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Abstract: In this paper we describe a high-resolution, low-noise phase-
shifting algorithm applied to 360 degree digitizing of solids with diffuse 
light scattering surface. A 360 degree profilometer needs to rotate the object 
a full revolution to digitize a three-dimensional (3D) solid. Although 360 
degree profilometry is not new, we are proposing however a new 
experimental set-up which permits full phase-bandwidth phase-measuring 
algorithms. The first advantage of our solid profilometer is: it uses base-
band, phase-stepping algorithms providing full data phase-bandwidth. This 
contrasts with band-pass, spatial-carrier Fourier profilometry which 
typically uses 1/3 of the fringe data-bandwidth. In addition phase-
measuring is generally more accurate than single line-projection, non-
coherent, intensity-based line detection algorithms. Second advantage: new 
fringe-projection set-up which avoids self-occluding fringe-shadows for 
convex solids. Previous 360 degree fringe-projection profilometers generate 
self-occluding shadows because of the elevation illumination angles. Third 
advantage: trivial line-by-line fringe-data assembling based on a single 
cylindrical coordinate system shared by all 360-degree perspectives. This 
contrasts with multi-view overlapping fringe-projection systems which use 
iterative closest point (ICP) algorithms to fusion the 3D-data cloud within a 
single coordinate system (e.g. Geomagic). Finally we used a 400 
steps/rotation turntable, and a 640x480 pixels CCD camera. Higher 3D 
digitized surface resolutions and less-noisy phase measurements are trivial 
by increasing the angular-spatial resolution and phase-steps number without 
any substantial change on our 360 degree profilometer. 
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1. Introduction 

Fringe projection profilometry is a well known technique since the classical paper by Takeda 
et al. in 1982 [1]. Although this profilometry technique effectively demonstrated that 3D 
digitalization was possible using a single carrier fringe pattern, it cannot digitize the full 360 
degree 3D object. The primary reason is that one needs to position the 3D object over a 
turntable to have access to every solid perspective from all (360 degree) directions. As far as 
we know the first researcher to implement an automated 360 degree profilometer was Halioua 
et al. in 1985 [2]. Halioua used a grating projector along with a 3-step phase shifter set-up and 
a turntable to obtain the 360 degree profilometry of a human mannequin head [2]. Later on in 
1991 Cheng et al. have also positioned the 3D object in a turntable in order to rotate it 360° 
degree and obtain the full object information, and projected over the object a carrier 
frequency fringe-pattern [3]. Asundi published an interesting technique based on a striped 
light projection for 360 degree profilometry [4]. Using a light stripe from a laser diode, Chang 
et al. [5] automatically reconstructed a solid with 360 degrees using a neural network. Gomes 
et al. used projected linear grating to study the human trunk looking for spinal deformities; 
they used Fourier profilometry for their purpose [6]. Later on Song et al. used a fringe grating 
projector and phase shifting interferometry of a rotating object for 360° degree profilometry 
[7]. Asundi et al. used a time delay integration imaging for 360 degree acquisition of a 
rotating object [8] for 360 degree profilometry. The state of the art on 3D profilometry was 
reviewed at 2001 by Sue and Chen but they have only included a single paper of 360 degree 
profilometry [9]. Afterwards Zhang et al. have used 360 degree profilometry for flow analysis 
in mechanical engines [10]. In 2005 Munoz-Rodriguez et al. used triangulation for 3D object 
reconstruction by projecting a stripe light and Hu moments [11]. In 2008 Trujillo-Shiaffino et 
al. used 3D profilometry based on a single line projection and triangulation of a smooth 
rotating-symmetric object [12]. More recently Shi et al. used 360 degree fringe pattern 
projection profilometry applied to fluorescent molecular tomography [13]. Some researchers 
have used shearing interferometry to project high quality linear fringes for 360 degree 
profilometry [14]. In this paper we have not discussed calibration issues, because we have not 
used any new or non-standard calibration strategy apart from those well-known in 3D 
profilometry [15]. Also we have not used any new or non-standard phase unwrapping 
algorithm [14,15]. Given the low noise of the fringes and the noise-rejection capability of the 
4-step least-squares phase-shifting demodulation, we have unwrapped our phase using simple 
line integration of wrapped phase differences. 

From this review we see that 360 degree profilometry is already a mature research field 
and applications in industrial inspection and robotic vision are well known. But previous 
efforts [2–15] have mainly concentrated in digitizing very smooth, quasi-cylindrical objects. 
This is because smooth, almost cylindrical 3D objects are easier to digitize with previous 360 
degree profilometry [2–15]. Here we have tested our proposed technique to digitize a Rubik’s 
cube all around it (360-degrees, almost 4π-steradians). The Rubik’s cube is a continuous 3D-
solid with sharp corners and it is certainly not quasi-cylindrical. By digitizing a Rubik’s cube 
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we demonstrate that our 360-degree digitizing technique is more robust and can digitize more 
complex 3D-surfaces than previous published approaches [2–15]. 

2. Previous 360-degree profilometers using fringe-grating or stripe-light projections 

Here we review the two basic experimental set-ups that have been used for 360 degree 
profilometry (see Fig. 1) [2–15]. Figure 1(a) shows the standard configuration when linear 
fringes are projected over the 3D sphere shown. The fringe projector has a polar phase-
sensitivity angle 0θ with the (x,y) plane. On the other hand, the stripe-light projection set-up 

(Fig. 1(b)) has an azimuth phase-sensitivity angle 0ϕ . In both cases the 3D object is rotated 
360 degrees in the azimuthal direction to obtain 3D data from all possible perspectives. 

Assume that the 3D-surfaces enclosing the solids are expressed in 3D cylindrical 
coordinates ( , , )zρ ϕ  as (see Fig. 1), 

 2 2( , ) , , [ , ] , [0,2 ).z x y z L Lρ ρ ϕ ρ ϕ π= = + ∈ − ∈  (1) 

The 3D object under analysis lies within [ , ]L L− in the z direction and within [0,2 )π in the 
azimuthal ϕ  direction (see Fig. 1). The projected linear fringes are aimed towards the 3D-

surface ( , )zρ ϕ having a phase-sensitivity angle θ0 (see Fig. 1(a)). Then the object is rotated N 

times an incremental azimuthal angle 2 / Nϕ πΔ =  (see Fig. 1(a)). For each increment 

2 / Nϕ πΔ = one collects the pixels at the center column of the CCD (x = 0,z). In this way one 
generates an image composed by N-lines in the ϕ  direction, each having the CCD’s pixel-

column size in the z range[ , ]L L− . Therefore the composed spatial-carrier fringe pattern is, 

 [ ]0 0 0 0 0 0( , ) ( , ) ( , ) cos ( , ) ; cos( ), tan( ).I z a z b z z g z v g vϕ ϕ ϕ ω ρ ϕ ω θ θ= + + = = (2) 

Where the spatial-carrier of the projected fringes is 0ν , and assuming telecentric illumination 

and imaging, the spatial carrier at the CCD plane is 0 0 0cos( )vω θ= , and the phase-sensitivity 

of the profilometer is 0 0tan( )g ν θ= . Finally the phase ( , )g zρ ϕ in Eq. (2) is usually obtained 
using the Fourier carrier-frequency technique [1]. 

 

Fig. 1. Panel (a) shows the well known set-up when a linear grating projector is used. The 
linear grating is orthogonal to the z direction and its phase-sensitivity is proportional to tan(θ0). 
Panel (b) shows the experimental set-up for a stripe-light projected towards the solid under 
analysis. In light-stripe test (panel (b)) the phase-sensitivity is proportional to tan(φ0). 

On the other hand a mathematical model for light-stripe profilometry may be (Fig. 1(b)), 

 [ ] 0( , , ) ( , ) ; tan( ).I x z x g z gϕ δ ρ ϕ ϕ= − =  (3) 
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This Dirac delta is phase-modulated by the 3D-object surface ( , )zρ ϕ . For each discrete 

rotation 2 / Nϕ πΔ = , the light-stripe center at ( , )x g zρ ϕ=  is estimated by image intensity 
(not phase-measuring) algorithms and it is proportional to the 3D object’s topography. The 
main advantage of using a light-stripe is that many solids are fully illuminated (without self-
generating shadows) from its highest point z L= + , to its lowest one z L= − . This full solid 
illumination is frequently impossible with the configuration in Fig. 1(a), because the elevation 
angle of the grating projector easily cast occluding shadows in the lower part of the 3D solid 
under analysis, precluding its digitizing. 

3. Proposed improved profilometer for 360 degree solid digitizing 

The improved 360-degree solid profilometry set-up is shown in Fig. 2. With this experimental 
set-up one maintains the higher phase resolution of interferometric phase-measuring methods 
while eliminating most self-generated object shadows cast by the 3D solid (see Fig. 1(a)). The 
3D surfaces that can be digitized with our 360 degree profilometer belongs to the continuous, 
single-valued function space C1 in cylindrical coordinates ( , , )zρ ϕ , 

 1 2 2( , ) , ( , ) , , [ , ] , [0, 2 ).z z C x y z L Lρ ρ ϕ ρ ϕ ρ ϕ π= ∈ = + ∈ − ∈  (4) 

Any solid that can be enclosed with a 3D-surface within the function space 1( , )z Cρ ϕ ∈  may 
be digitized with our 360 degree profilometer; this function space includes as a subset quasi-
cylindrical surfaces ( , ) [ , (1 ) ], ( 0, 1)z R R Rρ ϕ ε ε∈ + >  , as well as any topological convex 
solid. In Fig. 2, the CCD sensor is assumed to be parallel to the (x,z) plane. Therefore the 3D-
surface imaged over the CCD plane has the following mathematical form, 

 [ ]0 0 0 0 0 0( , ) ( , ) ( , ) cos ( , ) ; 0, cos( ), tan( ).I x z a x z b x z x g x z v g vω ρ ϕ ω ϕ ϕ= + + = = = (5) 

But we are only interested at the centered (x = 0) CCD column-pixels (0, )I z . In this way for 

a full azimuthal rotation [0, 2 )ϕ π∈ , one collects N–CCD columns at (0, , )I z ϕ  as, 

 [ ]0 0 0(0, , ) (0, , ) (0, , ) cos 0 (0, , ) ; tan( ), [0, 2 ).I z a z b z g z g vϕ ϕ ϕ ω ρ ϕ ϕ ϕ π= + + = ∈ (6) 

 

Fig. 2. Proposed 4π steradians profilometer for 3D-surfaces within the space of ρ(z,φ)∈C1. The 
projected linear grating is in this case, along the z axis and orthogonal to previous 360-degree 
fringe-projection profilometers (Fig. 1(a)). As for the light-stripe (Fig. 1(b)) the phase-
sensitivity of this 360-degree test is proportional to tan(φ0). This angle (φ0) must be kept large 
enough to increase the sensitivity of the test while avoiding lateral self-occluding shadowing. 

From this equation, one may drop the mathematically “dummy” variable x = 0 obtaining, 

 [ ]( , ) ( , ) ( , ) cos ( , ) ; 0, [ , ], [0, 2 ).I z a z b z g z x z L Lϕ ϕ ϕ ρ ϕ ϕ π= + = ∈ − ∈  (7) 

#206909 - $15.00 USD Received 26 Feb 2014; revised 10 Apr 2014; accepted 15 Apr 2014; published 29 Apr 2014
(C) 2014 OSA 5 May 2014 | Vol. 22,  No. 9 | DOI:10.1364/OE.22.010914 | OPTICS EXPRESS  10917



Equation (7) shows that the resulting fringe-pattern has no spatial carrier 
because 0 0 0 0xω ω= = . So we need several phase-shifted fringe-patterns for phase 

demodulation of 1( , )g z Cρ ϕ ∈ . 
To give an intuitive idea of the phase-shifted fringe patterns generated by our 

profilometer, assume that a sphere with radius L is being digitized. The sphere in cylindrical 
coordinates ( , , )zρ ϕ  is, 

 2 2 1( , ) ; [ , ] , [0,2 ), ( , ) .z L z z L L z Cρ ϕ ϕ π ρ ϕ= − ∈ − ∈ ∈  (8) 

Assuming telecentric projection and imaging optical systems, the carrier frequency fringe 
pattern at the CCD camera parallel to the (x,z) plane is shown in Fig. 3(a). In Figs. 3(b), 3(c), 
and 3(d) the phase-shifted fringe patterns correspond to, 

 2 2 2
( , , ) ( , ) ( , ) cos ; [ , ] , [0,2 ), {0,1,2}.

3
I z n a z b z g L z n z L L n

πϕ ϕ ϕ ϕ π = + − + ∈ − ∈ =  
 (9) 

Phase-shifting demodulation of these 3 fringe patterns gives the digitized sphere’s phase in 
cylindrical coordinates; an element of the function space 1( , )z Cρ ϕ ∈ . 

 

Fig. 3. Panel (a) shows the spatial linear fringes along the z direction (Fig. 2) projected over the 
simulated sphere (Eq. (8)) as imaged over the CCD-(x,z) plane. Panels (b), (c) and (d) show the 
fringe patterns obtained when N-lines at (x = 0,z) over the CCD are collected while the sphere 
is rotated 2π radians along the coordinate φ∈[0.2π) (Eq. (9)). The phase-shift among these 3 
fringe patterns (see Eq. (9)) is 2π/3 radians, and are phase-demodulated using a 3-step least-
squares phase-shifting algorithm to obtain gρ(z,φ). 

4. Experimental results 

Here we show the experimental results for our proposed 360-degree profilometry technique. 
As test 3D-surface ( , )zρ ϕ , we have chosen a (white-painted) Rubik’s cube mounted in its 
triangular base for its sharp angles and high frequency surface structure which clearly reveals 
the accuracy, high resolution and low noise of the proposed 360-degree digitizing technique. 
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Fig. 4. In panel (a) we show the photograph of the (white-painted) Rubik’s cube used as 3D 
test-object. Panel (b) shows the cube with the projected fringes along the z direction. 

We start by showing a white-light photograph of our Rubik’s cube in Fig. 4(a). In Fig. 
4(b) we show the same cube illuminated with the linear grating along the z coordinate. The 
projection and imaging optical system are almost telecentric, and the camera’s CCD is 
parallel to the (x,z) plane. 

Figure 5(a) and Fig. 5(b) show two (out-of 4) fringe patterns phase-modulated by the 
Rubik’s cylindrical coordinate representation ( , )zρ ϕ . Figure 5(a) has a phase-shift of 0-
radians, while Fig. 5(b) has a phase-shift of π radians. The fact that the camera and the fringe 
projector both have their optical axis at the middle of the Rubik’s cube permits an entire 
(shadows-free) clear digitalization of the cube 3D-surface ( , )zρ ϕ  (see Fig. 2). In general if 

the sensitivity angle 0( )ϕ  is not too high, and the 3D-surface belongs to 1( , )z Cρ ϕ ∈ , no self-
generated shadows from the object under analysis are cast over the camera-view as in 
previous grating projection configurations (see Fig. 1(a)). 

 

Fig. 5. Panel (a) and (b) show two (out-of 4) phase-shifted, closed-fringe patterns of the 
Rubik’s cube in cylindrical coordinates (see Fig. 2). These two close-fringe patterns in (a) and 
(b) have 0, and π radian phase-shift respectively (the ones with π/2 and 3π/2 phase-shift are not 
shown). Panel (c) shows the wrapped phase of gρ(z,φ) obtained by Eq. (10). Finally panel (d) 
shows the unwrapped phase of the cylindrical coordinate representation of the Rubik’s gρ(z,φ). 

Figure 5(c) shows the wrapped phase obtained according with the following least-squares 
4-step phase-shifting algorithm [16], 

 ( ) ( )
2 2

3
( , ) 4 4( , ,0) , ,1 ( , , 2) , ,3 .

i i
i g z iAe I z e I z e I z e I z

π π
ρ ϕ πϕ ϕ ϕ ϕ

   
   
   = + + +  (10) 

Figure 5(d) shows the unwrapped phase of the Rubik’s cube in cylindrical 
coordinates ( , )g zρ ϕ . The unwrapping of Fig. 5(c) was made by basic line-integration of 
wrapped phase differences. Finally Fig. 6 shows three different perspectives of the 360-
degree digitized Rubik’s cube ( , )zρ ϕ . As Fig. 6 shows, the Rubik’s cube is obtained with 
low phase-noise and high spatial resolution which translates into more visible surface details. 
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Fig. 6. This figure shows 3 perspectives of the 4π steradian (360 degree) digitized Rubik’s 
cube. 

Of course higher spatial frequency surface reconstruction is possible by increasing the 
azimuthal 2 / Nϕ πΔ =  and spatial CCD pixel resolutions. Lower phase-noise demodulation 
is also possible by increasing the number M of phase-stepped images, Fig. 6 clearly shows 
interesting high frequency surface details of the Rubik’s cube. 

Because the fringe patterns obtained have no spatial-carrier (see Eq. (7)) we may use the 
full spatial Fourier spectrum to reconstruct fine details of the 3D cube's surface. In spatial 
carrier interferometry one has at most half, but in practice, one third of the available Fourier 
frequency space to house the 3D surface spectrum. In contrast having close-fringes (base-
band) fringe patterns (Figs. 5(a) and 5(b)) one has the full spectral bandwidth to recover fine 
surface details. This high-frequency surface reconstruction (Fig. 6) cannot be seen in 
previously published 360-degree approaches which render very smooth digital solid surfaces 
[2–15]. At the risk of becoming repetitive, we emphasize that, using base-band (closed-
fringes) fringe patterns, allows one to reconstruct the digitized 3D-surfaces with the full 
theoretical spatial bandwidth that the raw digitized fringe data can hold. 

5. Discussion of the advantages and limitations of the proposed 360-degree profilometer 

In the peer-reviewing process we had many interesting questions coming from our reviewers 
and we feel that it is worth answering them within the paper because they elucidate and 
clarifies many interesting points not covered, or probably not fully explained so far. 

a) Why this is a low-noise 360-degree profilometry technique? This 360-degree 
profilometer has low phase-noise because it uses base-band, phase-measuring, M-
step demodulation algorithms. If white additive Gaussian noise corrupt the fringes, 
and least-squares M-step phase-shifting algorithms are used (as in this paper) we 
obtain an analytic signal with a noise-power-reduction of (1/M) with respect to the 
noise power of the digitized fringes [16]. In our case the analytical signal in Eq. (10) 
has a noise power reduction of (1/4) with respect to the additive noise power of each 
phase-stepped fringe images ( , , )I z nϕ , {0,1, 2,3}n = . 

b) How many digital CCD images are needed to obtain each phase-stepped cylindrical 
fringe image ( , , )I z nϕ  of the solid? We need N CCD-images to assemble N central 

CCD-lines at x = 0 into a single fringe-image ( , , )I z nϕ . In our Rubik’s cube, for 

each rotation we took 400 CCD-lines per phase-stepped fringe-image ( , , )I z nϕ . The 
azimuthal resolution increment was Δφ = 2π/400. 

c) Which unwrapping algorithm was used? Given the low-noise of the projected fringes 
and the 4-step least-squares phase-shifting demodulation used, we have employed 
the most basic phase unwrapping algorithm: line integration of wrapped phase 
differences. 
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d) How long does it take to capture a single phase-stepped fringe-pattern in Figs. 5(a) or 
5(b)? The turntable was controlled by a stepping motor having an incremental angle 
Δφ = 2π/400. It takes about 2 seconds for each full turntable rotation, during which 
we grab 400 central CCD pixel-lines at x = 0. So to capture the 4 phase-stepped 
fringe-pattern image-data takes about 8 seconds. 

e) Which is the resolution of each phase-stepped cylindrical fringe-image ( , , )I z nϕ  of 
the Rubik’s cube in Fig. 5? The angular and spatial resolution for each image 

( , , )I z nϕ  in this paper is {1,2,3..., 480]z ∈ , and {0, , 2 ,..., 400 }ϕ ϕ ϕ ϕ∈ Δ Δ Δ with Δφ 
= 2π/400 and a CCD camera with 640x480 pixels. 

f) Why this 360 degree method is high resolution? The spatial 3D surface resolution is 
only limited by the CCD's vertical resolution, the azimuthal angle resolution Δφ = 
2π/N of the stepped turntable motor and the mechanical stability of the turntable. In 
our Rubik's experiment the spatial resolution was (480,400) surface pixels to 
represent ( , )zρ ϕ  in cylindrical coordinates. 

g) Self-generated shadow-free digitalization is only possible for topological convex 
solids, isn’t it? Topological convex 3D-surfaces form a proper subset of 1( , )z Cρ ϕ ∈ . 

Any solid enclosed by a single-valued 3D-surface 1( , )z Cρ ϕ ∈  (see Eq. (4)) may be 
digitized using the proposed 360-degree technique. The 3D Rubik’s cube in Fig. 4 is 
not entirely convex because of its mounting triangular base. There are points over 
the 3D surface of the cube-base compound which cannot be joined by a straight line 
lying entirely within this composed solid (convexity definition). The Rubik's cube-
plus-base compound is a single-valued 1( , )z Cρ ϕ ∈ surface except for the bottom of 
the triangle-base, which could not be digitized. 

h) Why quasi-cylindrical objects are easier to digitize? In the extreme case of a 3D 
cylinder, ( , ) , [ , ], [0,2 ),z R z L Lρ ϕ ϕ π= ∈ − ∈  a single CCD-line at x = 0 would define 
the entire cylinder for every azimuthal angle φ. Continuous quasi-cylindrical objects 

( , ) [ , (1 ) ]z R Rρ ϕ ε∈ +  ( 0, 1.0)R ε>  , are always easier to digitize and form a 

small subset of the broader function space 1( , )z Cρ ϕ ∈ . 

i) Which is the most basic mathematical condition of 3D-surfaces that this method can 
digitize? As we said, the basic mathematical assumption is that the 3D boundary-
surface must be continuous and single-valued function 1( , )z Cρ ϕ ∈ , [ , ]z L L∈ − , 

[0, 2 )ϕ π∈ . For example a coffee-mug 3D boundary-surface is not within the 

space 1( , )z Cρ ϕ ∈ . That is because at the handle, the mug has two-valued cylindrical 

radiuses 1 1 1( , )zρ ϕ ρ= and 1 1 2( , )zρ ϕ ρ= , one surface (i.e. 1 1 1( , )zρ ϕ ρ= ) occludes the 

other one. Digitize multi-valued cylindrical functions ( , )zρ ϕ  such a donut-like 
genus-1 solids is impossible with the proposed profilometer. One would necessarily 
need multiple camera perspectives, not a single one. 

j) Why it is claimed that the projection-camera system proposed is new?, isn't it the one 
used in standard single stripe-line 360-degree profilometry?. That is true, however 
our system uses more robust, less-noisy coherent, phase-stepping demodulation 
algorithms while maintaining the shadow-free (for 1( , )z Cρ ϕ ∈ ) advantages of the 
projector-camera geometry of single-line projection 360-degree profilometry. 

k) Is fringe-image fusion from different perspectives needed? Our method uses a 
straightforward and trivial line-by-line raw fringe-data assembling to obtain the 
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digitized 3D-surface 1( , )z Cρ ϕ ∈ within a single cylindrical coordinate system 

( , , )zρ ϕ , so no complex image fusion is needed. This is an advantage with respect 
to some multi-view 360-degree profilometers that must fusion or blend different 
fringe-image perspectives residing in different coordinate systems into a common 
coordinate system using iterative closest point (ICP) algorithms (e.g. Geomagic). 
The approach herein proposed only measures each object point once and thereby the 
fusion problem from different fringe-patterns perspectives is eliminated and the 
generation of the final 3D-surface 1( , )z Cρ ϕ ∈  is very easy. 

l) How to understand x = 0 in Eq. (7) ? The pixel-line coordinates given by the line (x = 
0,z) is the central CCD-column. We keep this line for each azimuthal 
increment 2 / Nϕ πΔ = . As mentioned, we then assemble in a line-by-line basis, N 

CCD-columns with coordinates ( 0, , )x z ϕ= for [ , ]z L L∈ − , and [0, 2 )ϕ π∈  to obtain 

each phase-shifted fringe-pattern ( , , )I z nϕ in cylindrical coordinates (see Figs. 5(a) 
and 5(b)). 

Finally as far as we know, this is the first time that a more precise mathematical definition 
of the functional space where the solid bounding-surfaces must reside is given. This 
functional space is the continuous, single-valued space 1( , )z Cρ ϕ ∈ . The functional space 

1( , )z Cρ ϕ ∈  includes all topological convex solids as a proper subset. However the 

space 1( , )z Cρ ϕ ∈  fails to include more complex 3D-surfaces such as the boundary of a 

coffee-mug for example. That is because the function space 1( , )z Cρ ϕ ∈ does not include 
multi-valued (in cylindrical coordinates) boundary surfaces such as a coffee-mug which is a 
topological genus-1 3D-surface. 

6. Conclusions 

Here we have presented a new experimental set-up along with its theoretical analysis for 360 
degree digitizing of solids. We have seen that whenever the 3D enclosing surface of the 
digitizing solid is within the single-valued, function space 1( , )z Cρ ϕ ∈ , it can be digitized 
accurately and without self-occluding shadows. We have chosen as experimental solid-test a 
Rubik’s cube positioned over its triangular base for its sharp corners and high frequency 
surface details. As seen from the experimental results (Figs. 4, 5 and 6) we are capable of 
digitizing most of the non-convex Rubik’s cube-plus-base compound without self-generated 
shadows, because the CCD camera and the linear grating projector have both their optical 
axis crossing the center of the cube-base compound (Fig. (2)). In contrast, previous grating 
approaches (see Fig. 1(a)) many times generate self-occluding shadows even for convex 
solids precluding the analysis of the lowest parts of the object. On the other hand stripe-light 
triangulation estimation precludes the use of more accurate phase-demodulation techniques, 
such as the least-squares phase-step algorithm used in this work. Finally having base-band 
fringe patterns (Figs. 5(a) and 5(b)) one keeps the full spatial bandwidth of the raw digitized 
data for 3D-surface digital reconstruction. This allows visualizing higher frequency 3D-
surface details. In other words, closed-fringes pattern images, allows one to analyze the 
digitized solids with the highest possible surface bandwidth available from the raw fringe 
data. 
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