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Abstract

This thesis is devoted to the experimental study of stochastic effects in multistable
semiconductor and solid-state lasers. In the first part, the experimental observation
of coherence enhancement of noise-induced intermittency in a semiconductor laser
subject to optical injection from another laser at the boundary of the frequency-
locking regime is presented. The experimental interspike-interval fluctuations were
used to quantitatively characterize the intermittent behavior. In the second part,
we study noise-induced intermittency in two mutually coupled semiconductor lasers.
Gaussian white noise was applied when both lasers operated in the low-frequency
fluctuations regime, near their lasing threshold. The intermittent behaviour of the
system output was found, and the type of intermittency analyzed with time se-
ries and power spectra. In the third part, we study the dynamics of a dual-cavity
Nd:YAG laser with second harmonic generation in one of the cavities and loss modu-
lation in another cavity. We found coexistence of attractors and different dynamical
regimes as the frequency of the harmonic modulation of the infrared light was varied.

1



Thesis overview

The motivation of this work is to contribute to the fundamental understanding of
laser dynamics and nonlinear systems, what could lead to the development and im-
provement of diverse practical applications, not only in the field of secure optical
communications, but also in other active research areas of great importance.

The experimental studies presented in this thesis are sorted out in ascending order
of the system complexity. We start with an array of two semiconductor lasers with
a unidirectional coupling. Next, we present a similar array, but with a bidirectional
coupling, and finally, a frequency-doubled Nd:YAG laser with two cavities.

The thesis is organized as follows: chapter 1 gives an introduction to dynamical
systems, the basic theories of chaos, lasers, and their connection. We also briefly
describe dynamical features of semiconductor lasers, synchronization, multistabi-
lity and noise-induced effects in lasers. In chapter 2 the experimental investigation
of coherence enhancement of noise-induced intermittency in a semiconductor laser
subject to optical injection is presented. Chapter 3 describes the study of the noise-
induced intermittency observed in mutually coupled semiconductor lasers. Chapter
4 is dedicated to the dynamics of a dual-cavity Nd:YAG laser with second harmonic
generation in one of the cavities and loss modulation in the other one. Finally, in
chapter 5, the general conclusions and perspectives of this research are given.
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Chapter 1

Introduction

1.1 Dynamical systems

All systems in the world around us are evolving in time, even though sometimes
their change is not evident, as the time scales involved could be very different.
Their evolution in time may present varied characteristics: a system could move in
a particular trajectory to reach at the end a state of stable equilibrium; it could
move in cycles over and over, or it could evolve in a very complicated way. In order
to describe that behavior quantitatively, mathematical equations are used. Depend-
ing on the characteristics of their equations, dynamical systems can be classified
into two groups: iterated maps (also known as difference equations or simply maps)
and differential equations. Iterated maps are used to model systems where time is
considered discrete. On the other hand, differential equations describe the evolu-
tion of systems in continuous time. Even though realistic systems of considerable
importance in science and engineering are modeled by using differential equations,
iterated maps are also very useful. For example, they are very helpful to introduce
the concept of chaos in a dynamical system and to analyze the solutions of systems
described by differential equations.

1.1.1 Nonlinearity

A general framework for ordinary differential equations is provided by the system [1]

ẋ1 = f1(x1, . . . , xn)
...

ẋn = fn(x1, . . . , xn) ,

(1.1)

where the overdots represent differentiation with respect to t. The variables x1, . . . , xn
could represent concentration of chemicals in a beaker, population of different species
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CHAPTER 1. INTRODUCTION 1.1. DYNAMICAL SYSTEMS

in an ecosystem, the positions and velocities of planets in the solar system, or the
dynamical variables describing the output radiation of a semiconductor laser.

The system represented by Equations (1.1) is said to be linear if all the xi on the
right-hand side appear to the first power, that is, if every term on the right-hand
side is linear in xi. Otherwise, the system is called nonlinear Examples of nonlinear
terms are products, powers and functions of the xi, such as: x1x3, x

2
1, or sin(x1).

Nonlinearity is crucial in the operation of a laser. In fact, most dynamical systems
in nature are nonlinear. When parts of a system cooperate, interfere or compete,
nonlinear interactions are taking place.

Linear systems can be broken down into parts, then each part can be solved
separately, and the partial solutions can be recombined to obtain the general solu-
tion. On the other hand, in nonlinear systems the superposition principle fails, and
their equations are generally difficult to solve analytically. Fortunately, nonlinear
systems can be usually approximated by linear equations, a process that is called
linearization.

1.1.2 Phase space

The abstract space with coordinates (x1, . . . , xn) is called the phase space for the
dynamical system, and its temporal dynamics can be represented in this space. The
phase space is a very useful tool to visualize and analyze the dynamical behavior
of a system. If we consider as an example a system with n = 2, where x1 and x2
represent the position and the velocity of an object, respectively, then the solution
(x1(t), x2(t)) corresponds to a point moving along a curve in this particular space,
as shown in Figure 1.1.

x2

x1

(x  (0),  x  (0))
1 2

(x  (t),  x  (t))
1 2

Figure 1.1: Trajectory followed by a point moving along a curve in the space with
coordinates (x1(t), x2(t)) and initial condition (x1(0), x2(0))
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CHAPTER 1. INTRODUCTION 1.1. DYNAMICAL SYSTEMS

That curve is called a trajectory or an orbit. Since each point in phase space could
serve as an initial condition, the phase space is completely filled with trajectories.
However, in practice, the set of initial conditions for a real system is limited. The
orbit may converge into a shape or attractor in phase space. For example, for a
constant value of the variables, the attractor becomes a point in phase space. For
some oscillating systems, the trajectory could be closed, with a circular orbit as a
particular case. A closed trajectory in phase space is known as a limit cycle.

The system represented by Equations (1.1), is referred to as an n-dimensional
system or an nth order system. Some examples of phenomena that can be modeled
by linear systems are: the exponential grow (n = 1), the radioactive decay (n = 1),
an oscillating mass on a spring (n = 2), and an RLC circuit (n = 2). A classical
and well known example of a nonlinear system is a pendulum (n = 2).

1.1.3 Fixed points

In order to analyze the dynamics of a system, it is very useful to find its fixed points,
that is, the values of a dynamical variable for which its temporal evolution remains
stationary. Fixed points can be easily found geometrically for a one-dimensional
system if differential equations are interpreted as vector fields. To understand this
procedure, let us consider the following nonlinear differential equation

ẋ = x2 − 1 . (1.2)

If we think of t as time, x as the position of an imaginary particle moving along
the real line, and ẋ as the velocity of that particle, then Equation (1.2) represents
a vector field on the line, as it assigns a velocity vector ẋ for each position x. To
sketch the vector field, we plot ẋ versus x, and then we draw arrows on the x-axis to
indicate the velocity vector at each x. The arrows point to the right when ẋ > 0, and
to the left when ẋ < 0. If we imagine that the arrows represent the direction of some
sort of “fluid” that is flowing along the x-axis, the flow is to the right when ẋ > 0
and to the left when ẋ < 0. At points where ẋ = 0, there is no flow. These special
points are called fixed points. As shown in Figure 1.2, solid black dots represent a
stable fixed point (also referred to as attractors or sinks) and open circles represent
unstable fixed points (also referred to as repellers or sources).

Fixed points represent equilibrium solutions of differential equations. An equi-
librium is defined to be stable if small disturbances away from it damp out in time.
Some examples of stable equilibrium are the bottom position of a damped pendu-
lum and the bottom of a bowl containing a rolling marble. Thus, stable equilibrium
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x

x

f (x) =  x  - 12

Figure 1.2: Trajectory in phase space for the dynamical variables of a system showing
two fixed points. The stable fixed point is represented by the black dot and the
unstable fixed point by the open circle.

is represented by a stable fixed point. Conversely, unstable equilibrium, in which
disturbances grow in time, is represented by an unstable fixed point [1].

1.2 Basic chaos theory

In science, the word chaos is used to describe fluctuations (time-varying or space-
varying irregular phenomena) that are governed by a deterministic rule, and can be
described by using mathematical equations. Chaos is a dynamical state present in a
wide variety of systems in many fields, including fluids, plasmas, solid-state devices,
circuits, lasers, mechanical devices, etc. [2]. In order to describe the basic properties
of chaos, it will be helpful to describe the logistic map and the Lorenz model.

1.2.1 Iterated maps

A discrete sequence is a set of numbers x0, x1, . . . , xn, . . . , xN , where n = 0, 1, . . . , N .
An iterated map can be defined by a function f that relates xn+1 with xn for all n,
that is

xn+1 = f(xn) . (1.3)

First, x1 can be obtained from x0 by using Equation (1.3), when x0 is given as
an initial condition. Then, x2 is obtained from x1, x3 is obtained from x2 and so
on. In this sense, the map is completely deterministic by using the rule given by
Equation (1.3) and the chosen initial condition x0.
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CHAPTER 1. INTRODUCTION 1.2. BASIC CHAOS THEORY

1.2.1.1 The logistic map

One of the simplest models to exhibit chaos is the logistic map [3]. It is the discrete
version of the logistic equation, a continuous-time differential equation that has been
used as a demographic model and was published by Pierre François Verhulst in 1838.
The logistic map is written as

xn+1 = axn(1− xn) , (1.4)

where a is a control parameter for the map, n = 0, 1, 2, . . . , N , and 0 ≤ xn ≤ 1.
A typical value of the parameter to observe chaos is a = 4. As can be seen in
Figure 1.3, the sequence of the discrete variable xn shows an irregular behavior,
even though Equation (1.4) is very simple and completely deterministic. It might
seem that if the rule and the initial condition are known, this irregular sequence
could be completely predicted because it was derived from a deterministic rule.
This is true in theory, however, an initial condition with “infinite” precision would
be necessary to be able to make a long term prediction, which is impossible for real
chaotic dynamical systems. This leads to another very important characteristic of
deterministic chaos, known as sensitive dependence on initial conditions [4], which
means that if two chaotic sequences start from very close but slightly different initial
conditions, the two sequences would be very similar at the beginning, but then they
would start to diverge exponentially and would never show the same behavior again.
This is the reason why it is impossible to predict the output of a chaotic system in
the long-term.

0 20 40 60 80 100
0

0.5

1

n

x
n

Figure 1.3: Sequence of the discrete variable xn in the logistic map for a = 4 and
x0 = 0.2.

1.2.2 Bifurcations

Another characteristic of chaos is a transition among different dynamical states.
Bifurcations are the qualitative changes in the dynamics experienced by a dynamical
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CHAPTER 1. INTRODUCTION 1.2. BASIC CHAOS THEORY

system when a small smooth change is made to the control parameter, and the
parameter values at which they occur are called bifurcation points. Bifurcations
provide models of transitions and instabilities as a control parameter of a system is
varied. For example, bifurcations can help to model phenomena such as the start
of coherent emission of radiation in a laser, the outbreak of an insect population,
etc. There are many kind of bifurcations [1,2]. In this section, some of them will be
briefly described.

1.2.2.1 Saddle-node bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are created
and destroyed. As a control parameter is varied, two fixed points move toward each
other, collide and annihilate. This bifurcation can be illustrated by means of the
following first-order system

ẋ = r + x2 , (1.5)

where r is a parameter that can take any real value. When r is negative, there are
two fixed points, one stable (−

√
r) and one unstable (+

√
r), as shown in Figure

1.4(a). As r approaches 0 from negative values, the parabola moves up and the two
fixed points approach to each other. When r = 0, the fixed points combine into a
half-stable fixed point at x = 0 (Figure 1.4(b)). This type of fixed point vanishes as
soon as r > 0, leaving no fixed points at all (Figure 1.4(c)).

x

x

x

x

x

x

r < 0

(a) (b) (c)

r = 0 r > 0

Figure 1.4: Geometrical representation of the saddle-node bifurcation. (a) When r
is negative, there are two fixed points, one stable (the black dot) and one unstable
(the open circle). (b) When r = 0, the fixed points combine into a half-stable fixed
point. (c) When r > 0, the half-stable fixed point vanishes.

There are other ways to depict a saddle-node bifurcation. One very common
way is shown in Figure 1.5, where the parameter r plays the role of an independent
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variable, and for that reason is plotted horizontally. The x-axis has now to be
plotted vertically, what could look strange at first. To distinguish between stable
and unstable fixed points, a solid line for stable points is used, and a dashed line for
unstable ones. Now, if we imagine a vertical line for a particular value of r, we can
find the fixed points as the intersections between this line and the two branches of the
parabola. This representation is called the bifurcation diagram for the saddle-node
bifurcation.

x

r

Stable

Unstable

Figure 1.5: Saddle-node bifurcation representation. The solid line represents stable
points, and the dashed line unstable ones.

1.2.2.2 Period-doubling bifurcation

This type of bifurcation occurs when a system has a periodic solution. As a control
parameter is increased, it reaches a point when the initial period is doubled. As a
result, an initially stable periodic orbit is transformed into a stable periodic orbit
with the period doubled, and an unstable periodic orbit. The bifurcation diagram for
the period-doubling bifurcation is shown in Figure 1.6. The axes have been omitted
to simplify the diagram, but the horizontal axis represents the values of the system
control parameter.

Figure 1.6: Period-doubling bifurcation. An initially stable periodic orbit is trans-
formed into a stable periodic orbit with the period doubled, and an unstable periodic
orbit as the control parameter is increased.
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1.2.2.3 Inverse period-doubling bifurcation

It this bifurcation, as a control parameter is changed, an initially unstable periodic
orbit is transformed into an unstable periodic orbit with the period doubled and a
stable periodic orbit (Figure 1.7).

Figure 1.7: Inverse period-doubling bifurcation. An initially unstable periodic orbit
is transformed into a unstable periodic orbit with the period doubled and an stable
periodic orbit as the control parameter is increased.

1.2.2.4 Hopf bifurcation

In a Hopf bifurcation, a fixed point of a dynamical system loses stability as the
control parameter varies, and the dynamics of the system changes into a period-1
orbit. As the control parameter value is increased, the amplitude of the periodic
solution increases too.

1.2.2.5 Bifurcation diagram of the logistic map

In the logistic map, when the value of parameter a is changed, distinct states can
be obtained. Different number of values of xn are obtained at different values of
the control parameter a: one constant value (Figure 1.8(a), a = 2.5), two different
values (Figure 1.8(b), a = 3.25), four different values (Figure 1.8(c), a = 3.5), and
irregular aperiodic values (Figure 1.8(d), a = 4). For this reason, these dynamical
states are called period-1, period-2, period-4, and chaos, respectively.

Figure 1.9 shows the bifurcation diagram of the logistic map when the parameter
a is changed. To create the bifurcation diagram, some values of xn are plotted along
the vertical axis at a fixed value of a. Then, a is increased and some values of the new
xn are plotted again at a new fixed a. This procedure of changing a and plotting xn
is repeated. The bifurcation diagram in Figure 1.9 shows different dynamical states
of the sequences. For example, xn is a single value (corresponding to a period-1
sequence) at the region of 1 ≤ a ≤ 3. Then, two values of xn appear (period-2

8
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1
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1
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x
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Figure 1.8: Sequences of xn at different values of the control parameter a in the
logistic map. (a) Period-1 (a = 2.5), (b) period-2 (a = 3.25), (c) period-4 (a = 3.5),
and (d) chaos (a = 4).

sequence) in the region of 3 ≤ a < 3.4494 . . . . After that region, four values of xn
are observed (period-4), followed by eight values (period-8), and so on. Finally, for
a > 3.5699 . . . irregular values of xn (chaos) are obtained.

1.2.3 Chaos in a continuous-time system

More realistic models can be developed by using a set of coupled ordinary differential
equations in continuous-time dynamical systems. A classical example of a model of
this kind that exhibits chaos is the Lorenz model [4], which consists of three coupled
ordinary differential equations that describe the fluid convection in a cell heated from
below and maintained at a lower temperature on the top. Figure 1.10(a) shows the
temporal waveform (also called time series) of one of the variables of the Lorenz
system that displays chaotic irregular fluctuations. In continuous-time dynamical
systems, it has been shown that at least three independent variables (i.e. three
degrees of freedom) are necessary to observe deterministic chaos [1]. This is the case
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0.8

1

(b)

a

x

Figure 1.9: (a) Bifurcation diagram of the logistic map when a is changed from 0 to
4. (b) Amplification of (a) from a = 3.5 to a = 4.

for the Lorentz model, which has three degrees of freedom and nonlinear terms that
make possible the generation of a chaotic dynamical behavior.

0 10 20 30 40 50
−20

−10

0

10

20

(a)

Time [arb. units]

x
(t

)

−20020

−50
0

50

0

10

20

30

40

50

y(t)
x(t)

(b)

z(
t)

Figure 1.10: (a) Time series for the variable x(t) in the Lorenz model showing a
chaotic behavior. (b) The Lorenz attractor obtained when the three variables (x(t),
y(t), and z(t)) of the Lorenz model are plotted.

The temporal dynamics of the Lorenz system is represented in phase space in
Figure 1.10(b), where their three variables are plotted. The trajectory converges into
a characteristic shape or attractor at t→∞. For chaotic oscillations, the attractor
resembles a strange shape, as seen in Figure 1.10(b). For that reason, these kind of
attractors are called chaotic attractors or strange attractors.
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1.2.4 Routes to chaos

A route to chaos is another important feature of deterministic chaos that consists
in a transition from a steady state to chaos through various states when the value
of a system parameter is changed. There are three types of routes to chaos observed
in many dynamical systems: the period-doubling route, the quasiperiodic route, and
the intermittency route. These routes to chaos have been observed in many laser
systems, and have been used to identify the existence of deterministic chaos in laser
experiments.

1.2.4.1 Period-doubling route to chaos

This route to chaos starts from a steady state, a period-1 oscillation, a period-
2 oscillation, a period-4 oscillation, . . . , a period-2n oscillation (n is a positive
integer), . . . , to reach eventually a chaotic oscillation. The period-doubling route to
chaos has been observed in many discrete systems, like the logistic map, and also in
continuous-time dynamical systems. It has been observed in laser experiments and
simulations.

1.2.4.2 Quasiperiodic route to chaos

The quasiperiodic route to chaos starts from a steady state, a period-1 oscillation,
a quasiperiodic oscillation, and a chaotic oscillation. Quasiperiodic oscillations can
be identified by observing the appearance of two frequencies with incommensurable
ratio in the frequency spectrum. This route to chaos is observed in a laser system
with external modulation, since two characteristic frequencies, which are internal
(the relaxation oscillation) and external (the modulation), interact with each other
nonlinearly and induce chaotic instabilities.

1.2.4.3 Intermittency route to chaos

The intermittency route to chaos may be observed in a dynamical system when a
control parameter passes through a critical point. The intermittent behaviour is
characterized by irregular bursts interrupting a nearly regular state, as can be seen
in Figure 1.11. The mean duration of the regular states decreases as the control
parameter is increased beyond the critical value, and eventually the regular states
disappear. Intermittency will be treated in more detail in chapter 3, which deals
with its experimental observation and characterization.
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Figure 1.11: Intermittency in the dynamical behavior of a system is characterized
by irregular bursts interrupting a nearly regular oscillation or steady state. This
figure shows a qualitative example of a system exhibiting intermittency in one of
its dynamical variables. The regular steady state is interrupted nonperiodically by
amplitude fluctuations (the bursts). The waveform can be thought as a sequence of
laminar phases (the windows of steady state) and turbulent phases (the windows of
irregular behavior).

1.3 Basic laser theory

The term of laser is the acronym for Light Amplification by Stimulated Emission
of Radiation. Besides natural lasers (astrophysical or space lasers [5]), on Earth, a
laser is an artificial light source that generates coherent light, which indicates the
identical phase state of the photons. This coherent emission enhances the brightness
of light, the ability to produce light interference and the narrow optical spectrum
of the laser. In 1917, Albert Einstein established the theoretical foundations for the
laser [6], and in 1953 Charles H. Townes and coworkers developed the first device
that operated under these principles, named maser because it was a coherent source
of microwaves [7]. In 1960, only seven years later, Theodore H. Maiman made reality
the first laser operating at a visible wavelength based on a ruby crystal (Al2O3:Cr).
This laser produced a red beam of light at 694 nm [8].

The laser can be considered as one of the most important inventions in the
twentieth century, that has made possible new technologies such as optical co-
mmunications, optical storage of information, material processing, precise measur-
ing, medical applications, remote sensing, among many others [9].

1.3.1 Laser elements

There are three key components in a laser: a laser medium, a laser cavity and a
pump mechanism, as shown in Figure 1.12. The laser medium, which can be a
semiconductor, a fiber, a gas or a solid-state material, provides light amplification
and is inserted into the laser cavity, which consists of a pair of reflecting mirrors that
confine the generated light. The pump energy is transferred to the laser medium by
using a flash lamp, a laser light, or an an electric current. The pump energy excites
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the atoms in the laser medium, which in turn can amplify the light that is directed
to them [10].

L a s e r  m e d i u m

Mirror Mirror

Pump energy

Laser cavity

Figure 1.12: Basic elements of a laser system. The laser medium is inserted into the
laser cavity that consists of a pair of mirrors, and a pump energy is applied to the
laser medium.

The amplifying medium is usually enclosed by the cavity that holds the amplified
light, redirecting it through the medium for repeated amplification. The energy of
the amplifier that is being converted to light needs to be added continuously. The
generated light in the form of a beam in the cavity is extracted from one of the
mirrors that is partially transparent to the laser light.

1.3.2 Two-atomic-level description of the laser oscillation

Let us consider the process of generation of coherent light in the laser medium by
using a simplified two-level model, as shown in Figure 1.13. By some pumping
mechanism some of these atoms are promoted from the ground level to the excited
level. It is said that a population inversion is produced when the number of atoms in
the excited level is larger than the one in the ground level. Even though this scheme
is very useful for illustrative purposes, more than two atomic levels are required
to attain the population inversion in real laser systems [11, 12]. The excited atoms
begin radiating spontaneous emission, for which a photon is produced spontaneously
from an excited atom when it decays to the ground level. A photon produced in
this way can induce an excited atom to emit another photon of the same frequency,
phase, polarization state, and direction as the first, which is referred to as stimulated
emission. The mirrors of the laser cavity keep most of the photons from escaping, so
that they can be redirected back to the active laser medium to stimulate the emission
of more photons. By making the mirrors partially transmitting, some of the photons
are allowed to escape. These photons constitute the output laser beam, whose
intensity is determined by the rate of production of excited atoms (the population-
inversion lifetime) and the loss of the photons in the laser cavity and the active
medium (the photon lifetime). When the pumping power is enough to produce the
population inversion while photons are generated by stimulated emission, continuous
laser output is obtained [10].
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Figure 1.13: Principle of laser oscillation in a two-atomic-level. By a pumping
mechanism, some of the atoms are promoted from a ground state to an excited
state. The excited atoms begin to radiate spontaneous emission, that in turn can
induce an excited atom to emit another photon of the same frequency, polarization,
phase, and direction as the first.

1.3.3 Semiconductor lasers

Semiconductor lasers (also referred to as diode lasers) are optical devices that con-
vert an electric current (the pump energy) into coherent light. Since their devel-
opment in 1962 [13], semiconductor lasers have found multiple applications in science
and technology due to their unique properties [14]:

• Low power consumption.
• Small size (the typical length of a semiconductor laser is 0.25 mm).
• Reliability.
• Ease of fabrication.
• High frequency modulation (more than 10 GHz).
• Long service life.
• Low cost.
• Wide range of emission wavelengths.

One of the most outstanding uses of semiconductor lasers is as light sources
for optical fiber communication systems, designed to transmit a huge amount of
information at long distances. They are also widely used for optical data storage
in CDs, DVDs and Blu-ray systems. Other domains in which semiconductor lasers
have found important applications are optical metrology, spectroscopy, medicine,
material processing, air pollution monitoring, etc. Nowadays, they are ubiquitous
in portable pointers.
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1.3.3.1 Radiative recombination of electron-hole pairs

The basic structure of semiconductor lasers is the p-n junction, formed by bring-
ing a p-type (with many holes) and a n-type (with many electrons) semiconductor
into contact with each other. When a p-n junction is forward-biased by applying
an external voltage, the built-in electric field is reduced, what makes possible the
diffusion of electrons and holes across the junction. In a narrow depletion region,
both electrons and holes are present simultaneously and can recombine either ra-
diatively or nonradiatively. During radiative recombination photons are emitted.
However, these photons can also be absorbed through a reverse process that ge-
nerates electron-hole pairs. When the external voltage surpasses a critical value, a
condition known as population inversion is achieved, in which the rate of photon
emission exceeds that of absorption. The p-n junction is then able to amplify the
electromagnetic radiation. The amount of electron-hole pairs is also referred to as
the carrier density, which is proportional to the injection current of the semicon-
ductor laser. To obtain high gain of the amplification in semiconductor lasers, a p-n
heterojunction structure is used. Electrons and holes can move freely to the active
region under forward bias. However, once there, they cannot cross over to the other
side because of the potential barrier resulting from the bandgap difference. This
enhances the electron and hole population inside the active region, where they can
recombine to produce optical gain. In semiconductor lasers, the optical feedback is
usually implemented by cleaving the semiconductor along its crystal planes. The
Fresnel reflections between the semiconductor (n ∼ 3.5) and air (n ∼ 1) cause facet
reflectivities of about 30%, which is sufficient for lasing action to occur in diode
lasers of usual length (0.25 mm), so the laser does not need additional mirrors [14].

1.3.4 Nd:YAG lasers

Besides ruby lasers, there are many solid-state lasers, though not many in the visible
region. The most common are the rare-earth ions in crystals or glasses, like Nd3+

lasers using Nd:YAG (Nd3+ ions in yttrium aluminum garnet) materials, in which
the neodymium ion provides the lasing activity in the crystal. Nd:YAG absorbs
mostly in the bands between 730–760 nm and 790–820 nm, and Nd:YAG lasers are
pumped using a flashtube or laser diodes that emit at these particular wavelengths.
Nd:YAG lasers typically emit at 1064 nm, and can operate in both pulsed and
continuous mode.

The operation of the Nd:YAG laser was first demonstrated in 1964 [15], and
since that moment it has found multiple applications in medicine, industry, and
science [11].
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1.3.5 Rate equations for laser dynamics

The temporal dynamics of lasers can be described by using a set of coupled ordinary
differential equations, where the main three physical variables are the electric-field,
the population inversion, and the atomic polarization of the laser medium. The rates
of these three physical variables are governed by physical laws in the laser cavity
and described by a set of mathematical formulas, known as rate equations. One of
the simplest formula for the dynamics of a model of two-level atoms is described as
follows [16]

dI(t)

dt
= gI(t)N(t)− I(t)

τp
, (1.6)

dN(t)

dt
= R− gI(t)N(t)− N(t)

τs
, (1.7)

where I(t) is the laser intensity (described by a real number) and I = |E|2, N(t) is
the population inversion [m−3], g is the laser gain [m3 s−1], R is the pump energy
for lasing [m−3 s−1], τp is the photon lifetime [s], and τs is the population lifetime
[s]. Equation (1.6) describes the temporal dynamics of the laser intensity I(t), and
Equation (1.7) models the dynamics of the population inversion N(t). In Equations
(1.6) and (1.7), the product of I(t) and N(t) exists as a nonlinear term for the
stimulated emission gI(t)N(t). This nonlinearity is the origin of deterministic chaos
and complex dynamics in lasers.

1.3.6 Relaxation oscillation frequency

The relaxation oscillation of the laser output intensity is one of the important cha-
racteristics to determine the frequency range of the temporal dynamics of lasers.
Figure 1.14 shows a numerical example of relaxation oscillations in the intensity of a
semiconductor laser when the device is turned on. The oscillations take place with a
period that is considerably longer than the photon lifetime. The basic physical me-
chanism is the interplay between the laser intensity in the cavity and the population
inversion. An increase in the laser intensity causes a reduction in the population
inversion due to the increased rate of stimulated emission. This causes a reduction
in the gain that tends to decrease the laser intensity. Then, the population inversion
starts to increase again and the laser intensity follows the growth of the population
inversion afterwards. This oscillatory behavior between the laser intensity and the
population inversion continues for several cycles, and relaxes into stable values of
the laser intensity and population inversion.
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Figure 1.14: Numerical temporal waveform of the relaxation oscillations in the in-
tensity of a semiconductor laser when the device is turned on. The model and the
values of the parameters used in this example are the same as reference [17]

The relaxation oscillation frequency is dependent on the pump current, the car-
rier lifetime, and the photon lifetime in the laser cavity. Typical values of the re-
laxation oscillation frequency for different laser categories are summarized in Table
1.1.

Population
lifetime
[s]

Photon
lifetime
[s]

Relaxation
oscillation
frequency [Hz]

Semiconductor lasers 10−9 10−12 ∼ 109

Solid-state lasers 10−3 10−9 ∼ 105

Gas lasers 10−8 10−7 ∼ 106

Table 1.1: Relaxation oscillation frequencies for semiconductor, solid-state, and gas
lasers [10, 18].

1.4 Chaos and lasers

In 1961, spontaneous irregular pulsations in the output intensity of the first laser
were found by their inventors [8]. In that scientific paper, it was described that the
amplitude of the individual pulses seen in the output intensity of the laser fluctuated
in an “erratic manner”. This description was the first historical observation of
instabilities in a laser.
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1.4.1 The “green” problem

Another example of instabilities in the output intensity of lasers can be found in
the generation of green light (532 nm) from a diode-laser pumped Nd:YAG laser
with an intracavity KTP potassium titanyl phosphate) crystal for second-harmonic
generation, as shown in Figure 1.15(a) [19]. The Nd:YAG laser operates in a stable
steady state emitting infrared radiation (1064 nm) without the intracavity crystal.
When the intracavity KTP crystal is introduced, large intensity fluctuations are
observed, as shown in Figure 1.15(b). It has been found that this occurs when the
laser operates in several longitudinal modes. Sum-frequency generation in the KTP
crystal can produce mode-mode coupling that destabilizes the laser output. The
unstable behavior of this system has been known as the green problem.

Figure 1.15: (a) Schematic diagram of a Nd:YAG laser with an intracavity-doubling
crystal. (b) Irregular temporal waveform of the green laser output intensity (figure
taken from reference [19]).

1.4.2 Connection between chaos and lasers

The ideas of both chaos and lasers were proposed in the early 1960s [4, 8]. The
two research fields were developed independently, until Haken made the connection
between lasers and chaos in 1975 [20]. He realized that the Maxwell-Bloch equa-
tions that describe the time evolution of the atoms and the electric field of a laser
system and the Lorenz equations for the chaos model are isomorphic. The resulting
differential equations are known as the Lorenz-Haken equations.

1.4.3 Classification of lasers based on decay rates

Lasers can be classified from the laser dynamics point of view [21]. The three
relevant variables are the electric field, the atomic polarization, and the population
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inversion. These variables usually decay on very different time scales, which are
given by the electric field decay rate, the population inversion decay rate, and the
atomic polarization decay rate. If one of these rates is larger than the others,
the corresponding variable relaxes fast and consequently adiabatically adjusts to
the other variables. In fact, because the temporal dynamics of the variable with
large relaxation rate is faster than the other variables, this variable is regarded
as a dependant variable when compared with the other ones and the number of
equations describing the laser is reduced. This is known as adiabatic elimination
of variables [10, 14]. According to the number of variables, lasers are classified into
three types: class A, B, and C lasers.

1.4.3.1 Class C lasers (three variables)

For class C lasers, the decay rate of the electric field is comparable to those of the
atomic polarization and the population inversion, thus, the dynamics of the three
variables are described by 3 equations. Class C lasers satisfy the necessary condition
for generating chaos (three independent variables). Examples of class C lasers are
He-Ne lasers at the 3.39-µm line, He-Xe at the 3.51-µm line, and NH3 lasers.

1.4.3.2 Class B lasers (two variables)

For class B lasers, the decay rate of the atomic polarization is much faster than
those of the electric field and the population inversion, and the decay rate of the
electric field is faster than that of the population inversion. The variable of the
atomic polarization is regarded as a dependent variable and the dynamics of lasers
is described by the two variables: the electric field and the population inversion.
Class B lasers do not satisfy the condition for generation of chaos as they have only
two variables. Class B lasers are stable in nature, but they are easily destabilized
by external perturbations, resulting in the addition of extra degrees of freedom.
Examples of class B lasers are semiconductor lasers, solid-state lasers, and CO2

lasers.

1.4.3.3 Class A lasers (one variable)

For class A lasers, the decay rate of the electric field is much slower than those
of the atomic polarization and the population inversion. The variables of atomic
polarization and the population inversion change much faster than that of the electric
field, and they are dependent on the electric field. In this case, only the variable
of the electric field is used to describe the dynamics. Class A lasers are the most
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stable lasers among the three classes, however, they may show chaotic behaviors by
external perturbations with two or more extra degrees of freedom, as in the case of
class B lasers. Examples of class A lasers are He-Ne lasers at the 632.8-nm line and
dye lasers.

1.5 Semiconductor laser chaotic dynamics

Semiconductor lasers differ from conventional lasers not only in size, but also in
“openness”: while conventional lasers let escape only a small fraction of the light
intensity to the outside world (1 - 5%) and are therefore considered “closed”, semi-
conductor lasers are wide open, as they allow ∼ 70% of the light intensity to escape.
This goes two ways: semiconductor lasers are much more sensitive to perturbations
from the “outside world” than other lasers. This difference causes semiconductor
lasers to react strongly to external signals [14].

1.5.1 Chaos generation techniques

There are many techniques for generating chaos in semiconductor lasers with addi-
tional degrees of freedom. Three of them are: optical feedback, optical injection,
and external modulation.

1.5.1.1 Optical feedback

In this technique, an external mirror is placed in front of the laser cavity, and the
laser light is reflected back from the external mirror and reinjected into the laser
cavity, as shown in Figure 1.16(a).

The reinjected optical signal from the same laser may disturb the balance of the
carrier-photon interaction in the laser medium and induce the instability of the laser
intensity. In this case, the temporal dynamics is determined by the two dominant
frequency components: the relaxation oscillation frequency and the external cavity
frequency. On the other hand, the external cavity frequency fext depends on the
distance between the output facet of the laser cavity and the external mirror (i.e.,
the external cavity length) as

fext =
c

2nLext
, (1.8)
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Figure 1.16: Three techniques for the generation of chaos in lasers with an additional
degree of freedom: (a) optical feedback, (b) optical injection and coupling (upper:
unidirectional coupling, lower: mutual or bidirectional coupling), (c) external mo-
dulation.

where Lext is the external cavity length (one-way), n is the refractive index in the
external cavity, and c is the speed of light. The external cavity frequency corresponds
to the inverse of the round-trip time of light propagation in the external cavity.

1.5.1.2 Optical coupling and injection

The unidirectional or mutual optical coupling from one laser to another laser can
generate chaotic instability of the laser output intensity, as shown in Figure 1.16(b).
The laser intensity has two dominant frequency components. One is the optical-
carrier frequency fc determined by the optical wavelength λ and the speed of light
c. fc ranges in the order of several hundreds of THz (1014 Hz) for semiconductor
lasers. The other frequency is the relaxation oscillation frequency fr at the range
of kHz - GHz (103 – 109 Hz). When the detuning of the optical carrier frequencies
of both lasers is set to the order of the relaxation oscillation frequency, the non-
linear interaction between the optical-carrier frequency detuning and the relaxation
oscillation frequency can occur and chaotic fluctuations may appear.

1.5.1.3 External modulation

When an external modulation is added to the pumping of a laser system, as shown
in Figure 1.16(c), chaotic instability of the laser intensity may appear. The external
modulation frequency needs to be set around the relaxation oscillation frequency
of the laser, so that the nonlinear interaction between the external modulation fre-
quency and the relaxation oscillation frequency may result in the generation of chaos.
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The external modulation can also be applied to the loss of the laser cavity, which is
referred to as loss modulation.

1.5.2 Low-frequency fluctuations

Low-frequency fluctuations (LFFs) are a type of chaotic oscillations observed in
semiconductor lasers with optical feedback or injection under the conditions of low
injection current and strong optical feedback. LFFs are characterized by sudden
power dropouts followed by a gradual power recovery with a frequency that de-
pends on laser parameters and the external cavity. The frequency of LFFs is of
the order of MHz to a hundred MHz. Since the frequency of LFFs is much lower
than ordinary chaotic fluctuations related to the relaxation oscillation frequency,
the phenomena has been called low-frequency fluctuations. LFFs present a rich va-
riety of dynamics. Figure 1.17 shows an example of an experimental low-frequency
fluctuation waveform recorded with an oscilloscope.

Ch1     10.0 mV                             M 1.00    s

Figure 1.17: Experimental intensity time series of a semiconductor laser showing
low-frequency fluctuations. The experimental setup is the same as the one that will
be described in chapter 3, and the external cavity length is 9.0 m.

The power recovery is made in steps, not clearly visible in the figure because of
the resolution of the oscilloscope used, and the duration of each step is equal to the
round-trip time of light in the external cavity (around 40 ns for the example shown
in Figure 1.17). LFFs have three components of different time scales. One is a
low-frequency component with a period of microseconds; the second is a component
related to the external cavity length with a period of tens of nanoseconds; the third
is a high-frequency component related to the relaxation oscillations with a period
of subnanoseconds (not visible in Figure 1.17 at that resolution).
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1.5.3 Dynamics of semiconductor lasers with optical injec-
tion

A rich nonlinear dynamics can be observed in a semiconductor laser with optical
injection from another laser (Figure 1.16(b)). In this scheme, light from a laser (re-
ferred to as the drive laser) is injected into the active layer of the another laser (the
response laser). This configuration is often used to lock the optical-carrier frequency
and stabilize the oscillation of a response laser, known as injection locking. Injection-
locked semiconductor lasers are very useful for stabilizing the laser, however, they
sometimes show a rich variety of dynamics outside the injection-locking range. De-
pending on the optical-carrier frequency detuning and the injection strength ratio,
different regimes can be found, such as chaotic oscillations, low-frequency fluctua-
tions, four-wave mixing, continuous-wave emission and bistability [10,18,22].

1.6 Synchronization of chaos

Christiaan Huygens was the first scientist who observed and described the synchro-
nization phenomenon in the seventeenth century. He discovered that the oscillations
of two pendulum clocks hanging from a common support coincided, and the pendula
moved always in opposite directions. Huygens understood that the regularity of the
rhythms of the two clocks was caused by an imperceptible motion of the common
support, that is, the clocks were synchronized in anti-phase due to coupling through
the support where both were hanging [23,24].

After that initial discovery, many examples of synchronization in physical and
biological systems have been found, and practical applications have been imple-
mented. Some communication systems require synchronization of periodic carrier
waveforms to tune an appropriate communication channel and extract an encoded
message signal. Synchronization of periodic waveforms has been widely used in
many engineering applications. In optics, injection locking between coupled lasers
can be regarded as synchronization of periodic optical-carrier frequencies [10].

1.6.1 Synchronization of oscillatory systems

Synchronization is a phenomenon in which coupled dynamical systems present tem-
poral oscillatory behaviors with a certain relationship [10]. This phenomenon is not
only limited to systems that oscillate periodically; it can also be observed in cou-
pled chaotic dynamical systems. Figure 1.18 shows an example of synchronization
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of chaos. When the coupling strength is weak, two independent chaotic oscillations
are observed, as shown in Figure 1.18(a).
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Figure 1.18: Examples of synchronization of (a), (b) chaotic temporal waveforms
and (c), (d) corresponding correlation plots between the drive and the response
systems. (a), (c) No synchronization. (b), (d) Synchronization of chaos.

When the coupling strength is increased, the two temporal waveforms start to
show identical oscillations and synchronization of chaos can be achieved, as shown
in Figure 1.18(b). The correlation plots, obtained from the temporal waveform of
one oscillator versus that of the other coupled oscillator, show the appearance of
synchronization between them (Figures 1.18(c), and (d)). There is no linear corre-
lation between the chaotic temporal waveforms at weak coupling strength (Figure
1.18(c)). By contrast, a linear correlation is observed in Figure 1.18(d), showing
identical synchronization of chaos (i.e., the systems evolve identically in time and
their waveforms are in phase).

Several types of synchronization have been described in the literature, such as
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identical (or complete) synchronization [25], generalized synchronization [26], phase
synchronization [27], lag synchronization [28], and anticipated synchronization [29].

1.6.2 Oscillation death

In the middle of the nineteenth century, in his treatise called The Theory of Sound,
William Strutt (better known as Lord Rayleigh) described an interesting phenomenon
of synchronization in acoustical systems. Rayleigh observed mutual synchronization
when two distinct but similar pipes began to sound at the same time, and also the
effect of oscillation death (or quenching) when the coupling results in suppression
of oscillations of interacting systems. [23].

Oscillation death is a particular case of synchronization in which, for sufficiently
large coupling and frequency detuning between the oscillators, the oscillations in
both systems may die out due to coupling. This phenomenon has been studied
theoretically by several authors and demonstrated experimentally in many physical
systems [30].

1.7 Multistability in lasers

Multistability or coexistence of different stable states (attractors) for a given set
of parameters is an interesting phenomenon in dynamical systems that has been
found in different fields, such as electronics, optics, mechanics, chemistry, biology,
and economy [31]. The final state of a multistable system depends on the initial
conditions. From the application point of view, this phenomenon can be undesirable,
as is the case of the design of a commercial device with specific characteristics, where
multistability needs to be avoided or the desired state has to be stabilized against a
noisy environment. If the coexistence of multiple attractors is undesirable, control
strategies to suppress multistability must be developed. On the other hand, the
coexistence of different stable states offers a great flexibility if we consider that each
attractor represents a different system performance.

During the last years, a lot of research has been performed to develop control
techniques of multistable systems. These methods cover several strategies, going
from feedback control methods to nonfeedback, such as periodic or stochastic per-
turbations capable of changing the coexisting states of stability and driving the
system from multistability to monostability [31].
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1.7.1 Multistability in optical systems

Multistability became an important phenomenon in laser physics in the beginning
of the 80s, when it was shown experimental evidence of multistability in a modu-
lated CO2 laser [32]. Since then, multistability has been detected in other types
of lasers, including a Nd:YAG laser with intracavity second harmonic generation,
semiconductor, and fiber lasers.

The fast development of laser technology faces important technological problems
which require multistability control. One famous example is the “green problem” [19]
present in the operation of an intracavity frequency-doubled Nd:YAG laser. Usually,
this laser emits infrared light, that can be converted into visible green light by using
a nonlinear optical crystal. The nonlinear coupling between modes in the crystal
gives rise to irregular fluctuations in the optical cavity. Such a behavior is attributed
to the coexistence of multiple attractors which often appear in a system with many
degrees of freedom. The irregularity in the laser intensity results from spontaneous
switches between the coexisting states, so that additional stabilization mechanisms
like a feedback control need to be applied to obtain a stable output. In modern
fiber communication technology, semiconductor and fiber lasers are used to trans-
mit a signal through a lightwave carrier. These lasers are nonlinear systems which
can exhibit multistability when coupled to an external driving [33, 34]. This is an-
other example, where multistability is undesirable because it affects communication
efficiency and therefore it has to be avoided.

1.8 Noise-induced effects

As opposed to deterministic chaos, which obeys a deterministic rule that can be de-
scribed by mathematical equations, noise is defined as an irregular temporal wave-
form generated from a stochastic process that is based on a statistical law. Irregular
temporal waveforms of noise are not deterministic, and cannot be described by a set
of nonlinear equations. Instead, the behavior of noise can be sometimes described
by a set of differential equations driven by a sequence of random numbers as a
stochastic term.

Most natural systems are intrinsically nonlinear and operate in noisy environ-
ments. Under certain circumstances, an extra dose of noise can in fact help rather
than hinder the performance of some devices. Surprisingly, external noise can give
rise to unexpected and interesting phenomena. For example, noise can change the
stability properties of a system, namely stabilize or destabilize a steady state. More-
over, external noise can create new states that don’t exist under deterministic envi-
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ronmental conditions [35].

1.8.1 Stochastic resonance

The phenomenon of stochastic resonance appears when a nonlinear system operating
in a noisy environment is driven by a periodic signal. At a certain noise amplitude
the periodic response is maximal. The basic stochastic resonance mechanism can
be intuitively understood by considering a simple system, like a bistable dynamical
system that can switch between two stable states [36, 37], and supposing that the
dynamics can be characterized by a potential function, as shown in Figure 1.19.
The system can then be visualized as a marble inside a double well container. A
gentle rocking of the container will cause the marble to roll back and forth within
one of the wells; only under a much stronger disturbance will it surmount the wall
and enter the other well. In the absence of any external forcing, friction will cause
the system’s output (the marble’s position) to settle near the bottom of a well.

U0

U
 (

x
)

x

-3 -2 -1 0 1 2 3

-c +c

Figure 1.19: A bistable potential function (black line). In the absence of any forcing,
the switching process between the two stable states (minima of the potential at ±c)
is driven by the noise; the escape rate across the potential “barrier”, U0, is the same
in either direction. With a finite periodic forcing term added, the potential tilts
periodically between the red and green configurations. When the periodic force is
at its maximum (or minimum), the difference between the escape rates from the two
states is maximum, as shown by the two unequal red arrows [36].

A more complex output is observed when an external forcing, composed of a
deterministic signal and noise is applied. The external forcing may be interpreted
as a periodic rocking of the potential, while is simultaneously moved randomly by
the noise. The addition of even small amounts of noise can give a finite switching
probability to the response; that is, some potential barrier crossings will occur. For
moderate noise, the switching will acquire a degree of coherence with the underlying
signal; the switching probability is maximized whenever the signal is at its own
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maximum. The barrier-crossing rate thus depends critically on the noise intensity.
If the noise intensity is very low, the probability of any switching is very small. On
the other hand, intense noise can induce switching even during an interval when the
signal is close to its minimum. In between, there are a range of noise intensities that
induce switching events in near-synchrony with the signal.

The basic stochastic resonance effect is not limited to systems in which bistability
occurs between two stable fixed points. Other forms of bistability (or multistabi-
lity) abound in nature, and these systems can also display the same basic noise-
enhanced response. A new generation of nonlinear devices and applications could
use background fluctuations in a constructive way as an aid to performance, instead
of considering them as something that always hinders performance and needs to be
minimized. Stochastic resonance could find novel applications in physics, chemistry,
biomedical sciences, and engineering.

1.8.2 Vibrational resonance

An analogous phenomenon to stochastic resonance, referred to as vibrational res-
onance, can occur when the noise is replaced by a high-frequency periodic signal.
The phenomenon was discovered by studying a model where a high-frequency de-
terministic modulation replaced the added noise. It was numerically shown that the
response to the periodic modulation (low frequency) in the absence of noise passes
through a maximum, depending on the amplitude of an additional high-frequency
modulation [38]. Experimental evidence and characterization of the phenomenon of
vibrational resonance has been found in many different systems, such as electronic
circuits [39], and optical systems [40]. This phenomenon could be applied to the
detection of low-level signals, what could be a promising tool for a variety of ap-
plications such as signal restoring in optical fiber communication, optimization of
threshold sensors in noisy environments, etc.

1.8.3 Coherence resonance

Another interesting noise-induced phenomenon is called coherence resonance. It
resembles stochastic resonance, but has an important difference: while stochastic
resonance appears if both periodic and noisy forces drive a nonlinear system, with
the periodic response having a maximum at some noise amplitude, in coherence
resonance, at some noise amplitude the regularity of the the noise-excited oscillations
is maximal [41]. With stochastic resonance, noise can optimize a system’s response
to an external signal, while with coherence resonance, pure noise can generate the
most coherent state in the system.
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Chapter 2

Coherence enhanced intermittency

2.1 Abstract

In this chapter, we report on the experimental observation of coherence enhance-
ment of noise-induced intermittency in a semiconductor laser subject to optical
injection from another laser at the boundary of the frequency-locking regime. The
intermittent switches between locked and unlocked states occur more regularly at
a certain value of the injecting laser pump current. The probability distribution of
the experimental inter-spike-interval fluctuations evaluated from the intensity time
series is used to quantitatively characterize the intermittent behavior.

2.2 Introduction

Noise plays an important role in the dynamics of semiconductor lasers [42,43]. The
intrinsic spontaneous emission noise is capable of exciting intensity multipulses from
a steady state operation. Noisy lasers are known to exhibit self-pulsations in the
locking region of optically injected semiconductor lasers [44]. Noise-induced ex-
citability is related to the more general escape problem, where noise drives a system
out of a potential well corresponding to a stable equilibrium over the potential bar-
rier [45, 46]. Noise substantially modifies the dynamics near the locking between
the injected field and the laser field; the noisy laser can produce pulses where the
deterministic model allows for locking only.

Bistability in semiconductor laser injection locking was first experimentally demon-
strated by Kawaguchi et al. [47] and then numerically simulated using different laser
models [48,49]. The two stable states are associated with two different laser frequen-
cies. One of them is the frequency of the injected light that captures the frequency
of the injected laser, and the other one is the proper unlocked frequency of the in-
jected laser. In the bistability domain at the boundary between frequency-locking
and unlocked regimes, noise induces intermittent switches between the two coex-
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isting steady states. The regularity of noise-induced spiking is a non-monotonic
function of the spontaneous emission noise, and it is optimally correlated to a non-
zero value of the noise intensity. This phenomenon referred to as coherence res-
onance [41, 50] was previously demonstrated theoretically and experimentally in a
variety of dynamical systems, such as lasers with a saturable absorber [51], and
lasers with optical feedback [52–54]. Recently, coherence resonance was predicted
in the model of optically injected quantum-dot semiconductor lasers operated in
the frequency-locked regime [49]. Experimentally it was shown that spontaneous
emissions noise is sufficient to excite a semiconductor laser under optical injection
operating in a stable locked continuous wave state close to the boundary of the
frequency-locking regime [55]. Further, excitability and coherence resonance were
experimentally observed in semiconductor lasers under optical feedback by adding
broadband Gaussian white noise to the pump current [53,54].

In this chapter, we will present experimental evidence of coherence enhancement
in intermittent switches between two different laser wavelengths at the boundary of
the frequency-locking regime in an optically injected semiconductor laser. We study
how coherence can be enhanced by adjusting the injecting (master) laser pump
current.

2.3 Experimental setup

The experimental setup is shown in Figure 2.1. We used two fiber-coupled discrete
mode semiconductor lasers (Eblana Photonics) whose fiber ends were spliced to
the rest of the fiber components by means of single-mode fiber. The lasers were
stabilized in both the current and the temperature with accuracies of ± 0.01 mA
and ± 0.01°C, respectively. An optical isolator (ISO) was inserted between the two
lasers to provide unidirectional coupling between the master and slave semiconductor
lasers, which were connected via two 90/10 fiber optical couplers (OC); 90% of the
output radiation was used for the coupling through a polarization controller (PC) to
ensure parallel polarization, and the remaining 10% was used for signal detection by
photodetectors (PD) (Thorlabs PDB 150C, 150-MHz bandwidth). The signal from
the photodetector was analyzed with an oscilloscope (Agilent Technologies DSO-
X 3102A, 1-GHz bandwidth) and a frequency spectrum analyzer (FSA) (Agilent
Technologies EXA N9010A, 9 kHz-13.6 GHz bandwidth). The laser wavelengths
were monitored using an optical spectrum analyzer (OSA) (ANDO AQ-6315A).
The threshold currents of the solitary master and slave semiconductor lasers are
11.5 mA and 12.0 mA at temperatures T = 20.0°C and T = 22.53°C, respectively.
The injected power was regulated by an attenuator (Att). The wavelengths of both
lasers were monitored with an optical spectrum analyzer (OSA) (ANDO AQ-6315A).
The injected light of the master laser entered the optical spectrum analyzer after its
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reflection at one of the components to the right of the second output coupler. Since
the master laser was always in a continuous wave regime, the reflected light had no
effect on temporal dynamics recorded by the oscilloscope.

The experimental data were acquired by means of the software LabVIEW 2012
through the equipment GPIB and USB ports.

Master PC SlaveOC OCAtt

PD PD

OscilloscopeFSA

10% 10%

90% 90%

ISO

OSA

Figure 2.1: Experimental setup. PC: polarization controller, ISO: optical isolator,
OC: output coupler, Att: optical attenuator, PD: photodetector, FSA: frequency
spectrum analyzer, and OSA: optical spectrum analyzer. The red wire represents
the single-mode optical fiber, and the black and yellow ones represent the electrical
connections.

2.4 Time series and power spectra

During our experiments the slave laser driving current was fixed at Is = 12.80 mA,
and its temperature set at 22.5 °C. The master laser temperature was set at 20.0
°C and its pump current (Im) was used as a control parameter. The selection of
these values was made to allow the operation of both lasers at the same wavelength
at some value of the control parameter. A change in (Im) leads to approximately
linear changes in both, laser power (Figure 2.2(a)) and wavelength (Figure 2.2(b)).

As we increased the master pump current from 0 mA, we observed that for
12 mA < Im < 22 mA the optical frequency of the slave laser was locked by the
injected light, i.e. the slave laser emitted radiation at the same wavelength as the
master laser since it started to lase. When Im increased from 22 mA to 27 mA,
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Figure 2.2: (a) Optical power as a function of the pump current for the solitary
master and slave lasers. (b) Wavelength dependence of the pump current for both
lasers. For the master laser T = 20.0 °C, and for the slave laser T = 22.5 °C.

the wavelength of the master laser increased from λm = 1540.58 nm to 1540.64 nm.
Despite this slight increase, the slave laser dynamics changed drastically because the
control parameter crossed the frequency-locking boundary, i.e. the system left the
frequency-locking region and the injected light had no influence on the master laser
anymore. This situation is illustrated in Figure 2.3 with the optical spectra and
time series. At the boundary between the frequency-locking and unlocked regimes,
the slave laser switched intermittently between the two wavelengths λm and λs,
resulting in jumps between two different values of the slave laser intensity; the value
with higher intensity corresponds to the frequency-locking regime and the lower
intensity to the unlocked regime.

When 22 mA < Im < 24 mA the slave laser remained most of the time in
the frequency-locking regime (higher intensity level), occasionally jumping to the
unlocked state (lower intensity level), as seen in Figure 2.3(d,g). Around Im = 24.6
mA the switches looked more regular with an average switching frequency of 3.7
MHz (Figure 2.3(e,h)). At Im = 25.4 mA the slave laser remained most of the time
in the unlocked state, presenting occasional switches to the locked state (Figure
2.3(f,i)).

For Im > 26.0 mA the slave laser emitted again stable radiation being outside
the frequency-locking region. Thus, the slave laser emission presented two well-
defined stable states and the intermittency region between them. Such a behavior
is illustrated in Figure 2.4 with the bifurcation diagram of the slave laser peak
intensity. To obtain this diagram we analyzed 501 time series, each of a 1-ms long
and comprised of 5× 105 points, recorded for driving currents from Im = 18.00 mA
to 28.00 mA with a step of 0.02 mA. In Figure 2.4, one can clearly distinguish each
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Figure 2.3: Average optical spectra recorded by OSA and oscilloscope time series
for (a,d) Im = 22.0 mA, (b,e) 24.6 mA, and (c,f) 25.4 mA. The lower row (g,h,i)
shows a zoomed part of the above time series.

one of the two stable states and the intermittency region between 22.0 mA and 26.0
mA.

Figure 2.5 shows the evolution of the optical spectrum of both lasers recorded
by the optical spectrum analyzer. Each one of the 1750 spectra (from Im = 5 mA to
Im = 40 mA) is comprised of 1000 points. The color shows the power of the optical
spectral components.

In Figure 2.5 we can see that, for small pump currents of the master laser (Im <
11.5 mA), i.e. below the laser threshold, only the wavelength of the slave laser
(λs ≈ 1540.4 nm) was present in the spectrum, and it was independent of Im. At
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Figure 2.4: Bifurcation diagram of the slave laser peak intensity near the frequency-
locking boundary.

Figure 2.5: Bifurcation diagram of the optical spectral components at master and
slave laser wavelengths.

Im = 11.5 mA the master laser reached the lasing threshold and locked the slave
laser frequency, i.e. λs = λm for 12 mA < Im < 21 mA. For larger currents (21
mA < Im < 26 mA) the slave laser exhibited an intermittent behavior. When
the difference between λs and λm was smaller than the optical spectrum analyzer
spectral resolution (± 0.05 nm), the local maximum at λs did not appear in the
optical spectrum. This results in the approximately 0.05-nm width of the lines in
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the diagram. When the separation between the lines corresponding to the master
and slave laser wavelengths was large enough, we were able to distinguish two peaks
in the spectrum, as in Figure 2.3(b). If not [as in Figure 2.3(a)], we could only decide
that the laser switched between the two wavelengths by observing the time series
recorded with the oscilloscope. Finally, for Im > 26 mA each laser emitted at its own
free-running frequency. For high currents, the two lines in Figure 2.5 represent two
independent wavelengths, the upper one corresponds to λm, which increases with
Im, and the lower one, fixed at 1540.4 nm, corresponds to the free-running frequency
of the slave laser.

To test the reproducibility of these bifurcation diagrams, we performed the mea-
surements many times and we obtained the same behavior. The injected power was
too small to induce chaos in the slave laser, what makes us believe that the spiking
and switching dynamics at the frequency-locking boundary has a stochastic origin
due to internal noise.

2.5 Coherence enhancement

The observed intermittency is known to be induced by noise inherent to semicon-
ductor lasers [49]. The noisy behavior of the laser emission is clearly seen in Figure
2.4 as a broaden width of the upper and lower branches of the bifurcation diagram.
In the bistability domain, the system behavior can be presented in the form of a
double-well potential with a current-dependent shape. Unlike coherence resonance
which is characterized by increasing regularity with respect to noise, in our case
the noise is almost constant and the regularity is optimized for a certain value of
the master laser current when the double-well potential is more symmetric. On-off
intermittency is typically defined by conditions for the onset of intermittent behav-
ior, namely, the distribution of laminar phases and the mean laminar phase versus
a control parameter, usually noise intensity [56]. Since our laser displays either
separate spikes, like those in Figures 2.3(g) and 2.3(i), or switches between two
equilibrium states, like those in Figure 2.3(h), it is not possible to measure the du-
ration of the turbulent phase and hence characterize this type of intermittency by
commonly used scaling relations. Therefore, similar to neuron systems, we measure
inter-spike-intervals (ISI) between consecutive optical spikes or switches, evaluated
by ∆Ti = ti+1 − ti, with ti being the time when a spike occurs. The inter-spike-
interval fluctuations are defined as the difference between the natural logarithms of
successive inter-spike-intervals

∆n = ln(∆Ti+1)− ln(∆Ti) . (2.1)
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To find ∆n in the intermittency region of our system, we analyzed the time series
and measured ∆Ti as the spike amplitude crossed the value of 60 mV (Figure 2.6).
This threshold was selected because it lies at the middle of the two system states.
For spikes whose amplitude did not cross the value of 60 mV, ∆Ti was calculated
as the distance between the consecutive local minima or local maxima.
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Figure 2.6: Time series for Im = 22.0 mA (blue trace) showing the jumps to the lower
intensity level, and for Im = 25.4 mA (red trace) showing the jumps to the locked
state. The horizontal line represents the 60 mV threshold for the determination of
the spikes in the time series.

The current dependence of the standard deviation (SD) of ∆n in the intermit-
tency region, shown in Figure 2.7(a), displays a minimum around 24.5 mA, meaning
that the system dynamics exhibits maximum coherence.

Figure 2.7: (a) Standard deviation of inter-spike-interval fluctuations in the inter-
mittency region, and (b) power spectrum as a function of the master laser pump
current. The minimum in (a) and the dark spot in (b) correspond to maximum
coherence.

The asymmetry in the curve has a relation with the density of points in the
boundaries of the intermittency region observed in the bifurcation diagram shown
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in Figure 2.4. The transition from the higher intensity level to the lower one is more
gradual at the beginning than at the end, where it finishes more abruptly. This
could have an effect in the slope of the curve before and after the minimum around
24.5 mA.

It should be noted that small variations in the amplitude threshold do not pro-
duce qualitative changes in ∆n.

Another quantitative measure of the coherence is the power of the dominant
spectral component in the frequency spectrum. The higher the power at a particular
frequency, the more regular dynamics is. Figure 2.7(b) shows the power spectrum
as a function of Im. The dark spot in the vicinity of 25 mA means that the laser
behavior for this pump current is more regular than for other currents, because
of the existence of the dominant frequency of about 3.7 MHz at which the power
was significantly higher than for other spectral components. Another, but no so
pronounced maximum occurred at the second harmonic of this frequency.

Next, we show that the fluctuations presented by this system can be fitted by
non-Gaussian stable distributions. Stable distributions are a class of probability
distributions that allow skewness and heavy tails, i.e. tails that are “heavier” than
an exponential decay. This means that events, which are far from the average,
appear more frequently than in the Gaussian case (Figure 2.8).

x

f 
(x

)

Exponential

Function with heavy tails

Figure 2.8: Comparison between an exponentially decreasing function (solid red
trace) and a heavy-tailed function (dashed blue trace). For values of x far from
the origin, the heavy-tailed function has values that are bigger than the exponential
function.

One argument for modeling a system with stable distributions is empirical: many
large data sets exhibit heavy tails and skewness. Some data sets from many fields
are poorly described by a Gaussian model, but can be well described by a stable
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distribution [57]. Heavy tailed distributions have been found in different areas, from
economics and finance to engineering and biology [57–60].

Before presenting the mathematical expression for non-Gaussian stable distribu-
tions, the concept of stable will be defined (a detailed description of stable distribu-
tions can be found in reference [57]). An important property of normal or Gaussian
random variables is that the sum of two of them is itself a normal random variable.
One consequence of this is that if X is normal, then for X1 and X2 independent
copies of X and any positive constants a and b

aX1 + bX2
d
= cX + d , (2.2)

for some positive c and some d ∈ R. The symbol
d
= means equality in distribution,

i.e. both expressions have the same probability law. Equation (2.2) says that the
shape of X is preserved (up to scale and shift) under addition. A random variable
X is stable if for X1 and X2 independent copies of X and any positive constants a
and b, Equation (2.2) holds for some positive c and some d ∈ R. The word stable is
used because the shape is stable or unchanged under sums of the type represented
by Equation (2.2) [57].

There are three cases where it is possible to write down closed form expressions
for the probability density and it can be verified that they are stable: Gaussian,
Cauchy and Levy distributions. For the normal or Gaussian distributions, the pro-
bability density can be expressed as

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
, −∞ < x <∞ , (2.3)

where µ is the mean and σ is the standard deviation. For the Cauchy distributions,
the probability density can be expressed as

f(x) =
1

π

γ

γ2 + (x− δ)2
, −∞ < x <∞ , (2.4)

For the Lévy distributions, the probability density can be expressed as

f(x) =

√
γ

2π

1

(x− δ)3/2
exp

(
− γ

2(x− δ)

)
, δ < x <∞ . (2.5)
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Gaussian and Cauchy distributions are symmetric bell-shaped curves. The main
qualitative distinction between them is that the Cauchy distribution has much heav-
ier tails. In contrast to the Gaussian and Cauchy distributions, the Levy distribution
is highly skewed, with all of the probability concentrated on x > 0, and it has even
heavier tails than the Cauchy. General stable distributions allow for varying degrees
of tail heaviness and varying degrees of skewness.

There are other equivalent definitions of stable random variables that will help
to present the general form of stable distributions.

Definition 2.1 X is stable if and only if for all n > 1, there exist constants cn > 0
and dn ∈ R such that

X1 + · · ·+Xn
d
= cnX + dn , (2.6)

where X1, . . . , Xn are independent, identical copies of X. It can be shown that the
only possible choice for the scaling constants is cn = n1/α for α ∈ (0, 2]. While
useful, these conditions do not give a concrete way of parameterizing stable dis-
tributions. The most concrete way to describe all possible stable distributions
is through the characteristic function or Fourier transform (for a random vari-
able X with distribution function F (x), the characteristic function is defined by
φ(u) = E exp(iuX) =

∫∞
−∞ exp(iux)dF (x). The function φ(u) completely deter-

mines the distribution of X).

Definition 2.2 A random variable X is stable if and only if X
d
= aZ + b, where

0 < α ≤ 2, −1 ≤ β ≤ 1, a 6= 0, b ∈ R and Z is a random variable with characteristic
function

E exp(iuZ) =

{
exp(−|u|α[1− iβ tan πα

2
(sign(u))]), α 6= 1

exp(−|u|[1 + iβ 2
π
(sign(u)) log |u|]), α = 1

. (2.7)

These distributions are symmetric around zero when β = 0 and b = 0. General
stable distributions require then four parameters: an index of stability or charac-
teristic exponent α ∈ (0, 2], a skewness parameter β ∈ [−1, 1], a scale parameter
γ ≥ 0, and a location parameter δ. The parameter α is an indicator of the tails. For
α = 2 the distribution is Gaussian, and smaller values imply heavier tails. For β = 0
the distribution is symmetric, and a different value means that the distribution is
skewed either to the left or to the right, depending on the sign. The parameter γ
is an indicator of the distribution width. The parameter δ moves the distribution
horizontally, depending on its value. Since α and β determine the distribution form,
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they are considered shape parameters.

There are multiple parametrizations for stable laws, and some are more suit-
able in certain situations. The variety of parametrizations is due to a combination
of historical evolution, plus the numerous problems that have been analyzed using
specialized forms of the stable distributions. In the notation S(α, β, γ, δ; k), the
integer k indicates the parametrization. The recommended parametrization for nu-
merical work and statistical inference with stable distributions is S(α, β, γ, δ; 0) (S0
for short) because it has the simplest form for the characteristic function that is
continuous in all parameters.

Definition 2.3 A random variable X is S(α, β, γ, δ; 0) if

X
d
=

{
γ(Z − β tan πα

2
) + δ, α 6= 1

γZ + δ, α = 1
, (2.8)

where Z = Z(α, β) is given by Equation (2.7). X has characteristic function

E exp(iuX) =

{
exp(−γα|u|α[1 + iβ tan πα

2
(sign(u))(|γu|1−α − 1)] + iδu), α 6= 1

exp(−γ|u|[1 + iβ 2
π
(sign(u) log(γ|u|)] + iδu), α = 1

.

(2.9)

The above expression defines the general stable law in the S0 parametrization.
The fitted stable parameters of this kind of probability distributions are showing to
be a useful tool to quantify and monitor the state of complex systems.

To fit the inter-spike-interval fluctuations we used the computer program called
Stable, which performs an estimation of the stable parameters [61, 62]. Depending
on the problem to be solved, a particular parametrization could be used. In the
Stable program, all computations are performed in the S0 parametrization, which
is better suited to numerical calculations and modeling data.

Figure 2.9 shows an example of stable probability densities in the S0 parametriza-
tion for two different values of the characteristic exponent: (a) α = 2, and (b) α = 1.
Skewness is indicated by the trace color: β = 0 (black), β = 0.25 (red), β = 0.5
(green), β = 0.75 (yellow), β = 1 (blue). In all cases, the scale parameter γ = 1
and the location parameter δ = 0. [61,62]. Figure 2.9(a) shows that, for α = 2 (the
Gaussian case), the value of the skewness parameter has no effect on the shape of
the distribution and all the curves are superimposed. Figure 2.9(b) shows that, for
a smaller value of the characteristic exponent, the distributions have heavier tails
and the skewness parameter value has an evident effect in the distribution shape.
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For smaller values of α, these two effects increase.
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Figure 2.9: Stable probability densities in the S0 parametrization for two different
values of the characteristic exponent: (a) α = 2, and (b) α = 1. Skewness is
indicated by the trace color: β = 0 (black), β = 0.25 (red), β = 0.5 (green),
β = 0.75 (yellow), β = 1 (blue). In all cases, the scale parameter γ = 1 and the
location parameter δ = 0. [61,62].

In the Stable program, the probability density, obtained with a Gaussian kernel
for the experimental data is compared with the fitted stable probability density. The
stable model is acceptable if there is a good agreement between the fitted stable
density and the data density, and if the variance-stabilized PP (percent-percent)
plot of the data versus the fit is essentially on a 45-degree line [63]. We found
that the smoothed data density of the experimental inter-spike-interval fluctuations
was in good agreement with the fitted stable density, and that the PP plot of the
data versus the fit was on a 45-degree line for the range of pump currents in the
intermittency region, as shown in Figure 2.10(a), and 2.10(b).

The stable fitted parameters α and γ in the intermittency region plotted with
the 95% confidence interval are shown in Figure 2.11. We can see that at the center
of the intermittency region α is very close to 2 (α = 1.99), and before and after this
region the characteristic exponent is around 1.9. For α = 2, the parameter β has no
effect on the shape of the distribution [57].

The parameter γ represents the same behavior as the standard deviation of the
inter-spike-interval fluctuations, since it is related with how spread the distribution
is. On the other hand, the parameter δ was practically zero for all pump currents.
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Figure 2.10: (a) Fitted stable and data probability densities, and (b) variance-
stabilized PP plot when the pumping current is 24.6 mA. A 45-degree dashed line
was drawn as a reference.
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laser pump current. The 95% confidence intervals are plotted.

2.6 Conclusion

In this work we have presented experimental evidence of coherence enhancement
of noise-induced intermittency in an optically injected semiconductor laser at the
boundary of the frequency-locking regime. With the bifurcation diagrams of the
laser peak intensity and the optical spectral components we have shown the exis-
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tence of intermittent switches between the frequency-locking and unlocked regimes.
The minimum in the standard deviation of the inter-spike-interval fluctuations has
indicated the existence of the optimal master laser pump current for highest co-
herence of the intermittent jumps. Furthermore, the power spectrum exhibited the
prevalence of a particular spectral component or the existence of a dominant fre-
quency. We have associated this phenomenon with an improvement in the symmetry
of the double-well potential. We have also found that the inter-spike-interval fluc-
tuations in the intermittency regime obeyed two different probability distributions,
a non-Gaussian stable distribution (heavy tailed) for the spiking behavior near one
equilibrium state, and a normal distribution for the random switches between the
two states, quantified by fitted stable parameters α and γ. The stable fit can be used
to select adequate models and parameters for simulating intermittent dynamics by
comparing the fitted stable parameters obtained from experimental and numerical
data.
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Chapter 3

Noise-induced intermittency

3.1 Abstract

In this chapter, we report on the experimental observation of intermittent switches
between low-frequency fluctuations and steady-state emission in two bidirectionally
coupled semiconductor lasers subject to common Gaussian noise applied to their
laser pump currents. The time series analysis revealed power-law scalings typical
for on–off intermittency near its onset, with critical exponents of -1 for the mean
turbulent length versus noise intensity and -3/2 for the probability distribution of
laminar phases versus the laminar length. Moreover, the same -1 power-law scaling
was also found by the power spectrum analysis for the signal-to-noise ratio versus
the noise intensity.

3.2 Introduction

In the 1970s, some researchers observed an intermittent transition to turbulence in
experiments made in Rayleigh-Bénard cells using fluids. In these experiments, the
temperature difference between the bottom and the top of a cell containing the fluid
was selected as a control parameter (Figure 3.1).

Figure 3.1: Schematic representation of a Rayleigh-Bénard cell. The fluid is confined
between plates held at constant temperature. The hot plate is below and the cold
one above.
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Below a critical value of this parameter, the fluid moved following periodic oscil-
lations. Just above the critical value of this parameter, the fluid remained apparently
in a periodic state during long time intervals, but this regular behavior seemed to
be randomly and abruptly disrupted by a “burst” of finite duration. After that
sudden burst, a new laminar phase started, and so on. As the control parameter
was increased, it became more and more difficult and finally impossible to recognize
the regular oscillations. In 1980, Yves Pomeau and Paul Manneville studied this
problem mathematically and introduced the term “laminar phase” to refer to the
time intervals in which the fluid remained in a regular state (the bursts were later
called the “turbulent phase”). Since then, this terminology has been used when
intermittency is found in a nonlinear dynamical system. Pomeau and Manneville
showed that this sort of transition to turbulence is also present in simple dissipative
dynamical systems, such as the Lorenz model, and they classified intermittency in
three types: type I is associated with an inverse tangent bifurcation, type II with
a Hopf bifurcation, and type III with a period-doubling bifurcation [64]. Besides
the three types of the Pomeau-Manneville intermittency, two more types were later
discovered: crisis-induced intermittency [65] and on-off intermittency [66]. Inter-
mittency is a phenomenon that is not only limited to fluids; it is a behavior that
nonlinear dynamical systems can exhibit, and is one of the routes from a regular
state to a chaotic motion that a system can undergo.

The phenomenon of intermittency occurs when a system passes through a critical
point. For example, type I and on–off intermittency are related with saddle-node
bifurcations, type II and type III with Hopf and inverse period-doubling bifurcations,
respectively, and crisis-induced intermittency with a crisis of chaotic attractors.

Qualitatively and quantitatively, all kinds of intermittency are different. Qualita-
tively, the mechanism for on-off intermittency requires a time-dependent modulation
of a bifurcation parameter through a bifurcation point; in Pomeau-Manneville and
crisis-induced intermittency the parameters are fixed. Quantitatively, every kind of
intermittency exhibit a characteristic interbust interval (laminar phase) statistics.

A distinctive feature of on–off intermittency is that the system’s parameter mo-
dulation has to be either random, chaotic, or periodic [56,65–69]. In on–off intermi-
ttency, one or more dynamical variables exhibit two distinct states as the system
evolves in time. In the “off” state (the laminar phase), there are various time inter-
vals where the variables remain approximately constant, whereas in the “on” state
(the turbulent phase), irregular bursts of the variables away from their constant
values occur. On–off intermittency is characterized by two fundamental statisti-
cal properties: power-law scalings near the onset of intermittency have -1 critical
exponents for the mean duration of the laminar phase versus a control parameter
and -3/2 for the probability distribution of the laminar phases versus the laminar
length [56].
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Next, we will briefly summarize the main quantitative characteristics of on-off
intemittency. A deep treatment can be found in reference [56]. The essential fea-
tures of on-off intermittency were first described in the context of one-dimensional
parametrically driven maps, where on-off intermittency was achieved with random
and chaotic parameter variations. The maps studied were of the form

yn+1 = znf(yn) , (3.1)

where f(0) = 0, ∂f(y)/∂y |0 6= 0, and the variable zn represents a random or a
chaotic process.

An example of this family of maps can be produced if f(yn) = yn(1−yn) and zn =
axn, where xn is a random variable in the interval [0, 1] with uniform distribution
and a > 1. In this case, the map described by Equation (3.1) is a logistic map with
a random parameter. For a = 2.8, the time series displays long periods of nearly
constant signal interrupted short periods of larger amplitude bursts. The type of
intermittency observed is different from Pomeau-Manneville type-I, -II, and -III
intermittency, as well as crisis induced intermittency. These types of intermittency
occur for fixed values of the bifurcation parameter, while the bifurcation parameter
in on-off intermittency is a dynamical variable.

The major features for the map described by Equation (3.1) are

1. For a < e, the signal yn decays to zero.

2. For a ≥ e, the time series of yn present a sustained intermittent behavior,
displaying long periods near y = 0 (the laminar phases) and short periods
of large amplitude bursts (the turbulent phase). a = e is the threshold for
intermittent behavior to occur.

3. For a ≥ e and a ≈ e (the onset of intermittency), the probability distribution
Λn of laminar phases obeys a power law scaling of the form Λn ∼ n−3/2, where
n is the length of the laminar phase. This universal feature holds for a large
class of driving processes xn.

4. Beyond the onset, the distribution of laminar phases decreases exponentially
with n as n→∞.

5. Near the onset (a = e), the mean laminar phase obeys a power law with critical
exponent = -1 of the form 〈n〉 ≈ δ−1, where δ = a− e is the distance from the
onset parameter.

6. Nonlinearity is essential for sustaining the intermittent behavior, but an in-
stability is the source of the intermittent bursts.
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Even though these results are based on the dynamics of a class of one-dimensional
maps, the scaling relations for on-off intermittency have been experimentally proven
in a wide variety of systems, which include electronic circuits [70,71], a gas discharge
plasma [72], nematic liquid crystals [73, 74], synthetic dynamos [75], a human bal-
ancing task [76], a distributed-feedback semiconductor laser [77], a diode laser with
external cavity [68], and an optically injected dual-mode semiconductor laser [48].

To distinguish between the different kinds of intermittency in experiments, it is
necessary to analyze the measured properties (the distribution of laminar phases
and the average laminar phase) and to identify the mechanism for the intermittent
behavior. For instance, type-III intermittency has the same scaling laws as on-off
intermittency. However, in type-III intermittency the intermittent signals exhibit
bursts about either side of the fixed point. Type-I and type-II intermittency have
power-law laminar phase distributions with critical exponents -1/2 and -2, respec-
tively, and their mean laminar phases scales as δ−1/2 and δ−1, respectively. Finally,
the laminar phases in crisis-induced intermittency are segments of chaotic orbits rep-
resenting jumps between former separate attractors. In contrast, the laminar phases
in on-off intermittency are nonchaotic (fixed points or periodic orbits) [56, 66].

In this chapter, we report on noise-induced intermittency between coexisting re-
gimes of low-frequency fluctuations and a continuous wave emission in almost iden-
tical mutually delay-coupled semiconductor lasers under the influence of external
Gaussian noise. We associate this phenomenon with on–off intermittency character-
ized by their particular scaling laws. The interest in the dynamics of delay-coupled
semiconductor lasers arises from its usefulness for both technical applications and
fundamental research. The understanding of the dynamical behavior of semicon-
ductor lasers is highly important for advancing technology in optical communication
using a chaotic carrier [78]. On the other hand, these lasers are canonical systems for
studying general properties of delay-coupled oscillators which occur in many areas of
science and in nature [79], for example, neural networks [80], chemical reactors [81],
and electronic circuits [82]. Delay-induced bistability, namely, the coexistence of
low-frequency fluctuations and stable continuous wave emission has been observed
in a semiconductor laser with delayed optical feedback [83–85], and noise-induced
alternation between low-frequency fluctuations and continuous wave has been de-
tected [77, 85]. Although the dynamics of mutually coupled semiconductor lasers
has been investigated [22, 86, 87], only few works are related to the effects of noise
in these lasers [22].
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3.3 Experimental setup

The experiments were performed with two fiber-coupled discrete mode semiconduc-
tor lasers (Eblana Photonics, 1542 nm), and their currents and temperatures were
stabilized with accuracies of ± 0.01°C and 0.01 mA, respectively. As shown schemat-
ically in Figure 3.2, the lasers were connected via 90/10 fiber beam-splitters; 90%
of the output radiation was used for the coupling through a polarization controller
(PC) to ensure parallel polarization and the remaining 10% was used for detection by
InGaAs PIN photodetectors (Thorlabs PDA8GS, 9.5-GHz bandwidth). The signals
from the photodetectors were analyzed with a frequency spectrum analyzer (Agi-
lent Technologies EXA N9010A, 9 kHz–13.6 GHz bandwidth) and an oscilloscope
(Tektronix TDS520, 500-MHz bandwidth). The optical spectra was measured with
an optical spectrum analyzer (ANDO AQ-6315A), and an optical attenuator (Att)
was used to control the coupling strength. Before exploring the dynamics of the two
mutually coupled semiconductor lasers, we ensured that the laser wavelengths and
powers were as well matched as possible by adjusting the laser temperatures and
bias currents to avoid frequency detuning (Figure 3.3(a)). The threshold currents
of the solitary lasers are Ith1 = 12.0 mA and Ith2 = 12.6 mA, and the explored bias
currents were I1 = 12.4 mA (1.03Ith1) and I2 = 13.3 mA (1.05Ith2).

Laser 1

PC

Laser 2

OC OCAtt

PD PD

OscilloscopeFSA

10% 10%

90% 90%

OSA

White noise

1241.44

Noise generator

Figure 3.2: Experimental setup. PC: polarization controller, OC: output coupler,
Att: optical attenuator, PD: photodetector, FSA: frequency spectrum analyzer, and
OSA: optical spectrum analyzer. The red wire represents the single-mode optical
fiber, and the black and yellow ones represent the electrical connections.
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The same Gaussian noise was applied to the pump currents of both lasers from
a noise generator (HP 33120A, 10-MHz bandwidth). Since the internal spontaneous
emission noise intrinsic to any semiconductor laser cannot by itself be rectified,
the control effort can only be applied on the external noise. Figure 3.3(b) shows
frequency spectra of the applied Gaussian noise for different noise amplitude values,
and the frequency spectrum of the output intensity in the low-frequency fluctuations
regime.
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Figure 3.3: (a) Optical spectrum of the two solitary lasers centered at λ = 1540.3
nm. (b) Power spectrum of noise (upper gray traces) and laser intensity in the
low-frequency fluctuations regime (lower blue trace) averaged over 100 realizations.
The average frequency of the low-frequency fluctuations is about 0.65 MHz.

3.4 Time series analysis

Depending on the laser parameters and attenuation, the semiconductor lasers exhib-
ited various dynamical regimes: continuous wave emission, chaos, or low-frequency
fluctuations. For a relatively strong coupling, the lasers operated in the low-frequency
fluctuations regime and when external noise was applied, the windows of a steady-
state emission appeared in the time series. A probable mechanism for such noise-
induced intermittency is the influence of noise on the stability of the coexisting fixed
point. The intermittent switches were detected when the external noise intensity N
exceeded a threshold value Nth = 109 mV.

The intermittency observed was characterized with a time series statistical ana-
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lysis. For every noise value, we recorded 100 time series, each of 50 ms length (Figure
3.4). At this resolution, the shortest laminar length we were able to measure was
about 0.12 ms (equivalent to around 70 intensity drops of the low-frequency fluc-
tuations considering that their average frequency was 0.65 MHz), while the longest
laminar length was almost 50 ms.

With these experimental measurements, the mean duration of the low-frequency
fluctuations windows and the probability distribution of the laminar length in the
whole 5-s time interval were calculated.

50 ms 

Turbulent phase

Laminar phase

Figure 3.4: Time series of laser intensity showing on–off intermittency for a noise
amplitude of 240-mV. The clear windows represent the time intervals in which there
were no low-frequency fluctuations. At this resolution, the shortest laminar length
we were able to measure was about 0.12 ms, while the longest laminar length was
almost 50 ms.

Since the number of switching events depends on the noise intensity, near the
onset of intermittency the number of power drops is very small. For that reason, at
low noise values, time series were recorded up to 5 s. However, with increasing noise
intensity the number of switching events grows exponentially, what significantly
improves the statistics.

Figure 3.5 shows the mean laminar length versus the external noise intensity
used as a control parameter. In a linear scale, the relationship is well represented
by an exponential decay, as shown in Figure 3.5(a). In a log–log scale and close to
the onset of intermittency, the mean laminar phase seems to obey a power law with
critical exponent close to -1. (Figure 3.5(b)). Since the scaling exponent of -1 has
been proven to be a typical characteristic of on–off intermittency, this first analysis
suggested that this could be the type of intermittency our system undergoes.
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Figure 3.5: Mean laminar length versus noise intensity in (a) linear and (b) log–log
scales. The red traces represent (a) an exponential fit, and (b) a line with a slope
of -1. Nth = 109 mV.

Another important intermittency feature is the laminar phase distribution. Fi-
gure 3.6 shows the probability distribution of the laminar phases in linear (Figure
3.6(a)) and log–log (Figure 3.6(b)) scales, calculated at a noise intensity of 340-mV.
At higher noise values, there were more switching events in the time series, what
enabled a better precision of the statistical analysis. In this figure, it is more evident
that the probability distribution obeys a power law with a critical exponent close to
-3/2, what is a very important feature of on–off intermittency.
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Figure 3.6: Probability distribution of laminar phases versus laminar length at N =
340 mV in (a) linear and (b) log–log scales. The red trace represents a line with a
slope of -1.5. Nth = 109 mV.
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3.5 Power spectrum analysis

Now, we will show that the intermittency observed can be also characterized by a
power-law scaling for the signal-to-noise ratio obtained from the frequency spectrum
analysis. Figure 3.7 shows the typical power spectrum (averaged over 100 realiza-
tions) of the laser intensity in the intermittency regime. The spectral component
SLFF with the central frequency of approximately 0.65 MHz reflects the contribu-
tion of the low-frequency fluctuations, while the noise contributes mainly to the
background spectral component SN [88]. As the noise intensity is increased, SLFF
decreases while SN increases, thus leading to the complete disappearance of the
low-frequency fluctuations spectral component.
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Figure 3.7: Laser power spectrum in the intermittency regime (upper blue trace)
and noise background (red lower trace) averaged over 100 realizations. The signal-
to-noise ratio (SNR) is measured as an excess of the low-frequency fluctuations
spectral component SLFF over the background noise SN at the central frequency of
low-frequency fluctuations (about 0.65 MHz).

To obtain the scaling relation from the power spectrum, we performed a cubic
spline interpolation to obtain a soft trace around the spectral peak and on its base.
Then, we measured the signal-to-noise ratio SNR = SLFF −SN (dBm) at the central
frequency (0.65 MHz) of the low-frequency fluctuations regime as a function of the
noise intensity.

Figure 3.8 shows this dependence in semilog (Figure 3.8(a)) and log–log scales
(Figure 3.8(b)). Close to the intermittency onset, a linear fit is a good approxima-
tions up to a 340-mV noise. For stronger noise, the SNR approaches zero because
the low-frequency fluctuations windows almost disappear in the time series, while
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a noisy steady state tendency becomes apparent. The red trace in Figure 3.8(b)
shows that near the onset of intermittency, the signal-to-noise ratio versus the nor-
malized noise intensity obeys a power law with a critical exponent of -1. This result
is more evident and is in agreement with the scaling relation obtained from the time
series analysis (compare with Figure. 3.5). Such agreement reflects the fact that
the averaged SLFF is associated with the mean duration of the laminar phase. The
frequency spectra analysis resulted simpler and faster than the statistical treatment
of the time series.
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Figure 3.8: Signal-to-noise ratio versus noise intensity in (a) semilog and (b) log–log
scales. The error bars represent the maximum error in the determination of the
frequency spectral peak. The red trace is a line with a slope of -1.

3.6 Conclusion

Intermittent switches between a steady-state emission and a regime of low-frequency
fluctuations have been observed in experiments with two mutually coupled semicon-
ductor lasers when common Gaussian noise was applied to the laser pump currents.
The time series analysis revealed power laws for the intermittency observed. Near
the onset of intermittency, the mean laminar length was found to obey a -1 power
law with respect to the normalized noise intensity, while the probability distribu-
tion of the laminar phases over the laminar length displayed a -3/2 power law.
These two scaling relations are consistent with the key signature of on–off intermit-
tency. Besides, the time-dependent modulation of a bifurcation parameter through
a bifurcation point required by on-off intermittency was provided by the random
modulation of the pump current of both lasers. Furthermore, the analysis of the
average power spectra revealed a -1 scaling exponent for the signal-to-noise ratio ver-
sus the noise intensity exhibiting a good agreement with the scaling law found from
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the time series. Such agreement reflects the fact that the averaged low-frequency
fluctuations spectral component SLFF is associated with the mean duration of the
laminar phase.
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Chapter 4

Dual-cavity laser dynamics

4.1 Abstract

We experimentally studied the dynamics of a dual-cavity Nd:YAG laser with second
harmonic generation in one of the cavities and loss modulation in the second one.
Depending on the frequency of harmonic modulation of the infrared light, we ob-
served the coexistence of different correlated and uncorrelated regimes of the infrared
and green outputs from the two laser cavities. We present experimental evidence of
the existence of the dynamical regime of oscillation death in the green and infrared
output intensities of the laser, coexistent with oscillatory states for certain values of
the loss modulation frequency that was used as a control parameter.

4.2 Introduction

Fast development of laser technology faces technological problems which require
special attention. One famous example is the so-called “green problem” [19] present
in a Nd:YAG laser with a nonlinear crystal in the cavity. The intracavity frequency-
doubled crystal converts the infrared (IR) light at the 1.06-µm wavelength into
green light at a wavelength of 532 nm. The nonlinear coupling between modes in
the second harmonic generation (SHG) crystal gives rise to irregular fluctuations of
the laser power. This irregular behavior was largely investigated and attributed to
the destabilization of relaxation oscillations, always existent in this kind of lasers
due to nonlinear coupling of longitudinal modes. In spite of numerous attempts
to stabilize steady states by various feedback control methods [89], the success was
insignificant.

Another reason of instabilities in this laser is the coexistence of multiple attrac-
tors, where the irregularity in the laser intensity may lie in aleatory switches between
the coexisting states induced by noise or any external interference [31]. This work
was motivated by a search of possibilities to control this kind of irregular laser be-
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havior. One possible approach would be attractor annihilation by external harmonic
modulation [90,91].

Synchronization of coupled chaotic systems [23, 92–94], including lasers [95–97]
has been widely investigated over the past few decades. The Nd:YAG laser with
intracavity potassium titanium oxide phosphate (KTiOPO4), or KTP crystal is a
system of special interest because it is a highly efficient source of visible coherent
light. Moreover, chaotic Nd:YAG lasers have proved to be ideal candidates for
multichannel communication [98]. Chaotic synchronization of multimode Nd:YAG
lasers could be used in digital communication of two-dimensional messages. Since
in a multimode laser, chaotic synchronization between corresponding cavity modes
differs from that between different cavity modes, each pair of corresponding cavity
modes could be used as a channel in an optical communication system.

One very interesting synchronous state is referred to as oscillation death, and it
deals with the absence of oscillations in a coupled system, whereas each subsystem
oscillates when isolated. This type of synchronization was theoretically investigated
by several researchers [99–104] and experimentally demonstrated in chemical [105],
optical [106], and electronic systems [107]. The majority of papers are devoted to
the oscillation death in autonomous (self-oscillatory) systems, with a small exclusion
[30,108] which reports on the observation of similar phenomenon in nonautonomous
(forced) systems. While in the former case, the oscillation death appears due to
a time delay in coupling, in the latter case the dead states arise in a saddle-node
bifurcation which gives rise to a stable fixed point coexistent with a limit cycle or
chaos [30]. Thus, the oscillation death in nonautonomous systems is related to the
emergence of multistability. This has been numerically demonstrated in the coupled
Duffing oscillators [30] and in a dual-cavity CO2 laser with modulated losses in one
of the cavities [108].

In this work, we present experimental evidence of oscillation death in a peri-
odically forced system, and show its relation to the multistabilty emergence in a
dual-cavity Nd:YAG laser with a second harmonic generation crystal in one cavity
and loss modulation in another cavity. Our interest is centered in cooperative dy-
namics and synchronization of the infrared and green outputs from the two laser
cavities.

4.3 Experimental setup

Figure 4.1 shows the optical scheme of our experimental setup. The experiments
were carried out with a diode-pumped Nd:YAG laser with a KTP crystal for second
harmonic generation, which was placed inside one of the laser cavities. Another
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cavity was formed by a beam splitter (BS) and an additional mirror so that the
active medium (Nd:YAG) was present in both cavities. An electro-optical modulator
(EOM) and the second harmonic generation crystal were placed in different cavities;
the one with the electro-optical modulator was the active cavity and the cavity with
the second harmonic generation crystal was the passive one. A harmonic signal
from a signal generator (SG) was applied to the electro-optical modulator in order
to modulate losses in the active cavity. An infrared filter (IRF) placed in front of
the electro-optical modulator allowed modulating the infrared light only. Another
infrared filter put in front of a photodetector (PD) served for cutting the green light.
A green filter (GF) placed in front of another photodetector blocked the infrared
light allowing the detection of the green light only from the passive cavity. Thus,
by modulating only the infrared light we recorded both the infrared and green laser
radiation components.

SG

M

IRF

EOM

1
9

.4
 c

m

M SHG

PD GF Nd:YAG L1 L2 Laser

5.3 cm 4.0 cm

PD

IRF

ATT

BS

M

Figure 4.1: Optical scheme of a diode-pumped dual-cavity Nd:YAG laser with a
second-harmonic generation crystal (SHG) in the passive cavity and an electro-
optical modulator (EOM) in the active cavity. PD: photodetector, M: cavity mirrors,
BS:polarizing beam splitter, IRF: infrared filter, GF: green filter, ATT: variable
attenuator, L1: focusing lens, L2: collimating lens, SG: signal generator, and Laser:
diode pump laser. The dark red line represents the diode pump laser emission, the
red one represents the infrared light from the Nd:YAG laser, and the green line the
frequency-doubled light.

For the pumping we used a diode laser (BWT K81S09F-8.00W, 808 nm) with cu-
rrent (BK Precision 1696) and temperature (Newport 350B) controllers. The laser
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outputs were recorded by two photodetectors (Thorlabs PDA 36A, 350–1100nm
wavelength range, 17-MHz bandwidth) and visualized with an oscilloscope (Tek-
tronix DPO 7104, 3.5-GHz bandwidth). The harmonic waveform was obtained
with a function generator (Tektronix AFG 3021B). For loss modulation we used an
electro-optical amplitude modulator (Thorlabs EO-AM-NR-C2, 900-1250nm) with
a high voltage amplifier (Thorlabs EO-HVA). The threshold currents for the diode
pump and Nd:YAG lasers were respectively Ipth = 1.6 A and INdth = 2.6 A.

The diode laser used for the pumping was operated at a current of I = 4.016
A (1.5Ith) and a temperature of 23.0 °C. With these parameters and after a careful
alignment of the optical components in the two cavities, the infrared optical power
measured within the passive cavity was IIR = 35.6 mW, and the green optical power
was Ig = 1.8 mW, that is, the second-harmonic conversion efficiency was just above
5%.

4.4 Synchronization

The modulation of the infrared light resulted in modulation of the green light be-
cause of nonlinear coupling through the active medium and the second-harmonic
generation crystal. Figure 4.2(a) shows the bifurcation diagrams of the laser peak
intensities of the IR and green outputs. The diagrams were constructed by plotting
peak intensities of the last 100 local maxima of the time series for every modulation
frequency f taken with a 500-Hz step at fixed diode pump current equal to 4 A. The
duration of the recorded time series ranged from 100 ms for f = 5 kHz to 1 ms for
f = 500 kHz.
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Figure 4.2: Bifurcation diagrams of (a) laser peak intensities of infrared (upper
trace) and green (lower trace) outputs, and (b) maximum cross-correlation (Cmax)
between them versus modulation frequency.

Synchronization of the IR and green laser components can be quantitatively
measured with the cross-correlation function of the two temporal waveforms, defined
as [10,22,109]

C =

〈(
IIR, i − 〈IIR〉

)(
Ig, i − 〈Ig〉

)〉
σIR σg

, (4.1)

where IIR, i and Ig, i are the ith sampled point of the temporal waveform of the IR
and green laser intensities. 〈IIR〉 and 〈Ig〉 are the mean values of IIR, i and Ig, i,
defined as

〈IIR〉 =
1

N

N∑
i=1

IIR, i , (4.2)
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〈Ig〉 =
1

N

N∑
i=1

Ig, i , (4.3)

where N is the total number of points sampled from the temporal waveforms. σIR
and σg are the standard deviations of IIR, i and Ig, i, defined as

σIR =

√√√√ 1

N

N∑
i=1

(IIR, i − 〈IIR〉)2 , (4.4)

σg =

√√√√ 1

N

N∑
i=1

(Ig, i − 〈Ig〉)2 . (4.5)

The value of C in Equation (4.1) ranges from -1 to 1. The best inphase syn-
chronization of chaos is obtained at the cross-correlation value of C = 1. The best
antiphase synchronization of chaos is obtained at C = -1. No synchronization is
observed at C = 0.Figure 4.2(b) shows the maximum cross-correlation between the
IR and green lights as a function of the modulation frequency. In the bifurcation
diagrams in Figure 4.2, one can distinguish several critical points, where the laser
changed its behavior. In particular, the bifurcations appeared at f ≈ 160 kHz, f ≈
240 kHz, f ≈ 260 kHz, f ≈ 390 kHz, and f ≈ 420 kHz. The time series ana-
lysis allowed us to characterize these bifurcations and associate some of them with
saddle-node and Hopf bifurcations.

In the low-frequency range f < 160 kHz, the laser oscillated in a chaotic regime,
where the IR and green components were uncorrelated (Cmax ≈ 0), i.e. no syn-
chronization was observed (Figures 4.3(a,b)). The emergence of multistability at
f ≈ 160 kHz allowed us to associate this point with a saddle-node bifurcation. For
f > 160 kHz different cross-correlations corresponded to different coexisting states.
When the laser was in the periodic regime (Figures 4.3(c,d)), the IR and green com-
ponents were strongly correlated (Cmax ≈ 1) and the oscillation frequencies were
locked to a certain ratio with the external modulation frequency. The phases were
also locked at a certain phase difference between the outputs, as seen from Figures
4.3(c–f). Instead, when one of the outputs was in a chaotic regime and another one
in a periodic regime (Figures 4.4(b,d)), the correlation was very low. Therefore,
the cross-correlation in the multistable region was uncertain, i.e. Cmax could take
different values between 0 and 1 depending on the attractors released.

The cross-correlation was also uncertain in the range 270 kHz < f < 390 kHz
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when the laser was in the regime of oscillation death, i.e. when both outputs dis-
played a noisy steady state emission (Figure 4.5(f)). The bifurcations at f ≈ 390
kHz and f ≈ 420 kHz we referred, respectively, to as Hopf and inverse Hopf bifur-
cations because at the former point a steady state converted to a periodic orbit and
at the latter point a periodic orbit converted to a steady state.

50 100 150 200 250
0

0.5

1

1.5

(a)

Time, t (µs)

In
te

n
si

ty
 (

V
)

0 0.5 1

0.4

0.6

0.8

1

1.2

(b)

Green intensity (V)
IR

 i
n

te
n

si
ty

 (
V

)

50 100 150
0

0.5

1

1.5

(c)

Time, t (µs)

In
te

n
si

ty
 (

V
)

0 0.1 0.2 0.3
0.4

0.6

0.8

(d)

Green intensity (V)

IR
 i

n
te

n
si

ty
 (

V
)

50 60 70 80 90 100
0

0.5

1

1.5

(e)

Time, t (µs)

In
te

n
si

ty
 (

V
)

0 0.1 0.2 0.3
0.4

0.6

0.8

(f)

Green intensity (V)

IR
 i

n
te

n
si

ty
 (

V
)

Figure 4.3: Time series (left) and phase-space plots (right) of IR (middle traces) and
green (lower traces) laser outputs demonstrating dynamical regimes with different
rotation numbers. (a,b) 2:1 chaotic regime at f = 100 kHz, (c,d) 1:1 periodic
regime at f = 203.5 kHz, and (e,f) 1:2 periodic regime at f = 400 kHz. The upper
(black) traces represent the modulating signal. They are shown rescaled and shifted
vertically only for visualizing purposes.

61



CHAPTER 4. DUAL-CAVITY LASER DYNAMICS 4.5. COEXISTING ATTRACTORS AND OSCILLATION DEATH

50 100 150 200
0

0.5

1

1.5

(a)

Time, t (µs)

In
te

n
si

ty
 (

V
)

50 100 150 200
0

0.5

1

1.5

(b)

Time, t (µs)

In
te

n
si

ty
 (

V
)

50 100 150 200
0

0.5

1

1.5

(c)

Time, t (µs)

In
te

n
si

ty
 (

V
)

50 100 150 200
0

0.5

1

1.5

(d)

Time, t (µs)

In
te

n
si

ty
 (

V
)

Figure 4.4: Coexistence of attractors near f ≈ 163 kHz. (a) The infrared (middle
trace) and green (lower trace) components are in periodic regimes (f = 160 kHz),
(b) infrared is in a periodic and green is in a chaotic state (162 kHz), (c) both
infrared and green outputs are chaotic (162.5 kHz), and (d) infrared is in chaos and
green is in a period 1 (165 kHz). The upper (black) traces represent the modulating
signal. They are shown rescaled and shifted vertically only for visualizing purposes.

4.5 Coexisting attractors and oscillation death

In Figure 4.4 we show the time series corresponding to four different coexisting
regimes detected in the vicinity of 163 kHz. A small variation of f resulted in
switches between coexisting attractors due to changes in the initial conditions. Mul-
tistability was observed for modulation frequencies near 90 kHz (Figures 4.5(a,b)),
160 kHz < f < 260 kHz (Figures 4.5(c,d)), and 380 kHz < f < 420 kHz (Figures
4.5(e,f)). In the last region we found the coexistence of oscillatory and steady state
regimes. We attribute the latter regime to oscillation death shown in Figure 4.5(f).
The stable steady state always coexisted with a limit cycle as predicted in Ref. [30].

The origin of the oscillation death may lie in a sufficiently large difference between
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Figure 4.5: Coexistence of (a,c) chaotic and (e) periodic regimes with (b,d) periodic
and (f) steady state regimes at modulation frequencies (a,b) f = 90 kHz, (c,d) 200
kHz, and (e,f) 380 kHz.

natural laser frequencies for the IR and green components because of the difference
in their gains and cavity losses, so that the coupling in the active medium creates a
saddle-node pair of fixed points on the limit cycle [110].
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4.6 Conclusions

We experimentally studied dynamics of a dual-cavity Nd:YAG laser with second har-
monic generation under harmonic loss modulation of the infrared laser component.
Depending on the modulation frequency, chaotic, periodic, and steady state regimes
were observed. Synchronization of the IR and green laser lights was investigated
using a cross-correlation function. In certain regions of the modulation frequency,
multistability was detected; chaotic orbits coexisted with periodic orbits. When
the laser operated in a chaotic regime, the oscillations of the IR and green compo-
nents were uncorrelated, whereas in a periodic regime they were strongly correlated
and their frequencies and phases were locked. We also observed the coexistence of
oscillatory and steady state regimes. The latter is attributed to oscillation death,
i.e. the absence of oscillations in both laser components, that may arise from the
difference between natural laser frequencies for the IR and green lights, due to their
cooperative dynamics. This experimental evidence of the oscillation death in the
periodically forced system confirmed previous theoretical predictions [30,108].
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Chapter 5

General conclusions

In this thesis we have studied experimentally stochastic effects such as coherence
enhancement, noise-induced intermittency, and amplitude death in multistable semi-
conductor and solid-state lasers.

We presented evidence of noise-induced intermittency in an optically injected
semiconductor laser at the boundary of the frequency-locking regime, and the ex-
istence of an optimal master laser pump current for the coherence enhancement.
We also found that the inter-spike interval fluctuations in the intermittency regime
obeyed a non-Gaussian stable distribution. In the intermittent regime, the char-
acteristic exponent, α, was almost constant, while the scale parameter, γ, had a
minimum at the current value corresponding to maximum coherence. We consider
that this laser configuration could be useful in an optical communication system
that could exploit the existence of two states in the optical output of the slave laser.
Additionally, these results could contribute to the improvement of the quality of the
communications in this type of systems.

Also, intermittent switches between a steady-state and a regime of low-frequency
fluctuations were observed in experiments with two mutually coupled semiconductor
lasers subject to common Gaussian noise applied to their laser pump currents. The
two scaling relations derived from the time series are consistent with the key signa-
ture corresponding to on–off intermittency. Furthermore, the analysis of the average
power spectra revealed a good agreement with the scaling law found from the time
series analysis. We consider that this research could help in the understanding of
the positive effects of noise in the dynamics of laser systems.

Additionally, we studied the rich dynamics of a dual-cavity Nd:YAG laser with
second harmonic generation under harmonic loss modulation of the infrared laser
component, and multistability was detected for certain regions of the modulation
frequency. When the laser operated in a chaotic regime, the oscillations of the in-
frared and green components were uncorrelated, whereas in a periodic regime they
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General conclusions and future work

were strongly correlated and their frequencies and phases were locked. The observed
coexistence of oscillatory and steady state regimes, which we attribute to oscillation
death, may arise due to cooperative dynamics from the difference between natural
laser frequencies for the infrared and green lights. Besides the contribution of this
work from the nonlinear dynamics point of view, we consider that the obtained
results may be relevant in optical communication systems as Nd:YAG lasers have
proved to be candidates for multichannel communications and because chaotic syn-
chronization of this kind of multimode lasers could be used in digital communication
with two-dimensional messages since each pair of corresponding cavity modes could
be used as a channel in optical communications due to the fact that chaotic syn-
chronization between corresponding cavity modes differs from the synchronization
between different cavity modes.

As a future work in the short term, we want to explore the following research
lines:

1. Use other slave laser pump currents to investigate the presence and charac-
teristics of coherence enhancement of intermittency and to make a map with
both laser pump currents as control parameters.

2. Make a numerical study of the coherence enhancement to corroborate the
experimental results that we have. This study would be based on the Lang-
Kobayashi laser equations that describe a semiconductor laser with external
optical feedback.

3. Study rogue waves in the same experimental array. This is motivated on partial
experimental results that we did that suggest that the phenomenon might be
present in this laser configuration.

4. Use the Lang-Kobayashi model to make a numerical study of the on-off inter-
mittency that was found in the study of two mutually coupled semiconductor
lasers.

5. Investigate the emergence of multistability and synchronization in the dual-
cavity Nd:YAG laser with second-harmonic generation in one of the cavities
that was described in chapter 4, but using the optical pumping and the am-
plitude of the loss modulation as control parameters.
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Publications

1. A. Campos-Mej́ıa, A. N. Pisarchik, and D. A. Arroyo-Almanza, Noise-induced
on–off intermittency in mutually coupled semiconductor lasers, Chaos, Solitons
and Fractals, 54, 2013.

2. A. Campos-Mej́ıa, A. N. Pisarchik, V. Pinto-Robledo, R. Sevilla-Escoboza,
R. Jaimes-Reátegui, G. Huerta-Cuellar, V. P. Vera-Avila, Synchronization of
infrared and green components in a loss-modulated dual-cavity Nd:YAG laser
with second harmonic generation, European Physics Journal (Special Topics),
223(13), 2014.

3. A. Campos-Mej́ıa, A. N. Pisarchik, R. Sevilla-Escoboza, G. Huerta-Cuellar,
and V.P. Vera-Ávila, Coherence enhanced intermittency in an optically injected
semiconductor laser, Optics Express, 23(8), 2015.
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