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Summary 

In this work, the modal interference effect in optical fibers was used with the aim of sensing 
applications. By means of tapering single mode fibers and utilizing a special seven-core fiber, 
modal interference was generated, and the modifications induced by external perturbations, such 
as bending, were evaluated.  

The principal objective of this thesis was the measurement of physical parameters, particularly 
bending, using optical fiber modal devices. For this modal interference to be controlled, it was 
made in a single mode fiber.  In order to obtain modal interference in a single mode fiber, it is 
necessary to induce perturbations that cause modal coupling for the generation of more than one 
mode propagating trough the single mode fiber device, then, by physically perturbing this device, 
it is possible to change the interference properties which can be monitored to find the magnitude 
of the physical parameter that causes this interference change.  

For the modal coupling in optical fibers there are several kinds of perturbations capable to induce 
coupling, such as long period gratings, Bragg Gratings, optical fiber tapers, and so on. 
Everything that causes a breaking of the translational invariance on the longitudinal uniformity 
of the fiber can be considered as a coupling device. In this case, one way to make the coupling is 
by using a tapered optical fiber. These tapered optical fibers break the longitudinal invariance of 
the optical fiber by a diameter change. The optical fiber tapers presented in this work consist of a 
diameter decrement, then a section with a constant diameter (called waist), then there is an 
increment of diameter until the original diameter of the untapered fiber is reached. 

For the construction of these optical fiber tapers, glass processing systems are utilized. The 
tapered optical fibers presented in this work were fabricated using a Vytran system model 3400 
which permits a precise control of the geometrical dimensions of the tapered optical fiber. 
However for the proper optical working of the tapered optical fiber, it is necessary to play with 
parameters, such as filament power, pull velocity, taper pull delay, and initial tension of the fiber, 
and so on, to find the right parameter combination to construct a well-working tapered optical 
fiber. Actually, there are many optimization methods for fabrication process where the variations 
of the parameters involved in the fabrication process is crucial to the quality of the resulting 
product, such as the Taguchi method. However, due to the weather conditions that affect in the 
tapered fabrication process, the way to determine the best values of the fabrication parameters 
mentioned above was empirically. 

Depending of the geometrical dimensions of the optical fiber tapers, they can be classified in 
adiabatic or no adiabatic. For the case of adiabatic tapers, the diameter change is not pronounced, 
so that, the core field of the un-tapered fiber will be redistributed in the optical fiber taper but it 
will be maintained in the core structure and there will be no coupling to other modes. On the 
other hand, for the case of no adiabatic tapers, the diameter change is pronounced enough to 
cause that the core field of the un-tapered fiber is not capable to follow the new redistribution of 
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the core structure, causing that a fraction of the light leaks from the core and becomes cladding 
light (cladding modes). Then, both core and cladding modes will propagate in the waist section, 
and for an interference between them is necessary a recombination of them. This recombination 
is made by the increasing diameter section of the tapered optical fiber, where now the effect of 
this diameter change causes a coupling from the cladding modes to the core mode, making them 
to interfere and generating an interference pattern which is observed in the spectral response as a 
modulation of the power transmitted with respect to the wavelength. 

One that the modal interferometer is constructed, it can be sensitive to external physical 
parameters such as temperature or tension and bending, by means of the termo-optic and elasto-
optic coefficient, which causes a change in the effective refractive index of the interfering 
propagated modes in the  optical fiber, causing an spectral change in the transmission spectrum. 
Everything that causes a perturbation of the modes that will be interfering to generate the 
spectral interference pattern will cause a spectral change that can be tracked in order to 
determine de magnitude of the physical parameter that perturbed the interfering modes.  

Another way to generate modal interference without the necessity to make perturbations to the 
optical fiber, is using special fibers such as multicore fiber. Depending on the multicore 
structure, these multicore fibers can have coupling of energy between cores, which generate the 
so-called super-modes. Those super-modes can interfere between them and produce the modal 
interference that is necessary for sensing applications. Using a seven core fiber that supports 7 
super-modes, it is possible to excite only two super-modes to have a very well defined 
interference pattern that can be used for sensing applications.  

In the first published paper (see chapter 2), we demonstrated experimentally a fiber comb-filter 
using a Mach-Zehnder fiber interferometer based on two concatenated fiber tapers separated by a 
distance L. It was also demonstrated that it is possible to tailor the strength and resonance 
attenuation peak position of the comb-filter by a proper selection of the diameter and length of 
the waist, the length of the down- and up- transitions, and the separation between them. Using a 
fiber optic 980HP single mode fiber from Nufern, it was found and demonstrated that the 
diameter waist has the greater effect to position the interference pattern, the transition length has 
the greater effect in the size of the interference band, the waist length affects the fringe visibility 
(changing the optical path of the two interfering signals), and the period is determined by the 
separation of tapers. It is necessary to mention that each of these parameters may have an effect 
on all the characteristics of the filter, but the greater effect of each one is as it was mentioned 
above. The fabrication process of this two identical inline tapered fiber optic comb-filter is quite 
simple and only takes a few minutes. In this way, all-fiber transmission filters with 50–300 nm 
spectral width centered in the region of 1200 to 1650 nm with a fringe period of 3 to 36 nm and a 
fringe bandwidth of 2.5 to 11 nm were demonstrated. The physical length of the devices 
fabricated range from 15 to 30 mm. Due to the low sensibility to temperature and surrounding 
refractive index, the device can be easily encapsulated, and the small temperature sensitivity may 
be compensated during packaging by known methods. The main important result of the present 
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work is the demonstration of the possibility to easily tailor the spectral position of the 
interference pattern, its spectral extension, and the fringe visibility, by simply adjusting the 
tapers geometrical parameters. 

This work was based on two no adiabatic concatenated tapers for the construction of a comb-
filter. The principal purpose of this work was to study the influence of every geometrical 
parameter in the optical fiber taper over the spectral shape in the transmitted spectrum, all of this 
with the purpose of generating desired spectral shapes of the comb-filters for a certain 
application. 

In the second published paper (see chapter 2), we demonstrated a bending sensor using an in-line 
MZFI based on concatenating two low-loss fused tapers. The device is fabricated using standard 
single-mode fiber, it is compact, simple to construct, and highly sensitive to bending. The 
curvature applied to the MZFI induces a coupling of the core mode to cladding modes in the first 
taper, then in the second taper, the cladding modes are coupled back to the core, both modes 
interfere, and they produce a wavelength-modulated signal. To measure the changes in the 
curvature radius, the amplitude of the modulation or fringe visibility, is used. The dynamic range 
of the sensor can be simply tailored through the proper selection of taper waist diameter or 
separation between tapers. The effect of the external RI change over the interference fringe 
visibility is not significant, so that the sensor can be protected by immersing it in a solid 
protective matrix. The sensor can also be interrogated by analyzing other parameters like 
intensity or wavelength of one of the interference peaks. All these characteristics make this 
interferometer very attractive for structural monitoring applications. 

This work was based on the fabrication of a bending sensor composed by two identical adiabatic 
tapers separated by a distance L, it is the same structure that the first published paper presented 
above, when this structure is bent the refractive index of the device changes by means of the 
elasto-optic coefficient, producing a perturbation in the modal coupling characteristics and an 
alteration of the propagation of the interfering modes, causing an increment in the visibility 
fringes of the transmitted spectrum. 

In the third published paper (see chapter 3), an optical fiber sensor that is robust, compact, easy 
to construct, low-loss, and highly sensitive to bending based in a multicore fiber has been 
demonstrated. The multicore fiber used for this sensor was a designed seven core fiber; it is 
spliced between two single mode fibers and acts as a sensor head. Its working principle is based 
on the interference of two super-modes that are excited by the fundamental mode of a single 
mode fiber. The bending of the structure sensor induces a wavelength shift of interference 
pattern and changes in the amplitude of modulation (visibility) in the transmitted spectrum, so 
that it can be interrogated by either visibility or wavelength peak shift. Its dynamic range can be 
positioned in a desired range by the proper selection of the seven core fiber length when the 
sensor is interrogated by visibility, but when it is interrogated by wavelength shift it has 
sensitivities of around 3000 nm/mm-1 in the dynamic range from 200 to 450 mm of bending 
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radius. For protection it can be embedded in, or coated with, a protective material without 
disturbing its performance because of its insensitivity to external RI. All of these characteristics 
make the sensor very attractive for monitoring in structural applications. 

This work was based in the super-mode interference presented in a seven core fiber, and using 
the elasto-optic coefficient, it was possible to change the interference properties between the two 
propagated super-modes in the seven core fiber. In this case the modal intereference was made 
by the super-mode interference of a multicore fiber without the necessity of making an alteration 
of the longitudinal invariance of the fiber. 

The construction of fiber optic devices for sensing physical parameters is based on the 
fabrication of an optical structure capable of guiding at least two modes that will interfere to 
generate an interference pattern, then by altering the propagating characteristics of those modes 
by the physical parameter to measure, it is possible to track the spectral changes that will give us 
the magnitude value of the physical parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

 

Chapter 1  
 

Introduction 
 

A great majority of optical fiber devices used for applications other than information transmission, are 

based on the interaction between the electromagnetic modes that a given optical fiber structure can 

guide along its length.  The standard single mode fiber only supports one mode, however, it may be 

conveniently modified to support more than one mode, that may be guided in the core or by the 

waveguide formed by the cladding and the surrounding media, which usually is air (if the original plastic 

cover is removed). One of these devices is the tapered fiber sections.  Tapered optical fiber devices have 

been subject of continuous interest since they are advantageous for applications including chemical, 

biological and physical sensors, intracavity devices in fiber lasers and amplifiers, nonlinear media for 

supercontinuum generation and many more.  On the other hand, there are fibers designed to support 

more than one mode, like multimode fibers and multi-core fibers. Of particular interest for this thesis 

are the multicore fibers. In a multicore fiber, the modes guided by each core that composes the fiber 

structure, jointly form a super-mode whose characteristics may be used to implement novel optical fiber 

devices.  

In this chapter, I describe the general characteristics of tapered fiber devices, their fabrication methods, 

some of their applications and their operating principle. Then a short introduction about multicore fiber 

and the super-modes that they support will be presented. At the end of this chapter the content of this 

thesis is outlined. 
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1.1 Tapered fiber 

A typical tapered fiber consists of an optical fiber section where the geometrical shape, in 
particular the fiber diameter, is modulated longitudinally. The taper has three well defined zones, 
the down-taper transition, the waist, and the up-taper transition. In the down-taper and up-taper 
regions, the fiber diameter decreases and increases, respectively. Between these transition 
regions, there is a section called the waist, where the diameter is uniform and smaller than the 
un-tapered original fiber diameter, as it is shown in Fig 1.1 

 

 
Fig. 1.1 Typical tapered optical fiber. The three regions which are part of it are illustrated, these are 

down taper, waist and up taper. 
 

Optical fiber tapers have an important role on various applications such as coupling and 
multiplexing in optical fiber communications systems [1], and light concentrators [2]. They are 
the basis for many optical components such as directional couplers and beam expanders [3]. 
Their applications extend to saturable absorbers [4], sensors [5], and supercontinuum generation 
[6]. 

 

1.1.1 Operating mechanism 

A model of propagation beams and field analysis for a tapered fiber was presented by Bertilone 
and co-workers [7, 8]. On the other hand, an exact field analysis was presented by Marcatili [9]. 
As the guided mode enters the down-taper transitions, more and more light is propagating 
through the cladding region, i.e. the evanescent part of the field increases. If the diameter 
reduction is strong enough, a field with a significant portion of it, propagating as an evanescent 
wave along the waist zone, will be available to interact with the surrounding medium. This is 
particularly useful for applications in chemical and biological sensors. In general, as the diameter 
decreases the effective index of the fundamental mode also decreases, and it happens that the 
core mode transforms into a cladding mode, guided by the cladding-air structure [10]. The 
confinement of the field in this cladding-air structure may be strong enough to enhance nonlinear 
effects, which is useful for the study and applications of nonlinear effects, such as the 
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supercontinuum generation. The above effects are generally observed if the diameter change at 
the transitions is adiabatic, if the change is not adiabatic, higher order modes will be excited, that 
still may be useful to fabricate interferometric devices for wavelength filtering. The 
interferometric fiber devices based on tapered fibers is one of the main subjects of this thesis. 

 

1.1.2 Tapered fiber classification 

Tapered fiber may be classified on the basis of the adiabaticity of the taper transitions, that as 
mentioned above may lead to different effects on the light propagating through the core. In an 
adiabatic taper, the fundamental core mode LP01 remains constant in power, and there is no 
coupling to higher order cladding modes, or it is negligible. On the other hand in the non-
adiabatic case, there is coupling mainly between the fundamental mode propagated from the un-
tapered fiber and higher order modes of the fiber structure, with the same symmetry (LP02, LP03, 
etc.). 

 

1.1.2.1 Adiabaticity criterion 

An optical fiber taper is approximately adiabatic if the taper angle (transition angle Ω(z) in Fig. 
1.2) is small enough anywhere to ensure that there is negligible loss of power from the 
fundamental mode as it propagates along the length of the taper [11]. The simplest adiabaticity 
criteria is the length-scale criterion. It is based in the physical argument that the local taper 
length-scale must be much larger than the coupling length between the fundamental mode and 
the dominant coupling mode for power loss to be small [12, 13]. 

 

 

Fig. 1.2. Transition taper with the dimension for the length-scale criterion. 
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The local taper length scale Zt (see Fig. 1.2) is the height of a right circular cone with base 
coincident with the local core cross-section and apex angle equal to the local taper angle 
(equation 1.1) 

 

𝛺⁡(𝑧) = tan⁡(
dρ

dz
)                                                                    (1.1) 

where z is the distance along the taper and ρ=ρ(z) is the local core radius, which is a function of 
z. 

The local coupling length between the two modes is the beat length between the fundamental an 
the second local modes (equation 1.2) 

 

𝑍𝑏 =
2𝜋

𝛽1−𝛽2
                                                                      (1.2) 

 

where β1  and β2 are the respective propagation constants. 

Based on length-scale criterion if Zt>>Zb, everywhere along the taper, then negligible coupling 
will occur. On the other hand if Zb>>Zt there will be a significant coupling, but if Zt=Zb there 
will be an approximate delineation between adiabatic and  non-adiabatic tapers. This delineation 
is equivalent to [12]: 

 

𝛺 =
𝜌⁡(𝛽1−𝛽2)

2𝜋
                                                                         (1.3) 

 

1.1.3 Manufacturing of tapered fiber 

Tapering an optical fiber involves reducing the core and the cladding diameters by heating and 
pulling in opposite direction from its two ends; this is the well-known heating and pulling 
technique (see Fig. 1.3). The source of heating can be a flame [4], a focused CO2 laser beam [14] 
and an electric arc [15]. The geometrical profile of the tapered fiber section depends on the heat, 
pulling speed, applied tension, and the fiber material. In general, the pulling is realized by 
holding the two fiber ends on translation stages driven by stepper motors. 
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Fig. 1.3. Schematic of the heating and pulling technique for taper optical fibers. The fiber is pulled by the 
translation stages while it is heated by the heat source. 

 

1.1.4 The importance of the parameters of the tapered optical fibers 

The geometrical parameters of the taper, such as the waist diameter, waist length and the 
transition length determine the taper behavior. Different characteristics and forms of the fiber 
taper can be achieved by varying the pull and heating conditions, such as pull velocity, length of 
the heating zone, temperature, and so on [16]. Having a good control of all those parameters 
during the manufacturing process and knowing their influence on the behavior of fiber tapers a 
particular performance may be obtained, which is very useful for the design of a determined 
sensor application. The form of a tapered fiber is very important in situations where the optical 
fiber taper will be deformed, for example bending the taper for getting miniature devices [17], 
sensors [18], twist-induced tuning coupler [19], beam expander [20], and so on. So far, diverse 
forms of tapered optical fiber have been simulated assuming parabolic, sinusoidal, polynomial, 
among others [21-24]. These forms were obtained measuring real tapers and fitting to these 
functions [25]. 

 

1.1.5 Tapered optical fiber applications and optical fiber sensors 

Many tapered optical fiber applications are used for sensing the surrounding refraction index 
changes [26], through the interaction with the evanescent portion of the field, which may feel the 
external medium if its diameter is small enough.  The radial distribution of modal amplitudes of 
a guided wave in an optical fiber extends beyond the waveguide dimensions in the form of an 
evanescent wave that can carry an appreciable part of the guided power, this is the case of a 
tapered fiber, where the fiber diameter have been reduced to sub micrometer range [27]. In fact 
the fiber section with the reduced diameter can be bent to very small radii of curvature (1mm or 
less) with little bend loss, unlike un-tapered fiber [28].  



 

10 
 

 
Apart from sensing surrounding refraction index, there are many different tapered optical fiber 
applications, such as modal interferometers and sensors, spectral filters [29], for multi-
wavelength laser [30], for mechanical sensors such as sensing parameters like bending [31], 
temperature, strain, and so on. In recent years, tapered optical fibers have been used for 
supercontinuum generation [32] due to their high non-linearity, in near field microscopes. In 
general, tapered fiber sensors have several advantages, such as high resolution, high sensitivity, 
small size, fast response, good stability and repeatability [33].   
 
On the other hand, Mach-Zehnder modal interferometers based on tapered fiber sections, have 
been of great interest for physical and chemical sensing applications, such as temperature, 
tension, and refraction index, due to the simple, easy, and low price of the tapered optical fiber 
fabrication [34]. In  this modal interferometer a non-adiabatic tapered fiber couples energy from 
the fundamental mode to cladding modes and vice versa. In this way, when the light is 
propagating through the first taper, part of the optical energy is coupled to cladding modes, the 
section between the two tapers (waist) induces a differential phase shift between modes [35], and 
finally, after the second taper, part of the cladding modes energy is re-coupled to the core mode 
[36], producing a spectral interference pattern. The modal interferometers are very attractive due 
to their small size, flexibility, low thermal sensitivity due to the low difference between the fiber 
modal thermo-optical coefficients [37, 38], it can be used in smart structures applications [39], 
and it has potential applications as comb filters (multi-wavelength). 
 
 
1.2 Multicore fiber  

A multicore fiber is a special fiber that contrary to the standard single mode fibers having only 
one center core, can have several cores inside the cladding. They are used to enhance space 
wavelength multiplexing [40], for sensing applications, such as bending [41], refractive index 
[42], and strain [43] measurements. They support the so-called super-modes if the distance 
between cores is small enough to generate energy coupling between cores. For example, using a 
seven core fiber with coupled cores, it is possible to generate seven super-modes. Playing with 
those super-modes, it is possible to create sensing optical fiber devices based on super-mode 
interference. This super-mode interference is controlled by the multicore structure and the 
interference is also controlled and less chaotic than those devices that use no core or large-core 
step-index as the devices supporting multiple modes [44]. 
 
Playing with the excitation conditions at the input of the multicore fiber, it is possible to control 
the number of excited super-modes. Using a single mode fiber as an input excitation only two 
super-modes can propagate through the seven core fiber structure. Taking advantage of this 
characteristic, it is possible to construct optical fiber devices with well-defined transmission 
spectrum which are suitable for sensing applications. 
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1.3 Thesis project. 

 
1.3.1 Manufacture of tapered optical fibers. 

 

The tapered optical fibers are fabricated with the glass processor machine Vytran-GPX 3400. 
This computerized system uses the heat and pulling technique. It has a carbon filament as a heat 
source and includes a software interface where we can easily vary all the heat and pulling 
parameters, and additionally the desired taper dimensions can be set. Fig. 1.4 shows an image for 
the software window where we can introduce the taper dimensions such as transitions lengths, 
waist length, waist diameter and fiber diameter. 
 

 
 

Fig. 1.4. Software window for Vytran-3400 to introduce the taper dimensions 
 
 

Fig. 1.5 shows the taper fabrication parameters window, where we can vary the heat and pulling 
parameters to make the taper, the pull velocity (constant pull velocity [mm/s]), filament power 
(filament start [W]) , initial furnace move, filament delta [%], taper pull delay [s]. It shows the 
argon gas parameters to prevent the filament for burning. The Vytran system allows the control 
of the tapers dimensions, so that a systematic study of the influence of the different fabrication 
factors on the tapers performance is possible. 
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Fig. 1.5. Software window for Vytran-3400 to introduce heating and pulling parameters for the tapering 
process 

 
 

1.3.2 Fabricated devices 

Firstly, comb filters based on Mach Zehnder modal interferometers with concatenated tapered 
optical fibers were fabricated. The spectral characteristics (bandwidth, notch depth, period, and 
position) of this comb filters could be tailored by choosing properly the tapered optical fiber 
dimensions, while the heat and pulling parameters were varied to optimize losses. This study 
showed that most part of the changes for central wavelength peak, the amplitude, the period, the 
bandwidth are caused for varying the dimensions of the waist, waist length, taper separation and 
transition length respectively. 
 

Mach Zehnder modal interferometers based on two concatenated tapered optical fibers were 
fabricated. These interferometers have the characteristic that they were adiabatic when they were 
kept straight, and when they were bent they became gradually non adiabatic. This gradually non 
adiabatic depended of the bending radius, being a very important characteristic, so a bending 
sensor were tested and demonstrated. 
 

Optical fiber bending sensor based on super-mode interference on a seven core fiber was 
characterized and demonstrated. Using a small length of seven core fiber spliced between single 
mode fibers, it was generated a modulated transmission spectrum based on only two supermodes, 
when the device was bent the modulated transmitted spectrum suffered a wavelength shift, and at 
the same time, the visibility was altered too. Both changes, the wavelength shift and the 
visibility, were used to determine the bending radius of the optical fiber device. 
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1.3.3 General thesis content. 

In chapter 2, the results of all the modal devices based on tapered fibers which were fabricated 
are presented and described. 
In chapter 3, the modal device based on multicore fiber is presented and discussed 
In chapter 4, the conclusions of this thesis work are presented. 
In appendix A, a the mathematica code used for the simulation of light propagation through 
tapered fibers, and Mach-Zender interferometers based on them are outlined.  
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Chapter 2  

Modal devices 

based on 

tapered fibers  
Resume 

In this chapter the experimental results that were obtained with interferometric devices based on 

concatenated tapers are presented. First, the fabrication of comb-filters based on concatenating two 

tapers, whose transmission spectrum characteristics, such as central wavelength, amplitude, period and 

width, can be modified by the geometry of the two concatenated tapers, in order to get a determined 

comb filter with a desired transmission spectrum. Then an application for measuring micro-

displacements is described with one of these devices to prove the sensing characteristics that those 

devices can show. In addition I describe a highly sensitive bending sensor based on two concatenated 

tapers. This sensor can be interrogated by visibility changes or by intensity.  
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2.1 Tailoring Mach-Zehnder Comb-Filters Based on Concatenated Tapers 

In this section an all-fiber comb-filter constructed by concatenating two tapers is described. 
Depending of the geometrical shape of the two concatenated tapers, which are identical, the 
transmission interference pattern parameters such as, the central wavelength, the amplitude, the 
period, and the spectral width can be tailored. Therefore, it is possible to produce a desired 
interference pattern for a specific application of the comb-filter 

The dimensions which conform the geometrical shape of the tapers, such as, diameter and length 
of the waist, length of the up- and down-transition, and even the separation between both 
concatenated tapers are critical for the shape of the transmission interference pattern. Depending 
on these geometrical taper parameters, the central position and span of the spectral interference 
pattern were tailored in the range of l200-1650 and 50-300 nm, respectively. Also by varying the 
interferometer length, separation between tapers, the fringe period and bandwidth were tailored 
between 3-36 and 2.5-11 nm, respectively. 

  The total physical length of the devices fabricated ranges from 15 to 30 mm. They are simple 
and suitable for applications in optical communications systems, fiber lasers, and in sensing, for 
the monitoring of strain and displacement. 

 

2.1.1 Introduction 

Dense-wavelength-division-multiplexed systems [1-4], multi-wavelength fiber lasers [5], and 
metrological measurements [6] are the most attractive and useful applications that the Comb-
filters have. So far, there is an important number of comb-filters schemes proposed, most of them 
are based on the modal Mach-Zehnder fiber interferometers (MZFI) [2, 3, 5, 7]. This modal 
MZFI is one of the simplest methods to fabricate an in-line single-fiber comb-filter. The classical 
structure for this modal MZFI consists of two concatenated mode coupling fiber devices which 
can be long-period fiber gratings (LPG) [8] or tapered fiber sections [9, 10]. 

In mode coupling devices like those listed above, part of the propagating light, which is confined 
in the core fiber, is coupled to the cladding and becomes a cladding mode, and vice versa. When 
these devices are arranged in a concatenated way, a characteristic interference pattern of a modal 
Mach-Zehnder interferometer is generated. 

A very regular interference pattern has been presented using a LPG-based MZFI [8], 
nevertheless, the span fringe interference of the transmission band is limited only to a few tens of 
nanometers, additionally, the temperature and strain sensitivity of the Fiber Bragg Grating (FBG) 
may alter the stability of the filter. On the other hand, the MZFIs based on two concatenated 
tapers reported up to now, the interference pattern have been very irregular, and also they have 
shown high insertion loss such as more than 5 dB. [9-11]. The reason of these irregularities in the 
transmission spectrum may be due to the high non adiabaticity that optical fiber tapers possess 
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when they are fabricated by electric arc discharge, since it is common the generation of abrupt 
transitions due to the application of the electric arc when the fiber is pulled. These abrupt 
transitions allow the excitation of more than two modes that generates irregularities in the modal 
interference transmission spectrum, and it may contribute significantly to insertion losses. 

The construction of tapered optical fiber can be easily done in almost any kind of fiber by using a 
commercial fiber fusion splicer or a home-made tapering machine, but the final taper geometry is 
extremely difficult to control with these types of machines. 

It is demonstrated in an experimental way that constructing fiber comb-filters based on a modal 
MZFI can be done by fabricating two fiber tapers in series. These comb-filters have very regular 
fringe interference and low insertion losses. The MZFI were fabricated in commercial fiber 980 
HP from Nufern, a single mode fiber with a cut-off wavelength around 980 nm. For the 
fabrication of the concatenated tapers it was used the Vytran glass processing system, which 
allows us to precisely control the taper parameters. We found that the central wavelength, the 
amplitude, the period and the spectral extension of the filter can be tailored by adjusting the 
diameter and the length of the taper waist, the separation between tapers, and the taper transition 
length, respectively. For the 980 HP fiber the best filter characteristics were found for a taper 
waist diameter of 60 um, however, this filter can be done in any other fiber just by finding the 
right parameters for the construction of this interferometer. 

The fiber comb-filters that were demonstrated for this work show low sensitivity to temperature 
and external refractive index, which is a good response for porpoises of packaging for practical 
applications. 

 

 

 

2.1.2 Principle of operation of the modal MZFI 

The structure of the modal MZFI consists in two identical abrupt tapers in series, separated by an 
optical fiber segment with a length of L, just as it is shown in Fig. 2.1. The geometrical 
parameters that make up the MZFIs devices are taper transition Lt, waist length LW, waist 
diameter DW, separation between tapers L. Considering all these geometrical parameters, a 
response analysis was made to determine the influence of every geometrical parameter on the 
transmitted spectrum shape. This analysis allowed the fabrication of MZFIs with a desired 
transmission spectra, for a determined application. Aside from multiple sensing applications 
because of the spectral shape of these devices, the most common application is as a comb filter.  
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Fig. 2.1 Structure of the two concatenated tapers device. It consists of two identical optical fiber 
tapered sections separated by the distance L, and the geometrical parameters are Lt (Taper transition), 

LW (Waist length), DW (Waist diameter), and D (normal cladding diameter). 

 

The operating principle of this kind of MZFI can be described as follows, a fraction of the 
fundamental core mode energy guided in the un-tapered fiber is coupled to higher order cladding 
modes when it is propagated in the first taper, this coupling is between modes with the same 
azimuthal symmetry [12], then both modes accumulate a phase difference when they propagate 
through a fiber section of length L, then the cladding modes are recombined into the core mode 
when they travel along the second taper. Due to the coupling, recombination and the 
accumulating phase difference between modes, the transmission spectra of the MZFI is 
dependent of the wavelength and has an oscillatory response. 

As it is noticed in Fig. 2.1 both tapers have same geometrical parameters and they were also 
fabricated under the same conditions. The taper parameters such as the un-tapered fiber core 
diameter (Dcore), un-tapered cladding diameter (Dclad), the taper transition length (Lt), the taper 
waist length (Lw), and taper waist diameter (Dw) are responsible of the mode coupling 
conditions, therefore they play an important role over the MZFI transmission spectrum. 

In order to model the fundamental mode evolution, the core radius change through the down- and 
up-taper transitions with respect to z are given by [13] 

𝑟co
down(𝑧𝑡) = 𝑟co − (

𝐷𝑤

𝐷cla
)𝑧𝑡                                                                (1) 

𝑟co
up
(𝑧𝑡) =

𝐷𝑤

2
+ (

𝐷𝑤

𝐷cla
)𝑧𝑡                                                                   (2) 

where Dcla is the original cladding diameter, Dw is the cladding diameter at the waist, and zt goes 
from 0 to Lt. Similar relations are valid for getting the down- and up-taper cladding radius. 

In this work it is considered that the fabricated tapers are axisymmetric, a solution scalar model 
is used to determine the device response. Consequently the fundamental LP01 mode is coupled to 
modes of the same symmetry (LP0m modes). 
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Assuming a matching cladding refractive index profile, the characteristic equations for the core 
mode (equation 3) and cladding modes (equation 4) can be obtained by the scalar model [13, 14] 
as 

 

𝐽1(𝑈)

𝐽0(𝑈)
{𝐼1(SW)𝐾0(𝑊) + 𝐼0(𝑊)𝐾1(SW) +

𝑇

𝑊

𝐾1(ST)

𝐾0(ST)
(𝐾0(𝑊)𝐼0(SW) − 𝐼0(𝑊)𝐾0(SW))} =

𝑇

𝑈

𝐾1(ST)

𝐾0(ST)
(𝐼1(𝑊)𝐾0(SW) + 𝐾1(𝑊)𝐼0(SW)) +

𝑊

𝑈
(𝐾1(𝑊)𝐼1(SW) − 𝐼1(𝑊)𝐾1(SW))                    (3) 

 

𝐽1(𝑈)

𝐽0(𝑈)
{𝑌0(𝑄)𝐽1(SQ) − 𝐽0(𝑄)𝑌1(SQ) +

𝑇

𝑄

𝐾1(ST)

𝐾0(ST)
(𝐽0(𝑄)𝑌0(SQ) − 𝑌0(𝑄)𝐽0(SQ))} =

𝑇

𝑈

𝐾1(ST)

𝐾0(ST)
(𝐽1(𝑄)𝑌0(SQ) − 𝑌1(𝑄)𝐼0(SQ)) −

𝑄

𝑈
(𝐽1(𝑄)𝑌1(SQ) − 𝑌1(𝑄)𝐽1(SQ))                                (4) 

Where the normalized parameters are defined by [13, 14] 

𝑈 = 𝑘𝑟1√𝑛1
2 − 𝑛eff

2 ⁡;𝑊 = 𝑘𝑟1√𝑛eff
2 − 𝑛2

2⁡; ⁡𝑄 = 𝑘𝑟1√𝑛2
2 − 𝑛eff

2 ⁡; ⁡𝑇 = 𝑘𝑟1√𝑛eff
2 − 𝑛3

2         (5) 

Where 𝑟1 is the local core radius, k is the free-space propagation constant, 𝑛1, 𝑛2, and 𝑛3 are the 
core, cladding, and surrounding medium refractive indices, and 𝑛𝑒𝑓𝑓 is the effective refractive 
index of the mode to be calculated. 

Utilizing a root finding algorithm, equations (3) and (4) are solved for 𝑛𝑒𝑓𝑓 as a function of 
radius, such as it is defined by equations (1) and (2), and wavelength. It was assumed the 
surrounding medium to be air, so that the refractive index of the third layer is the unity. As an 
effective index behavior it was noted that both effective refraction indexes of the core and 
cladding modes were decreasing as the core radius decreases too. 

Another important parameter that has to be considered in optical fiber tapers is the coupling of 
energy from the core mode caused in the taper transitions due to the fact that the fundamental 
core field distribution cannot follow the geometric variation of the cross-section resulting in a 
power lost to higher order. The geometrical amount of change in the cross-section related with 
the adiabaticity will determine the power lost to higher order modes. The way for quantifying the 
amount of power that is coupled is by means of the factor called the coupling coefficient, which 
determines the power transfer from the fundamental core mode to higher order cladding modes at 
the taper transitions. 

It was considered that the coupling takes place at the down- and up-taper transitions only 
between the LP01 and LP02 modes. In order to calculate this coupling coefficient between the 
LP01 and LP02 core and cladding modes, respectively, the following expressions for the fields at 
each layer are considered [13, 14]: 
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𝛹0𝑖(𝑅) = {

𝐴01𝐽0(UR), 𝑜 ≤ 𝑅 ≤ 1
⁡⁡⁡⁡⁡⁡𝐵0𝑖𝛤1 + 𝐶01𝛤2, 1 < 𝑅 ≤ 𝑆

𝐷0𝑖𝐾0(TR), 𝑅 > 0
                                      (6) 

Where 𝛤1 and 𝛤2 are equal to 𝐼0(WR) and 𝐾0(WR) for the LP01 mode, respectively, and equal to 
𝐽0(QR) and 𝑌0(QR) for the LP02 mode, respectively. Using boundary conditions and 
setting⁡𝐴01 = 1, it is obtained [13]: 

𝐵01 = −𝑈𝐽1(𝑈)𝐾0(𝑊) +𝑊𝐽0(𝑈)𝐾1(𝑊) 

𝐶01 = 𝑊𝐼1(𝑊)𝐽0(𝑈) + 𝑈𝐼0(𝑊)𝐽1(𝑈) 

𝐷01 =
𝐼0(SW)𝐵01 + 𝐾0(SW)𝐶01

𝑘0(TS)
 

      (7) 

Here⁡𝑅 = 𝑟 𝑟1⁄ , 𝑆 = 𝑟2 𝑟1⁄  

For the LP02 mode, it is again set 𝐴02 = 1 to obtain [13] 

𝐵02 =
𝜋⁡(𝑈𝐽1(𝑈)𝑌0(𝑄) − 𝑄𝐽0(𝑈)𝑌1(𝑄))

2
 

𝐶02 =
𝜋⁡(𝑄𝐽0(𝑈)𝐽1(𝑄) − 𝑈𝐽0(𝑄)𝐽1(𝑈))

2
 

𝐷02 =
𝐽0(SQ)𝐵02 + 𝐶02𝑌0(SQ)

𝐾0(TS)
 

(8) 

The coupling of the fundamental core mode to higher order cladding modes can be modeled 
through the following coupled-mode equations [12, 13, 15]: 

da𝑚

dz
= iβ𝑚(𝑧)𝑎𝑚(𝑧) +∑ 𝑘mn(𝑧)𝑎𝑛(𝑧)

𝑁

𝑛=1≠𝑚
                                (9) 

 Where a𝑚(𝑧) and 𝛽𝑚 = 2𝜋 𝑛eff,𝑚 𝜆⁄ , are the complex amplitude and propagation constant of the 
mode mth mode. And the coupling coefficient k12 which determines the coupling between the 
LP01 and LP02 modes is given by [13, 14]: 

𝑘12 =
1

2𝑛1

dρ

dz

𝑛01−𝑛02

∫ 𝜓01𝜓02
𝜕𝑛2

𝜕𝑟
ⅆ𝐴

A∞

(∫ 𝜓01
2 ⅆ𝐴

A∞
)1 2⁄ (∫ 𝜓02

2 ⅆ𝐴
A∞

)1 2⁄
                                      (10) 

Where 𝑛01 and 𝑛02 denote the effective indexes of the LP01 and LP02 modes.  
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Considering a step index variation of the refractive index profile in the optical fiber taper, the 
squared refractive index can be written in terms of Heaviside functions [12], so that (10) can be 
evaluated analytically, by using the equations (6-8) and the continuity of the fields at each 
interface. The resultant expression is written as [12, 13]: 

𝑘12 =
2

𝑟1
2

1

(𝐹1𝐹2)1 2⁄ (𝑛01−𝑛02)
× {(𝑛1

2 − 𝑛2
2)𝐽0(𝑈01)𝐽0(𝑈02) + (𝑛1

2 − 𝑛3
2)𝐾0(𝑇01𝐾0(𝑇02)}        (11) 

Here the subscripts 01 and 02 in the modal parameters U and T emphasize that they must be 
evaluated using the corresponding effective index of the LP01 or LP02 mode, and the factors F1 
and F2 are given by [13]  

 

𝐹1 = {(𝐽0
2(𝑈01) + 𝐽1

2(𝑈01)) + 𝐵01
2 𝑆2(𝐼0

2(WS) − 𝐼1
2(WS)) − 𝐵01

2 (𝐼0
2(𝑊) − 𝐼1

2(𝑊))

+ 𝐶01
2 𝑆2(𝐾0

2(WS) − 𝐾1
2(WS)) − 𝐶01

2 (𝐾0
2(𝑊) − 𝐾1

2(𝑊)) − 𝐷01
2 𝑆2(𝐾0

2(𝑇01𝑆)

− 𝐾1
2(𝑇01𝑆))} 

(12) 

𝐹2 = {(𝐽0
2(𝑈02) + 𝐽1

2(𝑈02)) + 𝐵02
2 𝑆2(𝐽0

2(QS) − 𝐽1
2(QS)) − 𝐵02

2 (𝐽0
2(𝑄) + 𝐽1

2(𝑄)) + 𝐶02
2 𝑆2(𝑌0

2(QS)

+ 𝑌1
2(QS)) − 𝐶02

2 (𝑌0
2(𝑊) + 𝑌1

2(𝑄)) − 𝐷02
2 𝑆2(𝐾0

2(𝑇02𝑆) − 𝐾1
2(𝑇02𝑆))} 

(13) 

For the evaluation of the coupling coefficients it is necessary to calculate the effective indices of 
the LP01 and LP02 for a specific range of wavelengths and radii to solve equation (10) for those 
specific ranges. The coupled amplitude equations were solved for the case of a concatenated 
taper device with the following geometrical dimensions: LT = 2.5 mm, LW = 1 mm, L = 2 cm, D 
= 125um, with the waist diameter DW of 60, 62, and 64 um in order to analyze the effect of the 
variation in this parameter. Fig. 2.2 shows the simulations results for these three different 
diameters, and it is worth to notice that, as the waist diameter increases the spectral interference 
pattern moves to longer wavelengths which agree with the experimental results of the section 
2.1.4. 

In order to match the experimental and numerical results, it is necessary to include the higher 
cladding modes, material constituents of the fiber, and its material dispersion. For this simulation 
we assumed a fiber with 1.76/62.5 m core cladding radius, a 0.2 numerical aperture, and an 
external refractive index of 1, close to the parameters of a 980 HP fiber from NUFERN.  
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Fig. 2.2. Calculated transmission spectra of three MZFI with different taper waist diameter DW, keeping 
LT = 2.5 mm, Lw = 1mm, L = 2 cm, and D = 125 m. 

 
The effective indices of the core and cladding for every z value were calculated in steps of m, 
in a range of wavelengths with steps of 1 nm, for the taper transitions and waist. Then the 
corresponding coupling coefficients for those values were calculated, and finally the coupled 
equations were solved using a Runge-Kutta algorithm for each wavelength. In appendix A it is 
shown in a Mathematica code the general procedure used for the simulation. 
 
Fig. 2.3 shows the simulation for an optical fiber tapered at several tapered lengths (at the end of 
the first down-transition taper (a), at the end of the first waist (b), at the end of the first up-
transition (c), at the end of the separation between tapers (d), at the end of the second down-
transition (e), at the end of second waist (f), and at the end of the second up-transition (g)) for an 
optical fiber tapered with the dimensions being transition length 1 mm, waist length 1 mm, waist 
diameter of 65 m and a separation between tapers of 10 mm. 
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Fig.2.3. Calculated transmission spectra of an optical fiber device with two optical fiber tapers at different 
lengths (at the end of the first down-transition taper (a), at the end of the first waist (b), at the end of the 
first up-transition (c), at the end of the separation between tapers (d), at the end of the second down-
transition (e), at the end of second waist (f), and at the end of the second up-transition (g)).  

 

 
2.1.3 Fabrication of the Mach-Zehnder interferometer  

It was shown in Fig. 2.1 the structure of the MZFI, for the taper fabrication. A glass processor 
system Vytran 3400 was used, which allows a precise control of the taper geometrical shape 
profile (DW, LW, and Lt). The fusion power was set to 39.9 W and the pull velocity to 1.5 mm/s. 

A simple transmission set up was used to measure the optical transmission signal during the 
tapering process, a white source (WLS) model AQ4305 from Yokogawa and an optical spectrum 
analyzer (OSA) model AQ6370B from Yokogawa. Before tapering the fiber in the glass 
processing system, the coating of a section of the fiber was removed by stripping mechanically 
and then cleaned in an acetone ultrasonic bath.  

In all of the MZFIs fabricated, it was measured and recorded the transmission signal of the fiber 
before and after the fabrication of the first and second taper. The transmission spectra after the 
first and the second taper are shown in dashed and continuous line, respectively.  
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2.1.4 Effect of the geometrical parameters of the MZFI on the fiber-comb-filter 
transmission spectrum. 

In this section the effects of the geometrical MZFI parameters (L, DW, LW, and Lt) over the 
transmission spectral characteristics of the fiber-comb-filter are discussed with the principal 
purpose of identify the overall effect of every parameter to construct fiber-comb-filters with the 
desired parameters. In order to know these effects, individually, every parameter was varied 
keeping the others fixed, in order to observe directly its effect in the transmission spectrum. The 
variation of each parameter was made without using a specific rule. However, for another cases 
where an optimization process is required to reach a given transmission profile, optimization 
procedures can be implemented on the manufacture process. In the following sections 
experimental results of every parameter variation are shown.  

 

2.1.4.1 Effect of the distance between tapers, L 

In a typical MZFI, the increase in the taper separation will reduce the period of the interference 
pattern [8]. In order to experimentally prove this, several samples were fabricated varying the 
distance L, and keeping the other taper dimensions at the values of LT = 2.5 mm, LW = 1mm, and 
DW = 60 m. Fig. 2.4 shows the transmission spectra of three MZFIs with 5, 10, and 20 mm of 
separation length between the two tapers. It can be noted that this spectra behavior is similar to 
that reported for MZFI based on two LPGs [8]. But in our case, the maximum loss peak is quite 
smaller (∼ 5𝑑𝐵), the insertion loss are lower (0.5 dB), and the modulation band transmission 
width is one order of magnitude larger.  
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Fig. 2.4 Transmission spectra of three MZFI with distance between tapers of (a) 5, (b) 10, and (c) 20 mm, 
keeping  LT = 2.5 mm, Lw = 1mm, D = 125 m, and Dw = 60 m. 

 

The corresponding period for the MZFIs with 5, 10, and 20 mm were 36.12, 19.0, and 7.145 nm. 
Taking in consideration these values, it is clearly noticed that when the taper separation is 
increased twice, the period is halved proportionally. Speaking about the fringe bandwidth, it also 
follows a similar proportion, it reduces from 10 nm, for a distance of L = 5 mm, to 5.10 and 2.15 
nm when L increases to 10 and 20 mm, respectively. Using lengths larger than 200 mm, it is 
possible to reduce the fringe bandwidth to values smaller than 1 nm, however it could be 
impractical for real-world applications. As it can be seen from Fig. 2.4 the wavelength band and 
the visibility of the filter did not experience a significant change. 

 

2.1.4.2 Effect of the taper waist diameter 

In order to know the effect that has this parameter on the MZFIs, keeping the parameters LW = 1 
mm, and LT = 2.5 mm, several MZFI devices with the taper waist diameter (DW) of 100, 90, 80, 
70, 60, 50, 40, 30, and 20 m, separated by a distance L = 10, and 20 mm, were fabricated. Fig. 
2.5 shows two of the MZFI, with a DW of 60, and 65 m and a separation distance of 20 mm. 
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Fig. 2.5. Transmission spectra of two MZFI consisting of two identical tapers with a taper waist diameter 
of (a) 60 and (b) 65 m, with a separation between tapers of 20 mm, and keeping LT = 2.5 mm, D = 125 

m, and Lw = 1mm. 

When it is compared both spectra in Fig. 2.5, it can be observed that the effect of varying this 
parameter on the MZFI transmission spectrum is the shift in the position of the interference 
pattern, when the fiber taper waist diameter decreases from 65 to 60m the pattern shifts towards 
shorter wavelengths, just as this behavior was illustrated in the theoretical spectrum of Fig. 2.2. 

When the waist diameter is 60 m the deepest fringe is located around 1391 nm with a deep of 5 
dB, but when the waist diameter is 65 m the deepest fringe is shifted to around 1550 nm with a 
deep of 5.5 dB. Another effect to vary the waist diameter is a small change in the visibility of the 
interference pattern, it is lower for smaller waist diameter. 

The effects of the other geometrical parameters (waist length, transition length taper separation) 
have a small contribution on the position of the interference pattern; however it was found that 
the waist diameter has the biggest contribution to the position of the interference pattern. 

When the taper waist diameter is bigger than 70 m, the amount of coupling energy is negligible, 
it means that the tapers are adiabatic and there is not noticeable interference. On the other hand, 
when the waist diameter is smaller than 50 m, the insertion losses increase and they can be as 
high as 15 dB, as the taper waist diameter of the first taper decreases the taper become more non-
adiabatic and the fraction of light that is coupled from core to cladding increases, but at the 
second identical taper, only some of the cladding light is recoupled to the core, as a result of this, 
the insertion loss increases and the visibility is poor.   
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2.1.4.3 Effect of the waist length, LW 

In order to know the effect of this parameter on the spectrum transmission of the MZFI, several 
samples with two identical fiber tapers in series with a waist lengths in the range from 0.5 to 6.5 
mm, while the rest of the parameters was kept as DW = 60 m, Lt = 2.5 mm, and L = 1 cm. Fig. 
2.6 shows the spectra for four MZFI with waist lengths of 1, 3, 4.5, and 6.5 mm. 

 

 Fig. 2.6. Transmission spectra of four MZFI consisting of two identical tapers with a taper waist length 
of (a) 1, (b) 3, (c) 4.5, and (d) 6.5 mm, the separation between tapers of 10 mm, LT = 2.5 mm, D = 125 

m, and Dw = 60 m. 

 

The main variation of this parameter on the transmission spectrum is the fringe visibility, which 
is related to the optical path that follows the core and cladding modes when they are propagating 
through the waist length in both tapers.  

Due to the fact that the coupling coefficient is zero in the waist length the only thing to be 
affected by the waist length is the phase shift experienced by both the fundamental core mode 
and the higher order cladding modes, before they are affected by the coupling in the next taper 
transition. As a result of this phase shift, the degree of the interference is affected and it is 
reflected in a change of the fringe visibility as it can be seen in the spectra of Fig. 2.6. 
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2.1.4.4 Effect of the taper transition length  

The length of the taper transition length is the first responsible for the amount of coupling 
between the core mode and high order cladding modes, and the effect is reflected in the size of 
the interference pattern, i.e., the extension of the interference pattern. When the taper transition 
length is decreased the diameter change is more abrupt, it means it is less adiabatic, as a 
consequence more energy of the core is coupled to high order cladding modes. Fig 2.7 shows the 
spectra for taper transition lengths of 1, 1.5, 2, 2.5, 3, and 3.5 mm. 

 

Fig. 2.7. Transmission spectra of six MZFI consisting of two identical tapers with a taper transition length 
of (a) 1, (b) 1.5, (c) 2, (d) 2.5, (e) 3, and (f) 3.5 mm, Lw = 1 mm, L = 1 cm, D = 125 m, and Dw = 60 m. 

 From Fig. 2.7 it can be seen that as the transmission length increases, the spectral bandwidth of 
the interference patterns becomes narrower. The extension of the interference pattern is narrower 
when the transitions are more adiabatic, that is, there is less coupled energy to the high order 
cladding modes, and vice versa, as the taper transition length decreases, the extension of the 
interference pattern augments because the coupled energy is larger. 

For smaller taper transitions than 2.5 mm the transmission spectra seem to be composed of two 
interference patterns which differ in their average period and they overlap in the spectral region 
around 1450 nm. 
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The taper transition length also affects the fringe visibility, as the taper transition increases, the 
fringe visibility decreases for a spectral region around 1450 nm, and at the same time the period 
of the fringes is more homogeneous.  

Due to the fact that the two geometrical parameters, transition length and waist length, which are 
directly responsible for the fringe visibility of the interference pattern, both of them need to be 
optimized to get the right visibility value for a certain MZFI application. In fact, a similarity is 
observed in the spectral interference pattern evolution with the increase of the waist length or 
transition length. 

It is necessary to notice that each taper separately acts as an interferometer, where the period of 
the interference fringe is mainly determined by the waist length, and the core and cladding 
modes develop independently a different phase shift. Thus, the single taper interferometer length 
should be at some point inside the taper transition, where the second mode (cladding mode) is 
already present. Thus, for long enough lengths a second broad spectral fringe will be observed 
after the first taper, in all the fabricated samples the narrower interference fringes are presented 
after the second concatenated taper. 

 

2.1.5 Refractive index sensitivity of the fiber comb-filter 

The fiber could be weakened after the tapering process, in order to avoid this weakening, the 
comb filter based on tapers should have to be embedded into a solid protection matrix that in 
general has a RI higher than 1. Due to the fact that the MZFI is based on the propagation and 
excitation of cladding modes, a protective material at the surrounding of the cladding may affect 
the filter behavior. Thus, it is mandatory an analysis of the sensitivity to surrounding RI changes 
that has the MZFI. To make this analysis, a fiber section of 20 mm, including both tapers where 
immersed in Cargille oils with a calibrated RI ranging from 1.36 to 1.436. Fig. 2.8 shows the 
transmission spectra of a concatenated taper pair with the geometrical dimensions of LT = 2.5, 
LW =1 mm, L = 1cm and DW = 60 m. Immersed in Cargile oils of 1 (black line) and 1.436 (red 
line), where it can be noticed that the fringe visibility only changes when the surrounding 
refractive index is close to the cladding refraction index, hence, the taper pair device can be 
packaged without significant modification of its spectral transmission characteristics. 

 



 

31 
 

1300 1400 1500 1600
-76

-74

-72

-70

-68

-66

T
ra

n
s
m

m
is

io
n
 (

d
B

m
)

Wavelength (nm)

 1
 1.436

External refractive index

 

Fig.2.8. Transmission spectrum of aMZFI consisting of two concatenated tapers with a L  =  2.5 mm, LW 
= 1 mm, L = 1 cm and DW = 60 m, when it is surrounding by air (black line, RI = 1) and a Cargille oil 
with a nominal refractive index of 1.436 (red line). 
 

2.1.6 Discussion  

So far, the effect of varying the geometrical parameters in the concatenated pair interferometer 
has been discussed. It was also discussed the modeling of an interferometer with specific 
geometrical parameters. Nevertheless, the mechanism that leads to the observed interference 
pattern when it is changed a specific geometrical parameter has not been discussed. In order to 
discuss this mechanism it is necessary to look at the transmission spectrum after the first taper, as 
it can be seen from the spectra reported so far, a broad sine-like modulation appears in the 
spectrum after the first taper, which is a common behavior observed in single tapers [16]. So the 
concatenated taper device may be seen as two concatenated single taper interferometers. The 
effective length of the single-taper interferometer can be changed if the waist diameter, waist or 
transition length is varied, thus allows the transmission spectrum tailoring that of the two-tapers 
device. It is worth to mention that both of the changes in the transition length and waist diameter 
change the transition taper angle, so that, different combinations of transition length and waist 
diameters result in the same transition taper angle. However, even having two different 
combinations of transition length and waist diameter which produce the same transition taper 
angle, the length of the coupling zone will result in a modification of the effective length of the 
single-taper interferometer, causing different spectra for devices with the same transition angle 
taper. 

As it is known, due to the photo-elastic and photo-thermal coefficient, there is a change in the 
refractive index, since the tapered fiber devices are also sensitive to stress and temperature. In 
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order to know the temperature sensitivity of the MZFI, it was tested by performing spectrum 
measurements at different temperatures on the MZFI in a range from 0 to 60O C, observing 
similar slight changes in the fringe visibility as the case of different surrounding refraction index 
(Fig. 2.8). For a real world application the effect of the temperature can be compensated or 
isolated. Variations in visibility were also detected by bending. For very small bending radii, the 
visibility variations were small, however, after certain limit there was a relatively big variation in 
visibility. In order to know the bending sensitivity, the displacement was taken as a measurement 
of bending sensitivity because small bending radii are difficult to measure. For this purpose the 
concatenated taper pair device was mounted in a flexible sheet that was fixed on one end, while 
the other end was mounted on a translation stage coupled with a stepper motor. A simple 
transmission set up was used to measure the spectrum transmission of the taper pair device, using 
as a source a single-frequency highly stable tunable semiconductor laser, and as a detector a high 
sensitivity low noise photodetector. After a displacement of 200 m, the measured power started 
to demonstrate considerable changes. Fig 2.9 shows these of this power changes that were 
captured by a computer interface.  
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Fig.2.9. Transmitted power as a function of displacement at a wavelength of 1552.5 nm. 
 

The taper parameter used for the displacement characterization of Fig. 2.9 were Lt = 2.5 mm, LW 
= 1 mm, L=1 cm, and DW = 60 m while the laser source was set at 1552.2 nm. As it can be seen 
the MZFI shows high sensitivity to bending with a factor of 0.04255 W/m, so that, the MZFI 
can be treated as a micrometer displacement sensor. 

 

 



 

33 
 

2.2 Compact optical fiber curvature sensor based on concatenating two tapers  

An optical fiber curvature sensor with low-loss, compact and high sensitivity was fabricated. It 
consists of two identical low-loss optical fiber tapers separated by a distance L. These tapers are 
adiabatic when they are kept straight and fixed, so that, no interference pattern appears when the 
optical fiber device is straight. However, ones the device is bent, the adiabatisity of the device 
starts to gradually break because of the symmetry of the straight tapers is lost, and the first taper 
starts to couple light into cladding modes, then a fraction of the cladding modes is recoupled 
when they reach the second taper, and as a result, an interference pattern in the transmission 
spectrum is generated, and its visibility magnitude depends of the amount of bending radius that 
the device maintains. The dynamic range of the device can be tailored by a proper selection of 
the taper diameter or the separation between tapers. 

 

 

 

2.2.1 Introduction   

For this device, we used the same MZFI structure as the one used in section 2.1, with the 
difference that now we call the waist diameter as w, which consists of two coupling devices 
separated by an optical fiber with a distance L. As in the case of the previous section, the 
coupling devices are optical fiber tapers. However, countless MZFI configurations with different 
coupling devices have been reported so far. Optical fiber mode coupling devices as long period 
gratings (LPGs) and abrupt fiber tapers have been widely used to construct MZFI sensors [17-
20]. Speaking about abrupt tapers, they can be fabricated in almost all kind of fiber using a 
homemade tapering machining or even a standard fusion splicer machine. The easy fabrication of 
these abrupt optical fiber tapers has been exploited to construct highly sensitivity refraction 
index sensors [20]. Nevertheless, the use of these devices was restricted to applications where at 
least one taper needed to be kept straight and fixed for the device to work well. A MZFI for 
bending measurement has been reported by Frazao et al. [21]; however the author used a LPG 
and multimodal interference structure. In this work, we used a MZFI based on two identical fiber 
tapers to construct a highly sensitive bending sensor. These two tapers behave as adiabatic tapers 
when they are straight, so, under the straight device condition no interference pattern appears in 
the transmission spectrum, but when the device is bent the tapers adiabaticity starts to gradually 
disappear, causing the generation of an interference pattern in the transmission spectrum. The 
interference fringe of this interference pattern is directly related to the fiber bending radius.  
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2.2.2 Construction of the bending sensor 

The fiber optic structure used to the construction of the bending sensor is shown in Fig. 2.10. It is 
similar to that shown in fig 2.1 

 

Fig.2.10. MZFI based on two tapers. 
 

Using a glass processor system Vytran 3400 the optical fiber tapers were made. The transmission 
spectrum of a fabricated device with waist diameter equal to 60 μm, waist length of 1 mm, 
transition lengths of 2.5 mm, and a separation length of L = 10 mm is shown in Fig. 2.11, the 
dashed line shows the spectrum after the first taper, and the dotted line shows the spectrum after 
the two tapers. As it can be noticed no modulation appears in the transmission spectrum and the 
attenuation of the two tapers is approximately 0.3 dB, which is a very small value and means that 
the tapers are almost adiabatic. 

 
Fig.2.11. Fiber transmission spectrum before tapering (continuous line) and after fabrication of the first 
(dashed line) and second (dotted line) tapers. Tapers are identical, with ρw = 60 μm, and separated by a 
distance L = 10 mm. 
 
 

Tapers with waist diameters (𝜌𝑤) of 60 and 50 m, a waist length of 1 mm and transition lengths 
of 2.5 mm were fabricated in standard SMF-28 fiber. Then several MZFI were fabricated by 
concatenating a pair of tapers separated by distances of 5, 10, 20, and 40 mm. 
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The set up for bending characterization is shown in Fig. 2.12. The MZFI were mounted on a v-
groove made in a thin sheet of metal of 315 mm in length. Then using the set up every MZFI was 
tested to bending. Parameters 2S and d were used to calculate the bending radius using the well-
known relationship 1/R=2d/(d2+S2) [22]. 

 

Fig.2.12. the experimental setup for the bending tests. 
 

 

2.2.3 Working mechanism of the bending sensor 

As the structure sensor is the same as the previous section, the working mechanism of this device 
is exactly the same as the section 2.1.2, as follows: when the light propagates through the down 
taper transition of the first taper, the fundamental core mode transfer energy into higher order 
cladding modes, with the same azimuthal symmetry because the taper is axisymmetric [23]. 
Then both fundamental core and high order cladding modes will propagate through the taper 
waist, and then, when the light arrives to the up taper transition the high order cladding mode 
will be coupled to the fundamental core mode. When the light is going through the second taper 
the same process is repeated, and the transmission interference pattern of the device will depend 
on the amount of light that is propagated in the cladding of the fiber section between tapers. 
When there is no cladding light in the section between tapers, there is no interference pattern 
which is the case when the fiber tapers are kept straight (see Fig. 2.11). But when the MZFI is 
being bent the refractive symmetric index profile is starting to break, permitting the coupling 
between the fundamental core and cladding modes which propagate as whispering gallery (WG) 
modes [24]. Then in the optical fiber section that separate the tapers, the core and WG modes 
will propagate and they will generate a phase delay, then at second taper, the WG modes will 
recouple to the core mode, and the interference degree will be determined by the geometrical and 
elasto-optic changes in the refraction index profile which are related with the MZFI bending 
radius. 
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2.2.4 Experimental results  

In order to see the change in the interference pattern, Fig 2.13 shows the transmission spectra of 
two MZFI with a waist diameter of 60 um and a separation distance of 5 (bottom graphs) and 40 
mm (upper graphs) for three different curvature radii (0.916, 0.535, and 0.320 m). 

 

Fig.2.13. MZFI transmission spectra when tapers are separated by a distance of 40 mm (upper graphs) 
and 5 mm (bottom graphs) for three different bending radii. 

 

From Fig. 2.13, it can be seen that the amplitude modulation is dependent on the curvature 
bending radius of the fiber and another thing to mention is that the modulation amplitude of the 
spectra is larger for longer wavelengths because the mode coupling is higher at those 
wavelengths when the fiber is bent. The presence of losses is due to cladding modes that cannot 
be recoupled back to the core and cladding modes excited by the second taper. There is an 
increment of those losses when the bending radius increases, however, even for small bending 
radius, the insertion losses are small. The spectra also experience a blue shift due to the fiber 
bending and the period fringe remains almost constant. 

Observing Fig. 2.13 the MZFI can be used as an intensity modulated bending sensor or as in-line 
optical fiber variable attenuator  
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  Fig. 2.14 shows the relationship between fringe separation and taper separation; on the right 
side, it is shown the inverse of taper separation versus fringe separation, which shows a linear 
behavior. 

 

Fig. 2.14. Relationship between taper separation and interference fringe separation of the two-taper 
MZFIs fabricated. To the right, inverse of taper separation versus interference fringe separation. 
 

In order to evaluate the quality of the fringe pattern, determined mainly by the bending radius, 

the fringe visibility was calculated by the well-known relationship 𝑉 =
𝐼min
up

−𝐼min
low

𝐼
min
up

+𝐼min
low where 𝐼min

up  and 

𝐼min
low are the minimums of the upper and lower envelopes of the transmission spectra, 

respectively [25, 26]. 

Fig. 2.15 shows the visibilities for a bending radius ranging from 2.75 to almost zero, for MZFI 
with 5, 10, and 40mm of separation between tapers, keeping the transition lengths at 2.5 mm, the 
waist length at 1 mm and the waist diameter at 60 um. Fig. 2.16 shows the visibilities for 60 and 
50 m of waist diameter, keeping the separation between tapers at 10 mm, the transition lengths 
at 2.5 mm, and the waist length at 1 mm. 

When the MZFI was straight the transmission spectrum has no modulation interference, so that, 
fringe visibility can be considered as zero and it can be used as a zero bending condition in the 
sensors calibration process. 

As it can be seen from Fig. 2.15 and 2.16 the visibility of the fringes grows exponentially as the 
bending radius decreases. From Fig. 2.15 for the three different separations between tapers, 
considering that the limiting value of the visibility is the unity, it is inferred that the shorter 
MZFI are adequate to measure small curvature radii, while bigger MZFI are adequate to measure 
bigger diameters, so, the sensible dynamic range of the sensor can be tailored.  
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Another way to change this dynamic range is by means of changing the waist diameter of the 
tapers. Fig. 2.16 it shows that when the waist diameter of the fiber tapers are reduced the 
dynamic range of the MZFI is shifted to larger curvature radius.  

 

 

 

Fig. 2.15. Fringe visibility versus curvature radius of MZFIs formed with (a) two tapers with ρw = 60 μm 
and the L = 5 (squares), 10 (circles), and 40mm (diamonds), 
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Fig. 2.16 Two tapers with ρw = 60 (circles) and 50 μm (up-triangles) and L = 10 mm. 
 

 

When the sensor MZFI was bent in opposite directions, we observed variations in the 
transmission spectrum when the bending radius was exactly the same, but the bending direction 
was opposite. This variation could be caused because of slight variations in both of the tapers 
profile. Nevertheless, this effect can be exploited to identify the bending direction of the MZFI.  

For practical applications, due to the weakening caused by tapering of the fiber, it is necessary to 
protect the fiber in order to make it robust. So that the MZFI should have to be embedded in a 
solid protection matrix with a refractive index higher than 1; this could disturb the MZFI because 
its working principle is based in cladding modes. Fig. 2.17 shows the transmission spectrum of a 
MZFI, with a waist diameter of 60 m and a separation between tapers of 10 mm, immersed in 
Cargille oils with a calibrated refraction index of 1.402 (dashed line), and 1.442 (dotted line). 
The original spectrum is shown by a continuous line (device without surrounding refractive 
index). 
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Fig. 2.17. Transmission spectra of the MZFI formed with two tapers with ρw = 60 μm and L = 10mm for 
three different RIs, with a bending radius of 0.2 m. 
 

It is observed that the interference fringe visibility slightly decreases and shifts to shorter 
wavelengths as the RI augments. These small changes do not affect the general performance of 
the MZFI, so that, the device can be embedded into a protective matrix. 
 
The effects of the changes caused by the temperature on the MZFI were also analyzed, and it was 
found that in the range from 20 – 45oC there was no change in the visibility of the interference 
pattern, and only the pattern was shifted by 2 nm towards longer wavelengths. 
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Chapter 3  

Modal device 

based on 

multicore fiber  
 

Resume 

In this chapter will be presented the experimental results that were obtained using a multicore fiber 

device based on a seven core fiber which was used to measure bending radius, which can be 

interrogated by either wavelength shift or visibility fringes.  
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3.1 Compact fiber-optic curvature sensor based on super-mode interference in a seven-core 
fiber. 

An optical curvature sensor which shows low insertion loss and high sensitivity is presented. It is 
compact; it consists of a few millimeter long piece of seven-core fiber spliced between two 
single mode fibers. This kind of device has a pronounced interference pattern in its transmission 
spectrum, and when it is bent the interference pattern is shifted and the visibility of the 
interference fringes is altered. This sensor can be interrogated by visibility or spectral shift. 
Through the proper selection of the seven-core fiber length, it is possible to adjust the dynamic 
range of the sensor. Bending sensitivities of about 3000 nm/mm-1 were achieved. 

 

3.2 Introduction   

The measurement of curvature radius in structural monitoring applications is of great 
importance, an efficient way to measure this parameter is by using optical fiber sensors due to 
the unique characteristics they have, such as, their light weight, compactness, stability, fast 
response, high sensitivity, repeatability, insensitivity to electromagnetic interference, and so on. 
The most common optical fiber sensor is the one based on the Mach-Zhender interferometer [1-
7]. To date, the presence of specialty optical fibers, such as photonic crystal fiber and multicore 
fiber, have a good impact for the sensing applications, [1, 7-10]. The sensors constructed by 
those specialty fibers have shown good performance, simplicity, and great sensitivity to several 
external parameters. 
In this work, the unique light propagation characteristics in a multicore fibers (MCFs) are used to 
design and fabricate a bending sensor. A MCF supports the propagation of the so-called super-
modes [11]. These super-modes are generated in the MCF structure by the energy coupling 
between light that propagates through the different cores, whose separation is small, making 
possible the interference between light carried by each core. These super-modes are very 
sensitive to external mechanical perturbations such as bending. Taking advantage of this 
sensitivity, it is possible to construct a robust and attractive multicore seven core fiber sensor. 
 
 
3.3 Construction and working principle of the sensor 
 
The construction of the sensor is based on a seven core fiber. It consists of a few millimeters of 
sensing fiber, in this case the seven core fiber, spliced between single mode fibers (SMF). Using 
this sensor structure, it is possible to construct a sensor without the necessity of using specialized 
equipment; it only takes the use of a fusion splicer machine to make the splices SMF-MCF. This 
is a good fabrication advantage compared with fabrication processes that require complex glass 
processing systems. 
 
This kind of structure, a sensing fiber spliced between SMFs has been reported so far in previous 
works [1, 7, 8, 12-17], which proves that this structure is suitable for sensing applications. 
Insertion losses around 0.026 dB were registered for this MCF sensor. 
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The MCF used for the construction of this bending sensor is composed of seven cores doped 
with germanium, which are strongly coupled between them. Each core has a diameter of 9.2 m 
and a NA equal to 0.132. They are separated each other by a distance of 11 m, and the cladding 
diameter is 125 m. In previous experiments this fiber has been used [18, 19] for temperature 
and optimization of the spectral characteristics. Fig. 3.1 shows the structure of the sensor with 
the single mode and seven core fiber cross sections obtained with a microscope. Typical 
insertion losses through the complete device are around 0.026 dB. 

 
Fig. 3.1. Structure of the sensor (MCF spliced between two SMFs), and fiber cross-section of the MCF 
used to construct the sensor. 
 
Using a finite difference method mode solver, we obtained the intensity profile of the super-
modes supported by the seven core fiber. Fig. 3.2 shows the seven core fiber structure that was 
used to simulate the super mode electric field distributions. And from Fig. 3.3 to Fig. 3.9, the 
electric field distribution of every super-mode is shown. 

 

 
Fig. 3.2. Seven core fiber structure used to make the simulate super-modes density profiles with the 
geometrical parameters: core diameter 9.2 μm with a NA of 0.132, a core-to-core separation of 11 μm, 
and a cladding diameter of 125 μm. 
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Fig. 3.3. Electric field distribution of the fundamental super-mode with a modal refractive index of 
1.443772, found by a finite difference method mode solver 

 
Fig. 3.4. Electric field distribution of the second super-mode with a modal refractive index of 1.443772, 
found by a finite difference method mode solver. 
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Fig. 3.5. Electric field distribution of the third super-mode with a modal refractive index of 1.443335 
found by a finite difference method mode solver. 

 
Fig. 3.6. Electric field distribution of the fourth super-mode with a modal refractive index of 1.443335 
found by a finite difference method mode solver. 
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Fig. 3.7. Electric field distribution of the fifth super-mode with a modal refractive index of 1.443334 
found by a finite difference method mode solver. 

 
Fig. 3.8. Electric field distribution of the sixth super-mode with a modal refractive index of 1.443334 
found by a finite difference method mode solver. 
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Fig. 3.9. Electric field distribution of the seventh super-mode with a modal refractive index of 1.442883 
found by a finite difference method mode solver. 
 

 
From Fig. 3.3 to 3.9 the electric field distributions of every super-mode supported by the 7 core 
fiber are shown. As it was observed from the simulation, the seven core fiber supports 7 super-
modes. However, when the excitation of light through this MCF is made by a SMF only two 
super-modes are propagated into the seven-core fiber [18] (Fundamental and second super-
modes from Fig. 3.3 and 3.4, due to the central core excitation, since the SMF core matches with 
the central core of the MCF). These two super-modes travel through the seven core fiber 
accumulating a phase shift between them. As they arrive to the second SMF, they are recoupled 
into the SMF core, and as a result a periodic interference pattern, because of the difference modal 
refractive index of each super-mode, is generated due to the interference between super-modes. 
 
When the fiber is bent, the refractive index structure profile of the MCF becomes asymmetric 
and there is a refractive index change due to the elasto-optic coefficient, so depending of the 
bending radius there is a generation of a differential phase delay between the two super-modes. 
Thus, this allows the correlation of the bending radius with the changes in the transmission 
spectrum. In this particular case, a change in the wavelength shift and fringes visibility is 
observed.  
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3.4 Experimental results     
 
 
The set up used to characterize the bending response of the sensor is shown in Fig. 3.10 
 

 
Fig. 3.10. Set up using to characterize the bending response of the MCF sensor 

 

A simple transmission set up was used, as a source, a superluminiscent diode Thorlabs 
SLD1550S-A1 (~250 nm bandwidth) was used, and as a detector, an optical spectrum analyzer 
was utilized. The sensors were placed in a v-groove made in a thin metal sheet of 316 mm in 
length, as it can be observed from Fig.3.2, this thin metal sheet was positioned between the 
translation stages, keeping static one translation stage and moving the other in direction towards 
the metal sheet the curvature radius is varied. For the calculation of the bending radius, the 
parameters S and d where used, applying the relation 1/R=2d/(d2+S2) [20]. 

For three different curvature radii, the transmission spectra of two sensor devices with L = 18 
and 10 mm of seven core fiber lengths are shown in Fig. 3.11 
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Fig. 3.11. Sensor device spectra of two seven core fiber sensors with L = 10 and 18 mm of seven core 
fiber length at three different curvature radius (0.992, 0.524, 0.344 mm). 

 

From Fig. 3.11, it can be noticed that the peak wavelength and the amplitude modulation depth is 
altered by the bending radius of the device, while the fringe period remains almost constant. It is 
also noticed that there is a dependence of the fringe period with the length of seven core fiber. 
Fig. 3.12 shows this dependence, which has a linear behavior with a factor of 1294 nm/mm-1 
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Fig. 3.12. Relationship between inverse length of seven core fiber and interference fringe separation of 
the fabricated devices. 
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From Fig. 3.11, we found that both the visibility and wavelength shift in the interference pattern 
were strongly dependent on the bending radius of the MCF devices. Both of these parameters can 
be used to find the bending radius of the MCF sensor.  

The quality of the fringe pattern is quantified by the fringe visibility [2]. As the MCF is bent, the 
change in fringe visibility is due to the fact that the field is being radiated out of the MCF 
structure [21]. 

For calculating the visibility, the relationship 𝑉 =
𝐼min
up

−𝐼min
low

𝐼
min
up

+𝐼min
low [22] was used  

The fringe visibility versus inverse curvature radius for three MCF devices with seven core fiber 
lengths of 10, 16, and 25 mm is shown in Fig. 3.13. A linear fit was applied and we found slopes 
of 3.47 a.u.∕ mm−1, 2.39 a.u.∕mm−1, and 3.86 a.u.∕mm−1, for these three lengths of MCF, 
respectively. 
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Fig. 3.13. Fringe visibility versus inverse curvature radius for three different seven-core fiber lengths: 10 
mm (squares), 16 mm (circles), and 25 mm (triangles). 

 

From Fig. 3.13 it is noticed that when the devices are straight, the transmission spectra have 
initial visibility values that can be considered as the zero bending condition. As the sensor device 
is bent, the visibility grows approximately linearly. And considering that the limiting and 
maximum value of the visibility is unity, it can be inferred that the dynamic range of longer 
length MCF is appropriated to measure larger inverse radii, while the dynamic range of shorter 
length MCF is appropriated to measure smaller inverse radii.  
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Another way to measure the bending radius using this MCF is by the wavelength shift of the 
transmission spectral. Fig 3.14 shows the dependence of the transmission wavelength notch on 
the inverse curvature radius of a sensor with 10 mm MCF length. 
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Fig. 3.14. Transmission notch wavelength versus inverse bending radius of the sensor device length with 
10 mm of seven-core fiber. The solid line shows a linear fit of the most sensitive range of 0.0022–0.005 
mm−1 (200 to 450 mm in terms of bending radius). 
 

In the range from 0.0022 mm-1 (450mm) to 0.005 mm-1 (200mm) is found the most sensitive 
region for the sensor with a value of -2943 nm/mm-1. The sensitivity drops to -1653.7 nm/mm-1 
for ranges below to 0.0022 mm-1. Several sensor devices with different seven core fiber lengths 
were tested and a very similar behavior of that in Fig. 3.7 was obtained. 

When the device was bent in opposite directions, slight differences were observed in the 
transmission spectrum in visibility as well as in wavelength shift. Fig. 3.15 illustrates these 
spectral differences for a device with 5 mm of seven core fiber length bent at three bending 
radius (0.00178, 0.00269, and 0.00337 mm-1) in opposite directions. Solid curves are the 
transmitted spectra for one direction and the dashed curves are the transmitted spectra for the 
opposite direction. This effect can be exploited to identify the bending direction that experiences 
the MCF sensor. These differences may be due to small variations in the symmetry of the seven-
core fiber when it is bent, since it is difficult to guarantee that the outer core fiber orientation is 
exactly the same when the bending is in opposite or different direction. 
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Fig. 3.15. Spectral response of a device with 5 mm of MCF length that has been bent in two opposite 
directions. The continuous curve is one direction, and the dash curve represents the opposite direction for 
three different inverse curvature radii (0.00178 mm−1, 0.00269 mm−1, and 0.00337 mm−1). 
 

In this case, with this MCF structure sensor, the super-modes are well confined in the optical 
waveguide, so that this sensor is no sensible to surrounding refractive indices, allowing the 
embedding in a solid protection matrix if it is needed. This well confined field is a good 
advantage over sensors based on the interaction of the evanescent part of the optical fiber modes. 
 
In order to evaluate the thermal response of the device, the MCF (without bending) was tested in 
the range from room temperature to 100oC, and a wavelength peak shift of about 4 nm was 
observed, and a very slight variation of the visibility. This effect can be ignored if the 
temperature stays constant during the bending measurement or it can be isolated by the use of a 
bending insensitive temperature sensor. 
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Chapter 4  
 

Conclusions 
Resume 

In this chapter the conclusions of the project will be presented 
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4.1 Conclusions  

In this work, three optical fiber devices based on modal interference were demonstrated, namely, 
a comb-filter based on two concatenated tapered optical fibers, the application of the comb-filter 
as bending sensor, and a bending sensor using super-mode interference in a seven core fiber. 

The comb-filter, described in chapter two and based in two in-series tapers that form a MZFI, 
was subject to an optimization process. The optimization process allowed the analysis and study 
of the tapers geometry on the transmission spectrum, i.e., the effects of transition length, waist 
length and diameter, separation between tapers. We found that the diameter waist has the greater 
effect to position the interference pattern, the transition length has the greater effect in the size of 
the interference band, the waist length affects the fringe visibility (changing the optical path of 
the two interfering signals), and the period is determined by the separation between tapers. This 
optimization study allows the selection of the operation wavelength determined by the available 
source and to select the fringe separation and visibility that are very important in applications 
such as optical fiber sensors. In particular, the optimized tapers have been used for measuring 
bending and as tunable elements in fiber lasers.   

The application of the comb filter as a bending sensor was described in chapter two. This device 
had the characteristic that being straight no interference pattern was observed in the transmission 
spectrum. However, as the device was bent, the interference pattern gradually started to appear, 
and its strength (visibility) was dependent of the bending radius. The interrogation of this 
bending sensor was made by the fringe visibility of the interference pattern in the transmission 
spectrum. It was found that it is possible to set the dynamic range of the sensor by changing the 
separation between tapers and the waist diameter. One of the main advantages of this sensor was 
the fact that the zero bending state was clearly identified, as in this case no interference fringes 
were observed. 

The bending sensor using super-mode interference was described in chapter three. This work was 
realized during my pre-doctoral period at CREOL (Central Florida University), under the 
guidance of Dr. Rodrigo Amezcua. This sensor had a similar behavior as the comb-filter bending 
sensor, but in addition to the visibility change, a wavelength shift was observed and can be used 
as an alternative interrogation method. The wavelength shift sensitivity is a very important 
characteristic that make this kind of sensor structure very promising in many applications. It is 
worth to mention that the target application of this device was on the measurement of pressure 
and temperature for the oil industry, and this work was made in conjunction with the company 
Faz Technology (Orlando Florida).  

As a future work, an improvement of modal interference in optical fibers can be done in order to 
sense more diverse parameters, such as torsion, strain, compression, refractive index, humidity, 
cleaning, pressure, position, displacement, velocity, flow, vibration, temperature, and so on. 
Furthermore, the presence of the evanescent field in tapered optical fiber is another application 
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field to play with for the construction of novel devices, for example, optical tweezers and sensing 
environmental parameters. In the case of the super-mode interference, an improvement also can 
be done by means of the construction of novel devices using the multicore fiber structure with 
the aim of generate controlled super-mode interference for sensing applications.  

Another field to explore with these modal devices will be playing with the polarization in order 
to find different responses and improvements. Furthermore, modal selection methods in 
multicore-fibers are also a field that will give rise to interesting and useful studies and 
applications. Currently, I am exploring some possibilities and making initial experimental work 
on this topic. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

Modal solutions for 
optical fibers 
A.1 Fundamental equations
In this section  the fundamental concepts for the propagation light in  optical fiber  will be reviewed.  The first step is  to derivete the scalar and
vector  wave equations, which  are specialised forms  of the Maxwell  equations and  are applicable to waveguide  with arbitrary refraction  index
profile.
Optical fibers are dielectric material and each layer, thus every fiber layer will be caracterised only by the dielectric constant, which in the SI it is
related to the refracion index by

(0.1)  0 n2

Where 0 is the permittivity in the free space.

Besides, as the material is not magnetic we have

(0.2)  0

for this work only step index refraction profile will be taken in consideration, which means that the refraction index profile is constant in every
waveguide layer, just as it is plotted in Fig. A1

In[1]:= GraphicsCircle0, 0, 4.2, Axes  True, PlotRange  7, 7, 7, 7,
AxesLabel  "r m", "r m", PlotLabel  "Step profile"

PlotPiecewise1.4458, 0  x  4.2, 1.4319, x  4.2, x, 0, 10,
PlotRange  0, 10, 1.4, 1.45, PlotStyle  Thick,
AxesLabel  "r m", "Refractive index, nr"
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Figure A.1 Refraction index profile for a Matched Cladding fiber. 
Refraction index profiles as the ones shown in figures 2.1 to 2.4 are approximated representations of real fiber optics,since the real profiles differ
on the refraction index transitions between borders of layers, due to the fact that real optical fiber refraction index profile has not a steepening
transitions but a slight and gradual transitions between layers. However most of the observed phenomena  in real optical fiber can be predicted
using this step index assumption.
Using the step index approximation allows use of the scalar wave equation where the polarizing effects are not taken into consideration, so that
solving  the homogeneous  scalar  wave equation  for  each  layer  and  then  matching  the  solution  applying  the  adequate boundary conditions,  we
obtain the general propagation light on the optical fiber. 

A.2 Solutions to the scalar wave equation for multilayer circular waveguides
In solving the wave equation for the case of a circularly symmetric waveguide, in the scalar approximation, it is customary first to solve the wave
equations for the longitudinal components of transverse electric and magnetic fields. In this case, the wave equations for the ez(r,) and hzr, 
are simply  given by:

(0.3)t2k2n2  neff
2 ezrt  0

(0.4)t2k2n2  neff
2 hzrt  0

where t  is  the transverse Laplacian,  rt  indicates funcionality on the transverse coordinates with  respect  to the propagation  direction,  n  is  the
refractive  index,  k  is  the  free  space  propagation  constant,  and  neff  is  the  effective  refractive  index  of  the  particular  solution  of  mode  of  the
waveguide. In cylindrical coordinates, the other components may be found from the following relations [1] :

(0.5)err,  
1

k2n2  neff
2

k neff

 i ezr, 
 r


k 0

r

 i hzr, 
 



(0.6)er,  
1

k2n2  neff
2


k neff

r

 i ezr, 
 

 k 0
 i hzr, 

 r


(0.7)hrr,  
1

k2n2  neff
2

k neff 0
 i hzr, 

 r

k n2

r

 i ezr, 
 



(0.8)hr,  
1

k2n2  neff
2


k neff 0

r

 i hzr, 
 

 k n2
 i ezr, 

 r


where 0 is the free space permitivity.

Eqs. (0.3) and (0.4) have the same form, so that,  it is enough to consider an arbitrary function (r,) which may represent either ez  or hz. It  is
assumed that (r,) is separable in the following form

(0.9)r,   Rr f 
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Then, the general solution for (r,) may fall into two different cases, depending on the relative values of the refractive index in the medium and
the effective refractive index corresponding to a particular solution or mode:

(0.10)r,   f  
Ai Jmui r  Bi Ymui r if ni  neff where ui2  k2ni2  neff

2 
Ci Imwi r  Di Kmwi r if ni  neff wherewi2  k2neff

2  ni2

Here the subscript i refers to the particular layer of the waveguide with material refractive index ni. 

A.2.1 Solutions for a matched cladding profile
The case of interest in this thesis is the matched cladding profile (shown in Fig. (A.1)). For this refraction index profile there will be two distinc
possible solutions which corresponds to modes supported by the waveguide structure formed by the core and the cladding (core modes), and the
waveguide structure formed by the cladding and the external medium (cladding modes). In this section the solution (A.10) will be particularized
to each type of solution, assuming always even modes with:

(0.11)f    cos m  for ezr, 
sin m for hzr, 

A.2.1.1 Core modes

The devices developed in this work are based on tapers whose transverse dimensions are such that the core modes remains guided by the core-
cladding structure, i.e., there is no transition from core to cladding guiding in the taper. In this case, it may be assumed an infinite cladding such
that the effective refractive index of the core modes has values in the range given by the following condition: 

(0.12)n2  neff  n1

Thus, from (A.10), the solutions for ez and hz are given by:

(0.13)ezr,   cosl  A1
e Jmu1 r 0  r  r1
C2
e Kmw2 r r1  r  r2

(0.14)hzr,   sinl 
A1
h Jmu1 r 0  r  r1
C2
h Kmw2 r r1  r  r2

Where A1
e , C2

e, A1
h, C2

h are constants and Jm, Km are Bessel functions.

Here, in the second layer it is assumed that the field must be decaying, so that the term involving the Bessel function Il has been neglected. 

Clear all variable definitions 

Clear"Global`"

Definition of the electric field in both layers 

In[2]:= Ez1r_, _  Cosm   A1e  BesselJm, u1  r;
Ez2r_, _  Cosm   C2e  BesselKm, w2  r;

Definition of the magnetic field in both layers 

In[4]:= Hz1r_, _  Sinm   A1h  BesselJm, u1  r;
Hz2r_, _  Sinm   C2h  BesselKm, w2  r;

Calculation of the radial compound for the electric field in both layers

| 
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In[6]:= Er1r_, _ 
1

u12
 k  nef  DI  Ez1r, , r 

k  0

r
 DI  Hz1r, ,   Simplify;

Er2r_, _ 
1

w22
 k  nef  DI  Ez2r, , r 

k  0

r
 DI  Hz2r, ,   Simplify;

Print"0rr1:"
Print"Err, ", Er1r,   TraditionalForm
Print""
Print"r1rr2:"
Print"Err, ", Er2r,   TraditionalForm
0rr1:

Err,
 k cosm  A1e nef r u1 Jm1r u1  A1e nef r u1 Jm1r u1  2 A1h 0 m Jmr u1

2 r u12

r1rr2:

Err,
 k cosm  C2e nef r w2 Km1r w2  C2e nef r w2 Km1r w2  2 C2h 0 m Kmr w2

2 r w22

Calculation of the radial compound for the magnetic field in both layers

In[13]:= Hr1r_, _ 
1

u12
 k  nef  0  DI  Hz1r, , r 

k  n12

r
 DI  Ez1r, ,   Simplify;

Hr2r_, _ 
1

w22
 k  nef  0  DI  Hz2r, , r 

k  n22

r
 DI  Ez2r, ,   Simplify;

Print"0rr1:"
Print"Hrr, ", Hr1r,   TraditionalForm
Print""
Print"r1rr2:"
Print"Hrr, ", Hr2r,   TraditionalForm

0rr1:

Hrr, 
 k sinm  2 A1e m n12 Jmr u1  A1h 0 nef r u1 Jm1r u1  A1h 0 nef r u1 Jm1r u1

2 r u12

r1rr2:

Hrr, 
 k sinm  2 C2e m n22 Kmr w2  C2h 0 nef r w2 Km1r w2  C2h 0 nef r w2 Km1r w2

2 r w22

Calculation of the azimuthal compound for the electric field in both layers
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In[20]:= E1r_, _ 
1

u12


k  nef

r
 DI  Ez1r, ,   k  0  DI  Hz1r, , r  Simplify;

E2r_, _ 
1

w22


k  nef

r
 DI  Ez2r, ,   k  0  DI  Hz2r, , r  Simplify;

Print"0rr1:"
Print"Er, ", E1r,   TraditionalForm
Print""
Print"r1rr2:"
Print"Er, ", E2r,   TraditionalForm
0rr1:

Er,
 k sinm  2 A1e m nef Jmr u1  A1h 0 r u1 Jm1r u1  A1h 0 r u1 Jm1r u1

2 r u12

r1rr2:

Er,
 k sinm  2 C2e m nef Kmr w2  C2h 0 r w2 Km1r w2  C2h 0 r w2 Km1r w2

2 r w22

Calculation of the azimuthal compound for the magnetic field in both layers

In[27]:= H1r_, _ 
1

u12


k  nef  0

r
 DI  Hz1r, ,   k  n12  DI  Ez1r, , r  Simplify;

H2r_, _ 
1

w22


k  nef  0

r
 DI  Hz2r, ,   k  n22  DI  Ez2r, , r  Simplify;

Print"0rr1:"
Print"Hr, ", H1r,   TraditionalForm
Print""
Print"r1rr2:"
Print"Hr, ", H2r,   TraditionalForm

0rr1:

Hr,
 k cosm  A1e n12 r u1 Jm1r u1  A1e n12 r u1 Jm1r u1  2 A1h 0 m nef Jmr u1

2 r u12

r1rr2:

Hr, 
 k cosm  C2e n22 r w2 Km1r w2  C2e n22 r w2 Km1r w2  2 C2h 0 m nef Kmr w2

2 r w22

From the application of the boundary conditions at the core radius we obtain
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In[34]:= ec1  FlattenCoefficientEz1r1,   Ez2r1,  . Cosm   1, A1e, A1h, C2e, C2h, 4;
ec2  FlattenCoefficientHz1r1,   Hz2r1,  . Sinm   1, A1e, A1h, C2e, C2h, 4;
ec3  FlattenCoefficientE1r1,   E2r1,  . Sinm   1, A1e, A1h, C2e, C2h, 4;
ec4  FlattenCoefficientH1r1,   H2r1,  . Cosm   1, A1e, A1h, C2e, C2h, 4;
matriz  ec1, ec2, ec3, ec4;
  MatrixForm  TraditionalForm

Out[39]//TraditionalForm=

Jmr1 u1 0 Kmr1 w2 0
0 Jmr1 u1 0 Kmr1 w2


 k m nef Jmr1 u1

r1 u12

 0 k Jm1r1 u1
2 u1


 0 k Jm1r1 u1

2 u1

 k m nef Kmr1 w2

r1 w22 
 0 k Km1r1 w2

2 w2


 0 k Km1r1 w2
2 w2

 k n12 Jm1r1 u1
2 u1


 k n12 Jm1r1 u1

2 u1

 0 k m nef Jmr1 u1

r1 u12

 k n22 Km1r1 w2
2 w2


 k n22 Km1r1 w2

2 w2

 0 k m nef Kmr1 w2

r1 w22

In order to have a non-trivial solution the determinant of the above matrix should be equal zero:

In[40]:= det1  Detmatriz  Simplify;

 . BesselJ1  m, r1 u1  BesselJ1  m, r1 u1 
2  m

r1  u1
 BesselJm, r1  u1,

BesselK1  m, r1 w2  BesselK1  m, r1 w2 
2  m

r1  w2
 BesselKm, r1  w2;

 
1

4 r12 u14 w24
k2 0  BesselJ1  m, r1 u1 BesselJm, r1 u1

BesselK1  m, r1 w2 BesselKm, r1 w2  Expand;

det1n    4 n12 r12 u13 w23  Expand . u1 
U1

r1
, w2 

W2

r1
;

Printdet1n  TraditionalForm, "  0"

m2 n22 U1 JmU1 KmW2

n12 W23 Jm1U1 Km1W2


m2 n22 JmU1 KmW2

n12 U1 W2 Jm1U1 Km1W2

m2 nef2 W2 JmU1 KmW2

n12 U13 Jm1U1 Km1W2


m2 nef2 U1 JmU1 KmW2

n12 W23 Jm1U1 Km1W2


2 m2 nef2 JmU1 KmW2

n12 U1 W2 Jm1U1 Km1W2


m2 W2 JmU1 KmW2

U13 Jm1U1 Km1W2


m2 JmU1 KmW2
U1 W2 Jm1U1 Km1W2


2 m n22 U1 JmU1

n12 W22 Jm1U1

n22 U1 JmU1 Km1W2

n12 W2 Jm1U1 KmW2


m n22 JmU1

n12 U1 Jm1U1


m n22 KmW2

n12 W2 Km1W2

2 m W2 KmW2

U12 Km1W2

W2 Jm1U1 KmW2
U1 JmU1 Km1W2


m JmU1

U1 Jm1U1


m KmW2
W2 Km1W2


n22

n12
 1  0

where U1  r1 u1, W2  r1 w2.

If we define

 
JmU1

U1 Jm1U1

 
KmW2

W2 Km1W2
Then the above determinant leads to a quadratic equation in : 
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In[45]:= det1n .  BesselJm, U1    U1  BesselJ1  m, U1,
BesselKm, W2    W2  BesselK1  m, W2      Expand;

tra  Collect, 2;
tra32  Collecttra32, 2;
tra3231  tra3231  Simplify;
tra3221  tra3221  Simplify;
tra22  Collecttra22, 2;
tra2221  tra2221  Simplify;
Printtra, " 0"


W22 2

U12
  1 

n22

n12
  m 1 

n22

n12

2 W22

U12
2 

2
n22 U12

n12 W22
 m 1 

n22 2 U12  W22

n12 W22
 

m2 U12  W22 n22 U12  n12 W22  nef2 U12  W22 2

n12 U12 W22
0

Each of the possible solutions of this equation may be associated with an HE or EH mode. By defining:

c1 
n22 U12

n12 W22
 m 1 

n22 2 U12  W22
n12 W22

 
m2 U12 W22 n22 U12  n12 W22  nef2 U12  W22 2

n12 U12 W22

c2  1 
n22

n12
  m 1 

n22

n12


2 W22

U12
2

c3  
W22 2

U12

Then the determinant will lead to two solutions of the form:

In[53]:= tra . 
n22 U12

n12 W22
 m 1 

n22 2 U12  W22

n12 W22
 

1

n12 U12 W22
m2 U12  W22 n22 U12  n12 W22  nef2 U12  W22 2  c1,

1 
n22

n12
  m 1 

n22

n12

2 W22

U12
2  c2 . 

W22 2

U12
 c3;

Solve  0, 
1  112;
2  212;
Print"1 ", 1
Print"2 ", 2

Out[54]=  
c2  c2

2  4 c1 c3

2 c1
,  

c2  c2
2  4 c1 c3

2 c1


1
c2  c2

2  4 c1 c3

2 c1

2
c2  c2

2  4 c1 c3

2 c1
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In[59]:= C1 
n22 U12

n12 W22
 m 1 

n22 2 U12  W22

n12 W22
 

1

n12 U12 W22
m2 U12  W22 n22 U12  n12 W22  nef2 U12  W22 2 ;

C2  1 
n22

n12
  m 1 

n22

n12

2 W22

U12
2 ;

C3  
W22 2

U12
;

Then we have two characteristic equations for EH and HE modes: 

In[62]:= Ec1  1 . 1 
BesselJm, U1

U1  BesselJm  1, U1


C2

2  C1
 1  SqrtC22  4  C1  C3 .  

BesselKm, W2
BesselKm  1, W2

;

Ec2  2 . 2 
BesselJm, U1

U1  BesselJm  1, U1


C2

2  C1
 1  SqrtC22  4  C1  C3 .  

BesselKm, W2
BesselKm  1, W2

;

Now we consider the specific case of a single mode fiber with 4.15 m core radius, and  0.13 NA:

In[64]:= Needs"PhysicalConstants`"
SpeedOfLight;
clight  SpeedOfLight1  10^6;
0  VacuumPermittivity1  10^6;
0  VacuumPermeability1  10^6;

k 
2  Pi


;

  2  Pi  clight  ;
nco  1.445;
NA  0.13;
ncla  Sqrtnco^2  NA^2;
V  k  rco  NA;
next  1;
rco  4.15;
rcla  62.5;
0  377;
u1c  k2  nco2  nef2;
U1c  rco  u1c;
w2c  k2  nef2  ncla2;
W2c  w2c  r1;
W2nc  w2c  r2;
w3c  k2  nef2  next2;
W3c  w3c  r2;

Characteristic Equations:

In[86]:= caracCOr1_, r2_, n1_, n2_, n3_, _, m_, nef_  Ec1 . U1  u1c  rco, W2  W2c  rco;
caracCOnr1_, r2_, n1_, n2_, n3_, _, m_, nef_  Ec2 . U1  u1c  rco, W2  W2c  rco;

67



The roots or the allowed effective index values are found at the points where the functions are zero.

In[88]:= ManipulatePlotcaracCOnrco, rcla, nco, ncla, next, , 1, nef, nef, ncla, nco,
PlotRange  ncla, nco, 20, 20, Frame  True, FrameLabel  "neff",

, 1.3, 1.7, FrameLabel  "Mode HE1 m or LP0 m"

Out[88]=



1.440 1.441 1.442 1.443 1.444 1.445
20

10

0

10

20

neff

Mode HE1m or LP0m

FindRootcaracCOnrco, rcla, nco, ncla, next, 1.7, 1, nef, nef, 1.44112

1.43992

Now we obtain the dispersion curve for the effective index of the fundamental core mode:

| 
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nefini  1.4396931567610167;
Core  Table

, FindRootcaracCOnrco, rcla, nco, ncla, next, , 1, nef, nef, 1.44112,
, 1.3, 1.7, 0.01;

ListPlotCore, Joined  True, Frame  True, FrameLabel 

"Wavelength m", "Effective index neff", PlotStyle  Black, Thick

1.3 1.4 1.5 1.6 1.7
1.43992

1.43994

1.43996

1.43998

1.44000

1.44002

1.44004

Wavelength m

Figure A2. Dispersion curve for the fundamental core mode.
The relationship for the propagation constant which is related to the effective refraction index is the following

(0.15)  k neff 
2 


neff

A.2.1.2 Cladding modes

The  cladding  modes  in  an  optical  fiber  can  be  excited  by  a  perturbation  which  couples  part  of  the  energy  from the  core  mode  to  energy  of
cladding modes. There are several perturbations which causes this coupling, but in this work we will be focused in the perturbation caused by a
taper made in the optical fiber. Depending of the taper dimensions and processing conditions these tapers in optical fibers can effectively couple
light from the core to the cladding mode and vice versa.
The fabrication of optical fiber  tapers involves removing the protective coating leading to a stripped optical fiber which has a refraction index
profile such as that shown in figure A.1 (Refraction index profile for a Matched Cladding fiber).  This profile comprises a core embedded in the
cladding surrounded by air, due to this, unlike the core modes now it is necessary to consider a finite cladding for solving the wave equation in
the whole structure.
Every clading mode will has a value in the range given by the following condition:

(0.16)n3  neff  n2

Where n3  is the refraction index in the air and n2 is the refraction index in the cladding. It can be assumed that there is no light in the air due to
the great difference between the refraction index of cladding and air. 
In a tapered fiber optic the translational invariance is lost due to the variation of the whole fiber optic diameter. The ration of cladding to core
radii is kept constant at the non tapered optical fiber value because when the diameter of the whole fiber decreases or increases, the cladding and
core radii change by a factor of exactly the same amount and the ration of cladding to core radii remains constant. 

(0.17)S 
cl

co
Ration core to cladding radii

As the core radius varies, the normalized frequency V (which is given by equation 2.17) varies too, due to the fact that the normalised frequency
is directly proportional to the core radius which depends of the longitudinal component z through the taper length.

(0.18)V z  k nco
2  ncl

2  z

Where k= 2 


 is the wavenumber in terms of the free-space wavelength . For this analisys it  is necesary to introduce the normalised radial co-

ordinate:
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(0.19)R 
r



Where  is the core radius

Taking in consideration the three layer structure for the matched cladding profile and using the normalized radial co-ordinate, the solutions for
equations 2.3 and 2.4 for every layer will be of the following form:

For the electric field

(0.20)ezr,   cosl 

Ace Jmu1 R 0  R  1

Bce Jmu2 R  Cce Ymu2 R 1  R 
cl



Dce Kmw3 r R 
cl



For the magnetic field

(0.21)hzr,   sinl 

Ach Jmu1 R 0  R  1

Bch Jmu2 R  Cch Ymu2 R 1  R 
cl



Dch Kmw3 R R 
cl



Where Ace , Bce, Cce, Dce, Ach, Bch, Cch and Dch are constants, Jm , Km, Cce, Ym are Bessel functions, ui and wi are defined in equation 2.10

ClearAll"Global`"

The solutions when 1  neff < ncl for every layer are the following 

F1R_  Ac  BesselJ0, U  R;
F2R_  Bc  BesselJ0, Q  R  Cc  BesselY0, Q  R;
F3R_  Dc  BesselK0, T  R;

where U = u1, Q = u2 and T = w3

The solutions are derived with respect to the normalized radial-coordinate

DF1R_  DF1R, R;
DF2R_  DF2R, R;
DF3R_  DF3R, R;

Applying boundary condition at R=1 (in the core radius), and at R=S (in the cladding radius)

ec1  F11  F21;
ec2  DF11  DF21;
ec3  F2S  F3S;
ec4  DF2S  DF3S;

Making a matrix for the solution of the equations system 

fila1  Coefficientec1, Ac, Bc, Cc, Dc;
fila2  Coefficientec2, Ac, Bc, Cc, Dc;
fila3  Coefficientec3, Ac, Bc, Cc, Dc;
fila4  Coefficientec4, Ac, Bc, Cc, Dc;

Matriz  MatrixFormfila1, fila2, fila3, fila4

BesselJ0, U BesselJ0, Q BesselY0, Q 0
U BesselJ1, U Q BesselJ1, Q Q BesselY1, Q 0

0 BesselJ0, Q S BesselY0, Q S BesselK0, S T
0 Q BesselJ1, Q S Q BesselY1, Q S T BesselK1, S T

Calculation of determinant matrix in several functions  
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FuncionS_, U_, T_  ExpandDetMatriz1

Q U BesselJ1, Q S BesselJ1, U BesselK0, S T BesselY0, Q 
T U BesselJ0, Q S BesselJ1, U BesselK1, S T BesselY0, Q 
Q T BesselJ0, U BesselJ1, Q BesselK1, S T BesselY0, Q S 
T U BesselJ0, Q BesselJ1, U BesselK1, S T BesselY0, Q S 
Q2 BesselJ0, U BesselJ1, Q S BesselK0, S T BesselY1, Q 
Q T BesselJ0, Q S BesselJ0, U BesselK1, S T BesselY1, Q 
Q2 BesselJ0, U BesselJ1, Q BesselK0, S T BesselY1, Q S 
Q U BesselJ0, Q BesselJ1, U BesselK0, S T BesselY1, Q S

The determinant is separated into two functions f1 and f2, and then f3, f4, f5, and f6 are the determinant expresed in terms of the functions f1
and f2

f1S_, Q_, U_, T_  Q U  T U
BesselJ0, Q BesselK1, S T BesselY0, Q S
BesselJ1, Q S BesselK0, S T BesselY0, Q



Q T BesselJ0, Q S BesselJ0, U BesselK1, S T BesselY1, Q 
BesselJ1, Q S BesselJ1, U BesselK0, S T BesselY0, Q 

Q2
BesselJ0, U BesselJ1, Q BesselY1, Q S
BesselJ1, Q S BesselJ1, U BesselY0, Q

;

f2S_, Q_, U_, T_  T U
BesselJ0, Q S BesselK1, S T
BesselJ1, Q S BesselK0, S T



Q T BesselJ0, U BesselJ1, Q BesselK1, S T BesselY0, Q S 
BesselJ1, Q S BesselJ1, U BesselK0, S T BesselY0, Q 

Q2
BesselJ0, U BesselJ1, Q S BesselY1, Q
BesselJ1, Q S BesselJ1, U BesselY0, Q

 Q U
BesselJ0, Q BesselY1, Q S
BesselJ1, Q S BesselY0, Q

;

f3S_, Q_, U_, T_ 
f1S, Q, U, T  f2S, Q, U, T
f1S, Q, U, T  f2S, Q, U, T

;

f4S_, Q_, U_, T_ 
f1S, Q, U, T  f2S, Q, U, T

f1S, Q, U, T
;

f5S_, Q_, U_, T_ 
f1S, Q, U, T  f2S, Q, U, T

f2S, Q, U, T
;

f6S_, Q_, U_, T_ 
f1S, Q, U, T  f2S, Q, U, T
f2S, Q, U, T  f1S, Q, U, T

;

After having the equation, the determinant that involves the solution for the three layer optical fiber, which represents the mode solutions for the
optical fiber, what is left to do is find the roods of a shuch equation. The calculation of the effective refractive index for every mode supported in
the three layer optical fiber are described below.

Optical fiber data used for the calculation of the effective refractive index for every mode
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NA  0.2; SMF28
  1.2 ;
1  1.2;
rco  9.84  2;
S1  12.703;
rcla  S1 rco;
n2  1.450588;
  0.002176;

n1 
n22

2   1
;

k  2  Pi  ;

V1 
V 

2 n22  n12 

 k  Sqrtn1^2  n2^2;

U1 
V 

2 n22  n12 

 k  Sqrtn1^2  neco^2;

Q1 
V 

2 n22  n12 

 k  Sqrtn2^2  neco^2;

T1 
V 

2 n22  n12 

 k  Sqrtneco^2  1;

n1

1.45375

Refraction index for the cladding and core fiber

lista1  Tablex, 1.450588, x, 0.5, 1.8, 0.1;
lista2  Tablex, 1.4537548197445296, x, 0.5, 1.8, 0.1;

In  order to find the solution  for the determinant  it  is  used the graphical solution method, for  this, it  is plotted f1  and  f2  for a  normalized  fre-
cuency of 0.5 and with a wavelength of 1.2 m to find the intersections of the function curves which represent the solutions 
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V  0.5;

PlotRef1S1, Q1 .   1, r 
V 

2 n22  n12 

,

U1 .   1, r 
V 

2 n22  n12 

, T1 .   1, r 
V 

2 n22  n12 

,

Ref2S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

, neco, 1.44, 1.45,

PlotRange  1.442, 1.4505, 1000, 1000, Frame  True,
FrameLabel  "Effective index neff", "", PlotLegends  "Expressions",
Epilog  PointSizeLarge, Point1.450225695752853`, 0.495`,

Point1.4483621256990902`, 0.492`, Point1.4450948787356985`, 0.4995`

1.442 1.444 1.446 1.448 1.450
1000

500

0

500

1000

Effective index neff

Re f1 12.703, 10.4271 2.10421  neco2 V . 1.2

Re f2 12.703, 10.4271 2.10421  neco2 V . 1.2

Figure A.3  Plotting of the determinant solution for the three layer structure optical fiber for finding the roots 
using f1 and f2 for a graphical solution method. The three black points are the roots for the LP01, LP02, and 
LP03 modes numbered from right to left respectively. 
For  the  same normalized  frecuency of 0.5  and  with a  wavelength of  1.2 m, it  is  found  the root for the effective refractive index of  the LP01
mode which is the closed value to the core refraction index, due to the fact that is the mode that propagates more confined in the core.   
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V  0.5;

ChopFindRootf1S1, Q1 .   1, r 
V 

2 n22  n12 

,

U1 .   1, r 
V 

2 n22  n12 

, T1 .   1, r 
V 

2 n22  n12 

 

f2S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

, neco, 1.45112

1.45024

The finding of the root for the LP02  is shown below:   

V  0.5;

ChopFindRootf1S1, Q1 .   1, r 
V 

2 n22  n12 

,

U1 .   1, r 
V 

2 n22  n12 

, T1 .   1, r 
V 

2 n22  n12 

 

f2S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

, neco, 1.44812

1.44844

The finding of the root for the LP03  is shown below:   

V  0.5;

ChopFindRootf1S1, Q1 .   1, r 
V 

2 n22  n12 

,

U1 .   1, r 
V 

2 n22  n12 

, T1 .   1, r 
V 

2 n22  n12 

 

f2S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

, neco, 1.44512

1.44511

With the purpose of find the cladding modes it is necessary to make a perturbation. The perturbation used in this work is the taper in the optical
fiber, for doing a taper in the optical fiber it is needed to vary the optical fiber radius, it is done by varying the normalized frequency, which has a
diretly proporsionality with the radius of the optical fiber, as the length of the fiber increases. In the following steps it is calculated the refractive
indexes (roots of the determinant) for the LP01, LP02 , LP03, LP04 , and LP05 as the parameter V (normalized frequency) is increased.
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Searching of roots from the first mode LP01 or HE11

neffs1  ;
vbusqueda1  1.45023;
V  0.49;

Forj  0, j  250, j,

V  V  0.005;

R  Chop

FindRootf3S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, vbusqueda1j  112;

neffs1  Appendneffs1, V, R;
vbusqueda1  Appendvbusqueda1, R;

;

Searching of roots from the second mode LP02  or HE12

neffs2  ;
vbusqueda2  1.446;
V  0.49;

Forj  0, j  600, j,

V  V  0.002;

R  Chop

FindRootf3S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, vbusqueda2j  112;

neffs2  Appendneffs2, V, R;
vbusqueda2  Appendvbusqueda2, R;

;

Searching of roots from the third mode LP03  or HE13
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neffs3  ;
vbusqueda3  1.445;
V  0.499;

Forj  0, j  593, j,

V  V  0.0005;

R  Chop

FindRootf3S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, vbusqueda3j  112;

neffs3  Appendneffs3, V, R;
vbusqueda3  Appendvbusqueda3, R;

;

V  0.9;
neffs3a 

FindRootf4S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, 1.44712;

neffs3  Appendneffs3, V, neffs3a;

V  1.0;
neffs3b 

FindRootf4S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, 1.44712;

neffs3  Appendneffs3, V, neffs3b;

V  1.1;
neffs3c 

FindRootf5S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, 1.4512;

neffs3  Appendneffs3, V, neffs3c;
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V  1.2;
neffs3d 

FindRootf5S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, 1.4512;

neffs3  Appendneffs3, V, neffs3d;

V  1.4;
neffs3e 

FindRootf5S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, 1.4512;

neffs3  Appendneffs3, V, neffs3e;

V  1.7;
neffs3f 

FindRootf5S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, 1.4501525577461194`12;

neffs3  Appendneffs3, V, neffs3f;

Searching of roots from the fourth mode LP04 or HE14

neffs4  ;
vbusqueda4  1.44;
V  0.49;

Forj  0, j  150, j,

V  V  0.005;

R  Chop

FindRootf5S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, vbusqueda4j  112;

neffs4  Appendneffs4, V, R;
vbusqueda4  Appendvbusqueda4, R;

;
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V  1.5;

neffs4a  Quiet

FindRootf6S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, 1.4495212;

neffs4  Appendneffs4, V, neffs4a;

V  1.7;

neffs4b  Quiet

FindRootf6S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, 1.4497212;

neffs4  Appendneffs4, V, neffs4b;

Searching of roots from the fifth mode LP04 or HE125

neffs5  ;
vbusqueda5  1.43;
V  0.49;

Forj  0, j  125, j,

V  V  0.01;

R  Chop

FindRootf3S1, Q1 .   1, r 
V 

2 n22  n12 

, U1 .   1, r 
V 

2 n22  n12 

,

T1 .   1, r 
V 

2 n22  n12 

  0, neco, vbusqueda5j  112;

neffs5  Appendneffs5, V, R;
vbusqueda5  Appendvbusqueda5, R;

;

Plotting of the refractive index for the first five LP0 m modes when a taper perturbation is current
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ShowListPlotneffs1, neffs2, neffs3, neffs4, neffs5, lista1, lista2, Joined  True,
Frame  True, FrameLabel  "Parameter, Vz", "Effective index, neff",
PlotRange  1.44, 1.455, PlotStyle  Thick,

GraphicsText"for   1.2 m", 1.5, 1.442, Text"LP05", 0.73, 1.441,
Text"LP04", 0.65, 1.443, Text"LP03", 0.57, 1.445, Text"LP02", 0.56, 1.448,
Text"LP01", 1.6, 1.452, Text"Core refractive index", 1.144, 1.4542,
Text"Cladding refractive index", 0.7, 1.451,
Text"Standard single mode fiber", 1.5, 1.443

for   1.2 m
LP05

LP04

LP03

LP02

LP01

Core refractive index

Cladding refractive index

Standard single mode fiber

0.6 0.8 1.0 1.2 1.4 1.6 1.8
1.440

1.442

1.444

1.446

1.448

1.450

1.452

1.454

Parameter, Vz

Fig.A.4 Refractive index for the first five cladding modes as a function of the parameter V, which is directly 
proportional to the core radius, for a range from V = 0.49 (  = 0.9765 m) to V = 1.8 (  = 3.5873 m) when 
=1.2 um.
From figure A.4 we can notice that the high order  modes neff  values are below of the cladding index which means that the condition of equation
2.16 is carried out, thus, these high order modes are cladding modes. However, the efective index of the fundamental mode, which is guided in
the core at the begining of the taper, moves below the cladding index at a V(z)  value of 0.84 (this value corresponds to a core radius value of
1.67m for a wavelength of 1.2m) which is called the core cladding transition value Vcc  (Core mode cutoff[2]) due to the fact that the fundamen-
tal mode which is guided in the core before the taper becomes a cladding mode when V(z) = Vcc. Thus, for V  values slightly greater than Vcc  the
mode will  be propagated in  the core and guidance  is determaned  only by the  interface core-cladding, while for  V values  smaller than  Vcc  the
mode will be propagated in the cladding and guidance is determined by the interface cladding air and the effects of the interface core cladding
can  be  neglected  (due  to  the  weak  guided condition  nco ncl)  and  it  can  be  setting  nco  ncl,  hence,  the  three  layer  refraction  index  profile  is
approximeted to a two layer refracion index profile with a core of refraction index nco  ncl  and cladding of refraction index equal to 1 which is
the refraction index of the air. And the developmen for finding the solutions for the efective refraction indexes is exactly the same that was used
for the calculation of the core modes in section A.2.1.1 but now with a core radius equal to the cladding radius and the nco  ncl and ncl  1.

A.3 Coupling between modes 
As it was mentioned in section A.2.1.2 for the cladding modes, coupling can be done by a perturbation in the optical fiber waveguide, and for
this  work,  the perturbation  I will  take  in  acount for  coupling is  tapering optical fiber.  There are two kind of  coupling depending  on  the taper
symmetry. If the taper is axisymmetric the fundamental core mode will couple energy only to modes that have the same azimuthal symmetry and
this coupling will be predominant to that cladding mode which has the higher and closest propagation constant to that of the fundamental mode,
(i. e. coupling between the LP01 core mode and the LP02 core mode). Otherwise if the taper is nonaxisymetric, such is the case of bent tapers, the
coupling will be predominantly between the fundamental core mode LP01  and the closest propagation constant to the fundamental mode, i.e. to
the LP11 cladding mode. This work will be focused on a axisymetric tapers.
when an optical fiber is tapered it is presented a break of the translational invariance from the uniform fiber. This leads to the possibility of a loss
of the power from the fundamental core mode. This possibility means if the taper is or is not an adiabatic taper. A taper is adiabatic if there is no
power loss from the fundamental core mode which is guided through the fiber. On the other hand, if power loss from the fundamental core mode
is  presented  the taper will  be a nonadiabatic taper and this power loss  is  represented  by coupling from the fundamental  core  mode to clading
modes of a finite cladding optical fiber.
Depending on  the geometrical  characteristics  of  the optical  fiber taper,  it  will  be  determined wether  or not  the taper  is geometrical  enough to
generate coupling  between  modes.  If  the  taper  angle (z),  see  figure  1.2,  is  small  enough everywhere to  make  sure that  there is  insignificant
power losses from the core mode as it is propagated through the tapered length of the optical fiber, it will take into account that we are dealing
with an adiabatic optical fiber taper. Otherwise, if the taper angle is not small enough there will be power losses from the fundamental core and
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with an adiabatic optical fiber taper. Otherwise, if the taper angle is not small enough there will be power losses from the fundamental core and
it will lead us to a nonadiabatic optical fiber taper.
In the literature, there is two basic criteria based on simple physical principles to determine wether or not a taper is adiabatic. They are length-
scale criterion (section 1.3.1 of chapter 1) and weak power transfer criterion.  
The simple  physical principle  for  the weak  power  transfer  criterion  is  based  in  the fact  that the loss  from the fundamental  mode in  a tapered
optical fiber can be quantified by the superposition of the fundamental and cladding local modes. The amplitude for each mode is related by a set
of coupled local mode equations [3-5].
If it  is assumed that the coupling  is predominantly to the mode with  a propagation  constant  closest to that of the fundamental  mode, then  the
amplitudes of this to modes are well aproximated by [5]

(0.22)a1z  a10 exp i 
0

z
1z '  z '

(0.23)a2z  a10 exp i 
0

z
2z '  z ' 

0

z
Cz ' exp i 

0

z'
1z ''  2z ''  z ''  z '

where a1 is the amplitude of the fundamental mode at the bigining of the taper, and C is the coupling coefficient between the two modes and it is
given by

(0.24)C 
1

2

k

1  2

d

dz

1

nco

A1 2
n2


 A

A1
2 A A2

2 A

Where nco  is the maximum core index, =(z) is the local core radius, k=2/ is the free space wavenumber,  is the free space wavelength, A
is the infinite cross-section and 1, 2 are the scalar wave equation fields for the fundamental and second modes. 

If we look at the second integral of  equation (2.23), 0
zCz ' exp i 0

z'1z ''  2z ''  z ''  z ',  it  is worth   noting that  the exponential factor

causes an oscilation in fase of the same integral. Thus the fraction of power of the second mode depends on this oscilation term, the maximum
power transfer is after half a beat length (/1  2).
At the end of the taper (z = L) the fraction of power for the second mode will be small and we have the following inequality

(0.25)
0

z
Cz ' exp i 

0

z'
1z ''  2z ''  z ''  z '  1

At this distance the integrals are approximately constant and the inequality is reduced to

(0.26)
Czb


 1

A delineation criterion for determining whether a taper is so or not comes from assuming Czb=1 and knowing that the the fraction of power if the
second mode is given by the square of the left hand of equation 2.26, hence, the loss is 1/2 which is approximately 10% per half beat length [2].
When the  index profile  has  a step  variation,  the coupling coefficient  C is  proportional to  the  relative taper  slope (1/)d/dz [5];  therefore  the
supposition Czb=1 can be recast in the explicit form [4,6]

(0.27)
1

C

1  2
2 

Where C is the dimensionless normalised coupling coefficient given by

(0.28)C 
C

d
dz

A.3.1 Coupling coefficient calculation
Considering the coupling coefficient in the following way
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For  a spesific  shape of  a conical optical fiber  starting from the initial dimentions of the untapered  optical fiber such  as the cladding and  core
radius,  we  will  have  the  final  core  and  cladding  radius  with  smaller  values  than  the  initial  dimentions  which  forms  the  decreasing  conical
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radius,  we  will  have  the  final  core  and  cladding  radius  with  smaller  values  than  the  initial  dimentions  which  forms  the  decreasing  conical
reduction  for  the  optical  fiber  taper.  The  final  cladding radius  is  setting  manually  in  the  software of  the  Vytran  glass  procesor,  and  the core
radius  will  be  proportianal  to  the  same  reduction  than  the  cladding  had,  for  the  conservation  of  mass,  following  a   linear  proportionality  it
follows for the final tapered core radius.

(0.30)rfinal core  rfinal clad

rinitial core

rclad initial

Another importan parameter is the conical optical fiber taper length which can be set manually just as the cladding radius, it is in the software of
the Vytran glass procesor. 
Taking  an  optical  fiber  conical  shape with  a  starter  untapered  cladding  radius  of  125m,  a  final  cladding  diameter  of  30  m, and  a  conical
optical fiber  taper length  of  1000 m (see Fig A.3).  The initial core diameter is  the untapered core radius equal to 1.76073 and the final core
radius (m) and the slope (dimensionless) of the conical optical fiber tapered will be:

Figure A5. Fiber conical shape cor the calculation of rhe coupling coefficient
rfinal core  rco  30  62.5

2.3616

mco1 
rco  rfinal core

1000

4.92  rcore final

1000

With the aim of calculating the coupling coefficient it is needed to know the mode fields, for this, once that the effective indixes are found it is
posible to find the constants which are in the field solutions in every layer of the optical fiber. Assuming Ac=1 all the constants are found and
the solution field for the core and cladding layers of the optical fiber are the following become as it follows:
In the core layer for values of neff  nco the field will be

F01AU_, R_  BesselJ0, U  R;

F02AU_, R_  BesselJ0, U  R;

In the cladding layer for core modes which has values in the range of ncl  neff  nco the field will be

F01BU_, W_, R_ 

U BesselJ1, U BesselK0, W  W BesselJ0, U BesselK1, W  BesselI0, W  R 
W BesselI1, W BesselJ0, U  U BesselI0, W BesselJ1, U  BesselK0, W  R;

In the cladding layer for cladding modes which has values in the range of 1  neff  ncl the field will be

F02BU_, Q_, R_ 

1

2
 U BesselJ1, U BesselY0, Q  Q BesselJ0, U BesselY1, Q  BesselJ0, Q  R 

1

2
 Q BesselJ0, U BesselJ1, Q  U BesselJ0, Q BesselJ1, U  BesselY0, Q  R;

Remembering the core to cladding ration

S1  rcla  rco;

The definition of the modal parameters for the field solution are 
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U1n2_, R_, r1_, n1a_, neco_  r1  R 
2 

2
 Sqrtn1a^2  neco^2;

W1n2_, R_, r1_, n2a_, neco_  r1  R 
2 

2
 Sqrtneco^2  n2a^2;

Q1n2_, R_, r1_, n2a_, neco_  r1  R 
2 

2
 Sqrtn2a^2  neco^2;

With the intention of have two Arrays with the same size for the LP01  and LP02  effective refraction indexes, polynomial adjustments are made
just as follows below:
For the mode LP01  a  polynomial fit  of order 5 for the array, normalized frequency parameter “V” versus effective refraction index, is made as
follows

neffs1;
neffs1fit  Fitneffs1, 1, x, x^2, x^3, x^4, x^5, x

1.44694  0.0147403 x  0.0247844 x2  0.0207865 x3  0.00820351 x4  0.00123912 x5

Plotting this adjusment 

ShowPlotneffs1fit, x, 0.666, 1.743, Frame  True,
AxesOrigin  Automatic, Axes  False, PlotStyle  Thick,
PlotLegends  "Expressions", FrameLabel  "Normalized frequency parameter Vz",

"Effective refraction index for the LP01 mode",
GraphicsText"for   1.2 m", 1.5, 1.4507,

Text"Standard single mode fiber", 1.5, 1.4508

for   1.2 m

Standard single mode fiber

0.8 1.0 1.2 1.4 1.6

1.4506

1.4508

1.4510

1.4512

1.4514

1.4516

Normalized frequency parameter Vz

1.44694  0.0147403 x  0.0247844 x2  0.0207865

Figure A.6. Plot of the polynomial fit of 5 order for the normalized frequency parameter “V” versus effective 
refraction index of the LP01 mode, where the abscissa is effective refraction index for the LP01mode and the 
odinate is the normalizad frequency parameter “V”.
Plotting both the original array and the polynomial fit to see if the polynomial fit is adjusted well to the original array

neffs1fittab  Tablex, neffs1fit, x, 0.492, 1.692, 0.002;
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ShowListPlotneffs1fittab, neffs1, Frame  True, PlotLegends  "Fit", "Original array",
FrameLabel  "Normalized frequency parameter Vz",

"Effective refraction index for the LP01 mode",
GraphicsText"for   1.2 m", 1.5, 1.4505,

Text"Standard single mode fiber", 1.5, 1.4506

for   1.2 m
Standard single mode fiber

0.6 0.8 1.0 1.2 1.4 1.6
1.4502

1.4504

1.4506

1.4508

1.4510
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1.4514

1.4516

Normalized frequency parameter Vz

Fit

Original array

Figure A.7.  Plot of both arrays, fit and original for the effective refraction index of the LP01 vs. the normalized 
frequency parameter “V”.
In figure 2.12 it  is  noticed that the polinomial  fit  of order 5 for the refractive index of the LP01  vs. parameter “V” is a good adjustment, both
curves match one above the other.
It is done the a same polynomial fit f order 4 for the LP02 mode 

neffs2;
neffs2fit  Fitneffs2, 1, x, x^2, x^3, x^4, x^5, x^6, x

1.43067  0.0861193 x  0.169473 x2  0.185867 x3  0.116634 x4  0.0390985 x5  0.00542584 x6

1.4306710237747478`  0.08611929174241299` x 
0.1694728153499366` x2  0.18586741184912703` x3  0.11663373333133929` x4 
0.03909847864575565` x5  0.0054258410494067546` x6

1.43067  0.0861193 x  0.169473 x2  0.185867 x3  0.116634 x4  0.0390985 x5  0.00542584 x6

neffs2fittab  Tablex, neffs2fit, x, 0.492, 1.692, 0.002;
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ShowListPlotneffs2fittab, neffs2, Frame  True,
FrameLabel  "Normalized frequency parameter Vz",

"Effective refraction index for the LP02 mode", PlotLegends 

"Fit", "Original array", GraphicsText"for   1.2 m", 1.4, 1.4490,
Text"Standard single mode fiber", 1.4, 1.4492

for   1.2 m

Standard single mode fiber
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Figure A.8. Plot of both arrays, fit and original for the effective refraction index of the LP02 vs. the normalized 
frequency parameter “V”.
In  figure A.8 it  is noticed  that the polinomial fit  of  order  5 for the refractive index  of  the LP02  vs. parameter  “V” is  a good adjustment,  both
curves match one above the other as in figure A7.
For the evaluation of the coupling coefficient, the equation (0.29) is separated in three parts as follows 

(0.31)C12  Part1Part2Part3

The solution for every part is:

(0.32)Part1  
1

2

d

dz

1

neff1  neff2

Part1  Tableneffs2iii1,
0.5  mco1  neffs1fittabiii2  neffs2iii2, iii, 1, 601;

(0.33)Part2 
1

 0
r
core

2 r r  r   0
r
clad

2 r r  r 

Part2  ChopTableneffs2iii1,
1  SqrtNIntegrateR  F01AU1n1, R, rco, n1, neffs1fittabiii2, R^2,

R, 0, 1  NIntegrateR  F01BU1n 1, R, rco, n1, neffs1fittabiii2,
W1n 1, R, rco, n2, neffs1fittabiii2, R^2, R, 1, S1 

SqrtNIntegrateR  F02AU1n 1, R, rco, n1, neffs212, R^2, R, 0, 1 
NIntegrateR  F02BU1n 1, R, rco, n1, neffs212, Q1n1, R,

rco, n2, neffs212, R^2, R, 1, S1, iii, 1, 601;

Part3=n1
2-n2

2corer1cladr1+n2
2-n3

2corer2cladr2

Part3  ChopTableneffs2iii1,
n1^2  n2^2  F01AU1n1, 1, rco, n1, neffs1fittabiii2, 1 

F02AU1n 1, 1, rco, n1, neffs212, 1 
n2^2  1  F01BU1n 1, S1, rco, n1, neffs1fittabiii2, W1n 1, S1, rco,

n2, neffs1fittabiii2, S1  F02BU1n1, S1, rco, n1, neffs212,
Q1n1, S1, rco, n2, neffs212, S1, iii, 1, 601;
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The coupling coefficient will be:

coumplingcoefficient  Tableneffs2iii1Parametro V,
Part1iii2  Part2iii2  Part3iii2, iii, 1, 601;

ShowListPlotcoumplingcoefficient,
AxesLabel  "Parameter Vz", "Coupling coefficient",
PlotStyle  Black, Thick, Frame  True,
FrameLabel  "Normalized frequency parameter Vz", "Coupling coefficient",

GraphicsText"  1.2 m", 1.4, 0.015, Text"Taper slope  0.0025584", 1.4, 0.013,
Text"Length transition  1000 m", 1.4, 0.011

  1.2 m
Taper slope  0.0025584

Length transition  1000 m

0.6 0.8 1.0 1.2 1.4 1.6

0.010

0.015

0.020

0.025

0.030

0.035

Normalized frequency parameter Vz

Figure A9. Coupling coefficient vs. the normalized frequency parameter for a wavelength of 1.2 m and a taper 
slope of 0.0025584 corresponding to a transition length of 1000 m.

The coupling coefficient has a directly dependence on the slope of the tapered optical fiber, if the transition length is small the slope will be large
and  vice  versa  if  the  transition  length  is  large  the  slope  will  be  small,  in  the  following  calculation  it  is  shown  how  the  coupling  coefficient
displays different responces for several transitions lengths (100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500,
and 7000 m) at a wavelength of 1.2 m.
List of the different slopes for every transition length 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, and
7000 m

int 
rco  rfinal core

100
;

mco2 

FlattenAppendint, Table
rco  rfinal core

transsiotionlength
, transsiotionlength, 500, 7000, 500


1

100
4.92  rcore final,

1

500
4.92  rcore final,

4.92  rcore final

1000
,

4.92  rcore final

1500
,
4.92  rcore final

2000
,
4.92  rcore final

2500
,
4.92  rcore final

3000
,

4.92  rcore final

3500
,
4.92  rcore final

4000
,
4.92  rcore final

4500
,
4.92  rcore final

5000
,

4.92  rcore final

5500
,
4.92  rcore final

6000
,
4.92  rcore final

6500
,
4.92  rcore final

7000


The coupling coefficient splited in three parts for the calculation is shown in equation (2.34)
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(0.34)C12  
1

2

d

dz

1

neff1  neff2


1

 0
r
core

2 r r  r   0
r
clad

2 r r  r 
 n1

2  n2
2 corer1cladr1  n2

2  n3
2 corer2cladr2

Calculation of the coupling coefficient for the diferents slopes is as follows

couplingcoefficientslope  ChopParallelTableneffs2iii1,
0.5  mco2k  neffs1fittabiii2  neffs2iii2  1 

SqrtNIntegrateR  F01AU1n1, R, rco, n1, neffs1fittabiii2, R^2, R,
0, 1  NIntegrateR  F01BU1n 1, R, rco, n1, neffs1fittabiii2,

W1n 1, R, rco, n2, neffs1fittabiii2, R^2, R, 1, S1 
SqrtNIntegrateR  F02AU1n 1, R, rco, n1, neffs212, R^2,

R, 0, 1  NIntegrateR  F02BU1n 1, R, rco, n1, neffs212,
Q1n1, R, rco, n2, neffs212, R^2, R, 1, S1 

n1^2  n2^2  F01AU1n1, 1, rco, n1, neffs1fittabiii2, 1 
F02AU1n 1, 1, rco, n1, neffs212, 1 

n2^2  1  F01BU1n 1, S1, rco, n1, neffs1fittabiii2,
W1n 1, S1, rco, n2, neffs1fittabiii2, S1 

F02BU1n1, S1, rco, n1, neffs212, Q1n1, S1, rco, n2,
neffs212, S1, mco2k, k, 1, 15, iii, 1, 601;

coupling100  Tablecouplingcoefficientslope1dd1,
couplingcoefficientslope1dd2, dd, 1, 601;

coupling500  Tablecouplingcoefficientslope2dd1,
couplingcoefficientslope2dd2, dd, 1, 601;

coupling1000  Tablecouplingcoefficientslope3dd1,
couplingcoefficientslope3dd2, dd, 1, 601;

coupling1500  Tablecouplingcoefficientslope4dd1,
couplingcoefficientslope4dd2, dd, 1, 601;

coupling2000  Tablecouplingcoefficientslope5dd1,
couplingcoefficientslope5dd2, dd, 1, 601;

coupling2500  Tablecouplingcoefficientslope6dd1,
couplingcoefficientslope6dd2, dd, 1, 601;

coupling3000  Tablecouplingcoefficientslope7dd1,
couplingcoefficientslope7dd2, dd, 1, 601;

coupling3500  Tablecouplingcoefficientslope8dd1,
couplingcoefficientslope8dd2, dd, 1, 601;

coupling4000  Tablecouplingcoefficientslope9dd1,
couplingcoefficientslope6dd2, dd, 1, 601;

coupling4500  Tablecouplingcoefficientslope10dd1,
couplingcoefficientslope10dd2, dd, 1, 601;

coupling5000  Tablecouplingcoefficientslope11dd1,
couplingcoefficientslope11dd2, dd, 1, 601;

coupling5500  Tablecouplingcoefficientslope12dd1,
couplingcoefficientslope12dd2, dd, 1, 601;

coupling6000  Tablecouplingcoefficientslope13dd1,
couplingcoefficientslope13dd2, dd, 1, 601;

coupling6500  Tablecouplingcoefficientslope14dd1,
couplingcoefficientslope14dd2, dd, 1, 601;
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coupling7000  Tablecouplingcoefficientslope14dd1,
couplingcoefficientslope14dd2, dd, 1, 601;

The coupling coefficient vs. the normalized frequency parameter “V” for the transition length of 100 m is shown in figure 2.15

ShowListPlotcoupling100, AxesLabel  "Parameter Vz", "Coupling coefficient",
PlotRange  All, Frame  True, FrameLabel  "Parameter Vz", "Coupling coefficient",

GraphicsText"  1.2 m", 1.4, 0.17, Text"Taper slope  0.025584", 1.4, 0.15,
Text"Length transition  100 m", 1.4, 0.13

  1.2 m
Taper slope  0.025584

Length transition  100 m

0.6 0.8 1.0 1.2 1.4 1.6
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Parameter Vz

Figure A10. Coupling coefficient vs. the normalized frequency parameter for a wavelength of 1.2 m and a 
taper slope of 0.025584 corresponding to a transition length of 100 m.

ShowListPlotcoupling500, coupling1000, coupling1500, coupling2000,
coupling2500, coupling3000, coupling3500, coupling4000, coupling4500,
coupling5000, coupling5500, coupling6000, coupling6500, coupling7000,

Frame  True, FrameLabel  "Parameter Vz", "Coupling coefficient",
PlotLegends  "500 m of transition length", "1000 m of transition length",

"1500 m of transition length", "2000 m of transition length",
"2500 m of transition length", "3000 m of transition length",
"3500 m of transition length", "4000 m of transition length",
"4500 m of transition length", "5000 m of transition length",
"5500 m of transition length", "6000 m of transition length",
"6500 m of transition length", "7000 m of transition length",

PlotRange  All, GraphicsText"  1.2 m", 1.48, 0.06374
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Figure A11.  Coupling coefficient vs. the normalized frequency parameter for a wavelength of 1.2 m and a 
taper slopes of 0.025584, 0.0051168, 0.0025584, 0.0017056 ,0.0012792, 0.00102336, 0.0008528, 
0.000730971, 0.0006396, 0.000568533, 0.00051168, 0.000465164, 0.0004264, 0.0003936, 0.000365486 
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corresponding to a transition lengths of 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 
5500, 6000, 6500, and 7000 m.
From figures A9-11, it is noticed that as the transition length is increased ( or more accurately the taper slope decreases) the coupling coefficient
decreases, which means that the longer is the transition length the more adiabatic is the taper.

A.4 Light propagation through a biconical tapered fiber
The field on a perturbed optical fiber, such as a tapered fiber, at a determined z position can be expressed as the superposition of the complite set
of  bound  and  radiation  mode  fields  of  the  unperturbed  optical  fiber  [1].  One  only  mode  of  all  the modes  is  not  satisfactory  for  the  Maxwell
equations for the perturbed fiber, and the perturbed fields must be distributed between all modes of the set. This distribution varies with positions
along the fiber and is described by a set of coupled mode equations, wich determine the amplitude of every mode [7-9].

A.4.1 Coupled local mode equations
The coupling mode equations are obtained by substituying a modal expansion of the fields for the perturbed fiber into Maxwell equations, wich
results in a set of coupled differential equation of first order with dependence on the length z. This set of coupled mode equations is a reformula-
tion of the Maxwel equations, which means that they describe the exactly field of the perturbed fiber. However, this new reformulation comp-
resed  by those  coupled  differential  equations  for  the  Maxwell  equations  do  not  have  an  analytical  solution,  Nevertheless,  assuming  only  two
modes in  the superposition,  wich,  in  our case,  it  can  be  implicit by  the reason  of  taking in  consideration  what is  explined  in section  A.3,  the
solution of the resulting set of equations will be uncomplicated and there will be simple perturbation solutions.
If the electric field is expresed as

(0.35)Ex, y, z 
n

bnz en x, y, z

Where en
  denotes  the  orthonormal  local-mode  electric  field  for  the  nth  local  mode,  bnz  is  the  amplitud  and  phase-dependence  of  the scalar

mode, and the sum denotes the superposition of all the bound and radiation modes.
Hence, the Maxwell equation can be reformulated as a set of coupled local-mode equations of the form [1]

(0.36)
d bm

d z
 im bm 

n

Cmn bn

Where Cmn are the coupling coefficients between the mth and nth local modes  

Restricting equation 2.35 to only bound modes is a good approximation for finite-cladding
fibres which support a large number of cladding modes. This provides a reasonably complete basis for representation of the total field [2].
Taking into accound only two local-modes the equation 2.36 becomes into the next two equations 

(0.37)
d b1

d z
 i1 b1  C 12 b2

(0.38)
d b2

d z
 i2 b2  C 21 b1

Where the coupling coefficient C 12 = - C 21

A.4.2 Solution of the local mode equations for two modes for a simulation of propagation light through a 
tapered optical fiber
The equations for solving in this section are the equations 0.37 and 0.38, which correspond to the reformulation of the Maxwell equations for a
system which is adequately represented by the case where only two local modes will be interecting with each other, by means of power exchange
between them caused by a perturbation in the optical fiber , their solution describes the precise field of a perturbed fiber. 
In order to find the spectral response of the propagation ligth through a tapered fiber it will be solved the system equation formed by equations
0.37 and 0.38 using the Runge-Kutta method.
Definition of the wavelength range, it will be from 1.2 m to 1.6 m

  Tablewavelength, wavelength, 1.2, 1.6, 0.001;

Length

401

Finding the effective refractive inder for all the wavelengths in the range and for frequency normalized “V” vaues from 0.5 to 1.7 

| 
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neffs1;
V0.49;

Forl1,l 401,l,2l;
vbusqueda1

ChopFindRootf1S1,Q1.2,r V 2

2 n22n12 

,U1.2,r V 2

2 n22n12 

,T1.2,

r V 2

2 n22n12 

f2S1,Q1.2,r V 2

2 n22n12 

,U1.2,r V 2

2 n22n12 

,

T1.2,r V 2

2 n22n12 

,neco,1.45112;

Forj0,j250,j,
VV0.005;

RChopFindRootf3S1,Q1.2,r V 2

2 n22n12 

,U1.2,r V 2

2 n22n12 

,

T1.2,r V 2

2 n22n12 

0,neco,vbusqueda1j112;

neffs1Appendneffs1,2,V,R;
vbusqueda1Appendvbusqueda1,R;

;V0.49;;

neffs1"neffs1";

neffs2;

V0.49;

Forl1,l 401,l,2l;
vbusqueda1

ChopFindRootf1S1,Q1.2,r V 2

2 n22n12 

,U1.2,r V 2

2 n22n12 

,T1.2,

r V 2

2 n22n12 

f2S1,Q1.2,r V 2

2 n22n12 

,U1.2,r V 2

2 n22n12 

,

T1.2,r V 2

2 n22n12 

,neco,1.45112;

Forj0,j600,j,
VV0.002;

RChopFindRootf3S1,Q1.2,r V 2

2 n22n12 

,U1.2,r V 2

2 n22n12 

,

T1.2,r V 2

2 n22n12 

0,neco,vbusqueda2j112;

neffs2Appendneffs2,2,V,R;
vbusqueda2Appendvbusqueda2,R;

;V0.49;;

neffs2"neffs2";

89



neff1   neffs1;
A  Interpolationneff1
BXr_, Yl_  AXr, Yl

InterpolatingFunction1.2, 1.6, 0.495, 1.745, 

InterpolatingFunction1.2, 1.6, 0.495, 1.745, Xr, Yl

neff2   neffs2;
F  Interpolationneff2
Gxr_, yl_  Fxr, yl

InterpolatingFunction1.2, 1.6, 0.492, 1.692, 

InterpolatingFunction1.2, 1.6, 0.492, 1.692, xr, yl

Calculating the coupling coefficients for the diferent wavelengths for a length transition of 100 m

mco21

0.025584

  Tablewavelength, wavelength, 1.2, 1.6, 0.001;
C12  ;

Coup  ChopParallelTablell, neffs2iii1,
0.5  mco21  neffs1fittabiii2  neffs2iii2 
1  SqrtNIntegrate

R  F01AU1nll, R, rco, n1, neffs1fittabiii2, R^2, R, 0, 1 
NIntegrateR  F01BU1n ll, R, rco, n1, neffs1fittabiii2,

W1n ll, R, rco, n2, neffs1fittabiii2, R^2, R, 1, S1 
SqrtNIntegrateR  F02AU1n ll, R, rco, n1, neffs212, R^2,

R, 0, 1  NIntegrateR  F02BU1n ll, R, rco, n1, neffs212,
Q1nll, R, rco, n2, neffs212, R^2, R, 1, S1 

n1^2  n2^2  F01AU1nll, 1, rco, n1, neffs1fittabiii2, 1 
F02AU1n ll, 1, rco, n1, neffs212, 1 

n2^2  1  F01BU1n ll, S1, rco, n1, neffs1fittabiii2,
W1n ll, S1, rco, n2, neffs1fittabiii2, S1 

F02BU1nll, S1, rco, n1, neffs212, Q1nll, S1,
rco, n2, neffs212, S1, ll, 1, 401, iii, 1, 601

C12"C12trans100";

de  FlattenCoup

NLengthde  3

241001.

copling  ArrayReshapede, 241001, 3;

copling  "C12trans100"

coupling   C12trans100;

Ff  Interpolationcoupling
Cte12xr_, yl_  Ffxr, yl

InterpolatingFunction1.2, 1.6, 0.492, 1.692, 

InterpolatingFunction1.2, 1.6, 0.492, 1.692, xr, yl
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Vvr_ 
2 

1.21
n22  n12 r;

ParallelNeeds"DifferentialEquations`NDSolveProblems`";
ParallelNeeds"DifferentialEquations`NDSolveUtilities`";

mco1 is for a length transition of 1000 m

ycod1x_  rco  mco21  x;

ClassicalRungeKutta___"Step"f_, t_, h_, y_, yp_ : Blockdeltay, k1, k2, k3, k4,
k1  yp; k2  ft  1  2 h, y  1  2 h k1; k3  ft  1  2 h, y  1  2 h k2;
k4  ft  h, y  h k3; deltay  h 1  6 k1  1  3 k2  1  3 k3  1  6 k4; h, deltay;

This  defines  the  function  for  computing  the  coefficients  to  a  desired  precision  to  using  the  Runge-Kutta  method  for  solving  the  diferential
equations.

Fehlbergamat  
1  4,
3  32, 9  32,
1932  2197, 7200  2197, 7296  2197,
439  216, 8, 3680  513, 845  4104, 8  27, 2, 3544  2565, 1859  4104, 11  40;

Fehlbergbvec  25  216, 0, 1408  2565, 2197  4104, 1  5, 0;
Fehlbergcvec  1  4, 3  8, 12  13, 1, 1  2;
Fehlbergevec  1  360, 0, 128  4275, 2197  75240, 1  50, 2  55;

FehlbergCoefficients4, p_ :
NFehlbergamat, Fehlbergbvec, Fehlbergcvec, Fehlbergevec, p;

ClassicalRungeKutta___"Step"f_, t_, h_, y_, yp_ : Blockdeltay, k1, k2, k3, k4,
k1  yp; k2  ft  1  2 h, y  1  2 h k1; k3  ft  1  2 h, y  1  2 h k2;
k4  ft  h, y  h k3; deltay  h 1  6 k1  1  3 k2  1  3 k3  1  6 k4; h, deltay;

solu1  ParallelTable
res  QuietNDSolveA1'z  I  2  Pi  i  Bi, Vvycod1z  A1z 

Cte12i, Vvycod1z  B1z  0,
B1'z  I  2  Pi  i  Gi, Vvycod1z  B1z 

Cte12i, Vvycod1z  A1z  0, A10  1, B10  0, A1, B1,
z, 0, 100, Method  "ExplicitRungeKutta", "Coefficients"  FehlbergCoefficients,

"DifferenceOrder"  4, "EmbeddedDifferenceOrder"  5,
"StiffnessTest"  False, MaxSteps  10^10000001,

i,
1,
401;

PlotAbssolu1112z, z, 0, 100

PlotAbssolu1122z, z, 0, 100

ListPlotTableii, Abssolu1ii12100, ii, 1, 401,
Joined  True, PlotRange  All, All, Frame  True

ListPlotTableii, Abssolu1ii22100, ii, 1, 401,
Joined  True, PlotRange  All, All, Frame  True
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solu2A  Tablei, Abssolu1i12100, i, 1, 401;

solu2B  Tablei, Abssolu1i22100, i, 1, 401;

ListPlotAbssolu2A, Abssolu2B, Joined  True, PlotRange  All, All, Frame  True
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