discrete time systems are
called maps.
Mathematically a map is defined as a function whose domain (input) space
and range (output) space are the same and the rule that governs a map is

xn = f (xn−1), (2.1)

where the variable n stands for time and xn is the state of the system in
time n. The output of the rule is used as an input value for the next state.
In this work we explore a discrete time dynamical system, in particular, the
Hénon map, which is described as

xn+1 = 1− µx2
n + yn,

yn+1 = −Jxn,

(2.2)

where xn and yn can be measured as time series, J is the determinant of
Jacobian related to dissipation, and µ is the parameter.

Continuous time dynamical system
A dynamical system consists of a set of possible states, together with a rule
that determines the present states in terms past states. In a continuous
dynamical system, the governed rule is a set of differential equations and
the term of a continue time dynamical system is sometimes used.
The general state equation is

u̇ = f(u), u(t0) = u0, (2.3)

where u ∈ D ⊂ Rn, t ∈ R+. D is an open subset of Rn.

6



Chapter 2. Basic Concepts of Nonlinear Dynamics.

Autonomous system
A system of differential equations of the form 2.3, in which the independent
variable t does not occur explicitly is called autonomous system.

Nonautonomous system
Consider the following differential equation:

u̇ = f(u, t), u(t0) = u0, u ∈ D ⊂ Rn, t ∈ R+. (2.4)

If the right-hand side depends explicitly on time equation 2.4, it is called
nonautonomous system.

Periodic equation
If in the equation 2.4 f(u, t) = f(u, t + T ) for T > 0 exist for all u and t,
then equation 2.4 is said to be time periodic with period T .

Attractor
There are many different types of motion which a dynamical system can
exhibit. We can define an attractor as an asymptotically stable fixed point
or an orbit in the phase space, at which the system is attracted to.
There are many types of attractors: fixed points, limit cycles, chaotic at-
tractors, infinite states, synchronized states, etc. Here we will define only
those of them which we will use in the Hénon map.

Fixed point
If a discrete system is given by a map f : Rn− > Rn, the point u∗ ∈ Rn is
called a fixed point if f(u∗) = u∗ .

Sometimes the fixed points are called equilibrium points or critical points.
The simplest attractor is a fixed point, which can be seen, for example, in a
pendulum when friction and gravity bring the system to a halt.

Periodic orbit
We can also observe so-called periodic orbits of period k, defined by k points
such that

xi+1 = f (xi),
xi+2 = f(f (xi)) = f 2(xi),

:
xi+k = fk(xi) = xi,

(2.5)

7



Chapter 2. Basic Concepts of Nonlinear Dynamics.

where k > 0.

Chaotic attractor
Chaos is an irregular behavior of a system. A chaotic attractor, is not a
fixed point or a limit cycle. However, not any system that fluctuates irreg-
ularly in time represents a chaotic behavior. Chaos, as used in nonlinear
dynamics, represents a behavior observed in deterministic dynamical equa-
tions. Chaotic dynamics has the additional property that small differences
in initial conditions grow over time, but the dynamics is finite, and variables
do not grow indefinitely. This property is often called sensitive dependence
on initial conditions. Because of this important property, it is impossible to
make accurate long term prediction about the state of the system without
knowing exactly its initial state. Any minor uncertainty will be amplified so
as to render actual knowledge of the state of the system is impossible. In a
real system it is always impossible to know the state of the system exactly,
since there always exists some uncertainty in experimental measurements.

Phase space
If the dynamical system is given by f : Rn− > Rn, Rn is refered to as phase
space. We will assume, it has the standard Euclidean structure.

Time series
In statistics and signal processing, time series is a sequence of data points,
measured typically at successive times, spaced apart at uniform time inter-
vals. A time series graph shows the growth of a sequence as a function of
time.

Basin of attraction
Let x∗ be an asymptotically stable fixed point (attractor) of map f . Then
the basin of attraction (or the stable set) ws(x∗) of x∗ is defined as the set
A containing x∗ such that if x ∈ A, then f n(x) → x∗ as n → ∞ (i.e., the
maximal set that is attracted to attractor x∗) .

Deterministic chaos
Deterministic chaos denotes the irregular or chaotic motion that is gener-
ated by nonlinear systems whose dynamical laws uniquely determine the
time evolution from a knowledge of its previous history. So, deterministic
chaos means that there is a definite rule with no random term governing the
dynamics. In deterministic models every event or action is the inevitable
result of preceding events, thus, in principle, every fact can be completely
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Chapter 2. Basic Concepts of Nonlinear Dynamics.

predicted in advance. In 1892 Poincaré described mathematically that a
small change in the initial conditions produced a big change on the final
state of the famous three-body problem under the action of gravity.

Bifurcation
A bifurcation describes the qualitative changes in the set of fixed points or
periodic points or other sets of dynamical interest that can be observed while
a parameter of a system is varied. For example, under the variation in the
parameter value, a fixed point may change from being stable to unstable, or
a cycle might suddenly appear.

Saddle-node bifurcation
A saddle-node bifurcation results in the creation of two new fixed points,
one stable and one unstable.

Bifurcation diagram
A bifurcation diagram represents the dynamical behavior of a system as a
function of a control parameter. The bifurcation diagram can be constructed
by repeating the following procedure: (1) Fix a value of control parameter
a, (2) Fix initial conditions for variables x, (3) Calculate a map, (4) Ignore
transients and plot x, (5) Increase a. A bifurcation diagram displays the
birth, evolution, and the death of attracting sets.

Power spectrum
For a given signal, a power spectrum gives a plot of the portion of a sig-
nal’s power (energy per unit time) falling within given frequency bins. The
most common way of generating a power spectrum is by using a Fast Fourier
Transform (FFT), but other techniques such as the maximum entropy method
can also be used.

Generalized multistability
The coexistence of attractors is often called generalized multistability. In
nonlinear systems, multiple attractors are common, and indeed there may
be periodic and chaotic attractors coexisting.

Stochastic resonance
Stochastic resonance (SR) is a phenomenon of an increase of the signal-
to-noise ratio (SNR) with increasing input noise in bistable or multistable
nonlinear systems [19, 20].
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Chapter 2. Basic Concepts of Nonlinear Dynamics.

Deterministic resonance
Deterministic resonance (or noise-free stochastic resonance) is a quite simi-
lar phenomena to SR caused by internal chaotic dynamics instead of external
noise. It was discovered by Anishchenko et al.[21] in a simple map.

Coherence resonance
In the case of an excitable system driven by an appropriate (moderate)
amount of noise, however, the trajectory of the system can become quite
regular, a phenomenon known as autonomous stochastic resonance or co-
herence resonance [22].

Characteristic frequency of attractor
Mathematically, the characteristic frequency (or relaxation oscillation fre-
quency) fr is the eigenfrequency, i.e. the imaginary part of eigenvalues of
the associated stable solution. The relaxation oscillation frequency can be
also measured numerically from time series or power spectrum as a maxi-
mum system response to small-amplitude modulation.

Attractor annihilation
The method for attractor annihilation was suggested by Pisarchik and Goswami
[1] to control generalized multistability. The method implies small harmonic
parameter modulation with properly chosen frequency and amplitude.

10



Chapter 3

Control of multistability in
the Hénon map

3.1 Coexistence of periodic orbits

Introduction
In this chapter I study the effect of additive noise in a bistable system.
As an example, I explore the noisy Hénon map, first, in the parameter
region where period-1 and period-3 attractors coexist. I shall show how the
period-3 attractor can be either destroyed or stabilized in the presence of
both periodic and stochastic modulation of different amplitudes.

3.1.1 Noise is added to one variable

In this section, I study the effect of additive noise, with either uniform or
normal distribution, in the Hénon map with two coexisting periodic attrac-
tors. I find a threshold value of noise amplitude ξ, at which the period-3
attractor can be destroyed.

The noisy Hénon map can be described as
xn+1 = 1− µx2

n + yn + ξσ(1),
yn+1 = −Jxn,

(3.1)

where J = 0.9 is the Jacobian related to dissipation, and σ(1) is a random

variable with either uniformly or normally distribution.
The map exhibits the coexistence of the period 1 and period 3 within the
certain range of µ. The parameter range of this bistability depends on
noise. At the threshold value of noise the period-3 attractor undergoes
SNB where it dies. Figure 3.1 shows the dependence of this threshold value
ξth, on parameter µ. For noise with uniform distribution (curve 2), this
dependence has a minimum at ξth = 0.0057 for µ0 = 1.084, and a maximum
at ξth = 0.0522 for µ0 = 0.96, whereas for noise with normal distribution
(curve 1), a minimum is observed at ξth = 0.00165 for µ0 = 1.09, and a
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Chapter 3. Control of multistability in the Hénon map

maximum at ξth = 0.0158 for µ0 = 0.97. One can see that the period-
3 attractor is more stable for µ0 = 0.97 and less stable for larger values.
Normal noise destroys the attractor more easily than uniform noise.
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Figure 3.1: Threshold noise for annihilation of period-3 attractor in the
Hénon map as a function of parameter µ0 for (1) normal noise and (2)
uniform noise.

Since each attractor has its own characteristic frequency, it becomes possible
to act selectively on the desired attractor by modulating a system parameter
with a properly chosen frequency. The control is applied in the form of
harmonic modulation

µ = µ0[1 + µc sin(2πfcn)], (3.2)

where µc and fc are the amplitude and frequency of the control. I choose
the initial value of the control parameter µ0 = 1.09 that corresponds to
minimum amplitude ξth of noise with normal distribution.
Figure 3.2 demonstrates that external noise can stabilize the period-3 attrac-
tor when the modulation frequency is close to the period-doubling frequency
for the period-3 attractor, i.e. fc ≈ 1/6.
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Figure 3.2: Annihilation curves for different noise levels. Noise stabilizes the
period-3 attractor at certain frequencies of external modulation.

3.1.2 Noise is added to both variables

In the following I study the influence of normal noise applied to both vari-
ables and search for the threshold noise for attractor annihilation.

Let us consider the noisy Hénon map described as

xn+1 = 1− µx2
n + yn + ξσ(1),

yn+1 = −Jxn + ξρ(1),
(3.3)

where J = 0.9 is the Jacobian related to dissipation, σ(1) and ρ(1) are
random variables with Gaussian probability distribution of zero mean and
unit standard deviation.
The annihilation curve for the period-3 attractor is plotted in figure 3.3 in
the space of µ and ξ.

One can see the minimum at ξth = 0.00113 for µ = 1.095 and the maximum
at ξth = 0.0096 for µ = 0.97. Thus, the noise effect is different for different
values of the parameter µ. For µ = 0.97 the period 3 is more stable.
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Figure 3.3: Threshold noise for annihilation of the period-3 attractor in the
Hénon map with normal noise added to both variables as a function of the
parameter.

Parameter modulation

I apply harmonic modulation to the parameter µ (equation 3.3). The initial
value of the control parameter is µ0 = 1.095.
The threshold noise ξth for annihilation of the period-3 attractor as a func-
tion of the control frequency is shown in figure 3.4.

One can see from the figure that for higher modulation frequencies noise
is not so efficient as for lower frequencies. The effect of noise for attractor
annihilation is most notable for fc = 0.02.
In figure 3.5 I show the annihilation curves for the period-3 attractor in the
space of the control frequency and amplitude for µ0 = 1.095. Figure 3.5
demonstrates that external noise destabilizes the period-3 attractor when
the modulation frequency is close to the period-doubling frequency for the
period-3 attractor, i.e. fc ≈ 1/6.
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Figure 3.4: Annihilation curve for the period-3 attractor in the space of the
control frequency and threshold noise for µ0 = 1.095.
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Figure 3.5: Annihilation curves for the period-3 attractor in space of the
control frequency and amplitude for µ0 = 1.095.
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Basins of attraction of coexisting period-1 and period-3
attractors

The basins of attraction of coexisting period-1 and period-3 attractors in the
Hénon map are a very rough illustration of the dynamical processes leading
to attractor annihilation. The parameter modulation not only creates peri-
odic orbits, it also changes the organization of attractors and their basins
of attraction [23]. In other words, new attractors are created by parame-
ter modulation and they have different basins of attraction. However, the
changes in the attractor boundaries have no effect on general interpretation
of the phenomenon [23].

The basins of attraction of the Hénon map without harmonic modulation
and without noise are shown in figure 3.6.

Figure 3.6: Basins of attraction of the period-1 (yellow dots) and period-
3 (blue dots) attractors without control modulation and without noise for
µ0 = 1.095.

Now I apply the control modulation at the relaxation oscillation frequency
for the period 3, i.e. fc = 0.11. The basins of attraction of the Hénon map
without noise for the modulation amplitude µc = 0.0079, is shown in figure
3.7.
One can note the decrease of the volume of the basin of the period-3 attrac-
tor in the presence of modulation µc = 0.0079.
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Figure 3.7: Basins of attraction of the period-1 (yellow dots) and period-3
(blue dots) attractors with modulation at µc = 0.0079 and fc = 0.11 without
noise for µ0 = 1.095.

Now I apply the modulation amplitude µc = 0.0079 and fix the frequency
at fc = 0.11 and study the dependence of the basin’s volumes on noise. The
basins with noise ξ = 0.00325 and modulation are shown in figure 3.8.

Figure 3.8: Basins of attraction of the period-1 (yellow dots) and period-3
(blue dots) attractors with modulation at µc = 0.0079 and fc = 0.11 and
noise ξ = 0.00325.

The figure 3.8 show that noise facilitates the annihilation of the period-3
attractor.
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Generalized coherence resonance

Now I change the parameter µ and consider how the basin’s volumes depend
on the parameter of the control modulation. The modulation is applied in
the following form:

µ = µ0 + µc sin(2πfcn), (3.4)

where µc and fc are the amplitude and frequency of the control and µ0 =
1.04.
Figure 3.9 shows the basin’s volumes of the coexisting period-1 and period-3
attractors as a function of the noise amplitude ξ for different values of the
modulation frequency fc. The modulation amplitude is fixed at µc = 0.02.
N is the number of initial conditions for attracting the trajectory to one
of two coexisting attractors. It is seen the maximum in the volume of the
basin of the period-1 for noise amplitude ξ = 0.01.
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Figure 3.9: Volumes of basins of attraction of period-1 and period-3 attrac-
tors as a function of noise for different modulation frequencies at µc = 0.02.

This figure shows the existence of a resonance in the basin’s volumes that
is refer to as generalized coherence resonance. This resonance means that
noise gives a preference to one attractor over the others and so provides
coherent properties of the system.
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3.1.3 Discussions.

The resonant behavior of the basin’s volumes results from the phenomenon
of coherence resonance. In the case of a bistable (or multistable) system,
each attractor is most sensitive to the frequency components in the noise
power spectrum that remains close to the natural frequency of the attractor
(eigenfrequency). In other words, the system amplifies the modulation sig-
nal (or noise components) with natural frequency (for example, fr = 0.08
for the period-3 attractor). As was already mentioned above, the external
modulation with a frequency close to the natural frequency of the attractor
can annihilate the corresponding attractor. So, the system selects this fre-
quency in the noise spectrum and amplifies this noise component. In this
sense noise acts as an external periodic modulation, i.e. noise creates an
eigenfrequency in the system. With increasing noise amplitude, this fre-
quency destroys the basin of attraction of one of the attractors (period 3)
while the volume of the basin of the other coexisting attractor (period 1)
is increased. However, the volume of the basin cannot increase infinitely.
Instead, it reaches maximum at a certain noise level. Finally, high noise
destroys all attractors together with their basins, as one can see in figure
3.9. We refer this resonance to as generalized coherence resonance, because
it appears only in systems demonstrating generalized multistability [24].
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3.2 Coexisting periodic and chaotic orbits

In this chapter I study the Hénon map in the parameter region where the
period-3 attractor and the chaotic attractor coexist. I explore the range of
the coexistence of the period-3 and chaotic attractors and apply small har-
monic modulation to the control parameter while the system stays either in
the period-3 state or in chaos.
Figure 3.10 shows the bifurcation diagram of the Hénon map with coexisting
period-3 and chaotic attractors at interval µ = (1.62, 1.65).

Figure 3.10: Bifurcation diagram of the Hénon map with coexisting period-3
and chaotic attractors .

3.2.1 Modulation is applied while the system stays in the
period-3 attractor

The Hénon map with noise is described as

xn+1 = 1− µx2
n + yn + ξσ(1),

yn+1 = −Jxn + ξρ(1),
(3.5)

where J = 0.06 and σ(1) and ρ(1) are random variables with Gaussian prob-
ability distribution of zero mean and unit standard deviation.
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The control is applied in the form of harmonic modulation

µ = µ0 + µc sin(2πfcn), (3.6)

where µc and fc are the amplitude and frequency of the control. µ0 = 1.62.

Figure 3.11 shows the annihilation curves for the period-3 attractor in the
space of the control frequency and amplitude for different noise levels.
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Figure 3.11: Annihilation curves for period-3 attractor in space of control
frequency and amplitude for different noise levels.

3.2.2 Modulation is applied while the system stays in chaos.

In this section I study the Hénon map with coexisting period-3 and chaotic
attractors. I analyze the power spectra and measure SNRs. The SNR has a
maximum at resonance frequency fr. This is called deterministic resonance.
In a noisy nonchaotic system this phenomenon is called stochastic resonance.
In the presence of both, chaos and noise, this resonance phenomenon is
referred to as deterministic stochastic resonance and the resonance frequency
fr depends on the noise level as shown in figures 3.12 and 3.13.
In figure 3.12 I plot the dependences of the resonance frequency fr(SNR) on
the modulation amplitude for different noise values.
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Figure 3.12: fr (SNR) dependence in the modulation amplitude µc, for
different noise values.

In figure 3.13 I show how the resonance frequency fr(SNR) depends on noise
for different control amplitudes.
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Figure 3.13: Resonance frequency fr(SNR) versus noise for different modu-
lation amplitudes.

From both figures I can conclude that the resonance frequency increases
approximately exponentially with increasing the modulation frequency and
linearly with noise for small amplitudes and small noise, and saturates ap-
proaching the frequency of relaxation oscillations (or natural frequency) of
the period-3 attractor, i.e. fr(SNR) = f

(3)
r , for large amplitudes and noise.
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3.2.3 Discussions.

In the volumes of the basins of attraction of coexisting attractors, I have
found that the system amplifies the modulation signal (or noise components)
with natural frequency (for example, the natural frequency for the period-3
attractor f

(3)
r = 0.08). When the noise level is increasing, the volume of the

basin of attraction of the period-1 attractor is growing, while the volume of
the basin of the period-3 attractor is decreasing. At a certain level of noise
the volume of the basin of the period-1 attractor reaches a maximum value
and with a further increase in the noise level, the volumes of both basins
decrease. As was already mentioned we refer to this effect as generalized
coherence resonance, because it appears only in systems demonstrating gen-
eralized multistability [24]. I have studied the power spectra of the Hénon
map in the region with coexisting period-3 and chaotic attractors and I have
not found deterministic resonance and also, I have not found deterministic-
stochastic resonance.
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Chapter 4

Control of multistability in
an erbium-doped fiber laser
with pump modulation.

Introduction

Erbium-doped fiber lasers (EDFLs) are widely used in many areas of sci-
ence and technology, including communications, reflectometry, sensing, and
medicine, due to their exclusive advantages of high gain and a single transver-
sal mode operation. These laser are also interesting from a point of view
of nonlinear dynamics because of their high sensitivity to any external per-
turbation which can destabilize their normal operation so that the laser
oscillates in a nonlinear regime. Therefore the knowledge of a dynamic be-
havior of the EDFLs under external modulation is of great importance not
only for their technological application, but also for fundamental research
in nonlinear dynamics [26].

In this chapter I study complex dynamics of an erbium-doped fiber laser
subject to harmonic modulation of a diode pump laser. I use a novel laser
model developed by A.V. Kiryanov, that describes all experimentally ob-
served features reported by Pisarchik et al. [27].

The coexistence of different regimes is demonstrated with codimensional-
one and codimensional-two bifurcation diagrams in parameter space of the
modulation frequency and amplitude.
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4.1 Theory

4.1.1 Laser Dynamics.

A laser is usually classified according to the material that provides opti-
cal amplification. This material determines largely the properties of the
laser: the mode of operation (pulsed or continuous), the emission wave-
length, the output power/energy and the coherence properties. Gaseous,
liquid, solid state fiber can provide optical amplification when is properly
excited. The laser transition of the amplifying material may be homoge-
neously broadened, i.e., the light of a certain optical frequency can interact
with all atom/molecules, all of them having the same resonance frequency.
A homogeneous line width 4vH , is given by the medium relaxation rates:
γ⊥ + γ‖ = π4vH

, where γ⊥ and γ‖ are the relaxation rates for inversion and polarization,
respectively. In a inhomogeneous broadening case, the material consists of
atoms/molecules of different resonance frequencies. Light of a particular
optical frequency can then only interact with a fraction of the total number
of atoms/molecules. Lasers may be classified in still another way. Lasers
operating in a single emission mode are described by three equations for
the three relevant variables: field, population and polarization. Usually,
decay is measured on a very different time scale, which is given by the re-
laxation rates κ (damping rate of the laser resonator), γ⊥ and γ‖. If one of
them is much larger than others, the corresponding variable relaxes fast and
consequently adiabatically adjusts to the others. The number of equations
describing the laser is then reduced.
Those lasers for which the population and polarization decay fast in com-
parison with the field have been called class A lasers; those for which only
the polarization relaxes fast, class B lasers; and those for which all three
relaxation rates are of a similar magnitude, class C lasers.
Laser equations for the class A laser reduce to one. Therefore, only a con-
stant output solution exists. For the class B laser, oscillation of energy
between field and inversion population is possible and the equations yield
relaxation oscillations. The class C laser with their coupled dynamics of
field, inversion population, and polarization can display undamped periodic
or non-periodic (chaotic) pulsing.
Class B lasers can, however, show chaotic dynamics when they are exter-
nally influenced via (modulation of a parameter, injection of external light,
or feedback).
A fiber laser belongs to the class B lasers because the polarization in this
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laser can be adiabatically eliminated and the dynamics can be ruled by two
rate equations for field and population inversion. The oscillations in the class
B lasers can be observed only if an additional degree of freedom is added in
the form of either saturable absorber, light injection, or external modulation.
Different dynamical regimes, bistability, and chaos have been observed in the
fiber laser with modulated parameters. Recently, coexistence of multiple pe-
riodic and chaotic attractors have been found numerically in an EDFL with
loss modulation. The final adiabatically attracting state is determined only
by initial conditions. The period of a particular periodic attractor is equal
to subharmonic of the modulation frequency. Each subharmonic branch is
born in a regular saddle-node bifurcation (SNB) and the optimal condition
(minimal driving amplitude) for the appearance of the subsequent branch is
achieved when the driving frequency is close to the corresponding harmonic
of the relaxation oscillation frequency. The overlapping of the subharmonic
branches results in generalized multistability (coexistence of attractors).
From the experimental point of view, the pump modulation is easier to re-
alize than the modulation of the cavity loss. An important difference of
the band on heavily-doped active laser from other class B lasers is that the
former laser represents self-pulsations, i.e., this laser acts as an autonomous
system. The self-pulsing behavior is usually attributed to the presence of
the saturable loss due to erbium ion pairs or pump depletion in the fiber.
Recently, period-doubling and quasi-periodic routes to chaos have been ob-
served in a self-pulsing dual-wavelength EDFL. In this sense, the dynamics
of the EDFL under pump modulation is more sophisticated than the dy-
namics of other class-B lasers.

4.2 Experimental Conditions.

The experimental setup is shown schematically in Figure 4.1.
The erbium-doped fiber laser is pumped by a commercial laser diode

(wavelength 976nm, maximum pump power 300mW) through a wavelength-
division multiplexer (WDM) and a polarization controller (PC). The linear
laser cavity with a 1.5nm length is formed by a piece of heavily doped erbium
fiber (SCL110-01 from IPHT) having a 70 cm length and a core diameter
of 2.7µm (NA O.27), and two Fiber Bragg Gratings (FBG1 and FBG2)
with a 2nm full-width at half-maximum (FWHM) bandwidth and reflectiv-
ity of 91% and 95% at a 1560 nm wavelength. The active fiber has high
concentration of erbium ions (about 2300 ppm) corresponding to absorption
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Figure 4.1: Experimental setup.WDM is the wavelength-division multiplex-
ing coupler,PC is the polarization controller, FBG1 and FBG2 are the Bragg
gratings, and D1 and D2 are the photodetectors.

of 18.5 dB/m at a 980 nm wavelength. The output power of the pumping
laser diode can be modulated with a signal generator controlling the drive
current. The output signals from the pump diode laser and from the fiber
laser are recorded with photodetectors D1 and D2 and analyzed with an
oscilloscope. The optical spectrum bandwidth of the laser is less than 0.1
nm (resolution of the spectrum analyzer).
In the absence of pump modulation, the laser generates periodic oscillations
with the fundamental laser frequency (relaxation oscillations) owing to the
presence of saturable loss in the fiber. The amplitude and frequency of the
oscillations depend on the pump power. When the pump power is low, the
response of the laser is sinusoidal, whereas at the high powers (> 20mW)
the fiber laser oscillates in a pulsed regime at a higher repetition rate.
In the presence of harmonic pump modulation, two competitive processes
are involved in the laser dynamics. These are the self-oscillations and the
external modulation. Thus, the final dynamics depends basically on the re-
lationship between the characteristic frequencies of these two processes.
The laser dynamics is ruled mainly by the ratio of modulation frequency f
to fundamental laser frequency f0 = 30kH which corresponds to the pump
power of 15mW. The latter is defined by the saturable loss in the fiber and
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pump power. General features of the dynamics of the EDFL subjected to
pump modulation [26]. When the modulation frequency is lower than half
of the fundamental laser frequency (f < f0/2) a strong interaction of f with
f0 can lead to frequency and phase locking of self-pulsations to the external
modulation. In this frequency range, the frequency of the laser response can
be controlled by the parameter modulation. In the case of frequency lock-
ing, the ratio of the two frequencies becomes constant at a rational number.
The locked regions in a plane of modulation frequency versus modulation
amplitude form the Arnold’s tongues and a transition to chaos via period
doubling is observed. Moreover, once the ratio of f and f0 is an irrational
number, a quasi-periodic route to chaos is possible. A similar behavior has
been observed in other class-B lasers with a saturable absorber and widely
discussed in scientific literature. For small values of the modulation ampli-
tude, the laser response asymptotically approaches the stable limit cycle, so
is consider that the response to be linear.

4.2.1 Laser Model.

In simulations I use the laser model reported by Pisarchik et al [12]. The
model is based on the rate equations in which a power-balance approach is
applied to a longitudinally pumped EDFL, in which ESA in erbium at the
1.5µm wavelength and averaging of the population along the pumped active
fiber are taken into account. An energy-level diagram of erbium is shown in
Figure 4.1.

However, notice that this model does not incorporate the mechanisms

Figure 4.2: Erbium energy-level diagram.
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responsible for establishing the self-pulsing regime in the laser, such as a
thermo-lensing effect and erbium ion pairs, for the following reasons. First,
in the experiments [27] the pump power is small to introduce thermo lensing
and second, the concentration of erbium is quite low to make the effect of ion
pairs significant. The balance equations for intracavity laser power P (which
is a sum of the powers of the cotrapropagating waves inside the cavity, in
inverse seconds) and the averaged (over the active fiber length) population
N of the upper (2) level (which is a dimensionless variable, 0 ≤ N ≤ 1) are

dP

dt
=

2L

Tr
P{rwα0[N(ξ1 − ξ2)− 1]− αth}+ Psp (4.1)

dN

dt
= −σ12ΓsrwP

πr2
0

(Nξ1 − 1)− N

τ
+ Ppump (4.2)

where N = (1/n0L)
∫

N2(z)dz (N2 is the population of upper laser level 2,
n0 is the refractive index of a cold erbium-doped fiber core, and L is the
active fiber length) and σ12 is the cross section of the absorption transition
from ground state 1 to upper state 2. Here we assume that the cross sec-
tion of the return stimulated transition is practically the same (σ12 = σ21)
yielding ξ1 = (σ12 + σ21)/σ12 = 2. ξ2 = σ23/σ12 = 0.4 is the coefficient
that stands for the ratio between the ESA (σ23) and groundstate absorp-
tion cross sections at the laser wavelength, Tr = (2n0/c)(L + l0) is the
photon intracavity round-trip time [l0 is the total length of the fiber Brag
grating(FBG) coupler tails inside the cavity], α0 = N0σ12Γs is the small-
signal absorption of the erbium fiber at the laser wavelength (N0 = N1 +N2

is the total concentration of erbium ions in the active fiber and Γs is the
overlap factor for EDFL radiation), αth = γ0 + (1/2L)In(1/R) is the in-
tracavity loss on threshold (γ0 is the nonresonant fiber loss and R is the
total reflection coefficient of the FBG couplers), τ is the lifetime of er-
bium ions in excited state 2, r0 is the fiber core radius, w0 is the ra-
dius of the fundamental fiber mode, and rw = 1 − exp[−2(r0/w0)2] is
the factor that addresses a match between the laser fundamental mode
and erbium-doped core volumes inside the active fiber in Equation 4.1,
Psp = N( λg

w0
)2 r2

0α0L
4π2σ12ΓsτTr

x10−3 is the spontaneous emission into the fun-
damental laser mode. It is assumed that the laser spectrum width is 10−3

of the erbium luminescence spectral bandwidth (λg is the laser wavelength).
In Equation 4.2, Ppump = (PP /N0πr2

0L)1− exp[−αpL(1−N)] is the pump
power, where Pp is the pump power at the fiber entrance and αp = N0σ14Γp

is the small-signal absorption of the erbium fiber at the pump wavelength
(σ14 is the cross section of the absorption transition from level 1 to level 4
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and Γp is the overlap factor for pump radiation). The system of Equations
4.1 and 4.2 describes the laser dynamics without external modulation. The
harmonic pump modulation is added as

Pp = P 0
P [1 + m sin(2πFmt)] (4.3)

where m and Fm are the modulation depth and frequency, respectively, and
P 0

P is the pump power without modulation (at m = 0). The calculations
are performed for the experimental conditions described in Table 4.1.
The value of w0 has been measured experimentally, being slightly higher

Table 4.1: Parameters used in simulations
Parameter Dimension Value

L cm 70
n0 1.45
l0 cm 20
Tr ns 8.7
r0 cm 1.5x10−4

τ s 10−2

w0 cm 3.5x10−4

σ12 cm2 2.3x10−21

σ23 cm2 0.9x10−21

σ14 cm2 0.46x10−21

γ0 0.038
R 0.8
N0 cm−3 5.4x1019

α0 cm−1 0.0534
αp cm−1 0.025

than the value 2.5x10−4cm given by the formula for a step-index single-
mode fiber: w0 = r0(0.65 + 1.619/V 1.5 + 2.879/V 6) where V is related to
numerical aperture NA and r0, as V = (2πr0/λg)NA; the values r0 and w0

result in rw = 0.308. The coefficients α0 and αp characterizing the resonant-
absorption properties of the erbium fiber at the laser and pump wavelengths,
were measured directly in the heavily doped fiber with Γs = 0.43 and Γp = 1.
The values γ0 and R yield αth = 3.92 x 10−2. The lasing wavelength is
taken to be λg = 1.56 x 10−4cm (hvg = 1.274x10−19J), corresponding to
the maximum reflection coefficients of the FBGs centered on this wave-
length. The parameters which can be varied in experiments are (i) the
excess over the first laser threshold, ε = Pr/Pth, where the threshold pump
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power, Pth = Nth(N0Lπw2
p/τ){1 − exp[−αpL(1 −Nth)]}−1 and the thresh-

old population of level 2 is Nth = (1/ξ1)[1 + (αth/rwα(0))], (the radius of
the pump beam was taken, for simplicity, the same as the one of the laser
beam, , w0 = rg) and (ii) the parameters of pump modulation: modulation
frequency Fm and modulation depth m.

4.2.2 Normalized equations.

To simplify and generalize the laser model, we transform the complete sys-
tem of Equations 4.1 and 4.2 with a normalization.
Transforming these equations (dP

dt = 2L
Tr

P{rwα0[N(ξ1− ξ2)− 1]−αth}+Psp

dN
dt = −σ12ΓsrwP

πr2
0

(Nξ1 − 1)− N
τ + Ppump)

where:
1. Ppump = Pp[

{1−exp[−αpL(1−N)]}
N0πr2

0L
]

2. Psp = N( λg

w0
)2 r2

0α0L
4π2σ12ΓsτTr

x10−3

3. αth = γ0 + ( 1
2L) ln 1

R
4. Tr = (2n0/c)(L + L0)
5. rw = 1− exp[−2( r0

w0
)2]

we can arrive to their simpler form

dx

dθ
= axy − bx + c(y + rw) (4.4)

dy

dθ
= −dxy − (y + rw) + e{1− e[−αpL(1− y + rw

ξ1rw
)]} (4.5)

where the following changes have been made in the variables:

x =
P

γ
(4.6)

y = rw[ξ1N − 1] (4.7)

θ =
t

τ
(4.8)

and in the parameters:

a = 2L(
τ(ξ1 − ξ2)α0

τrξ1
) (4.9)
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b = −[2L(
τ

Tr
)(
−ξ2α0rw

ξ1
− αth)] (4.10)

c =
τ

ξ1rw
(4.11)

d =
τξ1rwσ12Γsγ

πr2
0

(4.12)

e = Pp[
τξ1rw

N0Lπr2
0

]. (4.13)

The variables x and y are now for the normalized laser power density and
inversion population, respectively. The values of the new parameters are
presented in Table 4.2.

Table 4.2: Nomalized Parameters used in simulations
Parameter Value

a 6.6207x 107

b 7.365517x106

c 0.0163
d 4.077x103

e 506

4.3 Numerical results.

The numerical calculations employing the system of equations 4.1 and 4.2
or 4.4 and 4.5 allow us to obtain time series and bifurcation diagrams for
characterization of the dynamics of the pump-modulated EDFL. As was
shown previously, the dynamics of this laser, as well as of other class-B lasers,
is related to the main laser resonance, which appears close to the relaxation
oscillation frequency of the laser, f0. A rich variety of attractors arises
in primary saddle-node bifurcations(SNBs). Depending on the modulation
frequency, the laser response may contain either subharmonics or higher
harmonics of Fm. At the high-frequency range (Fm > f0) various SNBs
give rise to subharmonic laser oscillations, whereas at the relatively low
modulation frequencies (Fm < f0) the higher harmonics of Fm rule the
laser dynamics. The dynamics of the pump-modulated EDFL in the high-
frequency range has been investigated experimentally [26].
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We address here only the numerical results obtained at the high-frequency
range.
Codimensional-one bifurcation diagrams. This diagram is constructed by
slowly increasing and decreasing the control parameter. The coexistence
of two and three attractors is clearly seen in the figures 4.3 and 4.4. In
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Figure 4.3: Bifurcation diagrams of peak laser intensity with driving fre-
quency as control parameter at Ad = 0.7V .
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Figure 4.4: Bifurcation diagrams of peak laser intensity with driving ampli-
tude as a control parameter at fd = 75kHz.

figure 4.5 the fc spectral component is plotted, Sc, in the power spectrum
of the laser output versus the control frequency for the laser oscillating in
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the period-3 and period-4 regimes at Ac = 0.007. One can see that the
resonance frequency for the period-4 attractor is 2kHz and for the period-3
is 3kHz.
As Ac is increased, the laser response to the control modulation becomes
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Figure 4.5: Linear laser responses to control modulation with Ac = 0.007 at
fd = 75 and Ad = 0.7.

nonlinear that leads to the attractor annihilation.

Figure 4.6 shows time series demonstrating coexistence of different dynam-
ical regimes at Fd = 70.2 and Ad = 0.8. The lower trace shows the pump
modulation signal.
Figure 4.7 shows the codimension-two bifurcation diagram in (fc, Ac) pa-

rameter space at Ad = 0.8 and Fd = 70.2. The curve connecting the green
with black and red region is the crisis line (the annihilation curve) for the
period-1 and period-3 attractors, respectively.
Figure 4.8 shows codimension-two bifurcation diagram in (fc,Ac) parame-

ter space at Ad = 0.8 and Fd = 70.2. The curve connecting the black with
red region is the crisis line (the annihilation curve) for the period-1.
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Figure 4.6: Time series demonstrating coexistence of different dynamical
regimes at Fd = 70.2 and Ad = 0.8. The lower trace shows the pump
modulation signal.
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Figure 4.7: Codimension-two bifurcation diagram in (fc, Ac) parameter
space at Ad = 0.8 and Fd = 70.2. The curve connecting the green with
black and red region is the crisis line (annihilation curve) for the period-1
and period-3 attractors, respectively.

Figure 4.8: Codimension-two bifurcation diagram in (fc, Ac) parameter
space at Ad = 0.8 and Fd = 70.2. The curve connecting the black with
red region is the crisis line (annihilation curve) for the period-1.
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Conclusions.

In this thesis I have demonstrated the applicability of the method for at-
tractor annihilation in a multistable system subject to noise. I have shown
with the noisy Hénon map, that additive noise can either enhance or worsen
the efficiency of attractor annihilation, depending on the control parame-
ters. Therefore, noise can be used for both stabilization and destabilization
of coexisting attractors in a multistable system. The noise-induced reso-
nance phenomenon (generalized coherent resonance) has been found in the
volumes of the basins of coexisting attractors.

I have also investigated numerically dynamics of an erbium-doped fiber laser
subject to parameter modulation of the diode pump laser. I have demon-
strated annihilation of one or two coexisting attractors in the laser with
three periodic attractors. The results of simulations are in good agreement
with experiments reported previously by Pisarchik et al.

I believe that the described phenomena can be observed in other dynamical
systems with coexisting attractors. The results of the present thesis can be
useful in other areas of science where a multistable behavior takes place.
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