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2009



The dissertation of Guillermo Huerta Cuéllar is approved.
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Abstract of the Dissertation

Prebifurcation noise amplification and attractor

hopping in an Erbium doped fiber laser

by

MSc Guillermo Huerta Cuéllar

Professor Dr. Alexander N. Pisarchik, Thesis advisor

Centro de Investigaciones en Óptica A. C., 2009

This thesis presents experimental results on stochastic and deterministic dy-

namics studies carried out in an Erbium doped fiber lasers (EDFL) which are pre-

sented to be compared with the results of numerical simulation using an advanced

two-level laser model. The dynamics of this laser under external modulation is

very rich; it can exhibit different bifurcations, chaos, and crises; furthermore, for

different modulation parameters, one can encounter the coexistence of multiple

periodic regimes (attractors).

In the experiments with EDFL we demonstrate a strong noise amplification

in the vicinity of the critical points. Many are the situations in nature where this

phenomenon can be experienced: heart strokes, eruptions, earthquakes, etc.

Another phenomenon studied in this thesis is the attractor hopping. As the

noise added to a system is increased, the laser brings out different periodic states

defining multistability zones. Then, as noise is augmented, more and more of

these states come to form part of the hopping attractor. For certain input noise,

when more and more states are involved in the hopping process, there is a little

change in the output noise. Such a noise-independent regime can be promising

for some important applications, in particular, detectors transparent to noise.
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Resumen

Esta tesis presenta resultados experimentales de estudios sobre dinámica es-

tocástica y deterministica realizados en una fibra láser dopada con Erbio (FLDE)

los cuales se presentan para ser comparados con resultados de simulaciones nu-

méricas usando un avanzado modelo de láser de dos niveles. Usando modulación

externa, la dinámica de este láser es muy rica; puede exhibir diferentes tipos de

bifurcaciones, caos y crisis; ademas, para diferentes parámetros de modulación se

puede encontrar la coexistencia de múltiples reǵımenes periódicos (atractores).

En los experimentos con FLDE encontramos una fuerte amplificación de ruido

cercana a puntos cŕıticos. En la naturaleza, existen muchas situaciones en donde

este fenómeno se puede observar: ataques al corazón, erupciones, terremotos, etc.

Otro fenómeno que se estudia en esta tesis es el atractor hopping. Cuando se

añade ruido al sistema, el láser muestra diferentes estados periódicos los cuales

definen unas zonas de multiestabilidad. Entonces, cuando el ruido se incrementa,

más y más de esos estados aparecen para formar parte del atractor hopping.

Para cierto valor de ruido agregado, cuando muchos estados están involucrados

en el proceso hopping, el cambio del ruido a la salida es muy pequeño. Este

régimen independiente de ruido puede ser prometedor para algunas aplicaciones

importantes, en particular, para detectores transparentes al ruido.
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Introduction

A thorough account of the experimental and some theoretical results in EDFL

are given along with this thesis. The thesis contains Introduction, three chapters,

and Conclusions.

Chapter one presents a fast review on laser nonlinear dynamics and its growing

importance among researchers. The first three sections give a background on the

chaos theory and introduce some important definitions. Lasers are described as

dissipative systems, and, according to the material, each device is made of, a

dynamical classification of lasers is given. In section 4, a simple laser theoretical

model is introduced and variable elimination methods are used to define a laser

based on both its material and its dynamics. In section 5, behavior, properties

and types of attractors are illustrated to explain their coexistence. Bifurcations

and pathways to chaos are described in section 7. A brief explanation of stochastic

dynamics including stochastic resonance is given in section 8. A short account

on EDFL performance is presented at the end of the chapter.

In chapter two is an introduction to the topic of prebifurcation noise ampli-

fication, followed by the setup description. Experimental results are provided to

describe the dynamical processes in the EDFL. To end this chapter, a theoretical

study and its results is compared with our experiment, and we underline how

small the differences found are.

Chapter three gets to the core of hopping attractor theory, describes in detail

the experimental setup used and thoroughly discusses the results. Some conclu-

sions are given and the possibilities of future applications are presented.

Finally, some general conclusions are presented.
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CHAPTER 1

Dynamics of lasers

1.1 Nonlinear dynamics in lasers

Interest in the field of dynamics of lasers is only a few years old [1, 2, 3], the

stable continuously emitting laser having been at the center of attention for the

last 50 years.

The interest is to a great extent motivated by the analogies of laser dynamics

with dynamic chaotic and turbulent processes in other fields of the nature. On

the other hand, it has become increasingly evident that the understood and

“troublesome” laser properties such as unstable emission, poor reproducibility

of laser pulses, limitation of attainable widths of ultrashort pulses and coherence

lengths, and also problems with the emission mode pattern shapes, spontaneous

irregular pulsing, etc., are not caused by insufficient technical skill, but are direct

consecuences of the inherent nonlinear properties of lasers.

Apart from assisting in this respect, an undertanding of laser dynamics has

helped in interpreting the rich phenomena of particular systems, that have been

known for long time. A good example is the laser with an internal saturable

absorber [4, 5]. In addition, it can lead to new useful applications, such as

generation of phase coherent pulses in the infrared region, which combines the

adventage of temporal compression of an averange power into high-power short
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pulses with the coherence of continuos lasers.

Dynamics of lasers can be caused by the intrinsic properties of the laser sys-

tems [1], as in self pulsing, self-Q-switching lasers or trough external influences on

the laser, such a time dependence of laser parameters, or interaction of external

optical fields. Apart from the more practical questions of the conditions under

which a particular laser system is stable, i.e. showing steady-state emission, or

the conditions that will produce pulses in a possibly desired manner.

One of the most basic theoretical models of nonlinear dynamics (and fluid

dynamics) is the Lorentz model which describes the simplest case of a laser, its

dynamics is frecuently encountred in nature and also with lasers. This example

give a taste of the mathematical treatment of non linear dynamics problems

either through maps (discrete dymanics) or trough differential equations (time-

continuous dynamics)[3].

1.2 Lasers as dissipative systems

Instabilities and chaotic motion occur in both conservative and dissipative sys-

tems. Whereas a conservative system never loses the memory of its initial con-

ditions, dissipative systems have asymptotic solutions for t → ∞ that can be

independent of the initial conditions. This makes their treatment easier and sim-

plifies their phenomenology. Lasers are dissipative systems: on the one hand

energy is supplied to them by pumping, and on the other energy is dissipated via

the out coupling of light and also relaxation processes, which include conversion

into heat within the active medium. If the transients (i.e. the initial period re-

quired for the laser to forget its initial conditions, for instance after switching on

or after crossing an instability point) are ignored, the laser can be described by

3



the asymptotic solutions (“attractors”) (section 1.6) of its differential equations.

Lasers bear a resemblance to fluid flows. Energy can be supplied to a rectan-

gular cell, containing a fluid, by a temperature difference between a bottom and

upper sides. With a small temperature difference one observes heat conducton.

In the laser case, this corresponds to pumping with a strength insufficient to reach

the laser threshold. In the cell no macroscopic order occurs; the laser rids itself

of the pump energy by radiating incoherent, unordered spontaneous emission.

With a larger temperature difference, circular macroscopically ordered flow

patterns, or “rols”, from spontaneously in the cell as a concequence of the tran-

sition from heat conduction to heat convection. In the laser this corresponds

to pumping above threshold, where the spontaneous formation of spatially an

temporally ordered (coherent) emission mode has taken place. The circular time-

periodic motion in the convection cell may be thought as the counterpart of the

oscillation at the optical laser frequency.

With an even larger temperature difference, the convection cell becomes tur-

bulent as the laser at high pump strength becomes chaotic.

The equations describing in a simplified way both Bénard convection and the

most elementary form of a laser are [6, 7]

ẋ = σ(x− y)

ẏ = x(r − z)− y

ż = xy − bz

(1.1)

For the laser case x represents the electric field, y the polarization and z the

population inversion. The meanings of the parameter b, r and σ for the two cases

are as follows:

4



Bénard convection Laser

σ:Prandtl number σ = κ/γ⊥
r = R/Rc r = λ + 1

b =
4π2

π2 + k2
1

b = γ‖/γ⊥

Table 1.1: Meanings of the parameters b, r and σ for the Bénard convection and
the simplest form of the laser.

where r is the Rayleigh number R normalized to the value that it takes at the

onset of convection, k1 is a dimensionless wavenumber, κ represents the damping

rate of the laser resonator, λ is the pump rate above the threshold (λ=0 at the

laser threshold), γ‖ is the energy relaxation rate in the laser medium and γ⊥ is

the polarization relaxation rate. For λ=0 an instability is found that corresponds

to onset of convection (r = 1) and continuous laser emission.

Two kinds of thresholds can be defined for a laser: “the first laser threshold”,

which corresponds to the well know threshold for the stable laser emission and is

equivalent to a second-order phase transition, and the “second laser threshold”,

which gives rise to onset of unstable behavior.

The dynamics of lasers of even the simpest type are thus closely related to

basic models of nonlinear dynamics and hence to a variety of phenomena observed

in other disciplines of science. Weather, economic, social, chemical and biological

systems nowdays appear to be governed by chaotic dynamics [7, 8, 9, 10]. In

contrast to these, the laser is relatively a simple system and, unlike the large

majority of them, it is possible with lasers to control they degrees of freedom.

Studies of laser dynamics may therefore be expected to provide increasing insight

into the dynamics of non-linear systems in general, by gradually progressing from

the most “confined” to less and less “confined” cases. The results of the study of

laser dynamics might therefore, apart from their practical interest, prove useful
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for understanding complex phenomena that have so far not been understood.

1.3 Dynamical classification of lasers

Lasers are usually classified according to the material that provides optical am-

plification. This material determines largely the properties of the laser: the

mode of operation (pulsed or continuous), the emission wavelength, the output

power/energy and the coherence properties. Gases, liquids, and solids can pro-

vide optical amplification when properly excited. A new classification based on

time scale considerations introduced by Arecchi et al. [11] opened a new look at

lasers as dynamical systems and can be considered as one of the most important

achievements in laser dynamics.

The laser transition of the amplifying material can be homogeneously broad-

ened, i.e. light of certain optical frequency can interact with all atoms-molecules,

all of them having the same resonance frequency. The homogeneous linewidth,

∆νH
is given by the medium relaxation rates:

γ⊥ + γ‖ = π∆νH
(1.2)

Where γ‖ and γ⊥ are the relaxation rates for inversion and polarization, re-

spectively. Specifically, lasers operating in a single emission mode are usually

described by three equations. The three relevant variables: field, population, and

polarization, decay on very different time scales, which are given by the relaxation

rates κ, γ‖, and γ⊥. If one of these constants is large compared with the others,

the corresponding variables relaxes fast and consequently adiabatically adjusts to

the other variables. The number of equations describing the laser is then reduced.

Precisely, single-mode lasers were called class A, B, and C depending on whether,
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after suitable adiabatic elimination of fast variables, the laser dynamics is ruled

by one, two, or three equations, respectively.

The laser equations for a class A laser reduce to one. Therefore, only constant

output solutions exist. For the class B lasers, oscillation of energy between field

and inversion is possible and the equations yield relaxation oscillations. Class C

lasers with their coupled dynamics of field, inversion and polarization can display

undamped periodic or nonperiodic (chaotic) pulsing.

Thus, the following classification has been introduced [11].

Class A (e.g., He-Ne, Ar, Kr, dye): γ⊥ ' γ‖ � κ. One single nonlinear field

equation remains that means stable coherent emission.

Class B (e.g., ruby, Nd:YAG, CO, CO2, semiconductor, fiber): γ⊥ � κ ≥ γ‖.

Only polarization is adiabatically eliminated and the dynamics is ruled by two

rate equations for field and population that allows for damped oscillations of the

energy between field and inversion (relaxation oscillations).

Class C (e.g., He-Cd, He-Xe, far-infrared gas lasers): γ⊥ ' γ‖ ' κ. The

complete set of three equations has to be used, hence Lorenz like chaos is feasible.

Class B lasers, however, show chaotic dynamics when they are externally

influenced (parametric modulation, injection of external light, feedback, bidi-

rectional ring cavity, or saturable absorber). Dynamical instabilities and chaos

observed in experiments with a class-A multimode infrared He-Ne laser [12], a

class-B loss-modulated CO2 laser [1], and a class-C ammonia laser [13] have been

properly understood and described mathematically in according with the above

classification. Moreover, this classification scheme allowed one to predict dynam-

ical behavior of new lasers depending on the relationship of the relaxation rates

of their variables, e.g., later to refer fiber lasers to the class-B lasers.
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From the nonlinear dynamics view point, experiments with lasers offer ad-

vantages over similar investigations with fluids. Since the basic oscillation is an

optical frequency, all characterictic frequencies are very high. Hence the require-

ments for parameter stability for measuring the time-dependent behavior for the

long periods necessary for quantitative investigations are easier to fulfill than in

fluid experiments.

1.4 Nonlinear dynamical behavior: mathematical concepts

In this section is described, from the mathematical point of view, the general

features that can be expected in nonlinear dynamic behavior. This can be applied

to the study of the dynamics of different kinds of lasers.

1.4.1 Nonlinear differential equations

Any kind of laser can be described, with some simplifications, by means of cou-

pled nonlinear differential equations involving first-order time derivates. Thus,

in general we have to deal with equations such as

d~x

dt
= F~µ(~x, t) (1.3)

where the time-dependent vector ~x = (x1, ..., xn) represents the n dynamical

variables describing the laser system, so that its evolution defines a “trajectory” or

“orbit” of the system in the “phase space” defined by these variables. F~µ describes

the nonlinear coupling existing between the dynamical variables in a given kind

of laser. In general F~µ depends on several “control parameters” µ1, ..., µp that

characterize each specific set of experimental conditions; this set of parameters is
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designated by a vector ~µ = (µ1, ..., µp). When the function F does not explicitely

depend on time, the system is called “autonomus”:

d~x

dt
= F (~x) (1.4)

where the subscript ~µ on F has been omitted for simplicity. Lasers are autonomus

systems, except when a time-modulated external influence is introduced. Unless

it is explicitly indicated.

Given an initial condition ~x(t = 0) = ~x0, it is well know that equations such

as eq. (1.4) have a unique solution. This means that trajectories in the phase

space never intersect. The only exceptions to this rule are the “singular” points,

at which several trajectories can eventually end (or begin).

A solution ~x(t) of eq. (1.4) with initial condition ~x(0) = ~x0 is sometimes

represented by means of a time evolution operator F t, which when applied to ~x0

gives the point ~x(t) reached by the system at time t:

F t(~x0) = ~x(t) (1.5)

Lasers are “disipative systems”, i.e. they have energy exchanges with a ther-

mal bath or a large system with many degrees of freedom. Dissipation or internal

friction has an important consequence for autonomous systems: any volume V

in the phase space contracts along time evolution:

F t(V ) < V, for all t > 0 (1.6)
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1.4.2 Adiabatic elimination of variables (Slaving principle)

From the theoretical point of view, the study of a specific laser system requires

the analytical or, in general, numerical solutions of differential equation such

as eq. (1.4) for many differet initial conditions and experimental conditions.

In many cases this can be excessively large quantity of information to handle

or understand. Therefore, methods or thechniques for reducing the amount of

information or the number of degrees of freedom, in such a way that the basic

features of the dynamical evolution be retained, are very useful in these cases.

An almost equivalent problem appears from the experimental point of view; it

is usually impossible to measure or to deal with the complete temporal evolution

of all the dynamic variables, and only partial information is recorded, which

should also keep the basic dynamic features.

Here is briefly described one of the most often used reduction methods; the

adiabatic elimination of variables.

Often, in equations such as (1.4), one or several of the control parameters

µj influence in a very direct way the temporal evolution of particular dynam-

ical variables. For instance, the Lorenz laser equations (1.3), the normalized

field and population relaxation rates σ and b influence, respectively, the field and

population variables x and z, thorough the terms -xσ and -bz appearing in the

respective evolution equations dx/dτ and dz/dτ . In these cases, i.e. when a

control parameter µj influences the time evolution of a variable xj through term

-µjxj, the following behavior can occur. If this parameter is much larger than

the remaining ones, the influenced variable xj rapidly “loses” the memory of its

history (i.e. of the values reached at the preceding times), in such a way rapidly

adapts to (or “adiabatically follows”) the instantaneous values reached by the
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remaining variables, with an “adaptation speed” approximately proportional to

µj. Hence a good simplification for solving eq. (1.4) within a given time scale

(or time resolution) consists in equating to zero, for all t, the time derivatives

corresponding to the variables ralaxing within a faster time scale than the given

one, and introdicing the resulting algebraic equations into the remaining differ-

ential equations. In this way the number of independent variables or degrees of

freedom are reduced (“adiabatic eliminition”).

Since, under these conditions, the slowly evolving variables completely deter-

mine the evolution of the physical system, they are called the “order parameters”.

It is said that they “slave” the subsystems controlled by the fast variables. In-

deed, when a few order parameters rule the time evolution of a large system

with many degrees of freedom, it is a sure sign that a large degree of order has

been reached. Lasers are typical systems where the “slaving principle” applies,

as Haken has elegantly explained [2, 14].

1.5 Asymptotic behavior

1.5.1 Attractors: definition and properties

For dissipative systems any solution or trajectory can be divided into two parts:

the initial transient regime and the final or asymptotic regime, which is located

within an “attractor”.

An attractor is a set of points in the phase space towards which trajectories

eventually tend. Because an attractor is a basic concept for characterizing the

asymptotic dynamic behavior in dissipative systems, precise mathematical def-

initions have been formulated (Guckenheimer and Holmes, 1983 [15]; Eckmann

and Ruelle, 1985 [16]). Explained in simple terms, these definitions include four
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basic points or conditions for a (compact) set A to be an attractor:

i) The neighborhood of A contracts, with time, towards A (“shrinking neigh-

borhood”).

ii) Any trajectory originating inside the atractor remains within it (F t(A) = A

for all t.)

iii) Any trajectory within the attractor goes trough all of it: for arbitrarily

large values of t the trajectory passes arbitrarily close to any point of the

attractor (recurence property).

iv) It is non descomposable: it cannot be split into two disjoint pieces each

satisfying the preceding conditions.

Many different trajectories can eventually settle on a given attractor. The set

of points in the phase space which evolve towards a given attractor constitute its

“basin of attraction”.

There is no limit to the number of attractors that can exist for a given dy-

namical system (usually the number is small, but some simple systems have an

infinity of them). The basins of attraction may be complicated, even if the at-

tractors are simple; they may interlace in almost inextricable manners, defining

“fractal” boundaries.

“Repellors” can also be defined; these have the opposite meaning to that of the

attractors. They are sets of points from which trajectories go away. Physically

they are less relevant than attractors.

The contraction of volumes in phase space (see eq. (1.6)) confers a common

and important feature to any attractor: its volume is zero. This means that the
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dimension of an attractor is lower than that of the phase space. This property is

useful for classifying the different kinds of attractors.

1.5.2 Kinds of Attractors

There is given a simple classification of attractors based only on their dimension

and other most apparent features.

a. One and two dimensional phase spaces

For systems described by only one or two variables (let us call them 1-D or 2-D

cases), the Poincaré-Bendixon theorem (Hirsch and Smale ,1974 [17]) reduce the

possible kinds of attractors to only a few simple ones (see in Table 1.2).

Fixed Points Periodic orbits Quasi-periodic Strange
attractors fractal chaotic

1-D Yes No No No No
2-D Node, focus Closed curves No No No
3-D Node, focus, ... Closed curves Closed surfaces Yes Yes
n-D Node, focus, ... Closed curves Closed surfaces Yes Yes

Closed manifolds
(dim m < n)

Table 1.2: Simple schematic classification of attractors, for the different possible
dimensions (n−D) of the phase space (n = 1, 2, 3, ...).

b. Three and higher-dimensional phase spaces: periodic and quasi-periodic attrac-

tors

The periodic attractors appearing in 3-D and n-D (n > 3) phase spaces are

generalizations of the previous ones. Fixed points and closed orbits obviously

exist, but the last ones are not necessarily confined on a plane.

The next higher-order attractors are closer surfaces (or “two-dimensional man-
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ifolds”) (see Table 1.2). The simplest is a toroidal surface or torus, T 2, in a 3-D

phase space (Fig. 1.1); it appears when the time evolution is doubly periodic, for

instance, when the trajectories can be described through two variables, such as

y1 and y2 in Fig. 1.1, whose time dependence is periodic, with respective periods

T1 and T2:

yi(t) =
2π

Ti

t (mod = 2π) (1.7)

Two cases may be distinguished. First, if T2/T1 is a rational number, then

the trajectory is a closed line on the toroidal surface (see Fig. 1.1, for which

T2/T1=1/4). In fact, in this case the attractor is not the toroidal surface but

only the closed line. If the time evolution along this orbit is described through

the phase space variables xi(t) (i=1,2 or 3), their Fourier spectra contain both

frequencies f1 = 1/T1 and f2 = 1/T2 (and also, in general, any linear combina-

tion lf1 + mf2 where l and m are integers (positive or negative), if the periodic

evolution is not exactly sinusoidal).

The other possible case is when T2/T1 is an irrational number (i.e. the periods

T1 and T2 are incommensurate). The trajectory covers the whole toroidal surface

and does not close (i.e. it does not reach the initial point) for any finite time t. In

this case the trajectory is periodic in each of its cordinates y1 and y2, but there is

not periodicity for the whole evolution (or it is “periodic” with a period T →∞);

we are in the presence of a “quasi-periodic attractor”, which is constituted by

the toroidal surface (or, in general, by a two-dimensional manifold).

It might seem an unphysical refinement to distinguish between rational and

irrational numbers for the ratio T2/T1, if one takes into acount experimental

uncertainty. See for this aspect Bergé, Pomeau and Vidal (1984)[18], where the

loking effect between two oscillators is considered.

The conclusions of this illustrative example can be easily generalized to phase
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Figure 1.1: A two-dymensional in a 3-D phase space: a toroidal surface or torus
T 2. y1 and y2 define a set of coordinates on the torus and the dashed line repre-
sents a periodic orbit on it.

spaces of any dimension n ≤ 3: the periodic orbits can display from one- to

(n− 1)-fold periodicity, and the tori and “hyper-tori” T n can have dimensions n′

from 2 to (n − 1). The hyper-torus dimension indicates the number of different

periods ruling the corresponding quasi-periodic dynamic behavior. In general,

periodic and quasi-periodic attractors in an n-dimensonal phase space are m-

dimensional closed manifolds, with m < n (see Table 1.2).

c. “Strange” attractors

In n-dimensional phase space, with n ≥ 3, attractors can exist that are not

manifolds (i.e. smooth curves, hyper-surfaces, etc.) and do not describe periodic

or quasi-periodic dynamic evolution. They are know as “strange” attractors,

which means that they are “fractal” and “chaotic”. A fractal attractor is char-

acterized by the fact that its Hausdorff dimension is larger than its geometrical

(or topological) one and usually is not an integer. Its origin lies in the intense

15



stretching and repeated folding in some directions during the volume contraction

in phase space (see eq. 1.6), as is schematically illustrated in Fig. 1.2. Pic-

torically, the eventual “contract” between adjacent sheets of the folded surface

confers some effective degree of “thickness” to the surface, so that, in the example

in Fig. 1.2 its effective dimension can be in some sense larger than 2 (and lower

than 3). This value is the fractal or Hausdroff dimension.

Figure 1.2: Volume contraction in phase space, as a result of the dynamic evolu-
tion. There are stretchings and foldings in some directions.

An attractor is called “chaotic”, or equivalently, a system is behaving “chaot-

ically”, when it has a sensitive dependence on the initial conditions. This means

that two orbits which initially are very close to each other exponentially separate;

for long periods both remain within the attractor, but their initial proximity has

been completely lost. The exponential separation takes place in the directions

of stretching. It is said that any orbit in the attractor is “unstable within the

attractor” (i.e. it is stable in the sense that it remains forever on the attractor).

Here is a reference to “deterministic” chaos, i.e. to that appearing in systems
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with a finite number of degree of freedom or variables which are ruled by a finite

set of differential equations, in such way that if one knows exactly the initial

conditions, the future evolution can be exactly predicted. The point is that

initial conditions can never be exactly know or repeated, so that the sensitive

dependence on these conditions plays a basic role in the dynamic behavior of the

system. It entails a loss of predictability over long periods.

The fractal character is more a geometrical than a dynamical property of

an attractor, whereas the contrary for the chaotic character. All the chaotic

attractors found up to now are fractal, but the contrary is not always true [8].

The invariance of an attractor under the dynamical evolution entails in general a

phenomenon of “self-similarity”: an enlarged view of a small zone of the attractor

is similar to a larger zone of it.

1.6 Coexistence of attractors

Nonlinear dissipative systems often exhibit two or more dynamic equilibrium

states for the same values of parameters. Some states may be chaotic while oth-

ers are regular (periodic). Such multistability appears to be common for a variety

of nonlinear systems. In a system with coexisting attractors a particular state

is determined by initial conditions. The systematic organization of coexisting

attractors allows one to predict the behavior of lasers, when initial conditions

are allowed to evolve to their final states. Already in the beginning of the 1980s,

the nonlinear behavior of various lasers was experimentally explored with respect

to the emergence of coexisting states. The first experimental evidence of multi-

stability in lasers has been demonstrated by Arecchi et al. [1] in a Q-switched

CO2 laser. Since then, it has been shown that lasers exhibit multistability due

to pump modulation [19], loss modulation [20] or optical injection [21, 22]. Re-
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cently, a rich variety of bifurcations and coexistence of multiple attractors which

appear in the primary saddle-node bifurcations and their relation to main laser

resonances have been demonstrated in a diode-pumped Erbium-doped fiber laser

with pump modulation [23, 24, 25] (Fig. 1.8).

Figure 1.3: Bifurcation diagram in a fiber laser with pump modulation. For
different modulation frequency we can observe, (a) coexitence of attractors P1,
P3, and P4, and (b) coexistence of attractors P1, P4, and P5.

The dynamics in lasers with an optical feedback due to the reflection from

a mirror often leads to delay differential equations introduced by Lang and

Kobayashi in 1980 [26], where the delayed feedback is a source of the emer-

gence of complicated behavior including multistability [27, 28]. Masoller [29] has

shown that inevitable noise and in some cases a certain amount of external feed-

back results in complex hopping dynamics between different coexisting attractors

in the system. For a particular range of noise amplitudes, this jumping exhibits

a resonant behavior due to the interplay of the delayed feedback and the noise.

The residence times probability distribution measuring the time spent by the

trajectory in the neighborhood of an attractor exhibits peaks at multiples of the
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delay time. The strength of the peaks reaches a certain maximum for an opti-

mal noise level indicating the resonance. Laser physics provides also important

technological problems which need to control multistability. One famous exam-

ple is the so-called “green problem” [30] present in the operation of intracavity

frequency-doubled Nd:YAG lasers. Usually, these lasers emit infrared light but

using a nonlinear optical crystal, this light can be converted into visible green

light. Unfortunately, this technique produces irregular fluctuations in the output

intensity so that additional stabilization mechanisms like feedback control need to

be applied to obtain a stable output [31]. The feedback control, however, induces

multistability which can be tackled by the attractor annihilation method [32, 33]

to make the system monostable. The method implies a harmonic perturbation

leading to attractor destruction. This method has been realized experimentally

first in a loss-modulated CO2 laser [32] and then in a pump modulated fiber laser

[34].

1.7 Bifurcations and roads to chaos

In general, a small variation in one or several laser parameters produces small

(continuous) changes in the laser output, so that the system is said to be “struc-

turally stable”. However, for some specific parameter values one of the solutions

(or attractors) may suffer a strong qualitative change. Such a behavior is called

a “bifurcation” and the system is said to be “structurally unstable” for this pa-

rameter value. Very often when a control parameter is varied and a bifurcation

appears at some critical value, it is followed by a sequence of new bifurcations at

higher values of the parameter. Each new attractor appearing in the bifurcation

chain is usually more complex than the previous one and eventually it becomes

chaotic. The sequence is called a “road (or route) to chaos”. The number of
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types of routes to chaos is unknown but it has been observed that some of them

appear very often, and for this reason they are called “scenarios”. In the following

subsection a brief description of the most important scenarios to chaos observed

in lasers is presented.

1.7.1 Bifurcations

Next, are considered the most usual different kinds of bifurcations.

Local codimension-one bifurcations

A bifurcation is said to be “local” when the cualitative changes affecting the

bifurcating solution can be analysed by studying only the region of the phase

space close to the solution. Also a bifurcation is said to be “codimension one”

when it satisfies the two following conditions: (i) it can be found by varyng only

one (any one) of the control parameters of the system, and (ii) a continuous

change, within a finite range, in any one of the remaining control parameters

does not cause the bifurcation to disappear, but induces only smooth quantitative

changes on the bifurcation features.

Here, there are considered two cases.

a. Case of a fixed point

A means of finding the possible bifurcation points affecting a fixed-point

solution is to study its dynamical stability. If, when calculating the charac-

teristic exponents as a function of a control parameter µ one finds that for

some value of µ the real part of the exponents (or of a pair of complex con-

jugate exponents) changes from negative to positive values, it means that

the stable fixed point becomes unstable and a new kinf of stable solution
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probably sets in. By means of suitable change of variables, this kind of

bifurcation can be described through only one real (or in some cases, com-

plex) variable, which here is denoted as x; when this is done the problem

is said to be reduced to the “normal form” (in general, the normal vari-

able x corresponds to the direction of the eigenvector associated whit the

characteristic exponent whose real part changes its sign).

Thaking as zero the values of the control parameters µ at which the bi-

furcation appears, and restricting the nonlinear terms of order up to 3,

the simplest types of bifurcations are as schematically described in Table

1.3, where the bifurcation name the function F appearing in the differen-

tial equation ẋ = F (x), and the “bifurcation diagram” showing the stable

and instable branches of fixed-points solutions in the (µ, x) plane are rep-

resented. In the case of the Hopf bifurcation, the function F includes an

arbitary constant c which does not play the role of a control parameter and

the variable is complex x = x1 + ix2, so that in fact two real variables x1

and x2 are needed.

Table 1.3 shows only the “supercritical” or “nornal” bifurcations, in which

the non-linear term contribution is opposite to that of the constant or lin-

ear term. By changing the sign of the non-linear term in the function

F of Table 1.3 the “subcritical” or “inverse” bifurcations are found, the

bifurcation diagrams on which are obtained by applying a transformation

(µ, x) → (−µ,−x) to those in the Table 1.3 and (for the pitchfork and Hopf

cases only) by changing the stability character of all the branches (stable

� unstable).

b. Case of closed orbit
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Name F
Bifurcation
diagram

Saddle-node
(or tangent)

µ− x2

Transcritical
(or with stability

exchange)
µx− x2

Pitchfork µx− x3

Hopf (µ + ic)x− x|x|2

Table 1.3: Supercritical codimensional-one local bifurcations or fixed-points for
a system ẋ = F (x).

The fact that at bifurcation point the periodic orbit becomes unstable im-

plies that a Floquet multiplier crosses the unit circle in the complex plane,

which can take place in three ways:

(i) Through the point +1. In this case the results are very similar to the pre-

vious ones, allowing saddle-node, transcritical and pitchfork bifurcations.

The function f defining the associated Poincaré return maps x → f(x)

(or equivalently, xm+1 = f(xm)) coincides with the corresponding function

F in Table 1.3, except for the addition of a term x. For instance, for a

saddle-node it is

f(x) = x + µ− x2 (1.8)
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(ii) Through the point -1. For this situation, no analogy with the fixed-

point can exist. A “period doubling” or “subharmonic” or “flip” bifurcation

appears, the bifurcation diagram of which looks identical with that of the

pitchfork bifurcation of a fixed point, but the dynamics is different: the two

parabolic branches do not correspond to independent solutions; instead,

there is a unique solution whose return map alternates from one branch to

the other indefinitely. In other words, the orbit closes at the second return

instead of the first, so that its period becomes twice the original one. The

normal form for the Poincaré map is

f(x) = (−1 + µ)x− x3 (1.9)

In cases (i) and (ii) above, the variable x corresponds to the direction of the

eigenvector associated with the Floquet multiplier +1 ans -1, respectively.

(iii) Through a point ξ 6= ±1. In this case two complex conjugate Floquet

multipliers, ξ and ξ∗, cross the unit circle. The bifurcation is similar to a

Hopf bifurcation and it is often know under the same name, but in fact

there is one important difference: instead the circumference (corresponding

to a limit cycle) appearing in the bifurcation diagram for µ > 0 in the

Table 1.3, the poincaré map now gives a series of points also located on

a circumference but the order of appearance is such the angular distance

from each point to the consecutive one is constant:

x → f(x) = xei2πθ, 0 ≥ θ > 1 (1.10)

Thus, if θ is irrational, the whole circumference is covered, denoting quasi-

23



periodic behavior (the limit cycle has bifurcated to a toroidal surface T 2

but if θ is rational only a finite subset of points appears, which corresponds

to a closed orbit on the toroidal surface. For θ= +1 and -1, the previous

cases (i) and (ii), respectively, are encountered.

Through a similar scheme, the torus T 2 could in turn bifurcate, for another

value of the control parameter µ, to an hyper-torus T 3, and so on.

Crises

When a control parameter is varied and two solutions or attractors coalesce, a

“crises” can occur, which consist in a sudden expansion, contraction or disap-

pearance of the attractors. A typical example is a coalescence between a chaotic

attractor and an unstable fixed point or periodic orbit, which leads to sudden

changes in the chaotic attractor.

1.7.2 Roads to Chaos: Scenarios

A. Feigenbaum scenario (period-doubling road)

The most common route to chaos for class B lasers is the one through a

sequence of subharmonic bifurcations which appear in the following way

T → µ1 → 2T → µ2 → 4T → µ3 → 8T → µ4 → . . . µ∞ → chaos (1.11)

where 2mT (m = 0,1,2,...) represents the period of a closed orbit attractor

and µn (n = 1,2,3,...) denote the critical values for the control parameter

µ. This sequence known as the Feigenbaum scenario [13] was observed

experimentally first in a loss-modulated CO2 laser [1] and then in many

other lasers of all classes. The typical time series corresponding to the
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period-doubling route to chaos are shown in Fig. 1.4 (left-hand column) for

a pump-modulated fiber laser, as the modulation frequency decreases.

The Feigenbaum scenarios can be also identified by looking at the power

spectra (see right-hand column in Fig. 1.4). The period-doubling is clearly

seen through the appearance of the first subharmonic of the modulation

frequency fm.

Figure 1.4: Period-doubling route to chaos with time series (left-hand column)
and power spectra (right-hand column) in a pump-modulated fiber laser. (a)
Period 1 at fm = 72 kHz, (b) period 2 at fm = 63 kHz, and (c) chaos at fm =
63 kHz.

B. Ruelle-Takens-Newhouse scenario (quasiperiodicity road)

This scenario consists of a sequence of three Hopf bifurcations H1, H2, and

H3 at critical values µ1, µ2, and µ3.

FP → H1(µ1) → T → H2(µ2) → T 2 → H3(µ3) → T 3 → . . . chaos (1.12)

As the diagram shows, the attractor is fixed point FP (or stable steady
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state) for µ < µ1; at µ = µ1 it transforms into a periodic orbit T ; at

µ = µ2 it changes again to a torus T 2 which entails a quasiperiodic behavior

with two incommensurate frequencies, and at µ = µ3 a new independent

frequency appears, so that in principle a T 3 attractor (hypertorus) would be

expected, but in many cases it is unstable towards some kinds of fluctuations

and becomes chaotic. The Fig. 1.5 shows the bifurcation diagram of the

peak intensity demonstrated the road to chaos through quasiperiodicity and

Fig. 1.6 represents the corresponding time series.

Figure 1.5: Bifurcation diagram of peak intensity of a semiconductor laser with
external cavity with feedback strength as a control parameter.

The Ruelle-Takens-Newhouse scenario has been identified by observing the

power spectrum of a dynamical variable, which is similar to the schematic

example in Fig. 1.7. The broad-band spectrum corresponds to the chaotic

dynamical evolution: some peaks are usually still apparent, that indicates

that the previous periodic evolution has not completely disappeared.

The quasiperiodicity as a result of the interaction of three transverse modes

has been observed first by Weiss et al. [12] in a multimode He-Ne laser and
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Figure 1.6: Time series of laser intensity of a semiconductor laser with external
cavity for different feedback strengths demonstrating (a) fixed point (FP ), (b)
periodic orbit (T ), (c) quasiperiodic orbit (T 2), and (d) chaos (T 3)

Figure 1.7: Power spectra of laser intensity corresponding to (a) quasiperiodic
and (b) chaotic motions. Chaotic attractor has a broad-band spectrum.
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by Biswas and Harrison [35] in a multimode CO2 laser.

C. Intermittency scenario

The intermittency route to chaos is characterized by short, irregular (tur-

bulent) bursts, interrupting the nearly regular (laminar) motion (Fig. 1.8).

The duration of the turbulent phases is fairly regular and weakly depen-

dent on control parameter µ, but the mean duration of the laminar phase

decreases as µ increases beyond its critical value, and eventually they disap-

pear. Hence only one bifurcation point is associated with the intermittency

route to chaos.

Five types of intermittency have been observed in lasers: type-I, type-

II, and type-III of Pomeau-Manneville intermittency [36], on-off [37], and

crisis-induced intermittency [38]. A particular type of intermittency de-

pends on the type of bifurcation at the critical point. The type-I and on-off

intermittency are associated with saddle-node bifurcations, the type-II and

type-III intermittency with Hopf bifurcation and inverse period-doubling

bifurcation, respectively, and crisis-induced intermittency with crisis of

chaotic attractors when two (or more) chaotic attractors simultaneously

collide with a periodic orbit (or orbits) [10]. Quantitatively, intermittency

exhibits characteristic interburst interval (laminar phase) statistics.

The type-I intermittency road to chaos has been found by Brun et al. [39]

close to periodic windows in the chaotic domain in experiments with a

linewidth-modulated nuclear magnetic resonance (NMR) ruby laser. They

also observed sudden expansions of attractors, giving evidence of “crisis”.

The phenomenon “crisis” has been studied experimentally in more details

with a loss-modulated CO2 laser in the group of Glorieux [40]. The type-II

intermittency route to chaos has been observed in a gain-modulated CO2
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Figure 1.8: On-off intermittency in a fiber laser with pump modulation. The
period-2 regime alternates at random times with the coexisting chaotic regime.

laser with cavity detuning [41] and in an external cavity semiconductor laser

[42]. The type-III intermittency road to chaos has been found experimen-

tally in an optically pumped FIR ring laser [43].

The mechanism for on-off intermittency relies on the time-dependent forc-

ing (stochastic or periodic) of a bifurcation parameter through a bifurca-

tion point, while the system switches between two or more unstable states,

which are stable without external forcing. Instead, in Pomeau-Manneville

intermittency and crisis-induced intermittency the parameters are static.

Crisis-induced intermittency has been observed experimentally first in a

NMR laser [44] and on-off intermittency in a semiconductor laser with ex-

ternal cavity [45].
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1.8 Stochastic dynamics

It is commonly recognized that Einstein (1956) [46] established the theoretical

foundation of stochastic calculus in his doctoral research and a series of papers

on this subject, although Brownian motions, as a fundamental building block

stochastic calculus. Since then, the literature on stochastic dynamics has been

steadily increasing. This topic has been the topic in various subject areas includ-

ing economy, finance, geology, ecology, population dynamics and biology. In the

area of mechanical and civil systems, stochastics dynamics is known as random

vibrations [47].

A schocastics process in an indexed set { X(t), t ∈ T } of random variables

X(t) defined on the same sample space Ω. t is the index parameter and T denotes

the index set. In general, T can be discrete or continuous. Here is consedered the

continuous random variable X(t) as stochastic process in function of time t ∈ R1.

An example of escalar stochastic process is the stress response at a critical point

on a building during earthquake.

A continuous stochastic process X(t) essentially can be viewed as an infinite

dimensional random vector. As in the case of n-dimensional random variables,

the statics of the stochastic process is described by the joint probability density

or distribution functions of the random variables in the process.

1.8.1 Stochastic resonance

Noise is generally associated with hindrance, with something that is irregular

and cannot be perfectly controlled. Furthermore, noise is virtually unavoidable

since it is impossible to isolate a system perfectly from its environment: all

systems are interacting with their thermal reservoirs, which are a source of the
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systems noisy dynamics. Even at zero temperature, when thermal (classical)

fluctuations vanish, there is an interaction with zero-temperature reservoirs–a

source of quantum noise [48].

Yet, addition of noise is sometimes able to make a nonlinear dynamical system

behave more regularly. An intuitive picture of how such dynamics occurs in the

overdamped motion of a classical particle with reaction coordinate x(t) is the

symmetric double well potential (Fig. 1.9).

Figure 1.9: The fundamental mechanism of SR: in the prescence of an optimal
level of noise, the stochastically actived transition between the two metastable
states are most likely after one half-cycle of the periodic injected signal. Hence
the response is optimally synchronized with the external modulation of the double
well potential at nonvanishing noise strength

If this system was noise-free, the particle’s motion would relax within the po-

tential well where it was initially launched. Coupling to a thermal bath results

in random kicks of the particle at random times so that eventually the parti-

cle can hop over the potential barrier–undergo a noise-assisted transition to the

neighbouring well. The thermal activation rates, given by the famous Kramers

formula [49], are functions of the ratio of barrier height to noise level. If a small
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periodic modulation is applied to the potential at a modulation frequency much

smaller than the intrawell relaxation rate, in itself unable to carry the particle

deterministically across the potential barrier, the thermal activation rates are pe-

riodically modulated in time. Consequently, at a certain phase of the signal the

probability of undergoing a transition to the neighbouring well increases, whereas

the probability for the opposite transition is suppressed. If we now observe real-

izations of the stochastic process x(t) for different noise strengths, we see that for

some optimal, finite amount of noise, transitions between wells occur almost pe-

riodically in time. At that noise level, the timescale associated with the Kramers

rate equals approximately half the signal period. This cooperative effect between

a weak signal and noise in a nonlinear system, leading to an enhanced response

to the periodic force, is termed stochastic resonance (SR).

1.9 Fiber Laser Doped with Erbium

Many different rare-earth elements, sucha as Neodimium (Nd3+), Holmium (Ho3+),

Erbium (Er3+), Tulium (Tm3+), Iterbium (Y b3+), Samarium (Ho3+) and Pra-

seodimium (Pr3+) can be used to realize fiber amplifiers operating at different

wavelengths in the range of 0.5-3.5 µm [50], some of them are show in Fig.

1.10. Erbium-doped fiber lasers (EDFL’s) or amplifiers (EDFA’s) have attracted

the most attention because they operate in the wavelength region near 1.55 µ

[51, 52, 53, 54]. Their development in wavelength-division multiplexing (WDM)

systems after 1995 revolutionized the field of fiber-optic communications an led

to lightwave systems with capacities exceeding 1 Tb/s.

The pumping at suitable wavelength provides gain throught population in-

version. The gain spectrum depends on the pumping scheme as well as on the

presence of other dopants, such germania and alumina, within the fiber core.
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Figure 1.10: The red line shows the differnt wavelength range for some rare-earth
fiber lasers.

Efficient pumping is possible using semiconductor lasers operating near 0.98 and

1.48 µm wavelengths.

The gain of an EDFL depends on a larger number of device parameter such as

erbium concentration, amplifier length, core radius, and pump power [55, 56, 57].

In highly doped fibers, Er3+ ions tend to cluster in pairs [58] and that a fast cross-

relaxation process takes place between doubly excited pairs [59]. This process

was predicted to reduce the population inversion (i.e., higher threshold) and to

compete with the pump-to-signal conversion process (lower conversion efficiency

[59]). The percentage of pairs in each fiber is inferred from the data and shown

to increase markedly with concentration.
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CHAPTER 2

Prebifurcation noise amplification in a fiber

laser

2.1 Introduction

The interaction between stochasticity and nonlinearity is a central current issue

in studies in different dynamical systems, including radiophysical [60], climatic

[61, 62], populational [63], geophysical [64], epidemical [65], and optical models

[66, 67]. As a result of this interaction, noise, which is always present in a real

system, can be amplified by the system while approaching a critical point. The

idea that a system near the onset of a dynamical instability might be very sen-

sitive to coherent or random perturbations came up in the works of Wiesenfield

and McNamara [68, 69]. They have shown that time-periodic dynamical systems

can greatly amplify small-amplitude perturbations in the vicinity of the simplest

classes of codimensional-one bifurcations: saddle-node, transcritical, pitchfork,

period-doubling, and Hopf. Latter, small-signal amplification near the period-

doubling bifurcation was find out experimentally in a loss-modulated CO2 laser

[70]. According to the Wiesenfield’s linear theory, prebifurcation noise amplifi-

cation might be an effective diagnostic tool (“noise precursor”) of a forthcoming

bifurcation. It is of great practical importance to know how far the system is

from a critical point. It was empirically observed that indeed strong changes
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in noise amplification anticipate many oncoming natural and biological catas-

trophes, like tornado, earthquakes, convulsion of nature, epidemics, population

extinction, myocardial infarction, etc., and thus it can serve as an indicator of

the adverse natural phenomena and diseases. However, in natural and biological

systems the parameters are usually uncontrollable and hence this effect cannot

be studied systematically.

In this chapter experimental evidence of prebifurcation noise amplification in

a real physical system is presented. The system under study is a diode-pump

erbium-doped fiber laser with pump modulation. Natural noise is always present

in the laser due to spontaneous emission and diode pumping. Moreover, addi-

tional noise can be added from an external noise generator. We find that noise

fluctuations are amplified not only in the vicinity of a period-doubling bifurcation

as was already shown in some theoretical papers, but also near saddle-node and

crisis points [71]. It seems that this phenomenon is quite general and can be

expected for other kinds of bifurcations in many dynamical systems. Numerical

simulations on the base of the advanced laser model display good agreement with

experimental results [71].

The analysis of prebifurcation noise amplification was performed using both

linear [68] and nonlinear theories [72, 73, 74, 75]. The linear theory displays

an infinite growth of perturbations, while the system approaches the bifurcation

point [68], whereas the nonlinear theories demonstrate a saturation effect near the

period-doubling [72, 73, 74] and pitchfork bifurcations [73, 64]. The theoretical

analysis showed that the real part of one of the negative Lyapunov exponents be-

comes positive when the system approaches the bifurcation point [72]. According

to the Wiesenfeld’s theory [68], prebifurcation noise amplification can serve as

noise precursor of bifurcation in a nonlinear system. The addition of white noise
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gives rise to new broadband peaks not present in the noise-free system [68, 76].

These noise precursor peaks are centered at the new frequencies that appear only

after the bifurcation. Noisy precursors of the period-doubling bifurcation have

been observed in experiments on a semiconductor laser [67].

In this work the experimental evidence of prebifurcation noise amplification is

provided. The experiments are carried out with a fiber laser subject to periodic

modulation of the diode pumping. It is well-known that any laser has intrinsic

noise due to the spontaneous emission of radiation. In this way is studied how

this inherent laser noise and additional Gaussian noise applied to the diode pump

current become apparent in the fiber laser power spectrum near saddle-node,

period-doubling, and crisis bifurcations. Also this phenomenon was numerically

studied with our improved laser model and the results of numerical simulations

and the experimental ones are compared.

In Section 2.2 the experimental setup and the phenomenon of prebifurcation

noise amplification in the vicinity of the saddle-node, period-doubling, and crisis

points are obtained experimentally. The theoretical model of the erbium-doped

fiber laser and the results of numerical simulations is presented in Section 2.3. Us-

ing the obtained results is demonstrated the validity of this model by comparing

some important laser characteristics obtained numerically and experimentally.

Finally, the main conclusions of the experiment are given in Section 2.4.

2.2 Experiment

A diode-pumped erbium-doped fiber laser (EDFL) is a commercial optical device.

Due to its excellent optical properties (high gain and single-mode operation),

EDFL is widely used as a light source for optical communications, reflectometry,
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sensing, medicine, etc. [51]. On the other hand, EDFL is a complex dynami-

cal system, which serves as a paradigm for studying many nonlinear dynamical

phenomenon, such as bifurcations, chaos, frequency locking, and multistability

[77, 24, 78, 79, 23, 80, 81, 23]. This laser belongs to class-B lasers [82], along with

solid-state, semiconductor, and CO2 lasers. In the lasers of this type, the polar-

ization relaxation process is very fast and hence it is adiabatically eliminated, so

that the dynamics are described by only two rate equations, for the laser field

and for the population inversion.

2.2.1 Experimental setup

We used a 1560-nm EDFL subject to harmonic modulation of a 976-nm diode

pump laser (Fig. 2.1). The 1.5-m Fabry-Perot laser cavity is formed by an

active heavily-doped (2300 ppm) erbium fiber of a 70-cm length and 2.7-µm

core diameter and two fiber Bragg gratings with a 1-nm FWHM (full width

on half-magnitude) bandwidth, having 91% and 95% reflectivities for the laser

wavelength (λ=1560 nm). The fiber laser output power is recorded, after going

through a wavelength-division multiplexing coupler, with a photodetector and

analyzed with an oscilloscope and a Fourier spectrum analyzer. The diode laser

output power depends linearly on the laser diode current. In the experiments the

diode current is fixed at I = 69 mA corresponding to the pump power P = 18

mW. The harmonic signal, A sin (2πfmt)(A and fm being the amplitude and

frequency of the external modulation, respectively) from a signal generator and

additive Gaussian noise nξ (n and ξ being the external noise amplitude and a

random generated number, respectively) from a noise generator are both applied

simultaneously to the diode pump current.

Without external modulation (A = 0), the fiber laser exhibits small-amplitude
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Figure 2.1: Experimental setup.

oscillations (1-2% of the magnitude of the steady-state power) at the relaxation

oscillation frequency fr which depends on the pump power and noise as shown in

Fig. 2.2. The appearance of this frequency in the spectrum is due to the diode

pump laser intrinsic noise [83] and the fiber laser spontaneous emission. One can

see that the additive noise slightly increases fr. In our experiments we choose

the laser parameters so that the relaxation oscillation frequency fr = 30 kHz in

the absent of external noise. Also, in the figure 2.2 it is ploted the numerically

calculated dependence in the absence of the external pump modulation and noise,

EDFL dynamics is ruled mainly by the following processes, explained in secc.

2.3: (i) the resonant ground-state absorption (GSA) saturation, (ii) the excited

sate absorption (ESA) loss and cooperative effect of Auger up-conversion [84],

both determined by the Er3+ ion energy levels’ structure, and (iii) the amplified

spontaneous emission (ASE).
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Figure 2.2: Experimental (solid lines) and numerical (dashed lines) dependences
of EDFL relaxation oscillation frequency on pump power. The experimental
curves are obtained with intrinsic laser noise (open dots) and with 50%-mod-
ulation depth external noise (filled dots). The theoretical curves 1 and 1’ are
calculated taking into account ASE and the curves 2 and 2’ without ASE. The
curves 1 and 2 are obtained in the presence of noise and the curves 1’ and 2’ with-
out it. The calculated fr with ASE coincides with the experimentally measured
one (at ε = 1.3).
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2.2.2 Experimental results

Figure 2.3 shows the experimental bifurcation diagram of the peak-to-peak laser

intensity with the modulation frequency fm as a control parameter for A = 8 dB

and n = 0. One can see the coexistence of different periodic and chaotic attractors

for certain modulation frequencies at left and also is showing at rigth sade, the

experimental bifurcation diagram of the noise level in the frequency spectrum

at the modulation frequency. This diagram was measured by taking different

initial conditions which are changed by switching on and off the signal generator

or by increasing and decreasing fm. As was mentioned in some previous papers

[77, 24, 78, 79, 23, 80, 81], EDFL dynamics, as well as the dynamics of other

class-B lasers, is related to the main laser resonance, which appears close to fr.

The period-3, period-4, and period-5 attractors are born and dead in the saddle-

node bifurcations. It is also seen the period-doubling and crisis bifurcations at

fm ≈ 68 kHz and 60 kHz, respectively.

In this work we are interesting in the following question: How does the laser

system amplify intrinsic and additional external noise near different bifurcations?

The noise level of EDFL is measured in the power spectra of the laser intensity.

The examples of such spectra for the period-3 attractor for two different mod-

ulation frequencies are shown in Fig. 2.4. One can see that the noise (ground)

level for fm = 78 kHz is higher than that for fm = 83 kHz. This fact indicates

that the laser amplify the noise while fm approaches the saddle-node bifurcation

which occurs close to 78 kHz (see Fig. 2.3). The similar behavior is observed in

the vicinity of other bifurcation points.

Figure 2.4 shows the noisy spectral component Nm at the modulation fre-

quency as a function of fm for intrinsic laser noise [Fig. 2.5(a)] and for additive

Gaussian noise n = 200 mV [Fig. 2.5(b)]. In both cases, prebifurcation noise
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Figure 2.3: Bifurcation diagram. (a) in temporal series and, (b) noise level at
the modulation frequency.
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Figure 2.4: Comparison of experimental power spectra between fm=78 kHz (near
bifurcation) and, fm=83 kHz (far of bifurcation).

amplification is evident near every critical point (saddle-node, period-doubling,

and crisis). The closer the system to the bifurcation point, the stronger the

amplification. The effect is more pronounsed at the correponding subharmonic

frequencies for each attractor, i.e. at fm/3 for P3, at fm/4 for P4, and at fm/5 for

P5. Near the period-doubling bifurcation, the amplification is higher for smaller

noise. The later is in good agreement with previously observed small-signal ampli-

fication [69, 70]. As seen from Fig. 2.4, the noise amplification near saddle-node

and crisis bifurcations can reach 30 dB, i.e. the noise amplitude is increased by

3 orders of magnitude while approaching the critical point.

The later is in good agreement with previously observed small-signal ampli-

fication [69, 70]. As seen from Fig. 2.4, the noise amplification near saddle-node

and crisis bifurcations can reach 30 dB, i.e. the noise amplitude is increased by

3 orders of magnitude while approaching the critical point.
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Figure 2.5: Noise amplification.

2.3 THEORY

2.3.1 Model

The main ideas underlying the model equations for EDFL have been developed in

the previous works (see, for instance,[79, 23, 81]). In the absence of the external

pump modulation and noise, EDFL dynamics is ruled mainly by the following

processes (Fig. 2.6): (i) the resonant ground-state absorption (GSA) saturation,

(ii) the excited sate absorption (ESA) loss and cooperative effect of Auger up-

conversion [84], both determined by the Er3+ ion energy levels’ structure, and

(iii) the amplified spontaneous emission (ASE), an essential feature of a fiber

laser with a long cavity. The periodic and stochastic pump modulations are

introduced into the model as “external” disturbance factors which considerably

affect upon EDFL dynamics.

For an easy EDFL modeling, a simplified two level model of Er+3 is used, and

also only a point of the laser is applied to make a resaonable simulation time [83].

The balance equations for EDFL generation intracavity power Pg (in s−1) and

dimensionless population y of the upper laser level of Er3+ (4I13/2) are written as
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Figure 2.6: Simplified energy level diagram of Erbium.

follows

dPg

dt
=

2L0

Tr

[Pg{Γα0[(ξ − η)y − 1]− αI}+ Γα0(ξ − 1)yµ∆νErK(y)exp(−Lγ)]

(2.1)

dy

dt
= − Γα0

N0Sa

Pg(yξ − 1)− y

τ0

{1 + 4[K∗(y)− 1]
Γα0(ξ − 1)τ0∆νEr

N0Sa

} − y2

τ1

+

1− exp[−δα0L0(1− y)]

SpN0L0hνp

Pp[1 + A sin(2πfmt) + nζ]

(2.2)

where α0 = N0σGSA and α∗0 ≈ 2α0 are the small-signal absorption coefficients of

the active erbium-doped fiber core at the generation wavelength λg and on the

Er3+ emission band maximum at λ∗ ≈1.53 µm), N0 is the Er3+ concentration,

ξ =1+σe/σGSA and η = σESA/σGSA are the coefficients addressing the relations
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between the GSA, ESA, and gain cross-sections at λg (σGSA and σe being the

cross-sections of the GSA and gain transitions between the 4I15/2 and 4I13/2 states

and σESA is the effective ESA cross-section in Er3+); τ0 is the lifetime of single

Er3+ ions in the excited 4I13/2 state; τ1 is the effective relaxation time of the

Er3+-Er3+ pair clusters, where each Er3+ ion forming a pair is in the excited

state; Γ = 1−exp[−2(a/w0)
2] = 1−exp(−Sa/Sw) is the overlap factor (Sa = πa2

and Sw = πw2
0/2 that indicate the part of the power of the fundamental fiber

mode propagating through the fiber core, where a and w0 are the core and beam

radii); T = 2n0L/c is the photon intracavity round-trip time, where L is the total

cavity length being the sum of the active fiber length L0 and the total length l0

of all other intracavity fiber components, n0 is the refractive index of silica, and c

is the velocity of light in vacuum; αl = γ− ln(R1R2)/2L is the intracavity overall

losses, where γ stands for the total non-resonant intracavity losses and R1 and

R2 are the reflection coefficients of the FBG couplers forming the EDFL cavity);

∆νEr is the Er3+ emission bandwidth (assumed to be homogeneously broadened);

δ is the dimensionless coefficient accounting for the ratio of absorption coefficient

of erbium-doped fiber at the pump wavelength λp to that (α0) at the generation

wavelength λg; µ = ∆νg/∆νEr is the factor addressing the ratio of the generation

and spontaneous emission bandwidths; hνp is the pump energy quanta; and Sp is

the pump radiation geometrical cross-section (it is assumed further that the pump

radiation is effectively absorbed within the active fiber core: Sp = πw2
p ≈ Sa); Pp

(in W) is the pump power at the active fiber entrance.

The parameters responsible for periodic and stochastic external modulation

are defined as follow. A and fm are the amplitude and frequency of sinusoidal

modulation, n is the Gaussian noise amplitude, and ζ is a random number

(A, n, ζ ∈ [0, 1]). The quantities K and K∗ are the length-averaged ASE co-
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efficients defined as

K =
exp{L0Γα0 [(ξ − η) y − 1]} − 1

L0Γα0 [(ξ − η) y − 1]
, (2.3)

K∗ =
exp{L0Γ

∗α∗0 [(ξ∗ − η∗) y − 1]} − 1

L0Γ∗α∗0 [(ξ∗ − η∗) y − 1]
. (2.4)

The asterisks mean the corresponding average values within the ∆νEr range.

For simplicity here we assume ξ∗ = ξ, η∗ = η, and Γ∗ = Γ. Thus, the terms

2Γα0(ξ−1)yµ∆νErK(y) exp(−Lγ) in Eq. (2.1) and the term 4[K∗(y−1)][Γα∗0(ξ−

1)τ0∆νEr]/(N0Sa) in Eq. (2.2) characterize respectively the roles of ASE in estab-

lishing (seeding) generation in the laser cavity and the increasing rate of the laser

upper level depopulation. The parameter values either measured experimentally

or provided by fiber manufacturers are presented in Table 1.

λg λp hνp α0 N0 δ hτ0

1560nm 976nm 2.037x10−19J 0.06cm−1 2.4x1019cm−3 0.7 ms

τI η σGSA ω0 ∆νEr µ ξ
ms 0.24 2.48x10−21cm−2 2.61µm 25nm 10−3 2.25

a Γ γ L0 l0 R1 R2

1.35µm 0.417 8.7x10−4cm−1 0.82m 3.51m 1 0.91

Table 2.1: Parameters used in numerical simulations.

2.3.2 Numerical results

In order to check the validity of our model Eqs. (2.1) and (2.2) and to ensure that

the selected parameters (Table 1) correspond to the real experimental parame-
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ters, we calculate the dependences of the relaxation frequency fr on the pump

power Pp without external modulation (A = 0) for four different cases (with and

without accounting for ASE in the presence and absence of noise) and compare

with the experiment (Fig. 2.2). A comparison of the presented theoretical de-

pendences with the experimental ones allows one to reveal the importance of the

ASE contribution. Only the account of ASE (curves 1 and 1’, Fig. 2.2) allows the

coincidence of the numerically calculated fr with the experimentally measured

value (fr ≈ 30 kHz) for the same excess over the laser threshold (ε ≈ 1.3). Note,

that the theoretical value for the EDFL threshold (near 14 mW) is remarkably

close to its experimental value as well. When ASE is ignored (curves 2 and 2’),

the difference from the experiment is very high. It is also remarkable that the

theoretical dependences fr(Pp) for no noise (n = 0) and pronounceable (n = 0.5)

noise almost coincide with the experimental curves (compare the curves 1 and 1’

with the experimental data shown by the open and closed dots in Fig. 2.2); the

additive noise slightly increases fr. This coincidence proves the validity of our

model and ensures its further application for the case of external pump modula-

tion.

Next, we perform the temporal and spectral analyses of the time series of the

intracavity laser power Pg(t) calculated with Eqs. (2.1) and (2.2) for different

amplitudes A and frequencies fm of pump modulation and different noise levels

n for fixed excess ε of the pump power over the first laser threshold. Figure

2.7 shows the power spectra of the EDFL intensity for two different modulation

frequencies, fm = 83 kHz and 78 kHz, and fixed ε ≈ 1.3 (Pp ≈ 18 mW), modula-

tion depth (25%), and input noise amplitude (25%), when the laser works in the

period-3 regime. One can see that the noise levels (output noise) at fm and its

third subharmonic fm/3 are higher for fm = 78 kHz than for fm = 83 kHz, i.e.

the laser amplifies noise while approaching the saddle-node bifurcation where the

47



P3 attractor is born.

Figure 2.7: Numerically calculated power spectrum. Dotted points for fm=78
kHz, and straight line for fm=83 kHz

The numerical bifurcation diagram of the pump-modulated EDFL is similar

to those already presented in several papers [24, 78, 79, 81, 23]. We should only

note, that it almost coincides with the experimental diagram shown in Fig. 2.3.

Figure 2.8 shows the noise amplitude Nm at the modulation frequency fm in

the power spectrum as a function of fm for different coexisting attractors (period

1 (P1), period 3 (P3), and period 4 (P4)). As in the experiment (Fig. 2.5), we

observe significant noise amplification when the laser approaches a bifurcation

point. One can see good agreement between the theoretical “noise bifurcation

diagram” and the measured one (shown in Fig. 2.5). So, the conclusion made

above, at analyzing the experimental results concerning an increment of “noisy”

background of the EDFL with external modulation at approaching any of the

bifurcation points (either saddle-node or period-doubling), is fairly supported by
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Figure 2.8: Calculated noise amplification.

the developed EDFL modeling.

2.3.3 Conclusions

In this chapter the experimental evidence of prebifurcation noise amplification

near different types of bifurcations (saddle-node,period-doubling, and crisis) is

demonstrated. The experiments have been carried out with a pump-modulated

erbium-doped fiber laser with additive noise applied to the current of the diode-

pump laser. The closer the system to the bifurcation point, the stronger noise

amplification. The noise amplitude can increase by 3 orders of magnitude, while

the system approaches saddle-node and crisis points. Near a period-doubling

bifurcation, the effect is more pronounced for smaller noise. The results of nu-

merical simulations with the advanced laser model demonstrate good agreement

with the experiment. The comparison of the numerical results with the experi-
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mental ones, also indicates the importance of the amplified spontaneous emission

(ASE) to be taken into account in simulations of EDFL.

Many theoretical works indicate on generality of prebifurcation noise ampli-

fication. We beleive that this phenomenon can be also observed in experiments

with other dynamical systems, for example, by analyzing meteorological and

geophysical experimental data, that would be useful for prediction of oncoming

catastrophes.
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CHAPTER 3

Experimental Characterization of Hopping

Dynamics in a Multistable Fiber Laser

3.1 Introduction

Many real complex systems display the coexistence of more than two attractors

corresponding to the long-term behavior in phase space. In addition to a bistable

system which displays the positive role of noise in the form of stochastic and co-

herence resonances [85, 86], a system with multiple coexisting attractors subject

to stochastic modulation can exhibit other interesting features, such as noise-

enhanced multistability [87], noise-induced preference of attractor [88, 89, 90],

noise-induced resonances [29], etc. Noise in such a multistable system provokes

a competition between different attracting states; as the system seeks a regu-

lar motion in the neighborhood of one attractor, we can see it jumping among

the different states [91, 90]. This phenomenon, often called attractor hopping

[92] is closely related to chaotic itinerancy [93], that has already been observed

experimentally [94, 95], showing the alternate motion between fully developed

chaos and an ordered behavior. Chaotic itinerancy is often observed in high-

dimensional systems such as globally coupled maps [96] and networks of neuronal

oscillators [97]. The noise-induced attractor hopping is different from the low-

dimensional ordered motion in chaotic itinerancy because the latter takes place
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between stable and unstable manifolds and therefore involves a saddle point. A

particular case of attractor hopping in a bistable system, two-state on-off inter-

mittency [98], has been observed experimentally in a laser [99]. Both feedback

and nonfeedback techniques have been suggested to control such an intermittent

behavior [100]. Noise-induced selectivity for certain attractors was studied in

Refs. [91, 101, 88, 89]. Recently, Kraut and Feudel [92] showed that in contrast

to a bistable system, attractor hopping in a multistable system depends on the

structure of the chaotic saddles separating the attractors.

In spite of a large number of theoretical papers devoted to noise-induced

switches between multiple states, there has not been to our knowledge a previous

experimental report on this phenomenon. In this chapter is studied and shown

what we think is the first experimental observation of noise-induced attractor

hopping in a fiber laser with multiple coexisting attractors [25]. The attractor

hopping manifests itself as multistate intermittency and requires the coexistence

of multiple invariant subspaces. In a multistable system, noise destabilizes the

coexisting states and converts the multistable system into a metastable one. Mul-

tiple states that were stable without noise become unstable when noise is applied,

giving birth to a new attractor: an intermittency state. As the noise amplitude

is increased, the number of the coexisting attractors decreases, as they get in-

volved in the hopping dynamics. It is in this sense that noise allows multistability

control.

3.2 Experiment

The experimental setup is the same used in chapter two (Fig. 2.1) and similar to

those already described by some authors [24, 78, 80]. The experiments are carried

out with a Fabry-Perot cavity 1560-nm erbium-doped fiber laser. The laser is
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subjected to the harmonic modulation of a diode pump 976-nm laser. Such a

laser has various applications and is commonly used in many laboratories. This

laser displays a very rich dynamics that has extensively been studied theoretically

[80, 102] and experimentally [24, 78, 80, 23]. The 1.5-m laser cavity is formed by

an active heavily-doped erbium fiber of a 70-cm length and 2.7-µm core diameter

and two fiber Bragg gratings with a 1-nm FWHM (full width on half-magnitude)

bandwidth, having 91% and 95% reflectivities for the laser wavelength. The

fiber laser output power is recorded, after going through a wavelength-division

multiplexing coupler, with a photodetector and analyzed with an oscilloscope

and a Fourier spectrum analyzer. The diode laser output power depends linearly

on the laser diode current. In our experiments the diode current is fixed at

I = 69 mA corresponding to the pump power P = 19 mW. The harmonic

signal, A sin (2πfmt) (A and fm being the amplitude and frequency of external

modulation, respectively) from a signal generator and the additive Gaussian noise

Ninξ (Nin and ξ being the external noise amplitude and a random generated

number, respectively) from a noise generator are both applied simultaneously to

the diode pump current.

Without external modulation (A = 0) and in the absence of external noise

(Nin = 0), the fiber laser power exhibits small-amplitude oscillations (1-2% of

the magnitude of the steady-state power) with an average broadband frequency

f0 = 30 kHz of its relaxation oscillations. The appearance of this frequency

in the spectrum is due to the diode pump laser internal noise and to the fiber

laser spontaneous emission [83]. Figure 5.2 shows codimensional-two bifurcation

diagram in the parameter space of the modulation frequency and the external

noise amplitude. One can see how more and more attractors are involved in

the hopping dynamics within a wider parameter range, as the noise amplitude

is increased. Moreover, noise induces periodic orbits, not existent prior to its
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Figure 3.1: Experimental setup.

introduction.

In this work the main interest is in a high-frequency region where the laser

exhibits multistability [24]. In Fig. 3.3 we plot the time series and their corre-

sponding power spectra for three coexisting attractors, period 1 (P1), period 3

(P3), and period 4 (P4) when both external modulation with fm = 87 kHz and

external noise with amplitude Nin = 0.15 V are applied. This noise is relatively

small, so that no hopping dynamics is observed. As seen in Fig. 3.3(f)], the

frequency for P4 is not exactly fm/4 because of nonlinear interaction with f0

[81].

Switching on and off the signal generator, the laser initial conditions are

changed and their corresponding coexisting regimes can be found. For each

dynamical regime, the power spectrum displays a different level of frequency-

dependent output noise (ground level). One can see that noise has a more pro-
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Figure 3.2: Fiber laser state diagram in modulation frequency and noise ampli-
tude parameter space. Different colors stand for different periodic and intermit-
tent states.

nounced effect in the P4 regime than in P3, and the lowest output noise occurs

for P1. At a relatively low noise amplitude, the fiber laser is in a periodic state

determined by the initial conditions. For instance, if the laser starts with the

initial conditions corresponding to P3, it will remain in this state for an infinitely

long time showing noisy oscillations with frequency fm/3 [Fig. 3.3(b)]. As the

input noise amplitude is increased, the ground level for each attractor also in-

creases until a certain noise threshold is reached and the laser starts jumping

back and forth from P3 oscillations to P1, as shown in Fig. 5.3(a). The number

of periodic states among which the laser jumps depends on the noise amplitude.

In a multistate intermittent regime, the trajectory visits more than two periodic

states [Figs. 3.4(b) and 3.4(c)]. When the noise amplitude is large enough, all

states are mixed and no structure can be recognized in the trajectory. It is inter-

esting that relatively strong noise can induce higher-periodic orbits that were not

there for low noise. For example, period-5 windows appear only when Nin > 1.3
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Figure 3.3: (a-c) Time series and (d-f) power spectra of the laser intensity for
coexisting (a,d) period-1, (b,e) period-3, and (c,f) period-4 regimes when an
external noise Nin = 150 mV is applied. The horizontal dashed lines indicate the
noise level at the modulation frequency fm = 87 kHz. Note the difference in the
intensity scale in Fig. 3.3(c).
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V [Fig. 3.4(c)].

With the aim of studying characteristic properties of hopping dynamics in

mind, we address the following question, how does output noise depend on input

noise? Figure 3.5(a) shows, for different coexisting attractors, the dependence of

the average output noise Nout taking at the modulation frequency fm of the power

spectrum, on the input noise amplitude Nin. The three attractors coexistence is

observed only for relatively low external noise (Nin < 0.2 V). For each coexisting

state (P1, P3, and P4), the output noise spectral component can be approximated

by a lineal dependence on the input noise amplitude [solid lines in Fig. 3.5(a)].

The slope of these lines increases as does the orbit’s period; the larger the period,

the higher the slope. When the input noise amplitude is increased above 0.2

V, P3 and P1 attractors melt into the intermittent P3-P1 attractor apparently

keeping the P3 regime slope for noise dependence. When noise again increases

above 0.7 V, the laser starts jumping between three periodic states (P3-P1-P4)

while the lineal dependence slope almost disappears, showing that the output-

input noise dependence is practically lost. The same diminute slope remains

when period 5 takes part in the hopping dynamics (P3-P1-P4-P5). It is only

for very strong input noise that all periodic states are mixed and the output

noise increases again with the P1 attractor’s slope. Since the graphs in Fig.

3.5(a) are in a semilog scale, the straight lines actually represent exponential

dependences. This means that the output noise giving in V can be approximated

by Nout(V) ∼ exp(λiNin), where λi is the scaling exponent of the i-periodic orbit.

We find λ1 = 1.54, λ3 = 4.52, and λ4 = 15.89, whereas for the hopping attractor

λ3−1−4 = 0.20, i.e. it is smaller than λ1 by a factor of 7.7. This noise saturation

effect could be useful to design noise-insensitive detectors or for communications

with multistable systems.
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Figure 3.4: Time series in hopping dynamics involving (a) two periodic orbits (P3
and P1) at Nin = 0.5 V, (b) three periodic orbits (P3, P1, and P4) at Nin = 0.9
V, and (c) four periodic orbits (P3, P1, P4, and P5) at Nin = 1.5 V. Note the
difference in the intensity scales.
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Figure 3.5: (a) Average output noise versus input noise for three coexisting at-
tractors and intermittency regimes. The input noise amplitude is given in V
(the generator units) and the output noise is measured in dB (the units of the
power spectrum analyzer). The dotted lines show the boundaries between differ-
ent regimes and the solid lines are linear fits of the slopes. The noise saturation
effect is clear seen in the middle part of the figure. (b) Probability of visiting
different attracting sets calculated by summing the duration of periodic windows
in 10 time series for every noise value. The bold line is the exponential decay
fit for the period-3 orbit. (c) The Shannon entropy of the symbol sequence as
functions of noise.
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Similar to other intermittent regimes the hopping dynamics can be charac-

terized by particular scaling laws. To reveal the physical mechanisms responsible

for these scaling relations, we use a statistical approach which is often employed

in the study of noisy systems. We are now interested in the nonzero transition

probability of every periodic orbit to every other periodic orbit, via a transient

on a chaotic saddle, i.e. the probability of the trajectory visiting each one of the

coexisting periodic states. Figure 3.5(b) shows this probability Pi as a function

of the external noise amplitude. In hopping dynamics, the probability of visit-

ing the P3 orbit, P3 decays exponentially, as Nin is increased [bold line in Fig.

3.5(b)]. The best fit yields the value −0.36 for this characteristic exponent. In

the contrary, the probability of visiting P1, P1 grows as Nin is bigger and becomes

equal to P3 at Nin = 0.75 V. It is exactly at this noise value that the output noise

curve in Fig. 3.5(a) changes its slope.

Using the same approach as Poon and Grebogi [91], we qualify order and

randomness by encoding dynamics into symbolic sequences of n elements in which

the trajectory visits the different attracting sets by crossing the chaotic sets in

the boundaries. We assign a symbol si for every periodic orbit i that appears in

the hopping dynamics. In our case, we need up to four symbols in the alphabet,

si = 1, 2, 3, 4. We then calculate the transition probabilities among the attracting

sets using the Shannon entropy, in analogy to the Kolmogorov-Sinai entropy [103].

h = lim
n→∞

Hn

n
= lim

n→∞

1

n

−∑
|S|=n

p(S) ln p(S)

 , (3.1)

where S = s1, s2, ..., sn denotes a finite symbol sequence, p(S) is the probability

of S, and Hn is the block entropy of block length n. Figure 3.5(c) shows the

entropy versus input noise estimated from the experimental data using Eq. (3.1).
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Every periodic sequence yields a value of 0. The entropy increases rapidly at the

bifurcation point when a new regime appears in hopping dynamics and then it

is almost constant. The nontrivial time-scalings appearance in the noisy laser

is the consequence of the complex interplay between the coherent and random

structures. The horizontal plateau in Fig. 3.5(c) indicates the existence of a

certain coherent structure in the set of all possible symbol sequences.

The bifurcation responsible for the jumps between different periodic states

can be considered as a kind of crisis and hence the process can be characterized

by scaling laws for the characteristic lifetimes [104]. From the experimental data

we estimate the mean escape time 〈Ti〉 for the trajectory to leave the neighbor-

hood of the period-i attracting set as a function of the noise amplitude excess

Nin −Ni (Ni being the threshold noise value for period i to appears in hopping

dynamics). Figure 3.6(a) shows these dependences for different attracting sets.

For the period 1 the mean time 〈T1〉 can be well fitted by the exponential decay

with noise (bold line); however for other periods, the dynamics is very different,

for instance, 〈T5〉 increases with noise and has a maximum at Nin−N5 ≈ 200 mV.

Another interesting quantity of hopping dynamics to investigate is the probability

distribution P (τ) for the length τ of the periodic windows sequence.

For the P1 windows in the two-state intermittency regime between P3 and

P1, we find that P (τ) obeys the universal scaling law for on-off (or two-state

on-off) intermittency [105] to be P (τ1) ∼ τ
−3/2
1 . When noise is small enough,

so that only two periodic regimes are involved in the hopping dynamics, this

scaling relation is independent of it. Unfortunately, our experimental data did

not allow us to evaluate any scaling relationship for multistate intermittency.

We should note that attractor hopping can only be observed for intermediate

noise amplitudes. If noise is too weak, the time between two subsequent jumps
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Figure 3.6: (a) Mean escape times 〈Ti〉 for different attracting sets as a function
of the excess of the noise amplitude over the critical value Ni at the onset of
intermittency for the period-i state. N1,4,5 = 190, 800, 1150 mV. (b) Scaling of
the probability distribution for period-1 windows inside the intermittent P3-P1
regime showing the -3/2 power law (straight line) for Nin = 200 mV.

from one state to the other can be arbitrarily large, and if noise is too strong,

the attracting sets are no longer recognizable and the whole dynamics obeys a

diffusive motion over the entire state space. This change in the behavior as noise

increases was studied using finite time Lyapunov exponents. For very small noise

strengths, the Lypunov exponent distribution exhibits a pronounced maximum

corresponding to the regular motion, but for larger noise strengths it becomes a

Gaussian distribution with a maximum at higher Lypunov exponent values [90].

3.3 Conclusions

In this chapter experimentally noise-induced hopping dynamics in a multistable

system is characterized. A study of a diode-pumped erbium-doped fiber laser with

coexisting periodic attractors is carried out. Under additive noise applied to the
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diode pump current the laser displays hopping dynamics. The hopping between

two periodic states is characterized by the -3/2 power law for the probability

distribution of laminar phase versus laminar length near the onset of intermit-

tency, typical of a two-state on-off intermittency. When the noise amplitude is

increased, the number of periodic orbits involved in the hopping dynamics goes

up. The average lengths of laminar phases during which the trajectory is in the

neighborhood of a particular periodic state varies irregularly depending on the

noise amplitude. The character of this dependence is determined by a particular

state. The laminar phase can either decrease or increase as the noise ampli-

tude increases resulting in a surprising noise saturation effect, when the output

noise of the intermittent state is almost independent of the input noise. Such

robustness of the system against external noise could be useful for some applica-

tions, for example, in communications with multistable systems or for designing

noise-insensitive detectors.
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General conclusions

In this dissertation work we performed a systematic experimental study of deter-

ministic and stochastic dynamics of an Erbium doped fiber laser under harmonic

modulation applied to the diode-pumped current.

EDFL under pump modulation displays a very rich dynamics including the

coexistence of different periodical states. Two new phenomena have been inves-

tigated in details. These are pre-bifurcation noise amplification and attractor

hopping.

The former phenomenon manifests itself as follows. When a laser parameter is

changed so that the laser approaches a bifurcation point, noise increases crucially

and the attractor disappears just in the bifurcation point.

The latter phenomenon is the result of noise-induced multistate intermittency,

so-called attractor hopping. When noise is added to the system, each one of the

involved periodic states mixes on a new intermittent state. In order to understand

this stochastic dynamics, a statistical study has been done showing nontrivial

scaling relations.

The results obtained in this work may have important applications in natural

systems, e.g. geological, biological, medical, and climatological, as well as to

develop noise-insensitive sensors.
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[66] J. Garćıa-Ojalvo and R. Roy. Phys. Lett. A, 224:51, 1996. 2.1
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