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Preface 
 

 

Different digital non-contact optical techniques have recently been developed, becoming popular 

for shape recovery and fracture or deformation of three-dimensional (3D) objects. These 

techniques have been used for three-dimensional imaging of biological objects, but most of them 

interact and damage the surface of the object. Given the historical interest in digital preservation 

of morphology of fossil and taking into account that deoxyribonucleic acid (DNA) conservation 

is essential in studies of evolutionary genetics and the dating of evolutionary events, a non-

contact technique is essential to avoid the risk of contaminating it with additional chemical 

agents or modern material and to preserve the topography of the same. The method of 3D profile 

measurement used is phase measurement profilometry by fringe projection. In the fringe-

projection technique, a reference optical grating is first generated and then projected onto the 

surface of interest. The physical record represents the best way to document radiation and 

morphological transitions for taxonomic study groups. For this reason, we made the processing 

of semi-fossilized materials according to protocols for both, the management of old samples 

(genetically tested) and for optical measurements. For a given optical set-up, the distribution of 

the reference grating is perturbed in accordance with the profile of the test surface, thereby 

enabling direct derivation of surface profiles from measurements of the perturbed fringe 

distribution. However, to achieve a reasonable accuracy when these images contain a large 

number of systematic or random errors, the application of different phase shifting algorithms 

(PSA) and even numerical approximations methods to acquire the topography from experimental 

images becomes a tedious task. Consequently, instead of using the numerical and time 

consuming traditional method, wherein each filtering processing deteriorates the quality of the 
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original data, it is essential to design a set of analytical filters. To tackle this problem, it is 

necessary to use a new method for generating phase filters that are optimized for each 

application; in this case, it refers to the use of structured white light to measure the topography in 

semi-fossilized materials. Particularly, the two-frame filter algorithm has many advantages to 

design phase filters for temporal phase shifting (TPS) in order to extract the wave. TPS can be 

used with different types of electromagnetic sources (e.g., X-rays, IR-laser); however, when 

applied in conjunction with a low power electromagnetic source, like visible light (in this case, 

white light), it has an advantage that has been greatly underestimated: given that it is a contrast 

method instead of a radiative one, it is significantly harmless when used to obtain images of the 

surface of biological samples, as opposed to other sources such as X-ray and IR-light that 

irreversibly damage DNA and induce mutations. The two-frame formalism applied in TPS 

solves the problem that involves the calculation and design of a filter for any number of steps, 

tunable to any desired frequency, and it minimizes certain types of errors that influence the 

behavior of phase shifting filters to recover the phase. The principal advantage of the two-frame 

formalism is that it is able to find the accurate and analytic Fourier response equation, by tuning 

the filter according to the requirements of any real TPS experiment setup. The two-frame 

formalism also provides the analytical data expression, and allows us to analyze them based on 

the fact that there is no ideal filter with a finite number of steps due to the different variations of 

the TPS experiments. Hence, errors such as bias and detuning are compensated, fading them 

until their influence on the phase is almost zero, rather than eliminated in most of the cases. 

In this thesis, several eight-frame algorithms for their use in phase shifting profilometry 

and their application for the analysis of semi-fossilized materials are presented. All algorithms 

are obtained from a set of two-frame algorithms and designed to compensate common errors 

such as phase shift detuning and bias errors. The processed images make it possible to obtain the 

distribution of height (topography) of the object, with the advantage that this type of structured 
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light is ideal for retaining the intrinsic biological properties of fossils (this property could be 

especially useful in cases where it is crucial to obtain high quality images from biological 

samples that include sensitive molecules, as is the case with ancient DNA). In addition, because 

the availability of fossil samples is limited (fossilization is a rare phenomenon, thought to 

preserve only 1 to 5% of total biodiversity) and fossils preserve key biological information, it is 

essential to conserve as many morphological features as possible (e.g., teeth and mandibles for 

rodents). This work provides the tools to create a 3D database for the study of morphology of 

semi-fossilized specimens using an optical nondestructive testing technique. The implementation 

of protocols and computational algorithms developed in this study in conjunction with various 

optical methods can be used in studies of systematics, evolution, ecology, genetics and 

geographical distribution for various biological groups. 
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1.1 Introduction 

 

The analysis of interferograms can be categorized in two methods: temporal methods (phase 

shifting) and spatial methods [1]. It is well known that in the temporal phase shifting (TPS) 

techniques, the existing algorithms exhibit considerable measurement inaccuracy unless phase 

shifts are precisely known. Accordingly, many efforts have been made in recent decades to 

establish effective error-compensating phase-extraction algorithms [2,3]. Most of the existing 

phase-shifting algorithms are based on the assumption that the phase-shift applied to each pixel 

of the intensity frame is a known constant value. However, it may be very difficult to achieve 

this in practice, mainly because one of the enduring problems with temporal phase-shifting 

algorithms (PSA) is precisely the phase-shift errors or miscalibration. By using more than three 

frames, it is possible to design algorithms to compensate the deterministic shift errors (such as 

nonlinearities of first, second and third order for the piezoelectric), and others like non-

sinusoidal fringe profiles [1]. These TPS techniques are applied in the design of non-contact 

optical 3D-profiling instruments, which can be often used for the study of surface modifications 

of mammalian fossil bones. The main advantage of optical laser scanning of fossil and semi-

fossil bones is that the laser’s non-contact nature permits the analysis of a small fragile and 

poorly preserved surface [4]. Therefore, the stylus 3D-microprofiling technique has revealed 

several qualities that make it particularly suitable for the study of fossil and semi-fossil bones 

under atmospheric conditions, as they cause no alteration to the surface, to the objects. 

In addition, complex surface features such as broadside inclinations, symmetry and 

micro-striations are accessible for quantitative evaluation, and features hidden by shallow overall 

relief are visually extracted [5]. Considering the importance in different research fields (as 

paleontology and biology) of having a full digital documentation of fossilized bones, for 
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example to compare morphological measurements, it is critical to have a method to obtain 

accurate digital three-dimensional images. Moreover, digital three-dimensional imaging 

becomes crucial for studies that involve the use of ancient deoxyribonucleic acid (aDNA) in 

which samples (semi-fossilized in this case) need to be completely pulverized to extract aDNA. 

Well preserved fossil samples, with minimum handling, are essential in order to obtain high 

quality aDNA. This provided the incentive to design phase filters that satisfy the requirements of 

the optical experimental setup. 

The technique of fringe projection profilometry (FPP) is used for recovering surface 

topography. Nevertheless, the accuracy of this technique is limited by the presence of different 

systematic and random error sources, such as higher harmonics in the intensity signal, phase-

shifter miscalibration, nonlinear response of the photodetectors, nonsinusoidal periodic 

waveforms, random intensity noise, speckle decorrelation, and vibration. All algorithms 

compensate for some kind of error, thus in the experiment we present, we calculated several 

filters with specific behaviors. As the errors cannot be completely eliminated but only minimized 

[1], the common technique to minimize systematic errors is the use of a quadrature filter 

insensitive to such errors [6-8]. There are already several methods to design quadrature filters 

and a large number of algorithms in the literature [6-13]. However, most of them only give a 

particular algorithm designed for a very specific phase step, which are not tuned on the ideal 

phase step. Hence, in this study we introduce several eight-frame filters with phase steps of / 4  

that have not been reported. These algorithms are designed to compensate some systematic 

errors such as miscalibration and bias variation, which implies more accuracy and better signal 

recovery for eight step systems. 

Today there are many non-destructive optical systems implemented in many areas of 

science and technology [14, 18]. Until now however, no efforts have been made to implement 

optical processing algorithms for a particular purpose and under very strict conditions, such as 
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the molecular study of semi-fossilized samples. Under this premise, this investigation explores 

some of the newest techniques to develop phase shifting algorithms for non-contact techniques 

and satisfies this need in the field of metrology. 

The present work offers a new set of eight-frame algorithms for phase extraction, which 

are obtained from a set of two-frame filters and are designed to achieve the best signal-to-noise 

ratio (SNR), capable of minimizing, and even compensate for most of the systematic errors as 

quadrature and detuning errors. The algorithms are tested and their efficiency corroborated by 

using computer simulated fringe patterns and a simple fringe projection profilometry system for 

the analysis of semi-fossilized samples. 

 

 

1.2 Overview 

 

This section describes the distribution of topics addressed in each of the chapters of the thesis, 

and provides a brief description of the content of each chapter. 

Chapter 2 provides the background related to the study of FPP; a mention is made of the 

variations among phase shifting interferometry, temporal phase shifting and fringe projection 

profilometry. It presents the optical profilometry theory and the types of schemes commonly 

used, and applications are mentioned that could be obtained with this scheme. In addition it 

should be mentioned that this part of the thesis also provides the relevant information on the 

development of different systems to compensate for several kinds of errors. Finally, this chapter 

describes some of the existing methods and techniques for phase shifting algorithms. 

In chapter 3, by use of the two-frame formalism, a new set of analytical filters is 

calculated and a study performs the numerical analysis and evaluates the basic error 
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compensation of the filters. Furthermore, by mathematical analysis of the proposed algorithms, 

an evaluation and performance simulation for each filter response is performed and an optimal 

filter for FPP is determined. At the end of the chapter, a more specific algorithm for semi-

fossilized materials is proposed for TPS systems. 

The chapter 4 focuses on the application of the new algorithms proposed for processing 

images in fringe projection profilometry systems. It shows the advantages obtained by this novel 

scheme and presents an analysis of the results obtained for semi-fossilized samples. This part 

presents both experimental and numerical results and a FPP system in the laboratory to acquire 

images and corroborate the results produced by the simulations. Then, to conclude the chapter, 

and after developing simulations of the detuning and bias error corrections in 2D and 3D, 

experimental and numerical results are presented and discussed. 

Finally, chapter 5 presents the final conclusions of this part of the work. The results 

obtained in this work are sorted and the possible applications that can be developed using the 

proposed study scheme and its future perspectives are mentioned. 
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2.1 Fringe projection profilometry, a non-contact optical technique 

 

Technology for 3D information recovery has been subject to research considerably in recent 

years proposing many different systems for this purpose. A common classification for these 

systems is based on how the information of an object is acquired, dividing them into contact and 

non-contact devices. Contact devices typically are expensive, slow and require calibration each 

time a measurement is performed. The non-invasive measurement techniques maintain 

mechanical characteristics of the measured object, which has many advantages of analysis, since 

it can make an unlimited number of measurements on the same object. Regarding non-contact 

techniques, the fringe projection technique stands out from other optical techniques due to its 

ease of implementation, non-invasive nature and the accuracy that can be obtained. This 

technique is based in the fact that by analyzing the pattern reflected from a surface under study, 

we can obtain the heights map of the surface to subsequently perform mathematical analysis 

over this map and get the topography. The fringe projection technique handles different kinds of 

methods to analyze the data and get the phase map. Based on the particular fringe analysis 

method used in the measurement, fringe projection techniques are classified as phase shifting 

profilometry (PSP), Fourier transform profilometry (FTP), wavelet transform profilometry 

(WTP), spatial filtering profilometry (SFP) etc. [13]. The correct fringe analysis is essential, 

since it significantly influences the overall performance of the fringe projection profilometry 

system in terms of number of images required, resolution and accuracy of measurement, 

computational requirements etc. 
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2.2 Phase measurement 

 

Several fringe analysis methods have been developed to process the images from a fringe 

projection system and thus obtain the phase map. In general, they can be categorized in spatial 

and temporal ones. Their effective and successful application requires the presence of a 

sufficiently high frequency spatial carrier in spatial methods, and the acquisition of a number of 

images by projecting phase-shifted fringe patterns for the temporal methods. Some of the fringe 

analysis methods introduced in the context of fringe projection profilometry are Fourier 

transform method and numerous extensions of it [14-21], interpolated Fourier transform 

[22],regressive Fourier transform [23], windowed Fourier transform [24], multi-scale windowed 

Fourier transform [25, 26], one-dimensional and two-dimensional Wavelet transforms [27, 28], 

analysis using inverse cosine function [29], phase locked loop [30-32], spatial phase detection 

[33, 34], and phase-shifting methods [35-37]. For the purposes of this thesis, the Fourier 

transform and the phase shifting methods are explained below. 

 

 

2.3 Fourier Transform method 

 

The Fourier transform method (FTM) is widely used to obtain phase because the the information 

can be achieved from a single image. This method was reported by Takeda [14] and is based on 

transforming a fringe pattern to the Fourier domain (frequency domain) for the analyses [38-40]. 

Considering that a fringe pattern can be written as 

       0, , , cos 2 ,g x y a x y b x y f x x y         (2.1) 
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where  ,a x y  is the background illumination,  ,b x y  is the modulation and  ,x y  represents 

the desired phase. For the Fourier transform, we rewrite Eq. (2.1) as follows: 

       0 02 2
, , , * ,

i f x i f x
g x y a x y c x y e c x y e

 
       (2.2) 

where 

     ,1
, ,

2

i x y
c x y b x y e


      (2.3) 

and c* denotes the complex conjugated of c. Then, the Fourier transform of Eq. (2.2) with 

respect to x gives the Fourier spectra  ,G f y  as 

       0 0, , , * ,x x xG f y A f y C f f y C f f y        (2.4) 

The representation of this Fourier spectrum is shown in Fig. (2.1(a)): 

 

a)                                                                           b) 

Fig. 2.1: a) Spectra of the fringe pattern. b) Selected spectra transferred to the origin. 

 

Using a filter any of the two spectra can be isolated and translated by 0f  towards the origin to 

remove the carrier and obtain  ,xC f y  (Fig. 2.1(b)). Then the inverse Fourier transform of 

 ,xC f y with respect to x is computed and as a result the complex function  ,c x y  is obtained. 

     
1

log , log , ,
2

c x y b x y i x y
 

     
 

     (2.5) 
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The phase  ,x y  is obtained by extracting the imaginary part which is separated of  ,b x y  in 

the real part. Finally, the phase is obtained by: 

 
 

 
1

Im ,
, tan

Re ,

c x y
x y

c x y
 

    
  

    

      (2.6) 

where Re and Im represents the real and imaginary part of  ,c x y . 

 

 

2.4 Phase shifting profilometry 

 

The phase shifting profilometry is one of the most commonly used non-contact methods for 

retrieving the three-dimensional (3D) shape information of objects. It offers the advantages of 

non-contact operation, full-field acquisition, high resolution, and fast data processing. For these 

reasons, the PSP, specifically as a fringe projection profilometry system (FPP), has become one 

of the most important 3D shape measurement methods [41]. In a FPP system, a series of straight 

vertically or horizontally oriented and equally spaced fringes are generated by computer and 

projected onto the surface of an object using a digital video projector (DVP). On the meanwhile, 

a CCD camera captures the intensity from the surface of the object for further processing. A 

typical FPP system is shown in Fig. 2.2. 
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Fig. 2.2: A schematic diagram of a typical FPP system (L is the distance from the object 

to the camera and D is the distance between the CCD and the DVP). 

 

By using the phase shifting method (PS), n-ths fringe patterns  ,nI x y  (intensity patterns) are 

captured by the camera and which are commonly described as: 

         cos, ,  ,  2 / ,  nI x y a x y b x y p x x y n          (2.7) 

where n is the number of the phase-shifting steps n= 1,…, N (total number of images acquired); 

(x, y) denotes the coordinates of an arbitrary point in object; p is the period of the equally spaced 

fringes on the reference plane; φ (x, y) is the phase map related to the object profile also called 

wrapped phase and, θ is the assigned phase shift value which is usually equal to 2π/N [42]. The 

numerical process to recover the wrapped phase from the set of captured images is called phase 

shifting algorithms (PSA). The correct design of this algorithm according to the specific setup 

determines the complexity and resolution of our results that, in few words, uses the intensity 

values obtained by shifting the fringes on the object to calculate the phase [43]. Subsequently, to 

make this phase map continuous, an unwrapping procedure is needed to remove the artificial 

discontinuities added by the FPP technique. The unwrapping techniques start from the fact that it 

is possible to estimate the neighboring pixel differences of the unwrapped phase when these 
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differences are less than π by adding an integral factor of 2π. Then, using some mathematical 

methods is possible to obtain the data cloud points proportional to the physical sample analyzed 

[44]. Then, temporal carrier is calculated and subtracted from the phase map. Finally, the 

topography or profile is calculated by: 

     0 0,   ,  / 2  ,  h x y I x y f d x y          (2.8) 

where f0 is the distance between the CCD camera and the reference plane, and d is the distance 

between the camera and the projector (Fig. 2.2).  

Due to the intensity response of a FPP system, including the influence of the DVP [45], the 

object surface reflectivity, environment brightness, the CCD camera, etc., the fringe pattern will 

deviate from its ideal form. This method is not sensitive to the background and reflection factor 

of surfaces; nevertheless, one of the main problems with the existing algorithms for PSP is that 

retrieving the information of the fringes is considerable imprecisely unless the phase steps are 

well known.  

Almost all the existing phase-shifting algorithms are based on the assumption that the 

phase-shift at all pixels of the intensity frame is equal and known. However, it may be very 

difficult to achieve this case in practice. Some phase shift miscalibrations could be avoided due 

digitally generated fringes. The accuracy of the phase measurement of a fringe pattern depends 

on systematic and random error sources located in the setup elements (hardware), since the 

variation of fringe visibility along the optical path is mathematically equivalent to the variation 

of phase-shift errors [46] as well as in the algorithms to calculate the phase (software). Several 

algorithms have been developed to calculate the phase of a fringe pattern. Some of this phase 

shifts algorithms (PSA) use intensity values that one obtains by shifting the phase of the 

intensity pattern to calculate the phase [43]. The nonlinear characteristic of a FPP system 

inevitably introduces and additional phase error that can be compensated by using a large 

number of phase shifts fringe patterns [47]. However, phase shifting usually requires a minimum 
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of two phase-shifted images for extraction of phase information, and the phase retrieval from 

multi-frame fringe patterns is time and space consuming and will reduce the speed of shape 

measurement [48]. 

 

 

2.5 Description of some phase shifting algorithms 

 

Many authors have developed a variety of methods for PSA [49, 50], such as averaging 

with existing algorithms and solving for the roots of a characteristic polynomial [51], data-

sampling windows, Fourier analysis, least-squares, etc. The use of the TPS is based on the 

addition of a careful phase change that is projected to the target surface. It also involves 

analyzing data from each pixel independently of all other pixels in the frame. This technique is 

based on the work of Carré as shown in Eq. (2.9). Carré algorithm is a variation of the four-step 

algorithm, but instead of requiring that the data be collected at / 4  increments, the reference 

phase shift between measurements is treated as an unknown and solved for in the analysis [50]; 

in other words, it considers that the problem of phase-shifter miscalibration is dealing with 

treating the phase shift as one more unknown variable. 

 
                

       

0 3 1 2 3 1 2 0 3
tan

1 2 0 3

I I I I I I I I

I I I I


             
   
  

  (2.9) 

Although this algorithm to recover the phase is useful for phase shifts that vary over a 

considerable range, it is susceptible to high-order harmonics in the signal [52]. More than three 

frames measurements give extra degrees of freedom to design phase algorithms that are 

insensitive to these real-world effects [51]. Like binary structured patterns, more fringe images 

can be used to achieve higher accuracy, but this slows down the measurement speed [53]. This 



 

15 

 

could be a problem when we want to reach real-time 3D imaging and a small number of fringe 

images (fringe patterns) are typically used, but in this work, we pretend to achieve maximum 

precision and accuracy by compensating the most common errors. Another technique consists in 

the (N+1)-bucket method, which is based on the fact that we need a specific value of the shift 

[54], as in the conventional N-bucket algorithm [55] given by  

 

 
 

 

1

0

1

0

2
sin

tan
2

cos

N

n

N

n

n
I n

N

n
I n

N














  
  
  
  
    




    (2.10) 

where  I n  is the recorded intensity for a phase shift of n  ( 2 N   ); N is the number of 

fringe patterns recorded and   is the desired phase map. These algorithms are widely used 

because they have some advantages as that a large quantity of images could be acquired to 

improve the signal-to-noise ratio and they are insensitive to some phase shift miscalibrations. 

However, these two algorithms are affected widely by the presence of systematic errors, like 

harmonics in the signal, high frequencies environmental perturbations in the fringes, errors based 

on the bias (produced i.e. by the piezoelectric transducer used to achieve the phase shifting), a 

detuning, and optical experimental errors such as the camera and its resolution used in the 

experiment. It is known that linear phase shift miscalibrations and nonlinear sensitivity of the 

piezoelectric device introduce errors in phase measurement. This study reveals that, out of the 

various algorithms proposed for compensating such errors, most algorithms are suitable for only 

one of these two error sources. An eight-frame algorithm widely used is [56], 

  2 4 6 8

1 3 5 7

I
tan

I I I

I I I I


   
  

   
    (2.11) 

Finally, the (N+3)-bucket algorithm reported by Hibino et al. is expressed by [46]  
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1 2 3 4 5 6 7 8

2 4 5 7

2 6 3 3 6 2
tan

3 3

I I I I I I I I

I I I I


       
  

    

  (2.12) 

Each of these filters has unique characteristics that compensate for certain types of errors in the 

optical techniques. Referring to such errors, there is a wide range of sources of error that affect 

the accuracy of phase measurements which can be divided into three categories: a) Systematic 

error, including errors in the phase shifting process, nonlinearities in the photodetectors, 

amplitude and frequency stability of the source, etc.; b) Random errors, including vibrations of 

the optical system, turbulence in the air, etc.; c) Aberrations and defects in the optical 

arrangement. Then, an effective algorithm developed for that purpose is needed. In this work, a 

set of four practical eight-frame algorithms for fringe projection profilometry were designed to 

prevent and even compensate several systematic errors including random noise for applications 

that include rough and semi fossilized materials. A more detailed explanation of some of the 

principal errors involved in optical measurements is shown below. 

 

 

2.6 Phase unwrapping 

 

The recovered/estimated phase from the deformed fringe pattern by using most of the 

aforementioned fringe analysis methods is mathematically limited to the interval (  , ) 

corresponding to the principal value of arctan function. In general the true phase may range over 

an interval greater 2  in which case the recovered phase contains artificial discontinuities. The 

process of determining the unknown integral multiple of 2  to be added to each pixel of the 

wrapped phase map to make it continuous by removing the artificial 2  discontinuities added is 

referred to as phase unwrapping. Normal phase unwrapping is carried out by comparing the 
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neighboring pixels and adding or subtracting 2  to bring the relative phase between the two 

pixels into the range of –  to + . This process can be seen in Fig. 2.3.  

 

  

                             (a)                                          (b)                                                (c) 

Fig. 2.3: Examples of: (a) wrapped phase, (b) unwrapped phase, and (c) phase carrier 

compensation. 

 

The unwrapped phase is obtained by using techniques involving an unwrapping algorithm, as the 

flood-guide technique [44]. The unwrapping of the phase is a complex process and techniques 

start from the fact that it is possible to estimate the neighboring pixel differences of the 

unwrapped phase when these differences are less than π [57] by adding an integral multiple of 

2π. Using some mathematical methods [44] is possible to obtain the cloud data points 

proportional to the physical sample analyzed. Then, temporal carrier is calculated and subtracted 

[58] to finally obtain the reconstructed topography of the fossil in the form of a cloud of points. 

 

 

2.7 Systematic errors in phase shifting 

 

Phase shifting profilometry (PSP) technique is widely used as a 3D shape measurement 

technique due to its robustness and accuracy. However, PSP requires multiple fringe pattern 
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images to be projected onto an object and a reference plane to calculate the phase value, and also 

the object must maintain motionless when the measurement is taken. If the object moves during 

the measurement, significant errors will be introduced when calculating the phase value. A 

systematic error associated with the fact that a measured value contains an offset is called bias 

error. This kind of error is very common in optics measurements. 

 

2.7.1 High order harmonics 

In practice, signals acquired from an optical system not always are pure signals, as a sine wave 

recovered from an interferogram. Higher harmonics can be produced for many reasons as non-

linearities in the photodetector or the saturation in the pixels in certain environments [59]. 

Consider the case of sampling the function  I t , if the frequency is greater that the Nyquist 

frequency / 2tk N , the harmonics will be aliased on the range  2, 2N N . For a harmonic 

component with frequency of q times the fundamental, according to the Nyquist theorem, the 

spectra peaks at tk jN q  . 

 

Fig. 2.4: (a) Fourier transform of a signal. (b) Harmonics at a frequency q times the 

fundamental. 
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2.7.2 Phase shifter miscalibrations 

A single movement of the sample in an optical system while a series of interferograms are being 

acquired results in phase shifts that derivate from the nominal value, and this is equivalent to a 

miscalibration of the phase shifter. This implies that the interferograms recorded have a carrier 

frequency different to the original one by an error  [59,60]. When the signal frequency and the 

reference frequency are not equal, the system contains a phase shifting detuning error. 

 

2.7.3 Vibration 

Vibrations and other environmental disturbances (such as air currents) can cause significant 

phase measurements errors, such as the detuning error. The use of high speed cameras or pulsed 

lasers which are capable to take an image in a short lap of time will often allow data to be 

obtained from non-optimal or time-dependent conditions. [59]. 

 

2.7.4 Random errors 

Intensity noise due to variation in the light source or electronic noise in the camera of an optical 

system will result in random errors in the measures phase. Surrel analyzed some phase-shifting 

algorithms and showed in the presence of random intensity errors,   has an average standard 

derivation   given by  

2

2 1

2 2

2

MMI






      (2.13) 

where 1 is the standard derivation intensity and   is a numerical factor. For most algorithms 

until now,   ranged from 0.8 to 1, indicating that there is a little influence of the selected 

algorithm on  . 
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Proposal of new phase shifting algorithms 
 

 



 

25 

 

3.1 Two-frame algorithm to design quadrature filters 

 

In phase shifting interferometry the ideal intensity  , ,I x y t  for k=1, 2, 3… M of each 

interferogram recorded by a CCD detector can be expressed as [5-7, 10-13]: 

        0, , , , cos ,I x y t a x y b x y x y t          (3.1) 

where, x and y denote the pixel position;  ,a x y is the background illumination;  ,b x y  is the 

contrast of interference fringes (amplitude), and  ,x y  represents the phase. Meanwhile, the 

temporal carrier 0  is a linear phase shift among this set of interferograms and it is determined 

by how fast the phase reference wave is changing. 

Assuming an algorithm with order M and tuned onto the left side of the frequency axis in 

Fig. 2.1, the estimated phase of a quadrature filter order M is given by [5-7, 14-19],  
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It should be noticed that  1 2 ...
T

MI I II  is the column vector of frames, and N and D are the 

desired numerator and denominator row vectors. In this case, for a symmetrical filter the 

corresponding temporal impulse response  h t  is given by [16-19]  

     
1 1

M M

k k

k k

h t a t p i b t p D iN   
 

                (3.3) 

where 1i   ,  2 1 / 2p k M    and  is a column vector where each element is 

  pt p   . That is, from the scalar vectors N and D, the Eqs. (3.2) and (3.3) are recovered 

easily. In the previous work it was proved that the Fourier transform of  h t  is the real function 

 H  [17, 18]. For an   step, any quadrature filter satisfies the two conditions:  0 0H  ; 
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  0H   . That is, the filter cuts off both 0  and    frequencies. Therefore, the condition 

for a filter tuned onto the right side and insensitive to the m th  order phase shift detuning error 

is [5-7, 14-17]  

       ' 0, '' 0, ''' 0, ..., 0mH H H H         (3.4) 

Assuming that the Fourier transform of a filter can be factorized in two functions such as 

     1 2H H H   , where  1H  and  2H  are the Fourier transforms of 

 1 1 1h t D iN   and  2 2 2h t D iN   which are an n and m order filters respectively, the 

individual estimated phases 1 and 2 are given by 
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Hence, the desired filter  h t  is obtained from the expression      1 2*h t h t h t , where 

“*”denotes the temporal discrete convolution, and  h t  becomes,  

     1 1 2 2 1 2 1 2 1 2 1 2* * * * *h t D iN D iN D D N N i N D D N                   (3.6) 

and this expression corresponds with the estimated phase   and given by  
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that is, the convolution can be represented as 

 
 

1 2 1 21 2
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   (3.8) 

In other words, as mentioned before, a new  1n m   frame filter from two individual filters is 

obtained. Likewise, the design of a tunable quadrature filter is seen as an algebraic problem 

without the use of Fourier formalisms. The convolution properties allow this case to be extended 

for three or more filters. The design of a quadrature filter order M implies that only M-1 
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parameters are free, two of which are the quadrature conditions and the other M-3 [8] are used to 

compensate some of the errors described in chapter 2. 

 

 

3.2 Family of symmetrical eight-frame filters 

 

Offset errors of different experiment requires different filters, for example, in the case of 

eight steps, a problem that is needed to meet and after the experiment and analyze different 

filters was completed in an ideal filter for this case. However, the number of filters in the 

literature very is extensive and they are limited in the way, not tunable and not suited to all 

experiments. Then, a filter that is tunable and can be used under the experimental conditions to 

be evaluated is preferred. The error equations and how to calculate compensated filters already 

have been given [14-17]. Then, an analytic expression is obtained through the convolution of a 

set of two-frame algorithms. From [20] if Fourier response is real, two-frame filter formalism 

can be used. Consequently, to design a family of eight frame phase shift algorithm with 

symmetric coefficients considering the estimated phase of a quadrature filter of order M is given 

by [8, 20] 
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It should be noticed the vector notation where,  
1 2[ ]... T

MI I II  is the column vector of 

frames,   is the phase with the desired shape information, and N, D are the desired numerator 

and denominator row vectors with the coefficients of the filter to be calculated. When the 
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Fourier response of the filters becomes real for 0T   give us the ratio N/D corresponding to the 

filter algorithm with is given by 
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where   denotes a convolution operator introduced in [8, 20]. Eight-frame filters have seven 

free parameters available to design a mathematical expression that fits systematic errors and 

adequately compensate them. Therefore, for the general case of an eight frame filter M=8, and 

the ratio N/D becomes, 
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     (3.11) 

To expand the last expression, the first step is to choose a set of arbitrary steps 

  { 1 2 3 7, , ...    } (cuts-offs). For the desired response, an eight-frame algorithm is given by 

the following set of the cut-off frequencies with seven free parameters to choose. An important 

consideration is to choose only two tunable cut-off frequencies a , b and the symmetry of the 

steps, so that   { 0, / 2, , , , ,a a b b     } 
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Finally, the expression of the desired phase becomes 

  1 1 2 2 3 3 8 8
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   (3.13) 

where the coefficients of the numerator and the denominator above become (with two arbitrary 

tunable cut-off frequencies) 

1 1a         (3.14) 

   2 2sin 2sin 1a a b         (3.15) 

       3 2sin 4sin sin 2sin 3a a a b b         (3.16) 
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       4 4sin 4sin sin 4sin 3a a a b b          (3.17) 

 where 1 8 1 8a a b b    , 2 7 2 7a a b b    , 3 6 3 6a a b b     and 4 5 4 5a a b b      . Then, from 

[8] the corresponding Fourier response is 
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7 2

2 sin sin sin sin sin cos cos
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 (3.19) 

However, in practice, we tuned in only one cut-off frequency. Then, from Eq. (3.13), we have 

the particular case b a , and the filter becomes more robustness to the detuning error, 

1 1a        (3.20) 

 2 4sin 1a a        (3.21) 

   3 2cos 2 4sin 5a a a       (3.22) 

   4 2cos 2 8sin 5a a a        (3.23) 

where 1 8 1 8a a b b    , 2 7 2 7a a b b    , 3 6 3 6a a b b     and 4 5 4 5a a b b      ; then the 

Fourier behavior becomes 

    2 232 2 sin sin cos sin cos
2 2 2 2

a a
H

   
 

          
         

        
  (3.24) 

It should be noticed that each filter corresponds to a symmetrical eight-frame algorithm, and 

each one of these filters contains specific characteristics that compensate for several kinds of 

errors presented when recovering the wrapped phase. Therefore, a family of new filters for some 

representative error cases is generated. These cases are shown in Table 1. It should be noticed 

that each filter corresponds to a symmetrical eight-frame algorithm, and its specific 

characteristics involve the compensation of several kinds of errors that can be corrected by 

recovering the wrapped phase. 
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Table 3.1: Family of tunable eight-frame filters for TPS. 

 a b 

N 

D 

Plot of the 

zeros of the 

characteristic 

polynomials 

1 0  0  
 
 

1 1 3 3 3 3 1 1

1 1 3 3 3 3 1 1

   

   
 

 

2 / 6  / 6  
 
 

1 3 6 8 8 6 3 1

1 3 6 8 8 6 3 1

   

   
 

 

3 / 3  / 3  
1 1 2 3 2 3 6 4 3 6 4 3 6 2 3 6 1 2 3 1

1 1 2 3 2 3 6 4 3 6 4 3 6 2 3 6 1 2 3 1

          
 

          
 

 

 

4 / 2  / 2  
 
 

1 5 11 15 15 11 5 1

1 5 11 15 15 11 5 1

   

   
 

 

5 / 6  / 4  
1, 2 2, 4 2 2, 5 3 2, 5 3 2, 4 2 2, 2 2, 1

1, 2 2, 4 2 2, 5 3 2, 5 3 2, 4 2 2, 2 2, 1

          
 

          
 

 

 

6 / 2  / 4  
1 3 2 3 2 5 4 2 7 4 2 7 3 2 5 3 2 1

1 3 2 3 2 5 4 2 7 4 2 7 3 2 5 3 2 1

          
 

          
 

 

 

7 / 2  / 3  
1 3 3 3 3 5 4 3 7 4 3 7 3 3 5 3 3 1

1 3 3 3 3 5 4 3 7 4 3 7 3 3 5 3 3 1

          
 

          
 

 

 

8 / 2  / 6  
 
 

1 4 8 11 11 8 4 1

1 4 8 11 11 8 4 1

   

   
 

 

9 / 6  / 3  
1, 2 3, 4 2 3, 5 3 3, 5 3 3, 4 2 3 2 3, 1

1 2 3, 4 2 3, 5 3 3, 5 3 3, 4 2 3, 2 3, 1

          
 

          
 

 

 

10 0  / 2  
 
 

1 3 5 7 7 5 3 1

1 3 5 7 7 5 3 1

   

   
 

 
 

In Table 1, the cut-off frequencies of the filters that involve the use of Eq. (3.19) are shown in 

columns a  and b . The mathematical representation of the filter coefficients  ,N D  and its 

corresponding characteristic diagram according [5] are also shown. To show the robustness of 

the proposed family of tunable eight-frame filters, in this work we have evaluated several error 

conditions in order to quantize the existing error. 
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In optimal conditions, if the system is perfectly tuned at the frequency 0 , the images or 

frames recovered from the gathering process are identical to the model above. That is, for the 

ideal frequency of the filter 0  , the estimated phase becomes   . However, in a general 

case there is a small error   , then 0    and the estimated phase give us      

where, by definition,   is the phase shift detuning error. In other words, the detuning error is 

the difference between the ideal phase    and the estimated phase   and it is quantified 

as      . 

Although this error is generally evaluated numerically, in [18] the exact detuning error 

was obtained from the expression 
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   (3.25) 

That is, from the known Fourier transform of the filter, we can estimate this kind of 

miscalibration error. Therefore, for the considerations  tan     and  sin 2 1  , the 

maximum value of this small error becomes, 
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    (3.26) 

Using the considerations 0 / 2   and 0     into Eq. (3.19) and after some algebra, the 

detuning expression is given by 
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  (3.27) 

By using the last equation, the expressions describing the detuning function of each one of the 

novel filters in Table 1 were generated. This was achieved by evaluating each of the cut-off 

frequencies a  and b . To illustrate some examples, for the particular case b a (examples 1, 2, 

3 and 4 described in Table 1) the detuning error reduces as 
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So for the particular cut-off frequency 2a b    from Table 1, we obtain 
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 (3.29) 

Therefore, this filter is exceptionally good to compensate the detuning errors with a phase step 

0 2    

In the same way, from Eq. (3.27) the detuning error for the filter No. 10 in Table 1 becomes, 
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 (3.30) 

The filter above exhibits a linear insensitivity to the bias error because it has a double root at 

zero (  0 0H   ) [19]. Thus, this filter is exceptionally good since it corrects bias and detuning 

errors simultaneously. For the particular case / 3a b   (example 3 in Table 1)  

  
   

   

 

 

22
cos sin / 3 2cos 3

tan tan
2 cos sin / 3 2 2cos 3

   


  

   
       

       

  (3.31) 

This is a filter with a flat bandwidth response and a maximum error of the phase on the order of 

4x10-4 between a frequency range of 3  to 2 3  (60° and 120°), as shown in Fig. 3.1. Finally, 

it should be noticed that for the particular case 0a b  (example 1 showed in Table 1)  

   
   

   

cos sin 0
tan tan

2 cos sin 0 2

 




 
     

  
   (3.32) 

This is the well-known behavior of the detuning error of a three-step filter and it is depicted in 

Fig. 3.1. This explains why the traditional three and some four-step filters are very sensitive to 

the detuning error, and the experiments for using them require very little vibration and a small 

amount of miscalibration errors. Hence the importance of this type of eight-step filters, which 
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despite requiring many more steps than conventional ones, need not be so perfect in order to 

simultaneously correct various types of errors. This means that an experiment can be much 

simpler and cheaper; for example, with the use of a simple FPP arrangement, using a 

conventional CCD camera, a common multimedia projector and an ambient illumination of 

fluorescent light, we achieved accuracies of the order of 610 m, by measuring the topography of 

samples of small size [21]. To depict the behaviors of the detuning errors of the filters obtained 

in Table 1, we plotted the response of the detuning in two figures, divided in filters with a 

broadband and the filters with high compensation for the phase shifting detuning error. 

 

 

Fig. 3.1: Detuning of the filters present in Table 1. (a) Mostly broadband filters. (b) Best 

compensate the detuning error. 

 

The filter 3 of Fig. 1(a) is the most balanced because it is a broadband filter and it corrects the 

bias and detuning errors. The filter corresponding to / 2a b    from Table 1 is the most 

balanced to minimize the detuning error of most of the cases with considerable error of this type. 

The magnitude of the detuning error (  ) is widely used to evaluate the robustness of the 

detuning error of the TPS algorithms and generally it is evaluated numerically. Using the same 

data of Fig. 3, we can generalize the detuning responses in phase filters as shown in Fig 3.2. 
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Whereas, we were able to calculate exact analytical expression, a graphical representation of the 

detuning error is shown in Fig. 3.1 

 

 

Fig. 3.2: Plot of the phase shift detuning error. 

 

By applying the proposed method, we obtain several results. First, in Fig. 3.1, blue-solid line is 

the / 2  response that best satisfies the requirements of the experiment. Depicted green-dashed 

line is a symmetric response, cancels / 2 , a  and b  frequencies and moreover, it is a wide 

bandwidth filter. Finally, depicted red (dash-dot) line is the quadratic response for the phase shift 

detuning error. 

 

The robustness of the proposed family of tunable eight-frame filters is shown in Fig 3.3, 

were the absolute normalized response of the filters is simulated in several profiles in order to 

quantize the existing error. In Fig. 3.2 are shown the simulated responses of the filters obtained 

with the two-frame filter formalism. The detuning error of the differences among most of the 

reconstructed phases is of the order of 0.01%.  
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Fig. 3.3: Numerical simulation of the response (normalized) of the proposed filters. 

 

Then, by simulating a 3D profile, we vary the amount of random detuning and bias error on each 

of the eight temporal phases simulated. Some selected reconstructed functions are shown in Fig. 

3.4. 

 

 

Fig. 3.4: Function simulated with special cases of the filters applying random noise of 

20% in bias and detuning errors. 
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The set of eight-frame filters are exceptionally good to recover the wrapped phase when 

miscalibration errors are present. Ideal function [Fig. 3.4(a)] is depicted to compare results. Fig 

3.4(b) shows a least-squares filter, meanwhile in Figs. 3.4(c) and 3.4(d) the responses of filters 2 

and 10 proposed in Table 3.1 are depicted, both attain a satisfactory recovery and without 

distortion. (To show the wideband response we choose the filter No. 2 tuned at / 6 ). 

 

 

3.3 Response of the proposed filters 

 

In order to evaluate the robustness of the proposed filters, we used a profile simulation to 

quantify the error of those filters and compared such results. Fig. 3.5 shows the simulated 

responses of the eight-frame filters obtained with the two-frame formalism with an added 

random noise (different at each point of the plots) of 15% of the original signal.  

 

 

Fig. 3.5: Eight numerical phases simulated for the response of the proposed set of filters 

showed in Table 1 with random additive noise. Steps are: (a) π/4, (b) π/2, (c) 3π/4, (d) π, 

(e) 5π/4, (f) 3π/2, (g) 7π/4, and (h) 2π. 
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The estimated phase error of the differences among most of the reconstructed phases of Fig. 3.5 

is of the order of 0.02%. However, by simulating a 3D profile, we observed the response of the 

filters to a surface function. In this case, we use the function “peaks” of the MATLAB software 

and randomly varied the amount of detuning at each pixel of each of the eight temporal phases 

simulated; then we obtained the phase with the use of the designed eight-frame filters and finally 

we retrieved the surface. Selected reconstructed functions (normalized) of the algorithms of 

Table 1 are shown in Fig. 3.6. 

 

 

Fig. 3.6: Functions simulated for some special cases of the filters applying 20% of 

random additive noise. 

 

The set of eight-frame filters is exceptionally good to recover the wrapped phase when 

miscalibration errors are present. The ideal function (Fig. 3.6(a)) is depicted to compare the 

results. Fig. 3.6(b) shows a least-square filter; meanwhile in figure 3.6(c) the response of filter 

No. 10 in Table 1 is depicted to show the wideband response of the filter. From figure 3.6, we 

can observe that filter No. 10 attains a satisfactory recovery of the shape without distortion. The 

importance and usefulness of these eight-frames filters is that with these analytical expressions, 

we can compensate bias and detuning errors in first, second, and even third order (by selecting 

the appropriate cut-off frequencies). Moreover, this formalism makes it possible to obtain the 

exact expression of the detuning at which the filter can be designed, based on the desired 
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detuning. Similarly, it occurs with the bias error. The filters are versatile and they correct a large 

amount of experimental errors. Finally, due to the fact that the conditions under the experimental 

data taken are different for each experiment, each type of error is compensated by a different 

filter. 

In summary, this is a completely novel family of symmetrical tunable eight-frame TPS 

filters for use in phase-shifting interferometry (PSI) or in a PSP system. These filters were 

obtained by the two-frame algorithm. Particular cases are shown in Table 1. The Fourier and 

detuning responses for some particular cases are depicted as proof of the tunable wideband 

response. That is, the filters are robust against the most common miscalibration errors such as 

phase shifting detuning and bias. Finally, some cases of simulated errors showed that the family 

of filters proposed in this work is immune to miscalibration random errors for about 20% of the 

real value simulated, varying only 0.001% of the original signal under study. 

 

 

3.4 Proposal of eight-frame phase shifting algorithms for semi-fossilized 

materials 

 

Although the literature shows several TPS algorithms to recover the wrapped phase with eight-

frames, the amount of eight-frame filters is limited to one very specific carrier frequency. While 

the Carré algorithm has been proved as the only self-tunable filter [22], and due to the fact that it 

fails when there is more than one cut-off frequency, for the specific step / 4 , only the least-

square estimation is available owing to its tolerance to harmonics. The other eight-frame 

algorithm approaches are tuned in other steps or cut-off frequencies ( / 2 , / 3 , etc.). 

Therefore, a filter insensitive to linear bias, to detuning, and tuned at the desired cut-off 
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frequencies is very useful. To design this filter, a novel solution that consists of an eight-step 

filter capable of tuning on two or more arbitrary frequencies and that can be designed in a simple 

manner is presented in this work. This filter has up to seven parameters, one of them necessarily 

cuts off the fundamental frequency and another cuts off the DC component, and the five 

remaining parameters can be utilized to select the manner in which we want to achieve immunity 

to quadratic or cubic detuning and bias errors, the linearity and other types of errors as well 

[5,19]. Additionally, the expression of the maximum detuning for an eight-frame filter is 

obtained (Eq. (3.26)) in an analytical and accurate manner, which allows us to design and 

carefully select the detuning error in which the filter will be immune. 

By modeling the fringes with the equation shown in Eq. (3.5), the PSP problem is 

usually reduced to four steps: 

I. M images are captured with several phase shifting among them. 

II. To choose or design a specific M-frames phase shifting algorithm (PSA) to process the 

set of M images to obtain the wrapped phase. 

III. An unwrapping algorithm to recover the desired phase is designed. 

IV. A texture is applied to the obtained phase to exhibit the desired target. 

 

In the first step, a set of eight fringe frames (intensity patterns) are acquired from an 

experimental set up. For the second step, several algorithms have been developed to calculate the 

phase of a fringe pattern; however, some of them, so called PSA, simply use intensity values 

obtained by shifting the phase of the intensity pattern to calculate the phase [23]. Thus, 

developing algorithms sufficiently robust and immune to most of the common experimental 

errors has been based on the objective of comparing most of the main algorithms [24]. On the 

other hand, many algorithms have not been specifically used for experiments using real data. 

The spatial non uniformity of the phase shift is also an important problem in applying phase-
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shifting techniques in FPP systems, because of the variation of fringe visibility along the optical 

path. This is mathematically equivalent to the variation of phase-shift errors (depending on the 

position), problem that is out of the scope of this work [25]. The main goal of this thesis is to 

calculate several algorithms to recover efficiently the profile and with the quality requirements 

needed for small targets of biological material. In the same way, these filters must exhibit the 

adequate properties to compensate for some of the common errors present in practical 

applications. 

It should be highlighted that an eight-frame algorithm corresponds to a filter with seven 

independent parameters to recover the desired phase and to compensate for some errors. Then, at 

least two of those parameters are necessary to eliminate the D.C. component and the 

fundamental frequency. Two additional conditions are used to compensate the linear bias 

variation and the linear phase shift detuning error [8]. The remaining three conditions are used to 

compensate for other errors generated by other effects, like a non-linearity response, and to 

obtain a better SNR. After testing well-known filters of three, four, five, six, seven and more 

steps, we concluded that by using seven or more frames the resolution obtained was in the 

parameters required for this type of target. The response did not improve substantially when 

using nine or more frames. However, when analyzing the histogram of the estimated frequency 

of tuning, the Hibino filter had the best response closer to the one expected (due its broadband 

and tuned on 4 ). 

However, this filter was not designed for the conditions of our experiment [26], thus for 

that reason we generated a robust filter range, designed specifically for the needs of our 

experiment: a broadband filter, tuned on 4 , insensible to bias variations and detuning errors, 

(specially linear) and, a good SNR. 

The estimated phase of any quadrature filter with an M-th order is given by Eq. (3.10) 

[5, 6, 8, 20], and again, it should be noted that  
 

1 2
...

T

M
I I II  is the column vector of 
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frames, and N and D are the desired numerator and denominator row vectors. According to 

references 8, 19, and 20, the Fourier transform  H  of this filter is, 

   
1

( 2) sin / 2
M

M

k

k

H   


         (3.33) 

where each 
k  is the cut off frequency or zero of the Fourier impulse response of the filter. In 

other words, the design of a filter becomes a geometrical problem, and it is reduced to choose a 

set of M-1 frequencies that are the necessary conditions to be a specific filter [8, 20]. Therefore, 

from Eq. 3.10, the general case for M=8, the corresponding eight-frame algorithm is, 

  1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
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b I b I b I b I b I b I b I b IN
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I
  (3.34) 

Then, an option to obtain the required ratio N/D with symmetric coefficients is obtained from the 

expression in Eq. (3.11). For M=8 the result is shown in Eq. (3.12). Assuming that the phase step 

is / 4 , it is well known that a filter that eliminates harmonics corresponds to the cut-off 

frequencies 0k  , / 4 , / 2 , 3 / 4 ,  , 5 / 4  and 3 / 2  [8, 19, 20, 27]. That is, to be a 

quadrature filter, the two necessary cut off frequencies are zero and the phase step / 4  [19]. 

However, in a least-squares procedure the harmonics are also eliminated. Therefore, from Eq. 

(3.15) and after solving some algebra operations the obtained eight-frame algorithm is, 

 
1, 1 2, 1 2, 1, 1, 1 2, 1 2, 1

tan
1 2, 1, 1, 1 2, 1 2, 1, 1, 1 2
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  (3.35) 

Additionally, in [8, 20], it is demonstrated that, from an individual algorithm an infinite number 

of equivalent phase shifted algorithms can be obtained. However, for the particular case, where 

each individual two-frame filter is phase shifted by an angle of 2/kk   , the corresponding 

phase shifted filter r rN D  from Eq. (3.11) becomes, 
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Then, for M=8, the result equivalent to Eq. (3.12) becomes, 
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     (3.37) 

And the equivalent phase shifted filter is, 

 
2, 2, 2, 0, 2, 2, 2, 0

tan
2, 0, 2, 2, 2, 0, 2, 2


   
 


   
 

I

I
  (3.38) 

This case is equivalent to the well-known least-squares filter that can be used for this 

application with certain restrictions, because it is sensible to bias and detuning errors. On the 

other hand, for the analysis of an eight frame series of interferograms we can use auto tuning 

methods like the Carré’s algorithm, or the algorithm with immunity to systematic errors, as the 

Surrel technique based on (N+1) bucket [5, 27] and others [28-30]. However, these filters are not 

based on the analysis inside the physical phenomena involved in the experiment and they do not 

make a tuning in the best step observed with an error estimator of the obtained phase in the 

experimental data. Hence, the need of implementing an algorithm and a phase filter according 

the experimental data. To develop this algorithm, we use the two-frame filter method previously 

reported [8], considering α as the ideal phase step to tune the filter, then a new (n + m-1) frame 

filter is obtained from two individual filters as shown in Eq. (3.33). As mentioned before, the 

design of a tunable filter allows this case to be extended further to an eight-frame filter, which 

allows the selection of the data to be removed. Furthermore, we select polynomial roots 

implying that the filter must suppress frequencies in Fig. 3.7. To assure that the filter eliminates 

harmonics, undesirable frequencies and the systematic errors involved, we first propose a filter 

to deal with harmonics, mainly as in Eq. (3.37). Also, we define a filter that is able to handle an 

optimal SNR and linear detuning errors as 0, / 4 , / 4 , / 2 , 3 / 4 , 3 / 4 ,   (from now 

known as mainly detuning error filter or MDE filter). Applying the same method to design a 

filter that compensates mainly bias errors (MBE filter) associated to the system, we calculate a 
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filter considering cut off frequencies in 0, 0, / 4 , / 2 , 3 / 4 ,  ,  , and finally a filter 

centered in 0, 0, / 4 , / 4 , / 2 , 3 / 4 ,   to compensate detuning and bias errors (DBE 

filter). Graphic representation of these filters with their cut off frequencies is shown in Fig. 3.7 

according to [5]. 

 

 

Fig. 3.7: Plot of the polynomial characteristic of an harmonics suppress filter (a), an 

insensible to linear detuning filter (b), a mainly bias error filter (c) and a detuning + bias 

compensating filter (d). All were obtained with the two-frame filter method. 

 

Then, applying the above procedure for the rest of the filters shown in Fig. 3.7, from Eq. (3.11) 

the filter shown in Fig. 3.7(b) is, 

 
1, 1 2 2, 5 2 2, 5 4 2, 5 4 2, 5 2 2, 1 2 2, 1

tan
1, 1 2 2, 5 2 2, 5 4 2, 5 4 2, 5 2 2, 1 2 2, 1


          
 


          
 

I
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 (3.38) 

And from Eq. (3.37) the equivalent algorithm is, 

 
0, 1 2 2, 0, 4 2 5, 0, 5 2 2, 0, 1

tan
1, 0, 5 2 2, 0, 4 2 5, 0, 1 2 2, 0
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  (3.39) 

In the same manner, the filter shown in Fig. 3.7(c) gives us the expressions, 

 
1, 1 2, 3 2, 3 2 2, 3 2 2, 3 2, 1 2, 1

tan
1, 1 2, 3 2, 3 2 2, 3 2 2, 3 2, 1 2, 1


          
 


          
 

I

I
 (3.40) 
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and the corresponding equivalent algorithm is 

 
0, 1 2, 0, 3 2 2, 0, 3 2, 0, 1

tan
1, 0, 3 2, 0, 3 2 2, 0, 1 2, 0


     
 


     
 

I

I
  (3.41) 

Finally, the last case showed in Fig. 3.7(d) gives us the algorithms, 

 
1, 5 3 2, 3 2 3, 9 6 2, 9 6 2, 3 2 3, 3 2 5, 1

tan
1 2, 1, 6 2 7, 7 5 2, 7 5 2, 6 2 7, 1, 1 2


          
 


          
 

I

I
 (3.42) 

and 

 
1, 2 2 2, 1 2, 6 4 2, 3 2 2, 4 2 2, 3 2, 0

tan
1, 2, 5 3 2, 2 2, 5 4 2, 2 3 2, 1 2, 2


          
 


          
 

I

I
  (3.43) 

Then, from Eq. (3.33), the Fourier response of each filter is easily obtained, and the 

results are depicted normalized in Fig. 3.8. 

 

 

Fig. 3.8: Normalized Fourier response of the four algorithms calculated with two-frame 

algorithm method. 

 



 

45 

 

Notice than the obtained filters above satisfied a wide range of requirements for any experiment. 

That is, considering that the ideal quadrature filter is a step function, the ratio of the area under 

the curve between the right and the left side of the graphic, starting from zero, gives us an idea 

of how the filter works, and why the best approximation for this application is depicted as the 

green line corresponding to a PSA compensating detuning or MDE. Additionally, we can 

observe the response for the phase shift detuning, bias, and harmonics (Fig. 3.9). 

 

 

Fig. 3.9: Normalized response of the filters proposed to detuning error, bias error and 

harmonics. 

 

This graph verifies the design of the filters MBE and DBE, having a double cutoff frequency at 

zero and therefore it is sufficient to compensate the bias error. In the same way, the green trace 

(or MDE filter) in the tuning frequency 4  has a similar response and this makes it insensitive 

to linear detuning error. Furthermore, linearity is given by the symmetry of the function in 2  

and the filter with the lowest area under the curve has better SNR. Since each filter is defined to 

counteract a specific error, we cannot choose one of the algorithms as the best for a given 
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application. Indeed, all proposed filters are good and efficient to compensate for the error by 

which they were designed. The phase shift detuning error is depicted in Fig. 3.10. 

 

 

Fig. 3.10: Phase shift detuning error of the filters in Fig. 3.7. 

 

As expected, when the difference between the ideal and the observed carrier is zero, the phase 

error is zero. Having a carrier variation between -0.2 and 1.6 rad, the estimated phase error is 

less than 0.03 rad. This implies that the filters in Figs. 3.7(b) and 3.7(d) are broadband filters, 

where the best performance is from the filters MDE (Fig. 3.7(b)) and BDE (Fig. 3.7(d)). 

 

 

3.5 Evaluation of the proposed algorithms 

 

Among all the algorithms analyzed, the MBE filter is the one that best meets the requirements of 

an experimental optical set up, by providing a good response to detuning, an acceptable 
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tolerance to harmonics and a real attenuation of systematic errors. The Fourier response of the 

MBE filter and its detuning error are depicted in Fig. 3.11. 

 

 

Fig. 3.11: (a) Normalized Fourier response of the algorithm calculated with the two-

frame method. (b) Phase shift detuning error of the filter. 

 

In order to evaluate the robustness of the proposed filters, we use a simulation of a profile to 

quantify the error of those filters and to compare such results with a single four-frame filter and 

a Hibino filter (such comparisons were made among Surrel [27], Hibino [25] and de Groot [3] 

filters; however, the Hibino filter shows a better curve fitting with the parameters included in 

these simulations). First, we simulate a profile by using the Eq. (3.1). Random noise is then 

added as detuning error in the form of     and bias error as b b b   to the fringe 

pattern. Increasing the detuning error until a 10% and the bias error until a 20%, we started to 

see the different trends of each of the filters as shown in Fig. 3.12. 
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Fig. 3.12: (a) Simulation of algorithms and their errors. (b) Detailed view of the red 

square region in (a). 

 

The best filter observed, the MDE filter, has an error average of 0.2% and an average of 

deviation of errors of 0.4%. Note that with random detuning and bias errors, these results are 

inconclusive for a filter that is capable of removing a broadband of unwanted frequencies. As 

one of the best and most used phase shifting filters, the 4-step filter appears just for comparison 

purposes. Table 3.2 shows the average of errors and deviations of this simulation. 
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Table 3.2: Error present in the filters. 

Filter Average Deviation 

4-step 0.0038739 0.0846345 

Least-squares 0.0018890 0.1206078 

MDE 0.0020027 0.0046684 

MBE 0.0058631 0.0378228 

BDE 0.0027184 0.0058538 

Hibino 0.0110755 0.0141697 

 

 

From Table 3.2 we can notice that the function that has a lower error rate is, as expected, the 

least-squares filter, this is because the function is designed to precisely obtain the least square 

error of the simulated points. Nonetheless, the MDE filter has better performance with less error 

because despite having a slightly higher average error than the least-squares filter, in the 

deviation of data, we can observe that it is much higher than the least-square filter. In the same 

manner, now we simulate a more complex function, as the well-known peak function from the 

MATLAB, as shown in Fig. 3.13. In this case we use a 15% of bias and 10% of detuning 

randomly added to the original plot. 
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Fig. 3.13: Simulated reconstruction of the normalized “peaks” function with the (a) 

MDE filter and the (b) Least-squares filter. Average errors are shown in (b) and (d) 

respectively.  

 

A statistical study for each of the filters used is carried out in order to evaluate the quality of 

each one in the presence of random noise. This study is based in the Pearson’s correlation 

coefficient, which is an index that measures the linear relationship between two random 

variables quantitative. The Pearson’s correlation coefficient between two variables is defined as 

the covariance of the two variables divided by the product of their standard deviations. The form 

of the definition involves a "product moment", that is, the mean (the first moment about the 
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origin) of the product of the mean-adjusted random variables. Then, to obtain the standard 

deviation and average error indicators, first we subtract the graphic obtained with random errors 

from the ideal graphic without errors, followed by an average of all the points to finally obtain 

the average error of that filter in the simulation. For deviation, initially we have to get the 

standard deviation of all the points to then average them. Table 3.3 shows the results obtained. 

The closer the correlation coefficient is to one, the more it resembles the original function. 

 

Table 3.3: Errors of the filters according the simulation of the “peaks” function. 

Filter Average Deviation Correlation coefficient 

4-step -0.0046 0.0952 0.994520 

Least-squares -0.0162 0.1411 0.988480 

MDE -0.0023 0.0044 0.999985 

MBE 0.0087 0.0424 0.998860 

DBE 0.0030 0.0054 0.999978 

Hibino -0.0138 0.0161 0.999839 

 

From Table 3.3, it is observed that the lesser average error corresponds to the MDE filter; 

however, a four-step filter was better than MBE filter due to the fact that while the more steps 

are acquired, the error introduced in the algorithm for obtaining the wrapped phase also 

increases. From the simulations, we can conclude that for cases where detuning errors or bias 

errors are present, the proposed filters, tuned on / 4 , are sufficient to retrieve accurate 

information of an object despite a great variety of experimental random noises. Finally, from the 

Pearson’s coefficient, we obtain the correlation between the original sample and the estimated 

phase, and as we expect the filters MDE and MBE were the best choices again. 
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3.6 MBE phase filter for semi-fossilized samples 

A set of eight images of a semi-fossilized sample were digitalized using a FPP system, and then 

processed to analyze the quality of the topography considering the level of quality required for 

palaeontological applications (in the order of microns). While several algorithms have been 

proposed to minimize these errors in conventional phase shifting interferometry, the estimation 

of the exact phase step and consequently the interference phase distribution in the presence of 

error sources remains the main source of difficulty in fringe projection systems. By using 

Carré’s phase estimator, the error in the phase shift among fringe patterns was revealed. 

Therefore, the need to design a set of eight-frame algorithms for PSP immune to systematic 

errors, such as higher harmonics in the intensity signal, detuning, nonlinear response of 

photodetectors, random intensity noise and vibrations [26] in these measures becomes essential 

as shown in Fig. 3.14. 
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Fig. 3.14: Phase estimator of images achieved from semi-fossilized samples. The ideal 

phase step is π/4. 

 

For the development of the best mathematical method for processing the phase shift, several 

comparisons have been made considering the immunity to errors and miscalibrations of each of 

the algorithms mentioned above (Fig. 3.15). Accordingly, the width and shape of the histogram 

represent the variation of phase shifts. 

 

 

Fig. 3.15: A section of the wrapped phase achieved from experimental images. (a) 

Schmit’s filter. (b) Carré’s filter. (c) Hibino’s filter. (d) Surrel (N+1) bucket filter. 

 

For these fringe patterns, it is evident that Carré’s approach is susceptible to higher-order 

harmonics in the signal [28]. Filters reported previously in [30] have a good fitting to phase 

miscalibrations, but in the case of turbulences this method is not recommendable. Results from 

well-known algorithms, as proposed by Schmit (Fig. 3.15(a)) and Carré (Fig. 3.15(b)), show a 

high sensitivity to systematic errors. Hibino and Surrel (Figs. 3.15(c) and 3.15(d) respectively) 

methods are more sophisticated in correcting errors, but there are some inconsistencies in the 
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form of the wrapped phase. Least-square filter in Fig. 3.16(a) is enough for most applications, 

because many do not require a maximum level of immunity to detuning and miscalibrations of 

the phase shifts. Methods proposed have the robustness to manage interferograms with physical 

limitations and the intrinsically experimental errors present in this kind of measures. The first 

one is the well-known least-square eight-frame filter, the second corresponds with an algorithm 

specialized in compensating the phase shift linear detuning error, while the third algorithm is 

designed to compensate the linear bias variation error and the fourth is an algorithm that 

simultaneously compensates both kind of errors. However, a successful result depends on two 

main facts, the algorithm and the kind of errors and noise present in the set of frames measured. 

 

 

Fig. 3.16: A section of the wrapped phase achieved from experimental images. (a) 

Least-square filter. (b) MDE filter, cut off frequencies in 0 , / 4 , / 4 , / 2 ,  , 3 / 4 , 

3 / 4 . (c) MBE filter, cut-offs in 0 , 0 , / 4 , / 2 ,  ,  , 3 / 4 . (d) DBE filter, cut-offs 

in 0 , 0 , / 4 , / 4 , / 2 ,  , 3 / 4 . 

 

In addition, the evaluation of intensities can be made by plotting a linear slice across fringe 

patterns and analyzing the profile of the phase as in Fig. 3.17. SNR evaluation of our proposed 
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methods is significantly lower. The MBE algorithm shown in Fig. 3.16(c) has the better 

immunity to experimental errors in this FPP arrangement and these samples in particular. 
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Fig. 3.17: A graphed horizontal line of each image shown in Fig. 3.15 (a-d) and Fig. 

3.16 (e-h) respectively. 

These results are consistent with the unwrapped heights map, and it gives the right step for the 

analyses. A textured map of unwrapped phase is shown in Fig. 3.18. When the algorithm is 

limited in suppressing errors, we generally need more expensive equipment for the experiment to 

compensate them. On the other hand, having a good algorithm and considering the particular 

experimental conditions, more economic equipment will be enough to cover the needs of 

precision and accuracy of the experiment. 

 

 

Fig. 3.18: Texture mapping onto the calculated 3D shape distribution. 

 

Most eight step algorithms are centered at / 2  [31]; however, as the error distribution is greater 

for each step, a filter centered in a further step ( / 4 in this case) and immune to detuning (given 

the dispersion of the phase steps in Fig. 3.14) is needed to compensate experimental errors. In 

the experiment conducted, objects under study were small (~20mm), and the technique proved to 
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be a simple, cheap, and flexible method to be applied in areas that use phase shifting 

interferometry, but also other fields like paleontology, anthropology, and the sort. For instance, 

studies that need high resolution images for a posteriori scientific analyses, as well as 

morphological studies that involve ancient DNA preservation and reconstruction of semi-

fossilized samples at different scales, are some of the applications and advantages of the 

described technique. 
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4.1 Preliminary studies 

The optical 3D profilometry has revealed several qualities that make it particularly suitable for 

the study of fossil and semi fossil bone, such as they cause no alteration to the studied surface. 

To obtain the information of the topography from bone samples, a series of eight frame 

experimental patterns were obtained from a fringe projection profilometry system [1, 2] and 

processed with the PSA proposed to obtain the topography. A preliminary test performed is 

shown in Fig. 4.1. 

 

Fig. 4.1: Initial tests with specimens of maxillary contemporary mammals: (a) modern 

bone and (b) its recovered topography. 

 

The objects can be studied under atmospheric conditions and complex surface features such as 

broadside inclinations, symmetry and number of microstriations, are accessible for quantitative 

evaluation [3]. Prior to the preparation of the semi-fossilized samples, several tests were 
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performed on samples from the maxillary of contemporary specimens to verify both, the 

feasibility of the technique on semi fossilized samples, and sample handling, so that they were 

not contaminated with modern DNA or fractured during placement in the optical arrangement 

(Fig. 4.2). 

 

     (a) 

 

     (b) 

Fig. 4.2: (a) Preparation and sample handling. (b) Reference plane of the sample. 

 

Based on preliminary studies showing the number of variables to be considered to recover the 

3D cloud of points of the samples, it was concluded that an appropriate algorithm to retrieve the 

wrapped phase would be sufficient to compensate for many of the errors in the measurements 

due to the quality of the laboratory materials used for the optical system. Errors considered for 

this purpose, to mention a few, were systematic errors, such as the nonlinearity of the CCD 

sensors, vibration, reflections from the optical elements, relative phase between pixels, etc. 
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4.2 Experimental arrangement for fringe projection profilometry 

The recovery of the surface characteristics of the sample was performed using the fringe 

projection profilometry method. The optical system used was composed of a laptop with a frame 

grabber attached to a multimedia LCD projector, with a converging lens with a focal length of 

10 cm on a sliding base; on its right side we fitted a PixeLINK PL-A741 CCD camera with a 

resolution of 1280x1024 pixels in grayscale ranging from 0 to 255, with a f5/6 zoom lens and a 

rotary mounting. The spatial resolution of the captured images was 53 pixels per millimeter 

(mm). The optical axis of the camera was perpendicular to the reference plane, while the line 

connecting the projector and camera were parallel to the reference plane accordingly to [4]. The 

distance between the CCD and the projector d was 80 mm, the distance between CCD and the 

reference plane was 225 mm, and between the projector and the reference plane was 239 mm. 

The full schematic arrangement used to capture the frames is shown in Fig. 4.3. 

 

 

Fig. 4.3: Optical set up specifications for the FPP system used in this study for the 

recovery of a 3-D image of a hemimandible sample. 
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The entire system was set up in accordance with the sample dimensions (approximately 20 mm 

in length, 15 mm in height and 3 mm in depth). All the calibrations of the optical set up were 

made following standard procedures [5] and parameters, like gamma [6], intensity [7] and 

sinusoidal error [8]. The sample was fixed to the rotary platform by applying a delicate 

brushstroke with a paleontological consolidant (an adhesive routinely employed to repair or 

consolidate small fragments from crushed, broken or fragile samples), specifically used during 

the excavation of our fossil material [9]; this substance worked as an interphase that joined the 

mounting with the farthest segment of the mandible. The consolidant was strong enough to 

firmly hold the hemimandible (weight=0.16 grams), and once dry, it was easily removed from 

the mounting and the sample. The sample was mounted on a rotating stage in order to enable 

360º scanning of the object for a reconstruction of a full 3D image (Fig. 4.4). 

 

 

Fig. 4.4: Fringe projection system. 

 

Then, eight images were recorded by the CCD and a low pass filter is applied to eliminate 

random noise phase. These images with the projected fringes over the object were captured 

every 60º of rotation of the sample to reconstruct a 3D model of the fossil (topography was 
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evaluated to each one of these periods). Computational PSA algorithms are implemented based 

on image processing to decode this information from wrapped phase map and get the physical 

dimensions of the digitalized sample. 

 

 

4.3 Sample preparation 

 

We used a semi-fossilized hemimandible from a rodent identified at that time to belong to the 

genus Ototylomys [10] (INAH number B6M13-19), which was used for DNA extraction after 

image acquisition [11]. The FPP method was applied to acquire morphological data from these 

specimens that were collected from the "El Toro" chamber in the Loltún caves (located in the 

state of Yucatán, México) over a period of several decades. To ensure optimum performance of 

the system, the surfaces studied should have the following properties according [3]: color must 

be bright to ensure that most of the incident light is reflected back to the CCD; color must be 

homogeneous (significant albedo disparity may cause focusing errors); only a little translucency 

may be accepted in order to allow the system to focus on the physical surface and the roughness 

may not exceed the focusing boundaries. Fossils and sub-fossils bones have been proven to 

usually meet these requirements excellently. An exception, however, is the material with 

inhomogeneous mineralization or demineralization, showing a range of colors and varying 

translucency; in this case, the intensity of the reflected light overrides the sensitivity of the 

detector system, causing saturation and defocusing in the images of the acquired surface [3]. 

Consolidant effect on the optical characteristics of the samples is shown in Fig. 4.5. 
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          (a)                                                                  (b) 

Fig. 4.5: Effect of the consolidant in the samples provided from INAH. (a) Sample with 

a lack of consolidant. (b) Sample with too much consolidant. 

 

The main difficult in the sample handling of this kind of materials is that they must be free of 

genetic contaminants since they will be analyzed later using the PCR method of analysis (which 

implies the destruction of the sample). The retrieval of ancient DNA sequences is uncertain 

mainly by the fact that very little and often the DNA does not survive in ancient bones, whereas 

contemporary DNA is pervasive in the environment. For the handling of the sample, we used 

protective clothing and face shields and took routine precautions to avoid human contamination 

of ancient samples [12]. Also, all instruments, equipment and the working area were sterilized 

with bleach, alcohol and/or ultraviolet (UV) radiation [13] (ensuring that all instruments were 

sterilized based on the sterilization time for disinfection at 254 nm), eliminating any biological 

contaminant present in the optical arrangement Additionally, no other ancient or modern 

biological materials were ever used before in the working room. 

The semi fossilized material was taken out of its sealing container and with caution 

removed the excess of consolidate material to faithfully obtain morphologic and optic 

characteristics of the piece. Finally, the sample was fixed on a rotatory mounting plate by using 

inert resin. 
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4.4 Optical system and procedure 

 

The non-linear nature of the FPP system introduces additional phase errors that can be 

compensated by using a large number of phase shift fringe patterns.  However, this increases 

computational time and space, reducing the speed of the shape and accuracy of measurement.  In 

addition, it depends directly on the available algorithms for calculating the wrapped phase [7, 

14]. We used an effective phase shifting algorithm, the MBE phase filter, which was recently 

developed specifically to prevent and even compensate for these systematic errors by using only 

eight frames to obtain the wrapped phase [15]. 

 

 As mentioned, modern or ancient DNA should not be exposed to high radiative coherent 

light sources because of their ionizing effect that is a damaging agent for DNA [16-19]. In order 

to minimize the exposure of the sample to white light (incoherent light), each of the eight frames 

needed for the MBE filter had an acquisition time of 20 milliseconds (ms), giving a short 

exposure time (<1 second) for the complete optical system. Accordingly, we took eight frames 

(spaced spectrally π/4) with periods of 8 and 128 pixels per fringe (0.125 mm and 2 mm 

respectively), as shown in Fig. 4.6. 
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Fig. 4.6: Intensity patterns acquired from a FPP system with periods of 8 pixels per 

fringe. Phase shift values of the projected fringes are (a) 0, (b) π/4, (c) π/2, (d) 3π/4, (e) 

π, (f) 5π/4, (g) 3π/2 and (h) 7π/4. 

 

Subsequently, we rotated the sample 60º on its own x axis and acquired eight frames, repeating 

this until a full 360º rotation had been completed.  The use of both 8 and 128 pixels per fringe 

guarantees a successful detailed recovery of the sample's topography, overcoming the shadows 

resulting from the sample's irregular surface [20]. 
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4.5 Data analysis 

 

The image processing were implemented in MATLAB v7.12 and LabVIEW v8.2.1. After the 

gathering process and FPP technique to recover the wrapped phase image, we unwrapped the 

phase obtained with MBE by using Goldstein’s branch cut algorithm, an extraordinarily fast 

method that requires little memory, successfully unwrapping the phase by minimizing its 

discontinuities [21, 22]. Once unwrapped, we estimated and subtracted the temporal carrier [23] 

to obtain the sample's reconstructed topography. Finally, we performed an image render and 

texturing of the 3D image of the sample using MeshLab 1.3.3 [24]. The image acquisition set up 

and the processing of data is shown in Fig. 4.7. 

 

Fig. 4.7: Flowchart of the procedure employed in this study, where: α = angle (60º in 

this case), * = MBE algorithm (Gutiérrez-García et al., 2013), and ** = Goldstein 

algorithm. OTY: name given to the white light system together with the phase shifting 

algorithm filter, based on the fact that it was developed for use on Ototylomys samples. 

 

We named the white light system together with the phase shifting algorithm filter as “OTY”, 

which are letters of Ototylomys, given that it was developed for use on samples of this genus. 
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4.6 Results 

 

A total of 44 hemimandibles of 2 species of mammals were analyzed, and 96 frames from each 

hemimandible were obtained, divided in two sets of 48 frames that had 8 and 128 pixels/period, 

respectively (magnitude maps obtained are shown in Fig. 4.8). 

 

 

Fig. 4.8: Magnitude maps of the sample obtained every 60º for 8 and 128 pixels/period. 

The images show the resolution and detail levels given the number of fringes projected 

over the sample. The measurements’ accuracy of surface and depth depends on the 

number of projected fringes, which include as many as the system can display (8 

pixels/period for each fringe in this case). When the acquisition of details is difficult, a 

wider fringe is required (based on our sample size, we used 128 pixels). 

 

In most optical methods, it is suggested to use a treatment of the sample (e.g., covering it with 

color) to ensure optimum performance and avoid reflections or other undesirable effects [3], like 
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scattering, diffraction or dispersion, among others. However, a relevant advantage of our 

technique is that no such special sample preparation was required to obtain the frame or the 

processed images, a vital aspect to ensure the integrity of the sample (e.g., less risk of 

contamination by chemical agents or modern materials). The sequence followed to acquire the 

topographic maps included the fringes projection [Fig. 4.9(a)], the wrapped phase [Fig. 4.9(b)], 

the unwrapped phase [Fig. 4.9(c)], and the carrier compensation procedure [Fig. 4.9(d)]. Image 

processing was performed without any spatial filtering to preserve the most detail in the final 3D 

images [Fig, 4.9(e)]. 

 

 

Fig. 4.9: Process applied to recover the topography of the fossil sample. Where: (a) 

image captured by the CCD of the fringe projection on the sample, (b) wrapped phase 

obtained of the 8 frames after applying the MBE filter, (c) unwrapped phase map, (d) 

phase carrier compensation, and (e) surface of one of the views of the fossil recovered. 
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 The average resolution of the acquired images was 18.8 µm/pixel. It should be noted that 

this technique does not require the use of fiduciary markers for aligning different rotations of the 

object to attain the 3D object, and we captured views every 60º in order to scan the entire piece. 

Each of the six views processed with the optical system are shown in Fig. 4.10, where it can be 

appreciated that some regions of the sample have no information. 

 

 

Fig. 4.10: Processed views of a fossil sample acquired by the optical FPP system OTY. 

Each view is re-oriented 60º degrees with respect to the prior. Where: “a” indicates a 

zone that has no information at 60º in this stage of the process and will be corrected with 

the information of the next view, as is shown in “b”. 

 

These regions are caused by the shadow created on the sample when projecting the fringes, 

reflecting the areas where no information can be obtained from the surface. However, the 

redundancy of the information is completed from all the set of images, which guarantees that 
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each region is captured by the camera more than once; therefore, by combining each of the six 

views in a complete 3D image, these regions are integrated and the missing gaps are filled (Fig. 

4.11).  

 

 

Fig. 4.11: Full 3-D image of the reconstructed fossil after merging all the six views. (a) 

Cloud of points, (b) Final mesh. 

 

In addition, by using the topographic maps gathered from each of the six faces (at every 60º 

angle) of the tested sample, we were able to construct the 3D image including high fidelity 

dimensions and recovering all of its morphological details. Furthermore, digitized samples 

provide an exact 2D measurement regarding the handmade measurements currently carried out 

in palaeontologia (Fig. 4.12). 

 

 

Fig. 4.12: Distances between points (2D). 
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4.7 Discussion 

 

Several methods have been used to non-destructively image fossils in 3D [25-28]; however, 

most are based on ionizing radiation (e.g., X-rays, micro CT), which can result in molecular 

damage. A good comparison of these techniques was made in [29-31], and discusses a wide 

variety of 3D imaging techniques applicable to fossils and their suitability for different materials. 

When the crucial aim is to recover DNA from fossils, it is vital to use techniques that will cause 

as less molecular damage as possible, and those based on white light are a practical choice. 

Indeed, a segment of the white light spectrum has been used to describe the fossil’s molecular 

content [32]. 

Despite its advantages, the FPP system using white light has rarely been used to obtain 

3D-images of biological samples. This method has only been explored via simulations under 

ideal laboratory conditions, mainly because of the complexities involved when working with it, 

including the need to consider specific features of the surface being analyzed, the optical set up 

requirements -like in the present case where, due to the fragility of the fossil, an optical rotation 

mount had to be designed to hold the piece-, potential bias errors, image acquisition defects and 

additional errors during image processing [3, 21 (and references therein)]. 

In this study, we ensured the optimum performance of the system by adapting the optical 

set up to the sample size and by using the algorithm MBE [15], which reduces common errors 

during the processing of the frames, such as miscalibrations, bias and detuning errors. Because 

MBE is a real high bandwidth phase filter, it has the advantage that it minimizes the image's 

distortion and does not perform, like other common algorithms (e.g., Carré or N + 1 Bucket; by 

[33] and [34], respectively), as a low-pass filter. This final outcome yields the most accurate 

reconstruction of the object and with greater and enhanced detail than any other PSA that could 

be used for samples like our fossils. The advantage of optical techniques in the study of fossil 
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and semi fossil bone is that non-contact technique, allowing the investigation of fragile and 

poorly preserved surfaces. The high resolution and fast measuring rate of this method make it an 

alternative to scanning electron microscopy (SEM) or optoelectronic scanning methods if 

topography is to be visualized. 

 

 

   a)                                                    b) 

 

    c) 

Fig. 4.13: Differences between (a) N+1-bucket filter, (b) proposed MBE eight step filter 

and (c) scanning electron microscope (SEM). Scale bar is 5 mm. 

 

Due characteristics of the semi-fossilized materials, comparing MBE filter side by side N-bucket 

filter to recover the wrapped phase, enable us to assess the optimal filter for semi fossilized 

materials, compensating light variations and errors inherent to the optical system. Therefore, it is 

necessary to improve the surface reflectivity of the fossils and the contrast of fringe pattern to 

reduce the errors. The cloud of points plotted represents the magnitude of the recovered real 

points, and it is possible to realize the 3D reconstruction of the fossil and carry out comparative 
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phylogeography analyzes and in the like. A filter analysis of several filters applied to reconstruct 

the 3D shape is shown in Fig. 4.14. 

 

 

Fig. 4.14: (a) N+1 bucket algorithm, 31.7461 % of useful points to reconstruct the cloud 

of points (139,367 pixels). (b) MDE filter, 37.0228% of useful points (162,532 pixels). 

(c) MBE filter, 37.0663% of useful points (162,723 pixels). Scale bar is 10 mm. 

 

This is the main advantage of designing a filter to fit the experiment as the MBE filter. A 

comparison between (a) and (c) is shown in Fig. 4.15. 

 

 

Fig. 4.15: Comparison of the phase map recovered from a single fossil sample. (a) N+1 

bucket filter phase map is depicted in white. (b) Phase map recovered with MBE filter is 

depicted in white + gray. 
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Processing the phase map and texturing the recovered cloud of points, it is clearly the 

effectiveness of the designed filter. In Fig. 4.16, information retrieval for the cloud of points is 

higher in the filter processing using the proposed MBE filter than others. 

 

 

Fig. 4.16: The N+1-bucket algorithm (a) compared against the MBE filter (b). 

 

Moreover, the high 3D-image resolution we obtained (18.8 µm) is comparable with those 

achieved with white light and well known algorithms [35]. Furthermore, using this technique, 

the resolution is comparable with more expensive 3-D imaging techniques also used for fossils, 

as laser scanning (>50 µm), magnetic resonance imaging (>10 µm), neutron tomography (>30 

µm). Also, using a distinct lens it can achieve micro-CT resolution (>1 µm) [30, 31], considering 

that the current resolution limit for a white light image system is around 0.5 µm because 

diffraction effects limit the maximum possible resolution [36]. The camera exposure time is 

crucial to guarantee a high intensity modulation of the captured fringe patterns along dark 

regions of the image, regardless of image saturation occurring on bright regions [37]. In our 

case, an exposure of 20 ms per frame was sufficient to avoid poor measurement accuracy and 

was also a short enough exposure to avoid harming the fossil, given that prolonged exposure to 

visible light can damage DNA [16, 18, 38, 39]. The different techniques and sequential steps we 

followed proved useful to obtain detailed measurements such as area, volume and distance 
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between different points of the hemimandible, avoiding the need to manually handle the sample 

and the risk of damaging or contaminating it. Furthermore, the digital 3D topography can be 

used in morphometric studies [40], minimizing the errors associated with manual measurement 

tools. Moreover, it is useful for 2D and 3D studies such as images properties and color 

manipulation, geometric operations, segmentation analysis and linear and nonlinear filters for 

spatial and frequency-domain processing [41], as shown in Fig. 4.17. 

 

 

Fig. 4.17: Examples of analyses that can be performed with the obtained data from the 

fossils: (a) denoting the relief (emboss filter), (b) detecting edges and transitions (sobel 

filter), (c) study of the roughness and waviness of a sample (topography filter). 

 Additional applications of our technique include basic morphological operations in 3D 

images (distance transform, dilation, erosion, opening), 3D restoration, cropping, padding, 
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resizing, out-of-core image processing and active contour segmentation, just to mention a few. 

With this technique, scaled 3D models and high-resolution images can be obtained for any fossil 

or sample, allowing their preservation in extreme detail, crucial in cases where they have to be 

destroyed. Due to the fact that this is a surface technique, there was no need to apply a high 

radiative energy source like laser scanning, or to produce a penetration depth like CT techniques. 

Furthermore, although the mean goal is to recover a higher resolution of a 3D shape onto a cloud 

of data and to expose the sample the least possible to radiative energy, this method is rather 

simple and fast, can be performed in a small room and at a low cost since it does not require 

expensive equipment. The main advantages of this FPP technique in comparison with 

photogrammetry (PG) include: 1) it directly obtains the real topography’s height distribution, 

while PG only acquires an estimation of it, 2) it obtains a complete cloud of points by using 48 

frames, while PG needs 200 or more and only gets a dense cloud of points [42]; the latter is 

because accuracy depends on the number of pictures taken, and 3) it obtains a 3D exact image 

without any fiducially points, while for PG the alignment of the required fiducial points directly 

impacts the exactitude of measuring and model scaling. 

 

 

4.8 Overall 

 

Several methods have been used to acquire images of fossils [25, 28]; however, most of them are 

based on coherent radiation light, which is also used to perform molecular damage. 

Nevertheless, when the aim is to recover DNA from fossils, it is necessary the use of harmless 

techniques. Due to this, those techniques based on white light are a practical choice (e.g. a 

segment of the white light spectrum has been used to describe fossils molecular content, [32]). 
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Despite its advantages, the FPP system that uses white light has been briefly used to acquire 3D 

images of biological samples. This method has not been utilized out of simulations and 

laboratory conditions due the complexity involved in working with it, which includes take into 

consideration features of the studied surface, optical set up requirements (e.g. due to the fragility 

of the fossils, an optical rotation mount was designed to hold the pieces), bias errors, image 

acquisition defects and additional errors during image processing [3, 21]. In this study, we 

ensure the optimum performance of the system by adapting the optical set up to the sample size 

and by using the algorithm MBE [15], which reduces the common errors during the processing 

of the frames. MBE has the advantage of being a real high bandwidth phase filter that minimizes 

the distortion of the images, and not acting as a low-pass filter, like some others that are 

commonly used (e.g. Carré [45] or N + 1 Bucket [34], resulting in a faithful reconstruction of the 

pieces with greater detail than any other PSA used for this kind of samples. 

The high resolution 3D image that we obtained using white light can be compared to 

those obtained by using laser (e.g. 19 µm, [35]). The camera exposure time is essential to ensure 

high intensity modulation of the captured fringe patterns in the dark image regions, regardless of 

image saturation occurring in the bright image regions [34]. Experimentally, an exposure time of 

1/50s per frame acquired was sufficient to obtain an excellent accuracy and to prevent possible 

damages to the fossils. 

The implementation of all of these techniques with their respective considerations is useful to 

obtain measurements of the fossils, such as area, volume, and distances between different points 

of the mandible. The availability these digital 3D topographies will also minimize the common 

errors during measurements for morphometric studies [40, 43, 44]. This technique will allow the 

printing of scaled 3D models of almost any fossil sample and to obtain a set of high resolution 

images for further palaeontological studies. Additionally, this technique can be complemented 

with other techniques [46] and with other components, like DLPs, to get faster results. 
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General conclusions and remarks 
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5.1. Conclusions and future work 

 

In this work, four novel filters corresponding to eight-frame algorithms to solve the problem of 

the reconstruction of three-dimensional surfaces in semi-fossilized materials are presented. They 

are able to estimate accurately the phase shifts by minimizing the high-order correlations 

between the reconstructed phases and the reconstructed amplitudes of the reference wave, which 

are introduced by phase shift errors in PSP. The proposed algorithms are not reported previously, 

and they were tested experimentally besides by simulations. Additionally, they were compared 

with traditional eight step PSP methods. In particular, the MBE filter reduces significantly the 

influence of the bias error and harmonics. This algorithm has several advantages over similar. 

First, it allows to analyze materials with several optical properties involved in miscalibrations 

and phase errors. Second, it is suitable for studies that involve FPP systems. The effectiveness 

and improvement of the proposed algorithms and procedures have been supported and confirmed 

by our simulations and experimental results. With this new algorithms, we were able to fulfil the 

main aim of this work, to develop a robust and reliable algorithm for optical techniques as the 

FPP, and that can be applied to obtain 3D images of semi-fossils (and other biological objects), 

preserving at the same time key biological and detailed morphological information. 

With the results obtained in this thesis, a new path is opened for the use of custom filters 

designed for specific experiments, and this simply that with more information of the samples 

without sacrificing high costs in material and computational power. It has a vast potential 

application for ancient DNA and fossil studies where small –to extremely small as in our case– 

samples are involved that need to be destroyed for DNA extraction and molecular analysis. 

Finally, the images obtained with this technique can be used in a wide variety of studies, like 

comparing the anatomical features of extant and extinct organisms based on geometric 
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morphometrics or to evaluate the tectonic deformation in fossils. Furthermore, this work will 

have a direct repercussion in biologic and palaeontologic institutions responsible of the 

preservation of palaeontological, anthropological and historical heritage. The information 

obtained by using this new optical techniques and algorithms will permit the posteriori 

phylogenetics specie’s identification and classification.  
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