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Preface

The main objetive of this thesis is to present four new methods for optical
interferometry images developed during the Ph.D. Three of these new meth-
ods were published in international journals (chapters 2 trough 4); the other
method (listed in chapter 5), is in the process of publishing.

In order to understand the new methods shown in this thesis we will
present the theorical principles of optical metrology as well as already pub-
lished methods, same which would serve as basis for the new developed
method presented here. The purpose to develop these methods was to solve
common problems in interferometric images.

This thesis is organized as follows:

Chapter 1 introduces the fringe pattern demodulation in optical interfer-
ometry and reviews the theory behind the four new methods developed in
this thesis.

Chapter 2 shows that the well known least-squares system for phase shift-
ing interferometry (PSI) can be used as a full-field 2D linear system that uses
the temporal and spatial information in conjunction in order to recover the
modulating phase while removing noise, unwanted harmonics, and interpo-
lating small empty sections of the image space all in the same process with
low computational cost. This work was published in the Optical Engeniring
jurnal under the name: Full-field two-dimensional least-squares method for
phase-shifting interferometry [2].

Chapter 3 develops a new regularization technique to demodulate a phase-
shifting interferogram sequence with arbitrary inter-frame phase shifts. With
this method, we can recover the modulating phase and inter-frame phase
shifts in the same process. As all phase-shifting algorithms, the assumption
is that the wavefront under testing does not change over time but, the phase-
shifting introduction can vary in a non constant way. A notable characteristic
of this demodulation method is that it not only can recover the modulating
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phase, but also it is capable of filtering-out large quantities of corrupting
noise. This work was presented as plenary at the SPIE congress in San
Diego CA. with the name: Regularized self-tuning phase demodulation for
phase-shifting interferometry with arbi-trary phase shifts [3]

Chapter 4 proposes a novel robust phase-shifting demodulation method.
This method locally estimates the interferogram’s phase-shifting, reducing
detuning errors due to environment perturbations like vibrations and/or mis-
calibrations of the PSI setup. The phase-shifting demodulation method pre-
sented here is based on local weighted least-squares, letting each pixel have
its own phase-shifting. This is a different and better approach, considering
that all previous works assume a global phase-shifting for all pixels of inter-
ferograms. This work was published in the Optics Express Jurnal in 2013
under the name: Robust adaptive phase-shifting demodulation for testing
moving wavefronts [4]

Chapter 5 offers an interesting method to remove the detuning distortions
from the wrapped phase obtained by the uncalibrated phase interferometry
demodulation methods. The method presented here takes the local frequen-
cies as a priori knowledge from the wrapped phase, and uses an iterative
approach to refine the wrapped phase.

Finally, I wish to acknowledge the financial support from the Centro de
Investigaciones en Óptica A. C. (CIO) and the Consejo Nacional de Ciencia y
Tecnoloǵıa (CONACYT). I also want to thank my advisers Dr. Julio Estrada
and Dr. Manuel Servin by the guidence provided throughout my Ph.D.



Chapter 1

Introduction to fringe pattern
demodulation

A fringe pattern is defined as a sinusoidal signal where a continuous map,
analogous of the physical quantity being measured, is phase-modulated by
an interferometer, as a Moire system. An ideal stationary fringe pattern is
usually modeled as:

I(x, y) = a(x, y) + b(x, y)cos[φ(x, y)], (1.1)

where a(x, y) and b(x, y) are the background and local contrast functions,
respectively; and φ(x, y) is the physical searched phase function. The spatial
dependence (x, y) represents the position of the pixel in the image.

Analyzing Eq. (1.1) one can see that the phase function φ(x, y) cannot
be directly estimated since it is screened by two other functions, a(x, y) and
b(x, y). Additionally, φ(x, y) can only be determined modulo 2π because the
sinusoidal fringe pattern I(x, y) depends periodically on the phase (2π phase
ambiguity); and its sign cannot be extracted from a single measurement
without a priori knowledge (sign ambiguity) due to even character of the
cosine function [cos(φ) = cos(−φ)]. Finally, in all practical cases some noise
η(x, y) is introduced in an additive and/or multiplicative way, and the fringe
pattern may suffer from a number of distortions, degrading its quality and
further screening the phase information [5, 6].

It must be noted that even if careful experimental setups could prevent the
screening of φ(x, y) due to the unknown signals a(x, y), b(x, y) and η(x, y), we
would still have to deal with the sign ambiguity and the 2π phase ambiguity.
Because of these ambiguities, the solution for this inverse problem is not
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unique; this is because several phases can produce exactly the same sinusoidal
signal.

If we rewrite Eq. (1.1) by means of the complex representation of the
cosine function, we have:

I(x, y) = a(x, y) +
1

2
b(x, y)[eiφ(x,y) + e−iφ(x,y)], (1.2)

and if we are able to isolate one of the analytic signals in Eq. (1.2), lets say
1
2b(x, y)e

iφ(x,y), we obtain:

tanφ(x, y) =
Im{(1/2)b(x, y)eiφ(x,y)}
Re{(1/2)b(x, y)eiφ(x,y)} . (1.3)

Computing the arc-tangent of the above formula we obtain a wrapped esti-
mation of the phase under study: φ(x, y) mod 2π. Thus, the final step of this
fringe pattern demodulation process usually involves an additional phase un-
wrapping process [7–10]. Nevertheless, when working with an smooth phase
φ this last step is straightforward. Next we will illustrate the easiest way to
obtain these analytic signals [11–13].

1.1 Fringe pattern with temporal carrier

A fringe pattern obtained as the output of a measuring system may be mod-
ified by the optoelectronic-mechanical hardware (sensors and actuators) and
software (virtual sensors and actuators) of the system [14]. With these mod-
ifications we are able to introduce known changes in the argument of the
sinusoidal signal:

I(x, y, k) = a(x, y) + b(x, y)cos[φ(x, y) + Ç(x, y, k)], (1.4)

where Ç(x, y, k) is a known function (typically a reference plane) and it is
called the spatio-temporal carrier of the interferogram. The spatial and/or
temporal carriers are of extreme importance in modern interferometry: first
of all, its presence allows to solve the sign ambiguity since in general cos(φ+
Ç) ̸= cos(−φ+Ç). They also allow to isolate the analytic signal 1

2b(x, y)e
iφ(x,y).

In phase-shifting interferometry (PSI) the linear temporal carrier can be writ-
ten as:

Ç(x, y, k) = αk, (1.5)
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where α is the temporal lineal carrier, typically α = π/2, and k is the discrete
temporal variable. The independent temporal variable k represents the k-
frame of the PSI sequence. In this context, knowing the temporal carrier α
(phase step as known in PSI), the objective of the PSI demodulation methods
is to estimate the complex field

f(x, y) =
1

2
b(x, y)eiφ(x,y), (1.6)

of the interferometric image or images at the (x, y) pixel. Then, the optical
phase at (x, y) is obtained as:

φ(x, y) = arg[f(x, y)] = arctan

(
sin[φ(x, y)]

cos[φ(x.y)]

)
, (1.7)

which is an alternative form of Eq. (1.3).
In the following sections we will analyze several methods to estimate the

analytic signal f(x, y).

1.2 Phase-shifting algorithms (PSAs)

In general, a phase-shifting algorithm (PSA) can be described as quadrature
linear filter which is completely characterized by its impulse response func-
tion, h(k), or by its frequency transfer function (FTF) in the Fourier domain,
H(ω):

h(k) =
N−1∑

n=0

cnδ(k − n), (1.8)

H(ω) =
N−1∑

n=0

cne
−iωn, (1.9)

where cn ∈ C. In order to be a valid PSA, this FTF must fulfill the so-called
quadrature conditions:

H(0) = H(−ω0) = 0, H(ω) ̸= 0. (1.10)

Thus, the application of this quadrature filter produces the following analytic
signal for k = N − 1 (where all the available data is involved):

I(k) ∗ h(k) = I(k) ∗
N−1∑

n=0

cnδ(k − n) =
N−1∑

n=0

cnI(k − n), (1.11)
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where ∗ denotes the convolution operator. Taking the Fourier transform
of Eq. (1.11) and applaying the convolution theorem and the quadrature
conditions from Eq. (1.10), results:

I(ω)H(ω) =
1

2
H(ω0)b(x, y)e

iφ(x,y)δ(ω − ω0). (1.12)

Returning to the temporal domain and combining Eqs. (1.11) and (1.12),
the estimated analytic signal is given by:

I(k) ∗ h(k) =
N−1∑

n=0

cnI(k − n) =
1

2
H(ω0)b(x, y)e

i(φ(x,y)+kω0). (1.13)

Considering the above, we have to evaluate the temporal convolution at
k = N − 1 in order to obtain the analytic signal for the given number of
phase steps:

1

2
H(ω0)b(x, y)e

iφ(x,y) = c0IN−1 + c1IN−2 + · · ·+ cN−2I1 + cN−1I0. (1.14)

This is the general formula for a linear PSA. From the above analytic signal,
we obtain the searched phase φ(x, y), modulo 2π, by computing its angle as
Eq. (1.7) [14–16]. For completeness, solving for φ(x, y) is found the so-called
arc-tangent formulation of a PSA:

φ(x, y) = arctan

(
Im{c0I0 + c1I1 + · · ·+ cN−1IN−1}
Re{c0I0 + c1I1 + · · ·+ cN−1IN−1}

)
. (1.15)

Recall that the estimated phase is wrapped modulo 2π. The above results are
obtained under the assumption that the quadrature filter and the temporal
samples of the interferogram are perfectly tuned at the same frequency ω
(radians per sample) [17].

1.2.1 Detuning error in PSI

When the actual sampling frequency is α + ∆, or in other words when the
phase step is not as expected; that is when some detuning error occur, the
resulting phase estimation is given by

φ̂(x, y) = φ(x, y)−D(∆) sin[2φ(x, y)], (1.16)
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where the amplitude of the detuning-error is given by the ratio

D(∆) =
|H(−ω0 −∆)|
|H(ω0 +∆)| , (1.17)

for |∆/α| << 1 [18, 19].This equation shows that detuning-error causes
the estimated phase to be distorted by a component with twice the origi-
nal fringes frequency. The ratio allows us to assess the robustness against
detuning error of any liinear PSA with a simple plot of D(∆) versus ∆. Over
the years, several linear PSAs with robustness against detunind error have
been proposed [5, 20–28]. The first one (and probably the best known) is the
Schwider-Hariharan five-step PSA [5, 22].

1.2.2 Noise in PSI

Whenever a linear PSA is applied it is important to know how robust it will be
when non-ideal conditions arise. Over the years several non-spectral analysis
have been reported for phase-shifting demodulation of noisy data: using
Taylor expansion of the fringe irradiance [29], joint statistical distribution
of the noise [30], the characteristic polynomial method [21], the derivative
of the PSA’s arctangent ratio [26] and so on. Here we present a theoretical
analysis on the influence of additive random-noise into the modulating-phase
estimation accordingly with the FTF formalism and the stochastic process
theory [31]. In fringe pattern analysis one must deal with two kinds of noise:
additive noise, which comes from the ambient and the electronic equipment
used; and multiplicative (or speckle) noise, observed when testing optically
rough surfaces.

According to diffraction theory, the phase noise results from the inter-
ference of light scattered from each point of an optically rough surface [32].
While this effect can be considered an unwanted distortion, it can also be
exploited as a measuring tool; for instance, consider the electronic speckle
pattern interferometry (ESPI) technique [32]. However, since the information
of interest in closed-fringes interferograms is given by low-frequency signals,
in practice one usually pre-processes any set of phase-shifted patterns by
applying some spatial low-pass filtering to improve its signal-to-noise ratio.
This spatial low-pass filtering modifies the statistical properties of the mul-
tiplicative noise into additive Gaussian noise. The theoretical foundation
for this change in the statistical properties of the noise is the central limit
theorem [31]. For our purposes, this theorem says that the output signal
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resulting from the linear filtering of a stochastic (random) process with finite
mean and variance tends to Gaussian statistics, no matter which statistical
distribution the input process had. This means that, whether having addi-
tive and/or multiplicative noise, the low-pass filtering will turn the output
noise more Gaussian and additive. For this reason, in our following analysis
we will consider only additive noise [21, 33].

Interferometric signals are always distorted by some amount of random
noise so a more cautious approach it is to consider additive white-noise dis-
tortion (with random components in every spectral frequency). Under this
assumption, when filtering with quadrature linear filters, the signal-to-noise
power ratio gain of the PSA is given by [34]:

GS/N(ω0) =
|H(ω0)|2

1
2π

∞∫
−∞

|H(ω)H∗(ω)|2dω
. (1.18)

When GS/N(ω0) > 1, the output has a higher S/N ratio than the input data;
the standard case. When GS/N(ω0) = 1, the output analytic signal has the
same S/N power as the interferograms. Finally when GS/N(ω0) < 1, the
searched analytic signal has a lower S/N than the input; this situation is not
desired.

1.3 Fourier method

For illustrative purposes, let us assume a vertical open-fringes interfero-
gram (this method is only valid for interferograms with open fringes) phase-
modulated by a linear spatial carrier in the x direction, given by:

I(x, y) = a(x, y) + b(x, y)cos[φ(x, y) + u0x], (1.19)

using a clomplex number representation of the cosine function, we have:

I(x, y) = a(x, y) +
1

2
b(x, y)eiφ(x,y)+u0x +

1

2
b(x, y)e−iφ(x,y)−u0x. (1.20)

Applying the so-called the Fourier method [35, 36], first we multiply our
input signal with a complex reference signal (which is a value stored in the
digital computer) oscillating at the same frequency of our lineal carrier:

f(x, y) = e−iu0xI(x, y),

= ae−iu0x +
b

2
eiφ +

b

2
e−i(φ+2u0x), (1.21)
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where we have omitted the spatial dependency in a, b and φ for simplicity.
In general the spatial variations of the phase are small in comparison to the
carrier, that is, |∇φ|max ≪ u0, so the only low-frequency term in the above
equation is the analytic signal b

2e
iφ. Thus, applying a low-pass filter [37] to

Eq. (1.21) we have:

LP{f(x, y)} =
b

2
eiφ, (1.22)

where the low-pass filter LP{}̇ is preferably applied in the Fourier domain for
more control in the filtering process. Taking the ratio between the imaginary
and real part of this complex-valued analytic signal, we have Eq (1.15) in the
shape of:

φ(x, y) = arctan

(
Im{(1/2)b(x, y)eiφ(x,y)}
Re{(1/2)b(x, y)eiφ(x,y)}

)
. (1.23)

1.4 Classical least-squares algorithm

The N-step least-squares phase-shifting algorithm formula was deduced in
1974 by Bruning et al. [38] following a synchronous detection technique for
the phase-demodulation of temporal phase-shifted interferograms. Later in
1982 C. J. Morgan [39] demonstrated that this family of PSAs correspond
to the principle of least-squares estimation under the presence of external
perturbations. Finally, J. E. Greivenkamp [40] shown in 1984 that this least-
squares fit provides the better phase-estimation against non-uniform phase-
steps.

In a PSI sequence each (x, y) pixel is a 1D temporal discrete interfero-
metric signal modeled as Eq. (1.4). Using the carrier Ç(x, y, k) = αk, we
have the following expression

I(x, y, k) = a(x, y) + b(x, y) cos[φ(x, y) + αk]

= a(x, y) + c(x, y) cos[αk]− s(x, y) sin[αk], (1.24)

where c(x, y) = b(x, y) cos[φ(x, y)] and s(x, y) = b(x, y) sin[φ(x, y)] are the
quadrature components of the 1D temporal interferometric signal, k is the
discrete temporal variable and α the phase step or temporal carrier; note
that all these variables are scalars. The independent temporal variable k
represents the k-frame of the PSI sequence. In this context, knowing the
phase step α, the objective of the least-squares algorithm is to estimate the
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quadrature components c(x, y) and s(x, y) of the interferometric signal at
the (x, y) pixel. Then, the phase at (x, y) is obtained as mentioned above in
Eq.(1.7).

Scanning all pixels in this way, we obtain the wrapped phase image of
the PSI sequence. One of the first approaches to demodulate a PSI sequence
was the least-squares model for PSI [39–42]. The least-squares model (cost
function) for PSI is the following,

U [a, c, s] =
N−1∑

k=0

[a+ c cos(αk) − s sin(αk)− I(k)]2 , (1.25)

where I(k) is the observed value of the k-frame at the (x, y) pixel modeled as
in Eq. (1.24). For clarity, the spatial dependence (x, y) is omitted in parame-
ters a, c, s and I. To have a well-posed mathematical model for Eq. (1.25), it
is necessary to have at least three interferograms in the PSI sequence; that is,
N ≥ 3. The parameters c(x, y) and s(x, y) that minimize Eq. (1.25) are the
quadrature components used in Eq. (1.7) to obtain the phase. To minimize
Eq. (1.25) we need to find

∂U/∂a(x, y) = 0; ∂U/∂c(x, y) = 0; ∂U/∂s(x, y) = 0; (1.26)

that yields as solution
X(x, y) = A−1B(x, y) (1.27)

where X(x, y) and B(x, y) are a 3× 1 vectors for every pixel given by

X(x, y) = [a(x, y), c(x, y), s(x, y)]T (1.28)

and

B(x, y) =

[∑

k

I(x, y, k),
∑

k

I(x, y, k) cos(αk),
∑

k

I(x, y, k) sin(αk)

]T

(1.29)
and the matrix A does not depend on the position and is given by

A =

⎡

⎣
N

∑
k cos(αk)

∑
k sin(αk)∑

k cos(αk)
∑

k cos
2(αk)

∑
k cos(αk)

∑
k sin(αk)∑

k sin(αk)
∑

k cos(αk)
∑

k sin(αk)
∑

k sin
2(αk)

⎤

⎦ .

(1.30)
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Matrix A needs at least three different phase shifts to be non-singular (and
invertible) and make possible the computation of the solution X(x, y) for
every pixel. From Eq. (1.28) the wrapped phase for each pixel is calculated
as

φ(x, y) = arctan

[
−s(x, y)

c(x.y)

]
. (1.31)

Matrix A must be calculated only once for frame, in consequence as the
temporal interferometric signal of each pixel has the same model [see Eq.
(1.24)], the solution of the linear equation system is always the same.

1.5 Robust quadrature filters (RQF) for PSI

Regularization systems are very useful full-field systems that can use all
the information needed to obtain the data sought as expected. In PSI, we
can use these techniques to include the temporal and spatial information to
recover the modulating phase as a smooth 2D function, removing unwanted
harmonics and noise. Actually, regularization techniques have been used
before in PSI for these purposes, the first were Marroquin et al. [43–46] and
more recently others [3, 47–58].

The main idea behind Robust Quadrature Filters (RQF) for PSI is to
find a complex field

f = ϕ+ iψ (1.32)

that minimizes the next cost function

U(f) = UD(f, I) + λUR(f). (1.33)

The first term UD(f, I) is commonly known as the data term, and it depends
on the difference between the observed data I (in this case the interferogram
without the background term) and the estimation model f , in such way that
UD(f, I) is minimal when f is close to I. UD(f, I) can be defined

UD(f, I) =
∑

(x,y)∈L

∥f(x, y)− I(x, y)∥2. (1.34)

The second term UR(f) is usually called the regularization term. This
term imposes smoothness to the modulating phase φ adding restrictions to
the estimation model f . Two regularization terms are the first-order and
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second-order regularization operators known as membrane model and thin-
rod model, respectively. For the membrane model we have the following cost
function

URm = λ
∑

(x,y)∈L

[f(x, y)− f(x− 1, y)]2 + [f(x, y)− f(x, y − 1)]2}, (1.35)

and for the thin-rod model the cost function is

URt =

λ
∑

(x,y)∈L

{[f(x+1, y)−2f(x, y)−f(x−1, y)]2+[f(x, y+1)−2f(x, y)−f(x, y−1)]2+

[f(x+ 1, y + 1)− f(x− 1, y − 1) + f(x− 1, y + 1)− f(x+ 1, y − 1)]2}. (1.36)

In both cases u0 is the tuning frequency in x, and v0 is the tuning frequency
in y. The parameter λ is known as the regularization parameter that controls
the bandwidth of the quadrature filter.

To minimize Eq. (1.5), we obtain its gradient with respect to f and
equal it to zero [43–45]. Then, we can solve the resulting linear equation
system using algorithms such as the Gauss-Seidel algorithm, although we
can use more generic algorithms, like the Steepest-descent. Once we find the
complex field f we obtain the optical phase using Eq. (1.7).



Chapter 2

Regularized iterative
least-squares algorithm for
phase-shifting interferometry

The most known and used PSI demodulation methods are one-dimensional
temporal linear systems that use the information of the interferogram se-
quence at a single pixel to recover the modulating phase. Accordingly, scan-
ning all pixels, we obtain the 2D modulated phase. As PSI demodulation
methods do not take into account spatial information, these methods can
not remove unwanted harmonics or noise from the interferogram image space
(spatial domain). To remove these unwanted artifacts from the image space,
spatial information must be included in the demodulation model. In this
chapter, we are going to show that the well known least-squares system for
PSI can be used as a full-field 2D linear system that uses the temporal and
spatial information in conjunction, in order to recover the modulating phase
while removing noise, unwanted harmonics, and interpolating small empty
sections of the image space all in the same process with low computational
time.

2.1 Introduction

PSI demodulation methods are useful 1D temporal linear systems that allow
us to recover the modulating phase of the PSI sequence. When the number
of samples (interferograms) is small, typically between 3 and 15, we speak of
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PSI methods [59, 60], but they requiere a constant phase and do not tolerate
missing data. On the other hand, when the number of samples is large,
between 102 and 103, we speak of temporal analysis methods [43, 61, 62]
which have many problems with the interferogram borders and missing data.
Another possibility for analyzing the temporal signal is the use of a running
PSI method tuned at the carrier frequency [3, 43, 50, 52, 61, 62]. For example
if we use a three step PSI method we could demodulate the phase locally
for each of three consecutive samples. Although this method will deal well
with borders, missing data cannot be handled and can even impede the
use of this strategy. In experimental methods missing data appear in the
case of a saturated signal and also in heterodyne temporal speckle-pattern
interferometry when temporal decorrelation appears. Also missing data and
discontinuities due to occlusions or shadows are very common in projected
fringe profilometry. Besides these problems, noise is another important issue
to solve; for example, in speckle techniques [59, 62] noisy interferograms are
obtained, in consequence, recovered phase have to be treated to obtain a
clean phase easy to unwrap [7–10, 63–68].

Hence, in this chapter we are going to present a full-field 2D linear demod-
ulation method that uses in conjunction the temporal and spatial information
in order to recover a clean phase, while interpolates empty small sections of
missing data from the image space all with low computational time and in
the same process.

This full-field 2D method is based on the classical least-squares and the
regularization system methods described in the previous chapter.

2.2 Full-field 2D least-squares method

The approach used in RQF obtain non-linear systems with a considerable
computational work load. Besides, these algorithms need a pre-processing
method to remove background illumination in order to demodulate a cor-
rect phase. In our case, this preprocess is not needed and, also and more
important, we will maintain the linearity of the least-squares cost function
(1.25), adding spatial constraints to recover the wrapped modulating phase
while removing noise and unwanted harmonics present in the interferograms
[43], besides interpolating small sections of missing data. These constraints
will penalize the spatial variations of the quadrature components c(x, y) and
s(x, y) by using first order potentials as regularization terms. Proceeding in
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this way, the full-field 2D least-squares cost function for PSI is the following:

U(a, c, s) =

N−1∑

k=0

∑

x,y∈L
[a(x, y) + c(x, y) cos(αk) − s(x, y) sin(αk)− I(x, y, k)]2Mx,y

+ λ
∑

x,y∈L

[
(cx,y − cx−1,y)

2 + (sx,y − sx,y−1)
2
]

+ µ
∑

x,y∈L
(ax,y − ax−1,y)

2, (2.1)

where Mx,y is a binary mask with valid measurement, λ is the regularization
parameter that penalizes the spatial variations of quadrature components c
and s, and µ penalizes the spatial variations of background illumination a.
Note that in this case, the parameters (a, c, s) of the cost function in Eq.
(2.1) are scalar fields with dimensions Lx × Ly and elements a(x, y), c(x, y)
and s(x, y), respectively, while the parameters (a, c, s) of the cost function
in Eq. (1.25) are just scalars. As with the least-squares cost function of
Eq. (1.25), here, at least three interferograms are needed in the sequence
in oreder to have a well-posed mathematical model. To minimize Eq. (2.1),
in order to obtain the quadrature components c and s that will give us the
modulating phase, we need to solve a linear equation system of 3(Lx × Ly)
equations and 3(Lx×Ly) unknowns. Compared with the 3×3 linear equation
system of Eq. (1.25), the linear equation system of Eq. (2.1) is larger;
however, solving this linear equation system is not so complicated when using
numerical methods such asGauss-Seidel. One of the advantages of theGauss-
Seidel method is that it is numerically stable, and it is not necessary to build
the associated matrix of the linear equation system; besides, the Gauss-Seidel
method can be programmed for today’s modern parallel processors, such as
the Graphics Processing Unit (GPU), speeding up the minimization process.
For illustration purposes, we programmed the algorithm in C++ language.

2.3 Numerical experiments

To show the performance of the Full-field 2D least-squares algorithm, we
simulated a PSI sequence of four interferograms of 512 × 512 pixels in the
following way: I(x, y, k) = a(x, y) + b(x, y)cos[φ(x, y) + αk] + η(x, y), for
k = 0, 1, 2, 3 and α = π/2. The modulated phase φ was modeled as a plane
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(a) (b) (c)

Figure 2.1: Numerical results. a) One of four experimental interferogram
sequences. b) Recovered phase map using classic least-squares. c) Recovered
phase map using our proposed Full-field 2D least-squares.

using the following expression: φ(x, y) = 0.05x + 0.05y. The background
illumination term a was modeled as a parabola centered at pixel (256,256) of
the image frames with a dynamic range between 0 and 1. The b term was set
to 1. Last, we added a random field of white noise η, with mean γ = 0 and
variance σ2 = 1. In Fig. 2.1(a), we see the first interferogram of the simulated
sequence. Figures 2.1(b) and 2.1(c) show the wrapped phase using classical
least-squares and the Full-field 2D least-squares method, respectively. To
estimate the wrapped phase in Fig. 2.1(c), we solve the linear system in Eq.
(2.1) using the Gauss-Seidel method and setting λ and µ to 50. The number
of iterations was 500. For this example, the mask Mx,x in Eq. (2.1) is one
over all the image; since all the image it is valid information. Computational
time was 4.6934 seconds, on a PC with an Intel Core i7 processor and 8
GB RAM memory . We can see in these figures that our proposed method
recovers a phase with much less noise than the classic least-squares method,
given the regularization terms in Eq. (2.1).

2.4 Experimental results

Now, we are going to show the performance of our method with experimen-
tally obtained interferograms and compare it qualitatively with the classical
least-squares method. The interferogram sequence was generated using an
ESPI technique, and the wave-front under test was modified applying pres-
sure. For the phase step, a phase-shift of π/2 radians was introduced. The
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(a) (b) (c)

Figure 2.2: Experimental results. a) One of four experimental interferogram
sequences. b) Recovered phase map using classic least-squares. c) Recovered
phase map using our proposed Full-field 2D least-squares.

object under test was a circular metal plate with circular perforations all
along its edge. In order to increase reflexion, we coated the plate with white
powder, except for a small part, as can be seen in Fig. 2.2(a). Fig. 2.2(a)
shows the first experimental phase-shifting interferogram of a 4 samples se-
quence. In Fig. 2.2(b), we show the wavefront estimation of the classical
least-squares method, while in Fig. 2.2(c), we see the wrapped phase estima-
tion of the Full-field 2D least-squares method proposed here. Computational
time in this case was 7.6483 seconds using the PC described above. As we
can see, the proposed method was able to estimate a phase free of noise.
Another significant feature of this algorithm is that in sections where there
is no information, such as black circles and scratches, the algorithm was able
to fill-up the empty spaces satisfactorily; this is because it takes into account
the neighboring pixel information and the regularization terms; very useful
feature in the aforementioned cases.

2.5 Comments and conclusions

The calculation of a free-noise phase in PSI is very useful, since it allows us
to use simple algorithms to unwrap the phase. Normally, to get a soft phase,
we need to filter the interferogram samples or the output phase to remove the
noise. The problem of this process is that we may be removing important in-
formation during the filtering. For this reason, the Full-field 2D least-squares
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algorithm represents a significant improvement to the classical least-squares
method. Besides, as we have seen before, the presented algorithm is capable
of interpolating small empty spaces of missing data, since it takes into ac-
count the temporal and spatial information. Therefore, all results presented
in this paper can be directly applied to the spatial case where missing data
and discontinuities are present. Examples of this are occlusions or shadows
in projected fringe profilometry, temporal decorrelation and saturated signal
in heterodyne temporal speckle-pattern interferometry.

Previous to this work, all phase-shifting algorithms only use a single pixel
signal to estimate the wave-front under test, regardless of adjacent informa-
tion. This chapter presents the usefulness of taking into account the temporal
and spatial information in conjunction to estimate a best phase map. It is
important to highlight that the functional of Eq. (2.1) is a linear system;
therefore, it is stable and easy to compute. In conclusion, we present a full-
field 2D linear demodulation algorithm able to recover a clean phase and
also able to interpolate small empty sections of information, all with low
computational time and in the same process.



Chapter 3

Regularized self-tuning phase
demodulation for phase-shifting
interferometry with arbitrary
phase shifts

In this chapter, we develop a regularization technique to demodulate a phase-
shifting interferogram sequence with arbitrary inter-frame phase shifts. With
this method, we can recover the modulating phase and inter-frame phase
shifts in the same process. As all phase-shifting algorithms, the assumption
is that the wavefront under test does not change over time but the phase-
shifting introduction can vary in a non constant way. A notable characteristic
of this demodulation method is that it not only can recover the modulating
phase, but also it is capable of filtering-out large quantities of corrupting
noise. We will show numerical experimental results and comparisons with
other already published method to see the performance of the herein devel-
oped demodulation technique.

3.1 Introduction

Nowadays, PSI techniques are one of the most used techniques in optical
metrology [59]. In PSI, we obtain an small sequence of at least 3 interfer-
ograms with a phase-shifting among them [1]. To recover the modulating
phase there are standard demodulation PSI methods; the well known 3-, 4-,



22
Regularized self-tuning phase demodulation for phase-shifting

interferometry with arbitrary phase shifts

and 5-steps phase-shifting algorithms. Knowing the inter-frame phase-shifts
(or temporal carrier) the standard methods recover the modulus 2π phase
map with the minimum possible error [34, 59, 69]. If we do not know the
phase-shifts exactly, we obtain a phase map with an unavoidable detuning
error whose magnitude depends on the number of interferograms employed
and how far we are from the actual phase-shifts [5, 34, 70–72]. This unfortu-
nate case can occur when the optical interferometer setup is uncalibrated or
perturbations from the environment affect the interferometer’s optical path.
For example, for most phase shifters such as a piezoelectric there is a re-
peatability problem from hysteresis, non linearity, and temperature linear
drift [70, 73]. Curiously, first phase-shifting algorithms where self-tuning
nonlinear algorithms. Other approaches, propose error compensating algo-
rithms to reduce detuning errors that basically use redundant data such as the
Schwider-Hariharan 5-steps algorithm [5, 20, 22], and more recently by con-
structing a wide-band frequency response of the phase-shifting algorithm as
the 7-steps algorithm shown in [74]. Further methods use the Fourier trans-
form in order to estimate the inter-frame phase-shifts [71, 75], and others
are based on the least-squares scheme estimating iteratively the inter-frame
phase-shifts and phase [1, 42].

What we are going to show in this chapter, is a regularized self-tuning
demodulation technique that obtains the analytical image (complex interfer-
ogram) and inter-frame phase-shifts from an interferogram sequence. Thus,
we can recover the modulating phase modulus 2π and the inter-frame phase
shifts in the same process. Here, it is not necessary to know the inter-frame
phase-shifts. This inter-frame phase-shifts can vary arbitrary. The main dif-
ference between the demodulation method presented here, and the reported
in [1, 42, 76], is that the herein demodulation method is based on a regular-
ization technique that is able to remove noise from its input and is robust to
non constant modulation variations, which is an issue that introduce errors
in methods of works [1, 42]. Besides, we do not require estimate the fringe
orientation as the method of work [76], in order to find the phase.

3.2 Regularized self-tuning method

In general, an interferogram sequence with arbitrary inter-frame phase-shifts
can be modeled as

Ik(x, y) = a(x, y) + b(x, y)cos(φ(x, y) + αk), k = 0, 1, 2, ..., N − 1, (3.1)
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where Ik(x, y) is the intensity at the site (x, y) of the k -interferogram in a
sequence of N − 1 interferograms, being a(x, y) its background illumination,
b(x, y) its contrast or modulation, φ(x, y) the modulating phase under test
and αk the phase-shifting of the k -interferogram. We can remove the back-
ground illumination of each interferogram in the following way:

I
′

k(x, y) = Ik(x, y)− [Ik ∗ h](x, y), k = 0, 1, 2, ..., N − 1, (3.2)

where h(x, y) is the impulse response of a low-pass filter such as a Gaussian
or mean filter and is the convolution operator [77]. Making this, the new
interferogram sequence looks like

I
′

k(x, y) = b
′
(x, y)cos(φ(x, y) + αk), k = 0, 1, 2, ..., N − 1. (3.3)

The main idea of the regularized self-tuning demodulation method that we
show here comes from the article of Marroquin et al. [43] explained in Robust
Quadrature Filter section. As we say before, the demodulation process pre-
sented by Marroquin et al., minimizes a nonlinear system that estimates the
complex field of the first interferogram and its local spatial frequencies. We,
unlike the Marroquin et al. work, estimate the inter-frame phase-shifts from
the interferogram sequence. Therefore, our demodulation method minimizes
the following quadratic functional

U(f,α) =
∑

(x,y)

(ϕ(x, y)− I
′

0(x, y))
2

+
N−1∑

k=1

∑

(x,y)

[
1

2
[f(x, y)eiαk + f ∗(x, y)e−iαk ]− I

′

k(x, y)]
2 (3.4)

+λ
∑

(x,y)

[||Dx[f(x, y)]||2 + ||Dy[f(x, y)]||2],

where f = {f(x, y) = ϕ(x, y) + iψ(x, y) : (x, y) ∈ L} is the complex field,
i =

√
−1, and f ∗ its complex conjugated. The sums with the notation (x, y)

underneath, runs over all valid sites (x, y) of the interferograms. Operators
Dx[] and Dy[] takes the first order differences along x and y direction, as
follows:

Dx[f(x, y)] = f(x, y)− f(x− 1, y) + f(x, y)− f(x+ 1, y), (3.5)

Dy[f(x, y)] = f(x, y)− f(x, y − 1) + f(x, y)− f(x, y + 1). (3.6)
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The regularization parameter λ controls the smoothness of the complex field
[43, 45]. The first and second terms are the data terms, and the third term
is the regularization term. Our reference is the first interferogram, therefore,
we consider that its phase-shifting is α0 = 0. This is the reason of the first
data term, which results when k = 0, and therefore, the second data term
starts in k = 1. The minimization process of the functional (3.4) leads to a
robust to noise nonlinear phase-shifting algorithm of N-steps that can recover
the modulating phase and inter-frame phase shifts. With the complex field
f̂ and phase-shifts α that minimize (3.4), the modulating phase is recovered
as

φ(x, y) = arg[f̂(x, y)] = arctan

[
ψ̂(x, y)

ϕ̂(x, y)

]
. (3.7)

The minimization of functional (3.4), turns us to a nonlinear system that
mathematically is impossible to solve by a direct numerical method. The
dimension problem is m x n x N , where m x n is the interferogram dimension
and N is the number of interferograms. For nonlinear systems, the iterative
steepest-descent algorithm can converge to local minimums if its parameters
are set adequately [78], but its converge speed results very slow in this case.
Then, we split the problem in two: the linear part and the nonlinear part.
The linear part are the equations that result by making zero the following
partials: ∂U

∂ϕ(x,y) and ∂U
∂ψ(x,y) , for all (x, y) ∈ L. The nonlinear part are the

equations that result by making zero the following partial: ∂U
∂αk

, for k =
0, 1, 2, ..., N − 1. Thus, to speed up the minimization process, our iterative
minimization strategy combines in each iteration the Gauss-Seidel update
for the linear part, and the steepest-descent update for the nonlinear part.
Then, the iterations of our minimization strategy are given with the following
updates:

ϕn+1(x, y) = Solve for ϕn(x, y) Eq.

[
∂U(ϕn + iψn,αn)

∂ϕ(x, y)
= 0

]
; ∀(x, y) ∈ L

(3.8)

ψn+1(x, y) = Solve for ψn(x, y) Eq.

[
∂U(ϕn + iψn,αn)

∂ψ(x, y)
= 0

]
; ∀(x, y) ∈ L

(3.9)
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αn+1
k = αn

k − µ
∂U(ϕn + iψn,αn)

∂αk
, k = 0, 1, 2, ..., N − 1. (3.10)

Equations (3.8) and (3.9) correspond to the Gauss-Seidel update, and equa-
tion (3.10) is the steepest-descent update. In the next section, we show the
explicit formulas of these equations.

3.3 Minimization process of the quadratic func-
tional

The iteration updates shown in Eqs. (3.8), (3.9) and (3.10) are given by
taking the gradient of (3.4) and solving in the following way:

ϕn+1(x, y) =
Fr(ϕn + iψn,αn)

Hr(αn)
(3.11)

ψn+1(x, y) =
Fi(ϕn + iψn,αn)

Hi(αn)
(3.12)

where

Fr(ϕ
n + iψn,αn) = I0(x, y) +

N−1∑

k=1

[Ikcos(α)− ψ(x, y)sin(αk)cos(αk)]

+λ[ϕ(x− 1, y)s(x− 1, y) + ϕ(x+ 1, y)s(x+ 1, y) (3.13)

+ϕ(x, y − 1)s(x, y − 1) + ϕ(x, y + 1)s(x, y + 1)],

Fi(ϕ
n + iψn,αn) =

N−1∑

k=1

[Ikcos(α)− ϕ(x, y)sin(αk)cos(αk)]

+λ[ψ(x− 1, y)s(x− 1, y) + ψ(x+ 1, y)s(x+ 1, y) (3.14)

+ψ(x, y − 1)s(x, y − 1) + ψ(x, y + 1)s(x, y + 1)],

Hr(α) =
N−1∑

k=1

cos2(αk)+λ[s(x−1, y)+s(x+1, y)+s(x, y−1)+s(x, y+1)] (3.15)
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Hi(α) =
N−1∑

k=1

sin2(αk)+λ[s(x−1, y)+s(x+1, y)+s(x, y−1)+s(x, y+1)] (3.16)

The function s(x0, y0) is an indicator function that is 1 if the point (x0, y0)
is into the spatial domain of the interferograms, otherwise it is zero. Now,
for the steepest-descent update (the phase-shifts α) the iteration update is:

αn+1
0 = 0 (3.17)

αn+1
k = αn

k − µ
∑

∀(x,y)∈L

[ϕn(x, y)cos(αn
k) + ψn(x, y)sin(αn

k)− Ik(x, y)]

[ψn(x, y)cos(αn
k)− ϕn(x, y)sin(αn

k)]. (3.18)

Note: suppose that α has the inter-frame phase-shifts that minimize (3.4).
Its negative values minimize (3.4) as well. Then, while minimizing (3.4) it
is possible obtain phase-shift values that looks different to the actual phase-
shift values. This is not a problem, since we actually are interested in the
modulating phase of the interferograms. However, it is always worth fix the
inter-frame phase-shifts obtained in the following way:

α̂k =

⎧
⎪⎨

⎪⎩

α̂k if |α̂k − α̂k−1| < π

α̂k − 2π if α̂k − α̂k−1 > π

α̂k + 2π if α̂k − α̂k−1 < −π
(3.19)

for k = 1, 2, 3...N − 1, in order to have our inter-frame phase-shifts within
the variation range(−π, π).

3.4 Numerical experiments and results

To obtain the results presented here, the minimization process described here
made 1000 iterations to reach a relative convergence error of 1.322 × 10−4.

This relative convergence error is calculated as
√∑

(αn
k − αn+1

k )2, where the

sum runs over k = 1, 2, 3, ...N 1, αn
k is the k -phase-shift estimated in the

current iteration and αn+1
k is the k -phase-shift of the next iteration. This

minimization process, coded and compiled in C-language, took a time of
11.310 seconds for these 512 512 interferogram frames in a computer with
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Steps Proposed Method AIA Method

0 0 0
1 0.0766 0.0904
2 0.0637 0.7146
3 0.0569 0.7083
4 0.0569 0.5520

Table 3.1: This table shows the error obtained between the phase-shift esti-
mation and the actual phase-shift.

a 8-cores CPU of 1.73GHz having 8GB of memory RAM. The regulariza-
tion parameter λ (see Eq. (3.4)) was set to λ = 10, and the parameter
µ of the steepest-descent update was µ = 1.2

512×512 (see Eq. (3.10)). Actu-
ally, choosing µ = 1.2

512×512 is a very good parameter for the steepest-descent
update of Eq. (3.10), where m n is the dimension of the interferogram
frames. In our numerical experiments, we start always the minimization pro-
cess with initial values of f = 0, and αk = k π2 for k = 0, 1, 2..., N 1. The
interferogram sequence was generated as follows: The k -frame is given as
Ik = b(x, y)cos(φ(x, y) + αk) + η(x, y), being η(x, y) a random field of white
noise with mean γ = 0 and variance σ2 = 4.84 radians. The modulation, or
contrast term b(x, y), was modeled as a parabola centered at pixel (256, 256)
of the image frames with a dynamic range between 1 and 3. The inter-frame
phase-shifts where generated as αk = π + 0.4 ∗ ε , where εk is a random
scalar with a uniform distribution between −π and π radians. Here, we
compare our results with the so called Advanced Iterative Algorithm (AIA)
presented in [1] because this method estimates the phase and inter-frame
phase-shifts as well, but using other approach. In Table 3.1, we show the
errors values of the estimated phase-shifts using our regularized method and
the estimated using the AIA method. This errors are calculated as |αk−αk|,
where α̂k and αk are the values of the estimated and actual phase-shifts for
the k -frame, respectively. There we can see that our method estimates the
inter-frame phase-shifts with less error. On the other hand, in Fig. 3.1, we
show the interferogram sequence and the recovered phase. Fig. 3.1.(b) shows
the recovered phase using the regularized self-tuning demodulation method
presented here, while Fig. 3.1.(c) shows the recovered phase using the AIA
method. We can see in this figure that our proposed regularized self-tuning
demodulation method recovers the phase with less noise and error than with
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Figure 3.1: Interferogram sequence and the recovered phase. (a) is the sim-
ulated interferogram sequence used in the numerical experiments. (b) shows
the recovered phase and error using the regularized self-tuning method pro-
posed here. (c) shows the recovered phase and error using the AIA method
[1]. The error shown (in radians) is the standard deviation respecting the
true phase map. The interferogram frames has a size of 512 512 pixels.

the AIA method. The errors shown in Fig. 3.1.(b) and Fig. 3.1.(c) are cal-
culated as standard deviation of the difference between the recovered phase
map and the true phase map used to generate the interferograms.

3.5 Conclusions

We have presented a regularized self-tuning phase-shifting demodulation method
for interferogram sequences having arbitrary variations of the inter-frame
phase-shifts. This method is robust to non constant spatial modulations.
As shown in the numerical experiments results, our demodulation method
is able to filter-out noise, and recover the modulating phase and the inter-
frame phase-shifts with a minimum error. The demodulation method pre-
sented here is a nonlinear demodulation method, however, we innovate the
minimization strategy by mixing the steepest-descent update with the Gauss-
Seidel update. In this way, we were able to speed up the minimization process
and obtain the expected results.



Chapter 4

Robust adaptive phase-shifting
demodulation for testing
moving wavefronts

Optical interferometer setups are very sensitive when environment perturba-
tions affect its optical path. The wavefront under test is not static at all.
In this chapter, we propose a novel and robust phase-shifting demodulation
method. This method locally estimates the interferogram’s phase-shifting,
reducing detuning errors due to environment perturbations like vibrations
and/or mis-calibrations of the PSI setup. As we know, phase-shifting demod-
ulation methods assume that the wavefront under test is static and there is a
global phase-shifting for all pixels. The phase-shifting demodulation method
presented here is based on local weighted least-squares, letting each pixel
have its own phase-shifting. This is a different and better approach, con-
sidering that all previous works assume a global phase-shifting for all pixels
of interferograms. Seeing this method like a black box, it receives an inter-
ferogram sequence of at least 3 interferograms and returns the modulating
phase or wavefront under test. Here, as the method explained before, it is
not necessary to know the phase shifts between the interferograms. It does
not assume a global phase-shifting for the interferograms, is robust to the
movements of the wavefront under test and tolerates mis-calibrations of the
optical setup with at least three interferograms in the sequence.
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4.1 Introduction

PSI is a very known technique designed for testing static wavefronts. In PSI,
it is generated an interferogram sequence of at least 3 interferograms with
a phase shifting between them. To recover the modulating phase the well
known phase-shifting demodulation methods are used [5, 22, 38, 39, 73, 74].
When the wavefront under test remains static and the phase shifts are intro-
duced correctly, these phase-shifting methods recover the modulating phase
without error. However, in optical interferometer setups the optical path
is easily affected by environment perturbations. When environment per-
turbations exist, the wavefront under test is moving and the phase-shifting
algorithms introduce an unavoidable detuning error [34, 60]. Nowadays, we
can deal with a moving wavefront by taking all the interferograms in the
same instant of time, for example, by using pixelated polarized cameras [79–
86]. But, today this technology is expensive and is patent protected. To
deal with the mis-calibrations of the optical set up, previous works propose
self-tuning phase-shifting demodulation methods [1, 87, 88]. However, all
the previous published works for PSI assume that the wavefront under test
remains static and there is a global phase-shifting for all pixels of the in-
terferograms. This is not true when environment perturbations affects the
wavefront under test. Suppose that you have a PSI optical setup, but, the
wavefront under test is perturbed by the environment in such a way that it
is moving. The method presented here is a robust adaptive phase-shifting
demodulation method that let us demodulate the interferogram sequence tol-
erating the movements of the wavefront under test and mis-calibrations from
the PSI setup. This method allows each pixel have its own phase-shifting,
reducing considerably detuning errors and improving the estimation of the
modulating phase. To show the performance of the Robust Adaptive Phase-
Shifting (RAPS) method presented here, we will present tests and results
from simulated and experimentally obtained data.

4.2 Robust Adaptive Phase-Shifting (RAPS)

The interferometric phase-shifting signal for a single pixel has the classic
model found in all papers about phase-shifting. In that case, it is assumed
that all pixels has the same phase-shifting, therefore the interferometric signal
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for any pixel is the following:

Ik(x, y) = a(x, y) + b(x, y)cos[φ0(x, y) + ω0k], (4.1)

where Ik(x, y) is the k-interferogram ofM×N pixels, a(x, y) is its background
illumination, b(x, y) its contrast or modulation term, φ0(x, y) is the wavefront
under test and ω0 is the phase-shifting introduced by the PSI system for
all pixels. When the wavefront under test is perturbed by environment, it
is moving and the movements affects the phase shift on each pixel of the
interferograms in the following way:

Ik(x, y) = a(x, y) + b(x, y)cos[φ0(x, y) + ηk(x, y) + ω0k], (4.2)

where ηk(x, y) is the environment perturbation. To process this information,
we are going to take ηk(x, y) and ω0 as βk(x, y) = ηk(x, y) + ω0k in such a
way that the interferogram sequence can be rewritten as

Ik(x, y) = a(x, y) + b(x, y)cos[φ0(x, y) + βk(x, y)], (4.3)

where βk(x, y) represents the induced non-static phase-shifting variation of
the k-interferogram. Now, we are going to estimate the wavefront ω0(x, y)
and the spatial βk(x, y) variations of each interferogram of the sequence.

The Eq. (4.4) shows the least-squares cost function to recover the wave-
front under test ω0(x, y); assuming that we know its spatial variations βk(x, y)
for each interferogram.

E[a(x, y), f(x, y)] =
K−1∑

k=0

[a(x, y) +Re{f(x, y)eiβk(x,y)}− Ik(x, y)]
2. (4.4)

In this equation, i =
√
−1 and f(x, y) is a complex value for the (x, y)

site. The operator Re· takes the real part of its argument, that is, Re{z} =
1
2(z + z∗); being z a complex value and z∗ its complex conjugate. K is
the number of interferograms. By minimizing (4.4) with respect to a(x, y)
and f(x, y), the wavefront under test (the modulating phase) is recovered as
before

φ̂(x, y) = angle[f̂(x, y)], (4.5)

being f̂(x, y) the complex value that minimizes Eq. (4.4) at (x, y) site. To
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minimize Eq. (4.4) we solve the following linear system for each (x, y) pixel:

⎛

⎝
K

∑
ck(x, y)

∑
sk(x, y)∑

ck(x, y)
∑

ck(x, y)2
∑

ck(x, y)sk(x, y)∑
sk(x, y)

∑
ck(x, y)sk(x, y)

∑
sk(x, y)2

⎞

⎠

⎛

⎝
â(x, y)
φ̂(x, y)
ψ̂(x, y)

⎞

⎠ =

⎛

⎝

∑
Ik(x, y)∑

Ik(x, y)Ck(x, y)∑
Ik(x, y)Sk(x, y)

⎞

⎠ . (4.6)

The sums run from k = 0 to K = −1, being K the number of interferograms.
φ̂(x, y) and ψ̂(x, y) are the real and imaginary parts of f̂(x, y), respectively.
ck(x, y) and sk(x, y) are the real and imaginary parts of eiβk(x,y), respectively.

Now, in the Eq. (4.7) we propose the local weighted least-squares cost
function for estimating the wavefront variations βk(x; y) for the (x, y) site
at the k-interferogram; assuming that the wavefront under test φ0(x, y) is
known.

E[a(x, y), gk(x, y)] =

M−1∑

m=0

N−1∑

n=0

[
{a(m,n) +Re{gk(m,n)eiφ0(x,y)}− Ik(m,n)}h(x−m, y − n)

]2

(4.7)

In this equation, h(x, y) is an scalar field that weights the least-squares error
of Eq. (4.7). By minimizing Eq. (4.7) with respect to a(x, y) and gk(x, y),
the spatial wavefront variations βk(x, y) are recovered as

β̂k(x, y) = angle[ ˆgk(x, y)], (4.8)

being ˆgk(x, y) the complex value that minimizes Eq. (4.7). The Eq. (4.7)
can be seeing like the convolution of the least-squares error with the kernel
h(x, y). The kernel h(x, y) weights the local neighborhood around the site
(x, y) being processed. In this way, we have a weighted least-squares cost
function for each pixel (x, y) and we can estimate the phase-shifting variation
βk(x, y) for each pixel (x, y) of the k-interferogram. The linear equation
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system that minimize Eq. (4.7), can be given in the following way:
⎛

⎝
[1s ∗ h](x, y) [φ ∗ h](x, y) [ψ ∗ h](x, y)
[φ ∗ h](x, y) [φ ∗ h]2(x, y) [φψ ∗ h](x, y)
[ψ ∗ h](x, y) [φψ ∗ h](x, y) [ψ ∗ h]2(x, y)

⎞

⎠

⎛

⎝
â(x, y)
ĉk(x, y)
ŝk(x, y)

⎞

⎠ =

⎛

⎝
[Ik ∗ h](x, y)
[Ikφ ∗ h](x, y)
[Ikψ ∗ h](x, y)

⎞

⎠ (4.9)

where ∗ is the convolution operator and [∗](x; y) means the convolution eval-
uated at (x, y). The term 1s is an scalar field of ones with dimension M×N .
In this case, φ̂(x, y) and ψ̂(x, y) are the real and imaginary parts of eiφ0(x,y),
respectively, and ck(x, y) and sk(x, y) are the real and imaginary parts of
ĝ(x, y), respectively.

Having the linear systems that estimate the wavefront under test φ0(x, y)
and its variations βk(x, y) for all pixels of all interferograms (Eqs. (4.6) and
(4.9) respectively), we use them iteratively in the following way:

1 Set your convolution kernel h(x, y) that will weight the local neighbor-
hood around the (x, y) sites. For example, h(x, y) can be a mean or
Gaussian window.

2 Start the process by setting initial values for βk(x, y), ∀(x, y), k =
0, 1, 2, . . . , K − 1 being K the number of interferograms.

3 Solve the linear system of Eq. (4.6) ∀(x, y) and obtain φ̂0(x, y) using
Eq. (4.5).

4 For k = 0, 1, 2, . . . , K−1, use the previous wavefront estimation φ̂0(x, y)
to solve the linear equation system of Eq. (4.9) ∀(x, y) and obtain
β̂k(x, y) using Eq. (4.8).

5 With the previously estimated β̂k(x, y) of each interferogram, repeat
subsequently the steps 3 and 4 until reach a convergence error.

As said in the step 5, this iterative process do its job until a convergence error
is reached. This converge error can be given as the relative error between
the values in a previous iteration and the values in the current iteration in
the following way:

ε =
∑

x,y

| φ̂+
0 (x, y)− φ̂−

0 (x, y) |, (4.10)
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where φ̂+
0 (x, y) is the phase obtained in the current iteration and φ̂−

0 (x, y)
is the phase obtained in the previous iteration. At the end of this process,
φ̂0(x, y) and β̂k(x, y) will have the best estimations of the wavefront under
test and its non-constant variations, respectively. The initial values in step
2 are important. By experimenting numerically with simulations, we found
the following initial values as good starting points: β̂k(x, y) = π

2k, ∀(x, y).
We could use other value different to zero as starting point of the iterative
process, however, starting at π/2 is a good starting point since in practice
phase-shifting interferometers are calibrated to introduce a phase shift of π/2
radians. Certainly, starting at π/2 is not always the best if we have a priori
information about the phase shifts introduced. For example, if we know that
the phase-shifting interferometer introduce π/4 phase shift radians, then the
best starting point is π/4 radians.

Figure 4.1: Numerical examples.From (a) to (b) we show the wrapped wave-
fronts generated with Eq. (4.11). From (e) to (h) we show the estimated
wavefronts using the RAPS algorithm presented here. From (i) to (l) we
show the estimated wavefronts using the AIA. Above each estimated wave-
front we show the estimation error.
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4.3 Tests and results

In the following test, we are going to quantify the wavefront estimation error
of the RAPS demodulation method presented here. We are going to compare
our results with the estimation error that is obtained with the Advanced
Iterative Algorithm (AIA) presented in [1]. For this test, we simulated a
moving wavefront and generated 4 interferograms with a phase-shifting of
π/2. The moving wavefront was modeled using a two-modes vibrating plate
in the following way:

φk(x, y) = A cos
( 2π

256
x
)
sin
( 2π

256
y
)
cos
( π
17

k
)

(4.11)

The Figs. 4.1(a-d) shows the wrapped wavefronts of this simulated moving
wavefront. Using the RAPS and the AIA method, we estimate the wavefront
for each interferogram and the results are shown at Figs. 4.1(e-h) and 4.1(i-
l) respectively. The global error of the phase estimation is shown above its
wrapped phase image and it was calculated in the following way

ε =

√√√√ 1

M ×N

M−1∑

x=0

M−1∑

x=0

| φk(x, y)− φ̂k(x, y) |2, (4.12)

where φk(x, y) and φ̂k(x, y) are the simulated and estimated wavefronts for
the k-interferogram, respectively, and the dimension of interferograms is M×
N = 256× 256. For the RAPS method, the kernel h was a mean window of
32 × 32. By the estimated errors obtained in each phase estimation (shown
above each image of the estimated phase maps of Fig. 4.1), we can see
that the RAPS method reduces one order of magnitude the estimation error,
compared with an standard iterative phase-shifting algorithm like the AIA.
The computational time was 0.374 seconds for the AIA and 4.99 seconds for
the RAPS method.

Now, we are going to test our method with interferograms experimentally
obtained and compare qualitatively the results with the AIA method. For
this test, the interferograms has a dimension of 480 × 640 and the kernel
that we used for the RAPS method was a mean window of 132 × 132. The
interferogram sequence was generated by using the ESPI array like the shown
in Fig. 4.2. The purpose here is to take four experimental phase-shifting
interferograms of a moving wavefront. Here the mechanical properties of the
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Figure 4.2: Experimental setup. Electronic Speckle Pattern Interferometry
(ESPI) setup. The object under test is a metal plate perturbed with a horn.
The reference mirror has attached a piezoelectric transducer (PZT) as phase
shifter.

metal plate are not analyzed. We introduce phase-shifts of π/2 radians with
the PZT and perturb the wavefront from the metal plate with a horn in
such a way that it is moving while recording the phase-shifting interferogram
sequence. The estimation results are shown in Fig. 4.3. In Fig. 4.3(a-
d) we show the phase-shifting interferogram sequence. In Fig. 4.3(e-h) we
show the estimated wavefronts with the AIA method for each interferogram.
In Fig. 4.3(i-l) we show the estimated wavefronts with the RAPS method
proposed here. From the estimations shown in Fig. 4.3, it is hard to see
any improvement of the demodulation method proposed here compared with
the AIA. However, there is a hidden detuning error that introduce the AIA
method since the wavefront under test was moving. This detuning error
is augmented by differentiating (taking its partial derivatives) the wrapped
phase as shown in Fig. 4.4. For a better appreciation of the detuning error,
we quantized the dynamic range of the phase difference to the gray levels
1, 102, 153, 203 and 255. In Fig. 4.4(a) we show the difference of the
wrapped phase obtained with the AIA for the first interferogram and the Fig.
4.4(b) shows the difference of the wrapped phase obtained with the RAPS for
the first interferogram as well. In these results, we can see that the RAPS
method presented her does not have a detuning error like the introduced
with the AIA. The detuning error introduced with the AIA looks like a
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fringe pattern with twice the frequency than the original interferogram, this
is known and demonstrated theoretically on previous published works [5, 34].
The computational time for these phase estimations was of 5.3 seconds for
the AIA and 69.23 seconds for the RAPS.

Figure 4.3: Experimental tests. From (a) to (d) we show the interferogram
sequence. From (e) to (h) we show the estimated wavefront using the AIA,
and from (i) to (l) we show the estimated wavefront using the RAPS.

4.4 Discussion and commentaries

Accuracy of the wavefront estimation is the most important issue in opti-
cal tests. When using PSI techniques, the estimation accuracy depends on
the stability of the object under test and the right calibration of the PSI
setup. When the wavefront under test is moving, being by the environment
perturbations or by its own nature, phase-shifting algorithms introduce an
unavoidable detuning error. Previous to this work, all phase-shifting al-
gorithms make the phase estimation by assuming an static wavefront and
a global phase shifting. For example, the following very known four-steps
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Figure 4.4: Phase difference with respect to x (partial approximated deriva-
tive). The dynamic range of the difference is quantized to the gray levels
1, 102, 153, 203 and 255, for a better appreciation of the detuning error.
(a) shows the phase difference corresponding to the AIA and (b) shows the
difference corresponding to RAPS method.

phase-shifting algorithm:

φ = arctan

(
I0 − I2
I1 − I3

)
. (4.13)

This formula is the same for all pixels (x, y) because it is assumed that all
pixels has the same phase shift of π/2 radians, and the modulating phase
is spatially static. However, this is not true when the wavefront under test
is moving, in this case, each pixel should have its own phase-shifting for-
mula/algorithm. When the wavefront under test is moving, even a self-tuning
or self-calibrating method like the one presented in Refs.[1, 87, 88] introduce
detuning errors. As shown in the results, the demodulation method pre-
sented here reduces considerably detuning errors by estimating the modu-
lating phase and its non constant variations for each interferogram. These
estimations are made by using iteratively the linear systems of Eqs. (4.6) and
(4.9). The linear system of Eq. (4.6) looks very similar to the one used in
Ref. [1] firstly proposed in Ref. [39], but, there is a big difference in the pro-
pose of this paper. The main difference is that the phase-shifting of Eq. (4.6)
depends on the pixel (x, y) being processed and is not constant as supposed
in [1]. Nevertheless, the most important contribution of the Robust Adaptive
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Phase-Shifting (RAPS) method presented here, is with the Eqs. (4.7) and
(4.9). The Eq. (4.7) is a weighted least-squares cost function expressed as
a quadratic convolution with a kernel that weights the local neighborhood
that will be used for the phase-shifting estimation at the pixel (x, y) of the
k-interferogram. In this way, we estimate the phase-shifting at each pixel of
the k-interferogram and not a global phase-shifting as in Refs. [1, 87].

The kernel h in Eq. (4.7) defines the local weighted neighborhood that
is taken into account by the least-squares function for each pixel (x, y). For
example, suppose that you use a kernel with ones with the same dimension
than the interferograms. If we take the convolution of the least-squares error
with this kernel and evaluate it at the central pixel, we will have the classic
global least-squares error used in phase-shifting. Then, the size of the kernel
h affects directly the results of the demodulation method presented here. As
greater it is, the results will be more comparable with the AIA method for
example and it will be less tolerant with the movements of the wavefront
under test. The convergence error of the RAPS does not depends on the h
kernel size, but the results of the demodulated phase does. If the kernel size
is too small, we do not obtain the demodulated phase as expected.

On the other hand, when the wavefront is actually not temporal static but
dynamic, its model in a local neighborhood around a time t0 is the following:

φ(x, y, t) = φ(x, y, t0) +
∂φ(x, y, t0)

∂t
(t− t0). (4.14)

In this case, the perturbation ηk(x, y) shown in Eq. (4.2) corresponds
to the local temporal variation of the wavefront in that interferogram, that
is, ηk(x, y) = ∂φ(x,y,k∆t)

∂t k∆t, being ∆t the discretization of the temporal t
variable. As a consequence, this method can be used for testing dynamic
events, regarding that the phase shifting introduced is greater than the max-
imum ηk(x, y), ∀k. Actually, the simulated wavefront given in Eq. (4.11) is a
dynamic two-modes vibrating plate. We generated the interferograms with
that wavefront model and introduced a phase-shifting of π/2 radians. As the
reader can see in the first test, we have reduced considerably the estimations
errors when the wavefront under test is moving.

4.5 Conclusions

Summing up, here we have presented a Robust Adaptive Phase-Shifting
(RAPS) algorithm that estimates the wavefront under test regardless its
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movements by environment perturbations. Also, this method can be used
for testing dynamic events using PSI techniques and with an appropriate
phase-shifting. This method estimates the wavefront under test and its non-
constant variations given in each interferogram. Compared with a traditional
self-tuning phase-shifting algorithm, this method makes better estimations
by reducing considerably the detuning errors when the wavefront under test
is moving.



Chapter 5

Removing detuning distortions
of wrapped phase by using
robust quadrature filters

One of the most common and least desirable problems with the demodulated
phase in interferometry is the detuning error. Detuning error is the distor-
tion that we obtain when the demodulation algorithm is not well calibrated,
or when the object under test is not completely static. In this chapter, we
propose an interesting method to remove the detuning distortions from the
wrapped phase obtained by the uncalibrated phase interferometry demodu-
lation methods. The method presented here takes the local frequencies as a
priori knowledge from the wrapped phase, and uses an iterative approach to
refine the phase. Here, we show that with this practical strategy we are able
to remove detuning distortions from the demodulated wrapped phase. Tests
and results from simulated and experimental data will be shown.

5.1 Introduction

In optical interferometry tests, the modulating phase has the information of
interest. Therefore, estimating the phase with the least possible error is the
most important task in interferometry. However, this is not always possi-
ble, and one of the most common errors of phase interferometry algorithms
(PIAs) is the so-called detuning error [18, 59, 60, 89]. In literature, we can
find several works that study and measure the effects of the detuning error
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and the factors that cause it [19, 24, 27, 59, 79, 90–94]. For example, in phase
shifting interferometry, if the object under test is not static or the piezoelec-
tric transducer used to introduce the phase shifts is incorrectly calibrated,
the PIAs produces a detuning error [17, 95]. Another example where this
detuning error commonly occurs is in dynamic interferometry. In dynamic
interferometry, detuning error occurs when we do not have fast enough cam-
eras or high repetition lasers with long coherence lengths, or a combination of
both. In the Fourier method, the detuning error is present when the filtering
process can not be performed properly, since the carrier is not enough to sep-
arate the complex signal in the Fourier domain. Therefore, in general, when
the PIAs does not receive the interferogram or interferograms as expected,
it recovers a modulating phase with detuning error.

This detuning error is present in the demodulated phase as a low powered
signal having twice the frequency than the interferograms under analysis.
Mosiño et al. [18] demonstrate that this detuning error can be described by
the following expression:

∆φ ≈ −ε
c
sin(2φ), (5.1)

where ∆φ is the difference between the desired phase φ and the erroneous
spurious phase φε, ε is the erroneous spurious signal that our PIAs does not
remove properly, and c is the complex desired signal we want to recover.
This detuning effect is graphically shown in the unwrapped phase of Fig.
5.3(a). As we see, the distorted phase has a double frequency component
mounted, while the desired unwrapped phase has to look like the one in
Fig. 5.3(b). Therefore, removing the detuning error from the wrapped phase
without affecting the information is not a trivial problem, and, as far as we
know, there is no published work on processing the distorted wrapped phase
in order to reduce this detuning error.

Hence, in this chapter, we are going to show how we can reduce this
detuning error from the demodulated wrapped phase by using a variant of
the RQF [43]. The variant that we implement here is such that the RQF use
the gradient of the distorted demodulated wrapped phase as a priori local
frequency information. As we work with a wrapped phase, the data term of
the RQF compares the complex signal of this wrapped phase with the signal
that we are expecting to obtain; that is, the one without distortions. To show
the performance of the phase detuning correction method (PDCM) presented
here, we will present test and results from simulated and experimentally
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obtained data.

(a) (b)

Figure 5.1: Simulated wrapped phase comparison. (a) Synthetic input
wrapped phase with detuning error. (b) Recovered wrapped phase map using
the proposed PDCM.

5.2 Phase Detuning Correcting Method (PDCM)

As we said above, our PDCM uses a specially tuned RQF system to process
a complex signal generated by the given demodulated wrapped phase. The
energy function of this specially tuned RQF is the following:

U(f) =
∑

x,y∈L

| f(x, y)− 2g(x, y) |2 +λ
∑

x,y∈L

| f(x, y)− f(x− 1, y)eiux,y |2

+λ
∑

x,y∈L

| f(x, y)− f(x, y − 1)eivx,y |2, (5.2)

where g(x, y) = eiφ
ε
x,y is the complex signal generated by the demodulated

wrapped phase φεx,y that we are going to process, f(x, y) is the indepen-
dent complex value that minimizes Eq. (5.2) (and hence, the output of our
PDCM), λ is the regularization parameter that controls the bandwidth of
the quadrature filter, and ux,y and vx,y are the a priori local frequency in-
formation obtained from the wrapped phase; that is, ux,y and vx,y are the x
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Figure 5.2: Comparison between an unwrapped row of the distorted in-
put and the enhanced phase; the dashed line is the unwrapped phase with
detuning error, and the solid line is the unwrapped phase processed with
the PDCM. Note: The noise had been removed from the original distorted
wrapped phase in Fig. 5.1(a) for clarity and comparison purposes.

and y components of the gradient of φεx,y. Below, we will show how this prior
information is obtained from the wrapped phase φεx,y. The sums run over all
valid sites x, y in L, being L the lattice domain of the demodulated wrapped
phase. To minimize Eq. (5.2), one could use any method for solving systems
of linear equations; in particular, we use the Gauss-Seidel method. Hav-
ing the complex field f̂ that minimizes Eq. (5.2), the refined demodulated
wrapped phase is obtained as before

φ̂x,y = arg[f̂(x, y)]; (5.3)

that is, as the angle of the complex signal f̂ obtained by the minimization
process.

The new wrapped phase φ̂, estimated with Eq. (5.3), is an improved
version of our input wrapped phase φε; i.e., the detuning error has been
lessened. If we use this process recursively, we can refine the wrapped phase
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until we obtain an almost error free enhanced wrapped phase. Using this
approach, we ensure that the new calculated phase is almost free of detuning
errors. Then, this recursive process can be given as:

1.- Estimate local frequencies u and v taking the wrapped gradient of the
input wrapped phase φε [Eqs. (5.6) and (5.7)].

2.- Take f̂ that minimizes Eq. (5.2) using u, v and g = eiφ
ε
as data input.

3.- Calculate an enhanced φ using f̂ with Eq. (5.3).

4.- Recalculate local frequencies u and v with the new wrapped phase φ.

5.- Repeat steps 2 to 4 until a desired convergence point.

This convergence point can be given as the relative error between the
former and the new wrapped phases in the following way:

ε =
∑

x,y

∣∣φ+
x,y − φ−

x,y

∣∣ , (5.4)

where φ+
x,y and φ−

x,y are the wrapped phases obtained in the current and
previous iterations, respectively. At the end of this iterative process, the
new wrapped phase φ will be a wrapped phase without detuning distortions
and without noise.

5.3 A priori local frequency calculation

Since in order to calculate the local frequencies we have a wrapped phase,
we can not use finite differences directly due to the 2π phase jumps of the
wrapped phase. To estimate the local frequencies correctly, we propose taking
the gradient in an explicit way from the complex field as follows:

∇φx,y = ∇
[
arctan

(
sinφx,y

cosφx,y

)]
. (5.5)

Therefore, differentiating Eq. (5.5) and simplifying, we obtain the following
mathematical expression for local frequencies ux,y as

ux,y =
sinφ ∂

∂x cosφ− cosφ ∂
∂x sinφ

cos2 φ+ sin2 φ
, (5.6)
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(a) (b)

Figure 5.3: Unwrapped simulated phase comparison of Fig. 5.1. (a) Shows
the unwrapped phase with detuning error of Fig. 5.1(a). (b) Shows the
recovered unwrapped phase of Fig. 5.1(b) after using the proposed PDCM.
Note: The noise had been removed from the original distorted wrapped phase
in Fig. 5.1(a) for clarity and comparison purposes.

and in a similar way, the local frequencies vx,y are estimated as follows

vx,y =
sinφ ∂

∂y cosφ− cosφ ∂
∂y sinφ

cos2 φ+ sin2 φ
. (5.7)

The spatial dependence of the input wrapped phase map was omitted for
clarity in the notation. The partial differentials ∂

∂xφx,y and ∂
∂yφx,y of Eqs.

(5.6) and (5.7) are calculated as finite differences as follows

∂

∂x
cosφx,y = cosφx,y − cosφx+1,y, (5.8)

∂

∂y
sinφx,y = sinφx,y − sinφx,y+1. (5.9)

It is important to note that on the borders, it is not possible to calculate
the frequencies as Eqs. (5.8) and (5.9) propose; for this reason, we propose
using the value of a correctly calculated adjacent local frequency.
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5.4 Tests and experimental examples

To verify the efficiency of the PDCM, we simulated four interferograms of
256 × 256 pixels with phase shifts of π/5, and demodulated them with a
4- step algorithm tuned at π/2. In Fig. 5.1(a), we can see the distorted
wrapped phase map obtained by the PIAs. The phase was simulated using
the peaks function of Matlab. Using this distorted wrapped phase map and
the proposed PDCM, we obtain the enhanced wrapped phase map displayed
in Fig. 5.1(b). As it can be seen, the detuning distortions have been notably
reduced as well as noise. To obtain the result in Fig. 5.1(b), the regularized
parameter λ of the energy function of Eq. (5.2) was λ = 5, and the number
of iterations of the algorithm described above was 10. The computational
time for this phase estimation was 0.3932 seconds, in a PC with an Intel
Core i7 processor and 8 GB RAM memory. To minimize Eq. (5.2), we used
the Gauss-Seidel method. For clarity and comparison purposes, in Fig. 5.2
we plot the central row of both unwrapped phases without noise; the dashed
curve is the erroneous phase, while in the solid curve, we have the corrected
phase map. This graph lets us see that the detuning error has been fairly
lessened. For best viewing, Fig. 5.3 shows both unwrapped phases. Fig.
5.3(a) is the unwrapped phase with the detuning error shown in Fig. 5.1(a),
while Fig. 5.3(b) shows the unwrapped phase obtained using the proposed
PDCM. For clarity and comparison purposes of the detuning distortion, the
noise was removed from the unwrapped phase shown in Fig. 5.3(a).

Finally, we show the performance in an experimental wrapped phase map.
This experimental wrapped phase map corresponds to a vibration mode of
a latex membrane excited with a horn at 1.6 kHz and with an amplitude of
1.8 V [Fig. 5.4(a)]. Given that the object was vibrating during the capture,
it was not possible to correctly tune up the phase shift steps to π/2; as a
consequence, the four step algorithm obtains a distorted wrapped phase map
caused by the detuning. This distorted wrapped phase map is shown in Fig.
5.4(a). In Fig. 5.4(b), we show the performance of the proposed PDCM.
The processing time for this phase estimation was 1.3447 seconds using the
same PC described above. As well as shown in the simulations, in Fig. 5.5
we can see the central row of both unwrapped phases. As it is evident, the
noise was removed and detuning distortions have almost disappeared.
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(a) (b)

Figure 5.4: Experimental wrapped phase comparison. (a) Shows the exper-
imental input wrapped phase with detuning error. (b) Shows the recovered
wrapped phase map using the proposed PDCM.
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Figure 5.5: Comparison between an unwrapped row of the distorted input
and the enhanced phase; the dashed line is the phase with detuning error,
and the solid line is the phase processed by the PDCM.
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Figure 5.6: Recovered wrapped phase using the proposed PDCM with mis-
calculated frequencies.

5.5 Local frequency calculation in presence of
noise

In presence of noise in our input wrapped phase, the local frequencies could
be erroneously calculated given that Eqs. 5.6 and 5.7 are essentially high
pass filters. For example, Fig. 5.5 is the output of our proposed PDCM
when the local frequencies are miscalculated. As we can notice, the detuning
distortion and the noise were removed, but the recovered wrapped phase has
certain spurious errors product of the miscalculated local frequencies. To
avoid this problem, we propose applying a low-pass filter to our noisy input
wrapped phase. It is important to say that if we apply the low-pass filter
directly to our wrapped phase, we will lose fringe phase information. For this
reason, we propose filtering the wrapped phase as follows:

φ̂ = arctan

[
sin(φη) ∗ h
cos(φη) ∗ h

]
, (5.10)

where ∗ is the convolution operator, h is a low-pass convolution kernel, φη

is the noisy wrapped phase, and φ̂ is the filtered wrapped phase, both with
detuning distortions; this way of doing the filtering allows us to keep the 2π
jumps in our wrapped phase map. In Fig. 5.7 we show the difference between
these two approaches. Fig. 5.7(a) is the result of applying the low-pass filter
directly to our noisy wrapped phase in Fig. 5.1(a), while Fig. 5.7(b) is the
outcome of filtering using Eq. 5.10. As it can be seen, using the proposed
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(a) (b)

Figure 5.7: Wrapped phase comparison after applying a low-pass filter to
the noisy wrapped phase in Fig. 5.1(a). (a) Shows the result of applying a
gaussian filter directly to our wrapped phase, while in (b) we see the result
of applying Eq. 5.10.

approach we are able to maintain the 2π jumps, and therefore, the fringe
phase information.

It is important to note that this process does not affect the phase in-
formation, given that the enhanced wrapped phase is calculated using the
original noisy wrapped phase map. Also and more important, the local fre-
quencies are a signal with very small variations, whereas the noise signal is
the opposite.

After having removed the noise from the noisy wrapped phase, the lo-
cal frequencies can be correctly calculated. To illustrate, Fig. 5.5 shows
a sequence of the calculation of three different local frequencies during the
wrapped phase refinement process.

5.6 Discussion and commentaries

Accuracy of the wave-front estimation is the most important issue in optical
tests. When using phase interferometry techniques, estimation accuracy de-
pends on the stability of the object under test and the right calibration of the
phase interferometry set-up. When the wave-front under test is moving, be it
because of environmental perturbations or its own nature, and / or the phase
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(a) (b) (c)

Figure 5.8: Example of the frequency change along the refinement process
of the distorted wrapped phase. For this sequence, we show the u(x, y)
frequency calculation using Eq. 5.6.

interferometry set-up is not properly calibrated, PIAs introduce an unavoid-
able detuning error. Previous to this work, as far as we know, all PIAs have
done their best to avoid this detuning error by means of applying different
strategies; instead of that, here we present a method to process the distorted
wrapped phase in order to reduce the detuning distortions introduced by the
PIAs.

As shown in the result section, the presented PDCM considerably removes
detuning errors using the gradient of the distorted wrapped phase as a priori
information about the local frequencies, generating a complex signal with
the demodulated wrapped phase, and processing it with a variant of the
RQF to obtain a more refined demodulated wrapped phase. This process of
refinement is carried out using the linear system of Eq. (5.2) iteratively. The
proposed system looks very similar to the one used in RQF, but there are
differences in the proposal of this work. Instead of using a global carrier for
the entire image as in RQF, here, each pixel has its own frequency, in a way
that the filter is locally tuned. The functional in RQF is non-linear, while
the proposed functional [Eq. (5.2)] is a linear system. Another difference is
that the proposed functional is constructed using the demodulated wrapped
phase and its local frequencies as a priori information. These two differences
result in a stable method that converges in a few iterations.

Note that using Eqs. (5.6) and (5.7), it is not necessary to unwrap the
phase map to calculate the local frequencies u and v. This way of calculating
the local frequencies on each iteration speeds up the global process.
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5.7 Conclusions

We have presented a method capable of reducing the detuning distortions of
the demodulated wrapped phase from the PIAs. This method is an itera-
tive process that uses the distorted wrapped phase and its local frequencies
as a priori information. This method is stable and converges after a few
iterations. The main contribution of the presented method is that it is ca-
pable of removing detuning distortions without eliminating wrapped phase
information, which is very hard to do with simple low-pass filters. As it
is evident in the results, the proposed method obtains an smooth wrapped
phase map with very attenuated detuning distortions. The practical use of
this method is that it allows one to avoid complex PIAs in order to obtain a
wrapped phase fairly free of detuning distortions, or even avoid the need to
recalibrate and repeat the optical set-up.
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