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Abstract

Imaging is a fundamental piece for distinct knowledge areas: object recognition, monitoring
of diseases, observation of biological tissues area, astronomy, etc. In fact, many clinical ad-
vances have been through imaging techniques. Owing to these applications, improvement
of imaging is of great importance.

In this work, we deal with the improvement of imaging through the analysis of the spatial
resolution of lenses in order to enhance their performance. The main objective of this thesis
project was to generate super-resolution in a singlet lens through the modification of one
or both surfaces of the lens. Hence, we present a method to achieve super-resolution of a
lens (super-resolution is the ability of an optical system to resolve spatial structures of size
smaller than the value limited by diffraction). The first task is to insure that the lens under
analysis meets diffraction limited performance. This is necessary to warrant the minimum
level of aberrations and a solution may be found. There are several types of aberrations,
but the spherical aberration is not straightforward to be corrected. So, we carry out an
analysis to design lenses without spherical aberration for a certain kind of aspherical lenses.
Then, we proposed a method to design lenses with super-resolution properties.

Finally, we demonstrated that method to generate lenses with super-resolution properties
works analytically and experimentally.

Keywords: Super-resolution, spherical aberration, lenses, aspherical lenses
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Chapter 1

Introduction

Technological advances continuously take place in daily life, in different fields such computa-
tion, electronic communications media, imaging, health care, etc. Those regarding imaging
are mainly associated with processing and displaying of data.

Imaging is a fundamental piece for distinct knowledge areas: object recognition, monit-
oring of diseases, observation of biological tissues area, astronomy, etc. In fact, many clinical
advances have been through imaging techniques. Owing to these applications, improvement
of imaging is of great importance.

In this work, we deal with the improvement of imaging through the analysis of the
spatial resolution of lenses in order to enhance their performance. We present a method
to achieve super-resolution of a lens (super-resolution is the ability of an optical system to
resolve spatial structures of size smaller than the value limited by diffraction). The first
task is to insure that the lens under analysis meets diffraction limited performance. This
is necessary to warrant the minimum level of aberrations and a solution may be found.
There are several types of aberrations [2], but the spherical aberration is the only one that
affects the optical axis. Since our analysis of super-resolution is done in the axis, then the
aberration we work with is the spherical aberration. We take as a reference a published
work where is shown a procedure to correct this type of aberration. However, the author
only applies the method to spherical lenses.

Starting from here, we develop a method to design lenses with super-resolution proper-
ties of aspherical lenses. Hence, we carry out an analysis to design lenses without spherical
aberration, but for aspherical lenses, which are more difficult to manufacture than spherical
ones but have much better performance.

1



The outline of the work is as follows:

In chapter two the theoretical concepts for this thesis work are presented. Following, in
chapter three the antecedents of super-resolution are included, in chapter four, we present
the method to design lenses with super-resolution. The model for designing parabolic-
aspherical lenses is introduced in chapter five. Finally, in chapter six we present our general
conclusions and outline some guidelines for future work.

1.1 Published articles

As a result of the thesis work, the following articles was published:

Ninfa del C. Lozano-Rincón, Juan Camilo Valencia-Estrada. Paraboloid-aspheric
lenses free of spherical aberration. Jornal of Modern Optics (2016), 1146-1157.
DOI: https://doi.org/10.1080/09500340.2016.1266708

Ninfa del C. Lozano-Rincón, Noé Alcalá Ochoa. Design of super-resolving lenses
in far-field imaging. Optics Communications (2017) 316-322.
DOI: http://dx.doi.org/10.1016/j.optcom.2016.09.026
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Chapter 2

Basic Concepts

The propagation of electromagnetic waves such as light can be described by wave equation,
which is deduced from Maxwell’s equations [3]. The wave equation in vacuum is

∇2−→E − 1
c2
∂2−→E
∂t2

= 0 (2.1)

where −→E = −→E (x, y, z, t) is the electric field, (x, y, z) are cartesian coordinates and t is
the variable time. For each Ex, Ey and Ez, the equation (2.1) is identical in vacuum,
∇2Ex − 1

c2
∂2Ex
∂t2 = ∇2Ey − 1

c2
∂2Ey
∂t2 = ∇2Ez − 1

c2
∂2Ez
∂t2 = 0, so they will be denoted by ũ

hereafter. Assuming a monochromatic wave, a solution of equation (2.1) is

ũ(x, y, z, t) = u(x, y, z)e−iωt (2.2)

where i2 = −1 is the imaginary unit, ω is the frequency of the wave, u(x, y, z) is the
disturbance in a point situated at (x, y, z) and e−iωt is the temporary part, which is the
same for all points in space. Accordingly it will be omitted.

2.1 Diffraction

Diffraction is a property of the light which can be defined like "any deviation of light
rays from rectilinear paths which cannot be interpreted as reflection or refraction [4]." So,
when the light passes through an aperture of the size of the order of the light, the light
is diffracted, therefore u changes owing to the boundaries of the aperture. The Figure
(2.1) shows the propagation of a field u0(x0, y0) at a distance z when light impinges on an
aperture Σ. u0(x0, y0) situated at plane (x0, y0) becomes into u(x, y). This, according to
Huygens-Fresnel, is described in cartesian coordinates by

u(x, y) = z

iλ

∫ ∫
Σ
U0(x0, y0)e

ikr

r2 dx0dy0 (2.3)

3



θ

z

P0

P

u0(x0,y0) u(x,y)

x0

y0

x

y

Σ

Figure 2.1: Diffraction of field u0

where λ is the wavelength of light, k = 2π/λ is the wavenumber, r =
√
z2 + (x− x0)2 + (y − y0)2

is the distance between P0 and P and cos θ = z/r.

Due that equation (2.3) is difficult to calculate for general fields and general aper-
tures, it is necessary to perform some approximations, like those described by Fresnel and
Fraunhofer, and more recently, an approximation that improve both of them [5]. For this
reason, the above-mentioned approaches are described below.

2.1.1 Fresnel’s formula of Diffraction

The binomial expansion states that

√
1 + a = 1 + 1

2a−
1
8a

2 + ... a < 1. (2.4)

Now, if this expansion is applied to the expression of r

r =
√
z2 + (x− x0)2 + (y − y0)2

=

√
z2
[
1 + (x− x0)2

z2 + (y − y0)2

z2

]
= z

√
1 +

(x− x0
z

)2
+
(y − y0

z

)2

≈ z
[
1 + 1

2
(x− x0

z

)2
+ 1

2
(y − y0

z

)2]
(2.5)

thus

4



u(x, y) ≈ z

iλ

∫ ∫
U0(x0, y0)

exp
(
ikz
[
1 + 1

2

(
x−x0
z

)2
+ 1

2

(
y−y0
z

)2])
z2
[
1 + 1

2

(
x−x0
z

)2
+ 1

2

(
y−y0
z

)2] dx0dy0

= exp(ikz)
iλz

∫ ∫
U0(x0, y0)exp

[ ik
2z (x2 − 2xx0 + x2

0 + y2 − 2yy0 + y2
0)
]
dx0dy0

= eikz

iλz
e
ik
2z (x2+y2)

∫ ∫
U0(x0, y0)exp

[ ik
2z (x2

0 + y2
0)
]
exp

[−ik
z

(xx0 + yy0)
]
dx0dy0,

(2.6)

where "exp (x)" represents the exponential function of x. Finally, the following equation is
known as the Fresnel’s approximation for diffraction

u(x, y) = eikz

iλz
e
ik
2z (x2+y2)

∫ ∫ ∞
−∞

{
U0(x0, y0)e

ik
2z (x2

0+y2
0)
}
e

−2πi
λz

(xx0+yy0)dx0dy0, (2.7)

which is Fourier Transform of aperture U0(x0, y0) and quadratic phase function e
ik
2z (x2

0+y2
0).

2.1.2 Fraunhofer’s Formula of Diffraction

If the distance z of propagation of the field satisfies the following condition

z >>
k(x2

0 + y2
0)max

2 , (2.8)

it is considered diffraction in far field or Fraunhofer diffraction. Thus

ik

2z (x2
0 + y2

0)→ 0, (2.9)

which implies that the equation (2.7) changes to

u(x, y) = eikz

iλz
e
ik
2z (x2+y2)

∫ ∫ ∞
−∞
{U0(x0, y0)} e

−2πi
λz

(xx0+yy0)dx0dy0, (2.10)

where the integral is Fourier Transform of aperture U0(x0, y0).

The intensity of a scalar monochromatic wave can be defined as

I(x, y) ∝ |u(x, y)|2. (2.11)

5



In other words, it is proportional to the squared magnitude of the scalar field of the
wave [6].

2.1.3 Fraunhofer’s of Diffraction of a rectangular aperture

Rectangular  Aperture

Diffraction Pattern

Light

 source

Figure 2.2: Diffraction pattern of a rectangular aperture

A plane wave passes through a rectangular aperture, as shown in Figure (2.2). If the
sides of the rectangle are 2l and 2h, then the equation (2.10) for this case is

u(x, y) = eikz

iλz
e
ik
2z (x2+y2)

∫ l

−l

∫ h

−h
e

−2πi
λ

(xx0+yy0)dx0dy0,

= eikz

iλz
e
ik
2z (x2+y2)

∫ l

−l
e

−2πi
λ

(xx0)dx0

∫ h

−h
e

−2πi
λ

(yy0)dy0,

= eikz

iλz
e
ik
2z (x2+y2)

[
−λ

2iπx
(
e

−2πi
λ

xl − e
2πi
λ
xl
)][ −λ

2iπy
(
e

−2πi
λ

yh − e
2πi
λ
yh
)]
,

= eikz

iλz
e
ik
2z (x2+y2)

[
2
sin(2πxl

λ )
2πx
λ

][
2
sin(2πyh

λ )
2πy
λ

]
,

= 4lheikz

iλz
e
ik
2z (x2+y2)

[
sin(2πxl

λ )
2πxl
λ

][
sin(2πyh

λ )
2πyh
λ

]

(2.12)

Hence, the intensity is

I(x, y) ∝ |u(x, y|2 = 4lheikz

iλz
e
ik
2z (x2+y2)

[
sin2(2πxl

λ )
(2πxl

λ )2

][
sin2(2πyh

λ )
(2πyh

λ )2

]
(2.13)
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2.1.4 Fraunhofer diffraction field of a circular aperture

Circular  Aperture

Diffraction Pattern

1st diffraction

minimum

Light

 source
Profile of the dotted magenta line 

Figure 2.3: Diffraction pattern of a circular aperture

It is considered a plane wave impinging into a circular aperture as shown in Figure (2.3).
The complex field immediately after the aperture plane is

u0(x0, y0) = circ
(√x2

0 + y2
0

w

) (2.14)

where w is the radius of the circular aperture and "circ" denotes a circular function, which
is definited as

circ(
√
a2 + b2) =


1 if

√
a2 + b2 < 1

2

−1
2 if

√
a2 + b2 = 1

2

0 Otherwise.

(2.15)

Thus, the Fourier Transform of u0 is

F {(u0(x0, y0)} = w2
J1
(
2πw

√
f2
x0 + f2

y0

)
w
√
f2
x0 + f2

y0

(2.16)

where fx0 = x/λz, fy0 = y/λz and J1 is the Bessel function. Therefore, the field u(x, y) is
described by

u(x, y) = eikz

iλz
e
ik
2z (x2+y2)w2J1(2πw

λz

√
x2 + y2)

w
√
x2+y2

λz

(2.17)
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The intensity shown in diffraction pattern in Figure (2.3) is

I(x, y) ∝ |u(x, y|2 =
(w2

λz

)2
[
J1(2πw

λz

√
x2 + y2)

w
√
x2+y2

λz

]2

(2.18)

Note that the first minimum of J1 is when

2πw
λz

√
x2 + y2 = 1.22π, (2.19)

therefore the first diffraction minimum is at 3.86.

If y = 0 and it is considered also angles very small (paraxial approximation), then we
have tan θ = x

z ≈ sin θ. Thus

sin θ ≈ 1.22 λ

2w = 1.22 λ
D

(2.20)

where D is the diameter of the center lobe. The center lobe is known as Airy disc, which
concentrates approximately 80 percent of all energy.

Considering that the optical system is free of aberrations, of which we will speak later,
the ideal point image intensity of an object point with Lambertian emission characteristic
illuminating the circular aperture homogeneously is called the Point Spread Function (PSF)
[7]. It can be observed in Figure (2.4) that the PSF is not only an image in a plane but
also is an entire volume centered in the image plane.

Figure 2.4: Point Spread Function of an object point

8



2.1.5 Alternative method to evaluate the Rayleigh-Sommerfeld diffrac-
tion

z

P0

P

g1(x0,y0)

u(x,y)

x0

y0

x

y

Σ

f(x0,y0)

Figure 2.5: Rayleigh-Sommerfeld diffraction

Diffraction can be described by the First Rayleigh-Sommerfeld formulation (R-S) in rect-
angular coordinates [5], from which the formula for the complex amplitud field distribution
uRS(x, y) can be mathematically obtained for

uRS(x, y) = z

2π

∫ ∫
Σ
f(x0, y0)g1(x0, y0)(ik − 1

r
)e
ikR

R2 dx0dy0 (2.21)

where f(x0, y0) is an aperture function and g1(x0, y0) the illuminating wavefront, Σ is the
diffraction aperture and R is the distance between P0 and P. The Figure (2.5) shows the
geometry for the Rayleigh-Sommerfeld diffraction. Note that uRS(x, y) is a function of
f(x0, y0) and g1(x0, y0) at a certain distance z.

Assuming that λ << z then 1/r ≈ 1/z. This originates the Fresnel approximation given
by

uF (x, y) = A

∫ ∫
Σ
f(x0, y0)g1(x0, y0)e

ikr2
2z e

−i2π(xx0+yy0)
λz dx0dy0, (2.22)

where

A = ieikz

λz
e
iπ(x2

0+y2
0)

λz and r =
√
x2 + y2 (2.23)

The arguments in exponential functions are considering tilting parabolas. If z >> r,
these parabolas act like planes resulting the approximation of Fraunhofer.
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Now, Alcalá [5] proposes to use the first two terms of Taylor ’s formula of the expansion
of R given by

R ≈ Rn −
xx0 + yy0

Az
, (2.24)

where Rn =
√
z2 + x2 + y2 , Az is a constant. By substituting the above in the equation

(2.21) and taking R ≈ Rn in the denominators, the equation (2.21) is reduced to

uN (x, y) = z

2π

∫ ∫
Σ
f(x0, y0)g1(x0, y0)

(
ik − 1

Rn

)eikRn
R2
n

e
−i2π(xx0+yy0)

λAz dx0dy0. (2.25)

Equation (2.25) is Fourier Transform of the pupil multiplied by other functions. Thus,
we showed three different integrals to model mathematically the optical effect of diffraction.

Now, if two sources of light are considered then each of them will produce a diffrac-
tion pattern. When these sources are very close to each other, the patterns of diffraction
are overlapped. So, we can not distinguish the two sources. To know more about the con-
ditions to be able to differentiate the two sources below it is presented the issue of resolution.

2.2 Resolution

An optical parameter that describes the capacity of an optical system to separate the im-
ages of two objects that are very close is the resolving power. To analyze the concept of
resolution, we will take as a reference the circular aperture, since it is one of the most
common, for example the pupil in the eye.

It is considered two points as shown in Figure (2.6), each one has their Airy disc as
image. If θobj >= θmin then the two objects can be distinguished. Otherwise, Airy disks
overlap and appear to be the image of a single object.

The Figure (2.7) shows Airy discs of three different cases, two of them are not resolved.
The last one satisfies the condition θobj = θmin and it can hardly distinguish that the Airy
discs are separated. This criteria is known as Rayleigh criteria. In other words, it stats that
two objects can be resolved if

dAiryDiscs = 0.61 λ

NA
(2.26)
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Figure 2.6: Resolution

where dAiryDiscs is the separation of two Airy discs and NA = n sin θ [7].
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Figure 2.7: Rayleigth criteria

However, Sparrow considered that it is enough to note a little change in the intensity
between the two diffraction pattern. For this case, he [8] defined dAiry as

dAiry = 0.47 λ

NA
. (2.27)

.
The distance between two objects must be greater than dAiry, otherwise the images can not
be distinguished [9].

In the other hand, Abbe [10, 11] defined dAiry as

dAiry = 0.5 λ

NA
. (2.28)

Classically, the lateral resolution for the ideal PSF is calculated by

∆xairy = 0.61 λ

NA
, (2.29)

which is the Airy radius. Alike the axial resolution, the depth of PSF, is usually calculated
by [7]
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∆zrayleigth = 2 λ

nsin2θ
. (2.30)

The aberrations reduce the quality of the image causing the size of the PSF to increase.
If it is desired to reduce it, then we must cancel or reduce the aberrations. Spherical
aberration is the most difficult to reduce. This is why we will focus only on the spherical
aberration, which will be described below.

2.3 Spherical aberration

Let us consider a spherical wave that is emitted by a point source and travels within an
optical system. Then, wavefront is modified due several factors like the roughness of the
surfaces of the optical elements, poor alignment of the optical system, changes in the me-
dium where the light is propagated, etc.

Therefore, the presence of aberrations causes the reduction of the quality of the image.
So, it is very important to correct them or avoid them. The Figure (2.8) obtained from [12]
shows three different aberration which affect the diffraction pattern of a circular aperture.

Figure 2.8: Diffraction pattern in presence of spherical aberration,
coma and astigmatism aberrations

There is a huge amount of research on aberrations. In this thesis project we will deal
only with spherical aberration, so the fundamental concepts will only be focused on it.

Spherical aberration occurs when the rays emerging from the same point source after
passing through an optical system (lens) do not converge at the same point. This happens
because the rays that impinge on the edges of the lens have a greater angle of refraction
while the rays that pass through the center are not refracted so much.
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Figure (2.9) shows a model of a lens that generate spherical aberration while Figure
(2.10) shows a lens free of spherical aberration.

Figure 2.9: Lens that generates spherical aberration

Figure 2.10: Lens free of spherical aberration

The effect of the wavefront aberrations affects the quality of the optical image formation
. A parameter to measure this effect is called Strehl ratio, which is described below.

2.4 Strehl Ratio

The values of this parameter are between 0 and 1. If the wavefront is free of aberrations
then Strehl ratio is 1.
By definition, Strehl ratio is the ratio of the peak diffraction intensities of an wavefront
with aberrations and perfect wavefront. In other words

Strehl Ratiorayleigh = I

I0
. (2.31)

where I0 is the peak of PSF in absence of aberrations and I is the peak of PSF with
aberrations.

14



2.5 Super-resolution

It can be defined as the resolution improvement beyond the classical resolution limits
without modifying n, λ, NA.

There are different schemes to achieve super-resolution [13]:

1.-Sharpen up the PSF, while the spatial frequency bandwidth remains unchanged.

2.-Increasing spatial frequency bandwidth, but less than 2n/λ(coherent wave) or 4n/λ (in-
coherent wave).

3.- Increasing spatial frequency bandwidth without restriction by using digital deconvo-
lution with constraints. It works with nonlinear imaging.

We work with the method explained above in the number 1. Superresolvings pupils
work with this principle. The disadvantage of this method is that side-lobes increase their
intensity, resulting in the reduction of field of view.
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Chapter 3

Background of Super-resolution

Methods of super-resolution have been applied to various optical techniques. In this chapter
we will explain the application of super-resolution methods to some of these optical tech-
niques, such as

1.- Optical Microscopy.
2.- Holography.
3.- Speckle techniques.

3.1 Optical Microscopy

The improvement of the resolution began in the early 1990s by applying it in microscopy
field. In the twentieth century, the resolution was limited to a spot with 200 nm diameter
and axial resolution of 400-700 nm for far-field light microscopes [9].

So, it is important to know a background of microscopy.

The resolution of a microscope depends on the objective of the microscope. Regardless
if a more powerful eyepiece is used, then the only thing that is achieved is an amplification,
but the resolution stays unchanged. Remembering a microscope has objective and ocular,
the amplification is given by the multiplication of the power of the eyepiece by the objective.

Thus, the resolution depends on the numerical aperture NA of the microscope, which
is about half the diameter of the disk of Airy.

Lewis [14] gives an overview of the optical microscopy, which is summarized in Figure
(3.1).
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Figure 3.1: Summary of microscopy

Gustafsson [15] improved the resolution in Structured Illumination Microscopy (SIM).
The method is based in Moirè technique.

Simply he takes a sample, which can be considered to be formed by a set of diffraction
gratings that emit light at different frequencies. The fact of projecting a known frequency
on it causes a Moirè pattern to be formed, so if we multiply cos φ x cos θ, multiplication
gives us a high frequency term. The frequencies that the microscope objective fails to solve
by being out of its resolution are taken to the center, are reduced to low frequency and
therefore are solvable.

Pattern A Pattern B Moire Pattern

x
=

Figure 3.2: Moirè Technique
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This method requires a set of images and it is sensitive to the direction of the illumina-
tion grid. Therefore it is necessary to rotate and make an overlap of the images.

To achieve super-resolution, Hell [16] illuminates a sample with two microscope lenses
found. The beam of light enters on one side and recombines with light coming from the
other side. The function of this microscope consists to sample and separate the PSF, as
if it were multiplied by a grating. The disadvantage is that the resolution depends on the
central width, but the secondary lobes increase their intensity, causing the contrast to be
reduced and images lose contrast as well. Likewise, the sample must be digitally rotated
and processed.

The table 3.1 shows a description of some microscopy techniques outlined by Hell [9].
These techniques have been used fluorescent particles to improve resolution. The fluorescent
particles are illuminated in a certain wavelength and they emit light in other wavelength
improving the resolution.

The table 3.2 presents the best resolution axial (Z) and best resolution transversal (XY)
for some fluorescence microscopy methods [17].

Table 3.1: Description of Microscopy Techniques

Name of Technique Description

4Pi Microscopy

Improves the axial resolution in scanning far-field fluorescence
three-dimensional microscopyby a factor of 3-7 using two op-
posing lenses of high numerical aperture. To sharpen the fo-
calspot along the optical axis, the counterpropagating spher-
ical wavefronts of the focused excitation light field are coher-
ently summed at the common focal point, and the spherical
wavefronts of the emitted fluorescence light field are coherently
summed at the detector. Depending on the specific imple-
mentation, mathematical deconvolution of raw data is either
mandatory or optional. The concept essentially expands the
aperture solid angle in microscopy.
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I5M

Improves the axial resolution in wide-field fluorescence three-dimensional
microscopy. The scheme is similar to 4PI microscopy. The counter-
propagating excitation light field forms a flat standing wave, whereas
emitted fluorescence light is collected through both lenses as spherical
wavefronts that are summed at a common point of detection at a camera.
Mathematical deconvolution of raw data is mandatory. It can also be
combined with lateral resolution improvement in a method referred to as
I5S.

STED

STED: Stimulated emission depletion microscopy. A non-diffraction-
limited form of scanning far- field fluorescence microscopy. Typically,
fluorescence excitation created by a focused beam of excitation light is
narrowed down in space by simultaneously applying a second spot of
light for molecular de- excitation featuring a central zero. The role of
the de-excitation (STED) beam is to effectively confine molecules to
the ground state, thus, effectively switching off the ability of the dye
to fluoresce. De-excitation occurs within the nanosecond lifetime of the
fluorescent state. Because no de-excitation occurs at the central zero,
the excited state is established only in the region close to the zero.

GSD

GSD: Ground state depletion microscopy. Analogous to STED mi-
croscopy. The area in which molecules can reside in the fluorescent
state is narrowed down in space by transiently switching the dyes to a
metastable dark state-specifically, the triplet state. The use of a dark
state of micro-to millisecond lifetime reduces the intensity required for
the molecular switch in comparison to STED. The concept of switching
fluorophores between long-lived bright and dark states has successively
been extended to switching by cis-trans isomerization and other optically
induced molecular bistabilities in the concept called RESOLFT.

RESOLFT

RESOLFT: reversible saturable/switchable optically linear fluorescence
transition. A generalization of STED and GSD microscopy for molecular
switching, including switching of reversibly activatable proteins and
organic fluorophores. Switching can be regarded as a perfect saturable
transition from one state to the other. The terminology saturated
transition is used in conjunction with molecular ensembles to also
account for the fact that in an ensemble the population of the two states
may equilibrate to fractions-say, 90% in the off state and 10% in the on
state.
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SPEM/SSIM

SPEM/SSIM: saturated pattern excitation microscopy or saturated
structured illumination microscopy. A wide-field recording, highly
parallelized scanning microscopy in which the molecules are strongly
excited to the fluorescent state, depleting the ground state (that is,
switched from the ground state to the fluorescent state) outside the
line-shaped zeros produced by a standing wave interference pattern. To
cover the field of view, the pattern is scanned across the specimen by
phase-shifting the maxima of the interference pattern and reading out
the fluorescence imaged onto a camera for each scanning step. Because
resolution is improved only perpendicular to the line-shaped zeros, the
pattern is tilted several times to cover all directions in the focal plane.
Mathematical analysis of the data renders super-resolved images. Even
scanning a single line-zero would give super resolution, but the use of an
array of lines parallelized the process over a large area.

PALM, STORM

A PALM, STORM: (fluorescence) photoactivation localization micro-
scopy, stochastic optical reconstruction microscopy. Switches individual
molecules stochastically and sparsely on by light-induced activation and
then off, to detect a bunch of m photons from a single molecule on a
camera, emitted while the molecules are in the on state. Calculating
the centroid of the diffraction blob produced by each molecule and re-
gistering the coordinates of each molecule produces an image consisting
of individualmolecule positions.STORM has been initiated with pairs
of photochromic cyanine dyes with one of themused as an activation
(switch-on) facilitator.

dSTORM
dSTORM: direct STORM. A simplified version of STORM that refrains
from using a special dye for activation.

GSDIM

GSDIM: ground state depletion followed by individual molecule return.
Switches off by depleting the molecular ground state and shelving the
dye molecules in their triplet state, as in GSD. However, unlike GSD, it
uses a stochastic readout, as in PALM, STORM, FPALM and dSTORM.
It differs from these stochastic methods in that the dye molecule is not
optically activated but is automatically switched on after its spontaneous
return from the dark (triplet) state to its singlet state.

PAINT
PAINT: point accumulation. A method in which the on state is generated
by the binding of something to the structure to be imaged, and the off
state by free diffusion or another dark (bleached) state.
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Table 3.2: Best resolution in some Fluorescence Microscopy Methods

Name of Technique Best resolution in nm
4Pi Microscopy ≈ 200(XY )

≈ 90(Z)
I5M ≈ 230(XY )

≈ 90(Z)
Confocal ≈ 180(XY )

≈ 500(Z)
Widefield ≈ 230(XY )

≈ 1000(Z)
PALM, STORM ≈ 20(XY )

2 Photon ≈ 200(XY )
≈ 400(Z)

Stimulated emission ≈ 20(XY )
depleiton ≈ 50(Z)

Structured illumination ≈ 100(XY )

3.2 Holography

In the area of holography, Mico [18] used a very similar method to Structured Microscopy.
A Mach-Zender interferometer is used with a microscope objective. The variant with re-
spect to projecting structured light is that one has a beam splitter, some mirrors and the
sample. This last is illuminated at a certain inclination.

Remembering that, if two plane waves interfere, then it is possible to get interference
patterns. These consist of straight lines whose direction depends on the incident beams.
Therefore it is a variant of the method of Structured Illumination and the same has the same
characteristics of rotating the object or the lighting system in different directions to have
sensitivity. As a hologram, it can be reconstructed digitally. That means that the hologram
is known, which can be reconstructed in different planes by means of Fourier transforms
or propagation of the optical field. So it can be possible to have a volumetric reconstruction.

Also, Olvera achieved optical super-resolution in a Gabor Holography optical setup [1]
by using a spatial light modulator (SLM). A reflection spatial light modulator is used to
display super-resolving pupils. It can be observe the optical setup in Figure (3.3). A beam
laser is divided in two beams: reference beam and object beam. The object beam is modi-
fying by SLM to generate super-resolution. Besides, he used other optical setup, which is
shown in Figure (3.4).
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Figure 3.3: Experimental optical setup to test the super-resolution
in Digital In Line Holographic Microscopy (DIHM). P- Linear Po-
larizer, FE- Space Filter, L-Collimating Lens, DH-Beam Divider,
OM-Microscope Objective, M-Sample.

Olvera [1] obtained a reduction of PSF of 0.62 by using the complex pupil shown in
figure 3.5.

The experimental PSF and its corresponding profile are shown in Figure (3.6), where the
central disk was intentionally saturated in order to perform the measurement of the central
disc diameter.

Finally, it was used an optical fiber like a sample. It was demonstrated that PSF was
reduced by using a super-resolving pupils. The results are shown in Figure (3.7).
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Figure 3.4: Optical setup used to check the reduction of the cent-
ral disc in the diffraction pattern (focal point) of a microscope
objective.

Figure 3.5: Complex pupil (left) and free pupil (right).
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Figure 3.6: PSF (left) and its corresponding profile (right) (green)
and PSF profile of the free modulated pupil (blue).

Figure 3.7: Reconstruction of core of a optical fiber using as sample
in [1] a) By using free pupil, b) By using axicon pupil.
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3.3 Speckle techniques

An interferometer is a device which can be recombined light, preferably coherent light. If a
quasi-monochromatic source as a laser illuminates an optically rough surface, the light on
the surface has a granular appearance, where areas of maximum and minimum illumination
can be noted, randomly scattered throughout the illuminated surface. The height variations
of this surface are of the order or larger than the wavelength λ of the laser. To this effect
it is known like Speckle [19].

By making a Moiré pattern in this way with Speckle, it can retrieve the low frequency
term as in the case of structured light. Different optical setups can be designed depending
on the strain vector. It can be in plane, in the direction perpendicular or out of plane or a
combination of all.

Then, there are two patterns of interference: one of reference and other with deforma-
tion. When subtraction is done between them, there is a low frequency phase term and a
high frequency term. In fact it is double the original. Then a method is applied to determ-
ine the phase and reconstruct the difference of them.

In a paper of Chiang [20], he developed a method to improved resolution. It is very
similar to the methods described above. However in this work we have the mottled analysis
pattern with the microscope objective in the visible region and in a Transmission Electron
Microscope (TEM).

By means of TEM, images are obtained, with which speckle patterns can be generated.
It can get the field in plane from speckle patterns, in some direction or even detect fractures.

In a paper of Zheng [21], the 4pi interferometer was combined with a coherent light in
two different states: one with no sample and another with sample, thus achieving super-
resolution.
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Chapter 4

Design of super-resolving lenses in
far-field imaging

Making a lens that produces perfect images means the reduction of aberrations down to
levels limited by diffraction. A diffraction limited optical system is one whose Point Spread
Function (PSF) has been reduced to a minimum according to certain criteria like those laid
out by Strehl, Rayleigh or Sparrow [6]. Among all aberration reductions, the spherical one
is particularly important, given that for a particular wavelength, the image of an object on
the optical axis is perfect if it is free from spherical aberration. Usually, lenses which do not
introduce spherical aberration for a particular object and image positions on the optical axis
have been designed using ray tracing, although some designs with analytical formulas have
been reported, such as the Cartesian ovals of revolution [22] and other aspheric elements
[23]-[24].

An important result was published several years ago by Toraldo Di Francia, which
showed that there is no limit to the central peak reduction of the PSF, at the cost of in-
creasing the secondary side lobes and reducing the central core intensity dramatically [25].
Super- resolution methods deal with the PSF core reduction of optical systems limited by
diffraction, the side lobes height reduction with respect to the central lobe height, and the
optimization of the Strehl ratio [26]. To achieve such super-resolution amplitude, only-phase
or complex masks have been designed to modify the profile of the illuminating beam [27].

According with the revision of Lindberg, there are different schemes of super-resolution
[28]. In this work we will follow one of them, which consists in sharpening up the point-
spread function while the spatial frequency bandwidth remains unchanged. This way we can
obtain moderate super-resolution compared with those obtained by methods that use near
field information. Far field techniques hold advantages like not needing scanning devices
and the ability to image without physical contact between the measuring system and the
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object under analysis.

In this work [29], we show that aspherical lenses can be modified to obtain a PSF with
super- resolution characteristics. We will exposit a method to obtain analytical formulas to
describe the super-resolving optical elements. We will prove those formulas theoretically,
using different kinds of lenses, such as a plano-hyperboloid lens, a spherical-aspherical lens
and others.

From the theoretical and practical points of view, it would be interesting to have these
kinds of super-resolving lenses, since different applications, such as confocal microscopy, as-
tronomy, optical data storage, light concentrators and others, would benefit from design im-
provements, [30]-[31]. Additionally, there are various advantages of fabricating such super-
resolving lenses; for example, spatial light modulators (SLM) can be avoided as displaying
masks to add the super-resolving properties to lenses, flicker phenomena that appear from
the superposition of images coming from two or more SLMs would no longer exist [32],
diameter of super-resolving lenses can be larger than that permitted by the size of spatial
light modulators or small enough such that the spatial resolution properties of the SLM can-
not display accurately the super-resolving masks. Fabrication of lenses to work with high
power lasers or wavelengths not supported by spatial modulators could be also achieved, etc.

To our knowledge, this is the first time that a method is presented to design super-
resolving lenses using the manipulation of the asphericity of the optical elements surfaces.
There is a work where an aspheric lens for terahertz imaging with sub-wavelenght resolu-
tion is reported [33]. Its design is based on the optimization of the reflection losses of the
two lens surfaces. Although the authors have shown that the PSF spot size is about 20%
smaller than that obtained with a diffraction limited system, they did not find an analytical
expression for the surface lens, nor did they find super-resolution with a plano-hyperboloid
lens (as we found in this work). Moreover, from the figures reported in their article, it
seems that the PSF reductions were due to increments of the numerical aperture of the
lenses instead of manipulations of the lenses and illumination amplitudes.

In the following sections we describe a method to calculate the PSF of an aspheric lens
and our proposal to modify the aspheric surfaces of the lens in order to achieve the super-
resolution; later, we present some theoretical results that validate our proposal; and finally,
the discussion and conclusions of this work are given.
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4.1 Method to design super-resolving lenses

We applied geometrical optics to trace the wavefront from the incident plane to the second
surface of the lens. The wavefront profile at the second lens surface is used as the input
of the Rayleigh-Sommerfeld scalar diffraction formula. A similar method has been used in
[33] to design and build their lens. This way, a thick lens can be represented by the phase
function given by

g(r) = eiktceik(nl−na)t(r) (4.1)

where t(r) is the lens axial thickness at abscissa r =
√
x2 + y2 , tc is the center thickness of

the lens, nl and na with na < nl are the refractive indexes of the lens and its surrounding
media, respectively; and k = 2π/λ, where λ is the light wavelength. We calculate the
thickness function t(r) using ray-tracing theory assuming rotationally symmetrical lenses.
This ray tracing model obeys rigorous geometrical optic laws and applies to a single lens
with anterior surface za(r) and posterior zb(r) surface. The ideal optical system of such a
lens has an object-point on the optical axis z with a vertex-object distance ta (see figure 4.1
for notation used). From such point departs a ray that reaches an arbitrary point (ra, za(ra))
on the first surface, where it is refracted according to Snell’s law. This ray arrives at the
back surface at a point (rb, zb(rb)) on the second surface, where the ray is again refracted.
Thus, the thickness function is given by

t(r) =
{

[rb − ra]2 + [Za(ra)− Zb(rb)]2
} 1

2 . (4.2)

The Figure (4.1) shows a draw of a lens, which has two surfaces: Za and Zb.

Assuming that both surfaces are known and correspond to an aspherical lens free of
spherical aberration on axis, we can represent them through the Schwarzchild formulas

Za(r) = car
2

1 +
√

1− (Ka + 1)(cr2)
+
∞∑
j=2

A2jr
2j (4.3)

Zb(r) = cbr
2

1 +
√

1− (Kb + 1)(cr2)
+
∞∑
j=2

B2jr
2j (4.4)
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Figure 4.1: An aspheric-aspheric lens showing ray tracing. A co-
herent monochromatic light beam is refracted by surfaces za(r)
and zb(r) to form a perfect image located at back vertex distance
tb. Central thickness tc and point source PA and image PB posi-
tions are indicated. nl means refraction index of the lens.

where ca,b are the vertex curvatures, Ka,b the conic constants, and A2j , B2j the aspherics
coefficients of the respective surfaces.

Once our lens is free of spherical aberrations, we can modify the first surface or the second
or both to achieve super-resolution characteristics. Then, we introduce two functions (to be
calculated) z̃a(r) and z̃b(r), which we call super-resolving surfaces, such that the lens with
the thickness function described by

t̃(r) =
√
{rb − ra}2 + {z̃a(ra) + za(ra)]− [Z̃b(rb) + Zb(rb)]}2 (4.5)

be super-resolving. The super-resolving lens would be just described by

g̃(r) = eiktceik(nl−na)t̃(r) (4.6)

We can determine z̃a(r) or z̃b(r) or both; however, to simplify the process, we found
that it is enough to calculate one of them; so Equation (4.5) we will assume z̃a(r) = 0.

Next, we will explain the way to determine z̃b(r) and the path we followed to compute
the diffraction properties of our aspheric lenses.
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4.1.1 Calculation of the lens Point Spread Function

To determine the lens image of a wave, we followed the First Rayleigh-Sommerfeld formu-
lation (R-S), as described by [6]. The complex amplitude field distribution G(u, v) of a lens
function g(x, y) at a certain distance tb is given by

G(u, v) =
∫

∑
(x,y)

∫ 1
R2 e(x, y)g(x, y)ejkRdxdy (4.7)

where (u, v) are the dimensionless image coordinates, Σ(x, y) is the lens aperture, e(x, y)
(considered a constant for a distant source, i.e. a flat wave) is the function that describes the
spherical wave diverging from the point source and R2 = [t2b+(x−λtbu)2+(y−λtbv)2] , where
λ means the wavelength of light. Additionally, we define r2 = x2 + y2 and w2 = u2 + v2.
The PSF intensity is obtained as the squared modulus of Equation (4.7) when tb is the
position of the point source image.

4.1.2 Determination of the super-resolving function

The super-resolving phase function z̃b(r) is determined using an iterative procedure of four
steps where some parameters are optimized through the analysis of a PSF function. The
first step of the process consists in proposing the super-resolving functions. For instance,
we propose

z̃b(r) = b1[1 + cos(b22πr)]/[k(nl − na)] (4.8)

where b1 and b2 are parameters to be optimized. Some paraxial super-resolving pupil designs
using this function have been reported in [34].

The second step consists in carrying out ray tracing on the lens, using a point source on
the optical axis at position ta , with the anterior and posterior surfaces given by za(r) and
zb(r) + z̃b(r) (Equations (4.3), (4.4) and (4.8)) respectively. This way, we get the thickness
function t̃(r) given by

t̃(r) =
(
{rb − ra}2 + {za(ra)− [z̃b(rb) + zb(rb)]}2

) 1
2 (4.9)

In the third step, the PSF is calculated using Equations (4.6), (4.7) and (4.9).
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Finally, in the fourth step,we use an algorithm to optimize the coefficients b1 and b2 of
Equation (4.8) so that the following super-resolution constraints on the PSF are fulfilled: (a)
the spot size reduction of the central lobe by a factor ε < 1 , (b) the Strehl ratio S, and (c)
the relative side-lobe intensity Ω. These constraints have been suggested in previous papers
that use the paraxial approximation of Equation (4.7) [35]-[36]. We define the constraint
parameters as follows:

ε = DS

DSw
S = PSF (0, 0)

PSFw(0, 0) Γ = PSF (0, 0)
max[PSF (u, 0)] , foru > εu1 (4.10)

where DS means diameter of the central spot, sub index w means without super-resolving
function, and u1 is the first zero of the Airy function.

We used the Nelder-Mead fitting procedure (MATLAB) as an optimization method to
minimize the following merit function

M(u, Γ ) = I(εu1, 0) + [I(u, 0)− Γ ]2, for u > εu1 (4.11)

where I(u, v) = G(u, v)2 is the PSF intensity.

The processes of steps 2 and 3 are repeated until the merit function given by Equation
((4.11)) is satisfied.

It is noteworthy that we proposed Equation (4.8) as a super-resolving function for all
calculations of this work, because it contains only two parameters to be optimized, and the
target of this paper is to show that the method works, but it can be used other functions
with more parameters to be optimized like

z̃b(r) = φ(r)
nl − nak

(4.12)

with phase functions given, for example, by the polynomial φ(r) = ΣNb
j=0bjr

j , where bj are
the Nb + 1parameters to be optimized.

Next, we will demonstrate our proposal providing some examples of super-resolving
lenses with different types of surfaces.
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4.2 Super-resolving lenses

For these examples, we have considered the following general parameters of lens design:
light wavelength of λ = 633 nm, BK7 glass with refractive index of nl= 1.5151 at the
above wavelength, a distance image of tb = 40 mm and a lens diameter of D = 10 mm.
This way, we have lenses with an f-number equal to f/4. We also contemplate the lens
to be surrounded by air (na = 1.0), although other values can be chosen, and to have its
central thickness given by tc = D/3. Distance ta is specified in each example, as well as the
super-resolving functions.

4.2.1 Super-resolution with spherical-aspherical lenses

In this sections, we will analyze a lens with its first surface described by a sphere and a
second surface described by an asphere. The locations of the point source at finite and
infinite distances are examined.

According to the recent work of [37], the sags za(r) and z̃b(r) of this type of lens, free
of spherical aberration, can be calculated with the following formulas

za(r) = Ra −
√
R2
a − r2

a (4.13)

and

z̄b(r) = Ra − g +
(
ai+ j

c

)
(1−m) (4.14)

where
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a = n2
l ,

b = R2
a,

c = a2 − 1,

d = r2
a,

e = cd,

f = Ra − t− tb,

g =
√
b− d,

h = nlt+ tb −Ra + g,

i = ag,

j = i+ (a+ 1)
√
ab− d,

k = − f + g + j − ah,

l = af + h,

(4.15)

where nl, na, ta, tb, t are known parameters that have the meaning already explained; ra =
D/2 and Ra means the radius of curvature of the first spherical surface.

In order to write z̃b(r) as a continuous function, we have calculated Equation (4.14) for
discrete values of r, and with a least squares technique, fitted it to the following polynomial
of N-degree

zb(r) =
N∑

j=0
Bjr j (4.16)

The degree of the polynomial N has been chosen such that the error between the fitted
function zb(r) and the data z̃b(r) and the data be lower than λ/8 to assure the diffraction
limit [38]. Equation ((4.16)) can be expressed like Equation (4.4) as we explained before.

After having determined sagittas za(r) and zb(r), the super-resolving surface z̃b(r) was
optimized according to the procedure described in (4.1.2). We set the constraints to be:
PSF reduction factor of ε = 0.64, moderate side lobes of Ω = 5, and left the Strehl ratio
unconstrained.
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Figure 4.2: Super-resolving sags
zb(r),where continuos line represents Eq. (4.17) and dashed line Eq. (4.18)

After applying our procedure to the case ta = −∞ and Ra = 5D = 50mm (biconvex
lens), we obtained the super-resolving function given by

z̃b(r) = 3.125
[1 + cos(2.74πr

a )]
knl

(4.17)

and after repeating the process for a plano-convex lens with ta = −2tb (another value can
be chosen) and Ra = −∞, we have obtained

z̃b(r) = 3.345
[1 + cos(3.06πr

a )]
knl

(4.18)

These functions can be observed in the Figure (4.2), where a maximum sag value of
about 1.3 m is obtained.

The two reference PSF’s were calculated using the respective functions za(r) and zb(r),
setting z̃b(r) = 0 for each case.

The corresponding PSF profiles can be observed in Figure (4.3), where the super-
resolution is clearly observed for both cases. We obtained ε = 0.68 ,Ω = 5 and S ≈ 0.23 .
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Figure 4.3: PSF’s of a biconvex spheric-aspheric lens using a
super-resolving sag for point source at infinity (continuous), and a
plano-convex lens using a point source at a finite distance (dashed-
dotted). Dashed lines represent the diffraction limit for each case.
u1 is the first zero position of the dashed line. Note that the
continuous and dashed-dotted lines are almost superimposed.

4.2.2 Super-resolution with plano-hyperboloid lenses

In this section, we will analyze the lens whose first surface is given by a flat and the second
one given by an asphere.

When the point source is placed on the optical axis at ta = −∞, no ray tracing is
necessary to perform the optimization process, since the height of any ray on the anterior
and the back surfaces remains equal; we simply use the respective sags to calculate the
respective thickness function. Without the super-resolving sag, the thickness function is
given by

t(r) = zb(ra) (4.19)

and including z̃b(r), it is expressed by

t(r) = z̃b(ra) + z.(ra) (4.20)

The function zb(r) can be calculated using the formulas given in [24], where it is shown
that the back surface of a lens with a flat as its first surface, for an object at infinity, and
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Figure 4.4: PSF of a plano-hyperboloid lens with point source
at -∞. Dashed line represents the diffraction limit. Upper curve
represents the super-resolving function profile in micrometers. u1
is the first zero position of the dashed line.

free of spherical aberration, is given by an hyperboloid with a vertex curvature cb and a
conical constant Kb that correspond to

cb = − na
fb(nl − na)

andKb = −
(
nl
na

)2
(4.21)

Another alternative in order to obtain zb(r) is to use the formulas of Equations (4.13),
(4.14) and (4.15) as we did in the previous section, setting the radius of curvature of the
sphere to Ra =∞ and ta = −∞.

For the super-resolving function zb(r), we have considered that of Equation (??), which
as mentioned before, we will design to have a PSF reduction factor of ε = 0.64 and a
secondary lobule ratio of about 5. Using the thickness function given by Equation (4.20)
and calculating its PSF through the procedure explained in our first example, the expected
super-resolution is obtained and it is shown in Figure (4.4).

This kind of lens is interesting because using two plano-hyperboloid lenses we can build
a new lens working as finite-conjugated and free of spherical aberration. We can apply our
super-resolving process to the hyperboloid-hyperboloid lens in a way similar to what we did
in section 4.2.1.
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Another interesting configuration, due to its robustness with off-axis aberrations, is
when the first surface is a flat (za(r) = 0), the point source is at finite a distance, and the
image is at tb = ∞; that is, the flat surface faces the curved wavefront. We have achieved
super-resolution setting the super-resolving function indistinctly in any of the two surfaces.

4.2.3 Super-resolution with an ellipse and a concave sphere

We have included a lens of this type since the formulas of section 4.2.1 are useful only when
the first surface is a sphere.

As in the plano-hyperboloid case, it can be found again in reference [24] that the first
surface of an aspheric lens, free of spherical aberrations, with the back surface given by a
sphere of radius Rb = tb , for a point source at ta = −∞ and an image at a finite position
tb <∞, has a vertex curvature ca and a conical constant ka that correspond to the ellipsoid

Ca = nl
(tb + tc)(na − nl)

and Ka = −
(
na
nl

)2
(4.22)

zb(r) is obtained from Equations. (4.4) and (4.22).

In the same fashion as in prior examples, we chose the second surface to be the super-
resolving one. Following our optimization procedure, with tb = 4D , we found the super-
resolving function given by

z̃b(r) = 3.03
[1 + cos(2.46πr)

a ]
knl

(4.23)

and the respective PSF is observed in the figure 4.5, with the expected super-resolution.
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Figure 4.5: PSF of a lens with its first surface given by an ellipse
and a second surface given by a concave sphere. Dashed line rep-
resents the diffraction limit. u1 is the first zero position of the
dashed line

4.3 Method to design super-resolving mirrors

Although we have focused on super-resolving lenses, with minor changes to our procedure,
we can also attain super-resolving mirrors. The mirrors can be represented by the phase
function given by

gm(r) = eiktcmeiktm(r) (4.24)

where tm(r) is the thickness function of the mirror given by the optical path function at the
abscisa r , and tcm is a constant related with the image distance from the mirror vertex . As
in the description given before, we have calculated the function tm(r) using the ray-tracing
theory while assuming rotationally symmetrical mirrors. The ideal optical system of such a
lens would have an object-point on the optical axis z with a vertex-object distance ta (see
figure 4.6 for the notation used). From such point departs a ray that reaches an arbitrary
point (rm, zm(rm)) on the mirror’s surface, where it is reflected according to the laws of
reflection. This ray arrives at the image position (rm = 0, tb) . So, the thickness function is
given by

tm(r) =
√
r2
m + [tb − zm(rm)]2 (4.25)
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Figure 4.6: An concave mirror showing ray tracing. A coherent
monochromatic light beam is reflected by surface zm(r) to form
an image located at back vertex distance tb. Point source PA and
image PB positions are indicated.

After introducing the super-resolving surface z̃m(rm) , the thickness function is given
by

t̂m(r) =
{
r2
m + [tb − zm(rm)− z̃m(rm)]2

} 1
2 (4.26)

And again, the super-resolving mirror would be just described by

ĝm(r) = eiktcmeikt̂m(r) (4.27)

In order to choose the function zm(r) , we must remember that there are some well-known
optical configurations using mirrors where no spherical aberrations on axes are introduced,
such as a concave spherical mirror with both its point object and point image on its radius of
curvature, an ellipse with the image and object on their respective focuses, and a parabolic
mirror with the point source at infinite and the image at its focus.

We show the results of our method using the last configurations; that is, using a para-
bolic mirror with ta =∞. For this example, as before, we will consider the following general
parameters of design: light wavelength λ = 633 nm, tb = 40 mm and a mirror diameter of
10 mm.
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Figure 4.7: Normalized PSF of a mirror with its first surface given
by a concave parabola. Dashed line represents the mirror ’ s PSF
with zm(rm) = 0.

Since the thickness formulas were already known, the procedure to calculate the PSF
for the mirrors was quite similar to that used to calculate the PSF for the lenses; that is,
following the four steps already mentioned in section 2, we obtained the super-resolving
function

z̃m(r) = −9.474[1 +
cos(2.5πr

a )
k

] (4.28)

The super-resolving PSF profile is shown in figure 4.7, where it can be observed a cent-
ral core reduction of about 0.73, higher than the expected of 0.64. We also have obtained
S=0.01. We attribute these unpredicted values to the off-axis aberrations introduced by the
parabolic mirror [24]. So, the super-resolving PSF behavior is dependent of the aberrations
mirror performance.

4.4 Design of a flat-aspheric lens

A flat-aspherical lens was designed taking all of the above into account. It was manufac-
tured in the optical workshop at CIO. This was done in order to complement the theoretical
part.
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The parameters of the lens are:

Diameter = 100 mm
Central thickness = 20 mm
Focal distance = 700 mm
Aspherical Coefficient A2 = −1.361024e−3
Aspherical Coefficient A4 = −1.056551e−9

Radius of the best Sphere = -368.2557 mm
Maximum deviation PV of best sphere=-2.84 µm

The wavefront of the lens was measured with the Wyko interferometer to demonstrate
that it is designed at the diffraction limit. The laser, the interferometer and the sensor are
located in Wyko case.

The basic operation of a Wyko interferometer is described below: a flat wave passes
through a lens, then it reaches a mirror , which reflects the beam and passes through the
lens again, later enter the Wyko case. This beam, called an object beam, interferes with
the reference beam by generating interference fringes, which are collected in a sensor to
finally be observed on a screen. The mirror is collocated at focal distance f. The Figure
(4.8) shows an schematic of Wyko Interferometer and Figure(4.9) shows photos of Wyko
Interferometer setup. Interference fringes have information about the aberrations of the
measured lens. The mirror and other optical components of the Wyko have high optical
quality so the aberrations of them are considered zero.

LensPlane Wave

Mirror

f

Figure 4.8: Schematic of Wyko Interferometer
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Lens
Wyko

(a)

Lens

(b)

Figure 4.9: Wyko Interferometer setup

The interferometer has software that measures several parameters related to the aber-
rations of the lens. The Figure (4.10) shows the wavefront of the lens. To consider that a
lens is designed to the diffraction limit, the value of 20 Pt. PV must be less than or equal to
a quarter of the length . 20 Pt PV represent the mean of 20 distances of Peak-valley of the
wavefront [39]. The analysis results show that 20 Pt. PV value is 0.231 wv (wavelength),
which means that it is designed at the diffraction limit.

Once the lens is designed to the diffraction boundary, a pupil will now be designed either
of phase or of amplitude or both. We decided to work with a pupil of amplitude; so we
made circles of different radius, whose center coincides with the center of the lens. This
causes only a certain part of the beam to pass. The placement of these circles on the lens
can be seen in Figure (4.11).
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Figure 4.10: Wavefront of the flat-aspheric lens analyzed with
Wyko interferometer.

Figure 4.11: Circles acting as amplitude pupils placed on the lens.
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Now, we measure the different PSF’s generated by the different pupils on lens. The
optical setup to measure PSF can be observed in the Figure (4.12). A plane wave passes
through the lens, then it falls on a microscope objective, which is located at the focal length
of the lens. Finally it reaches the camera, which is connected to a pc. We obtain the images
of the PSF’s by using PC.

Lens

Laser

Microscope Objective

Camera
PC

Figure 4.12: Optical setup to measure PSF.

Figure (4.13) shows PSF of a free pupil and PSF of an amplitude pupil. It can observed
that the PSF is reduced by using an amplitude pupil. The values of the central line of the
PSF’s of Figure (4.13) are plotted for comparison purposes. The graphics are presented in
Figure (4.14).
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(a) (b)

Figure 4.13: a) PSF of a free pupil and b) PSF of an amplitude pupil
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Figure 4.14: Comparison between PSF of free pupil and PSF of
amplitude pupil

4.5 Discussion

Although it is rather obvious, we may think that a super-resolving function obtained for
a particular design may be useful for other designs. In general, this situation will not oc-
cur. In Figure (4.15), we show the PSF’s profiles of plano-hyperboloid lenses for different
diameters and equal f-numbers. Using the same super-resolving function, designed for the
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Figure 4.15: Relation between the super-resolution reduction
factor ε and its diameter for various f/4 lenses. The super-resolving
function was the same for all lenses and given by Equation(4.18).
Continuous and dashed lines represent the results of analyzing the
PSFs on-axis and out-of-axis, respectively.

lower lens diameter, it is observed that the PSF’s super-resolution is gradually reduced until
it vanishes. We have also observed this phenomenon with the super-resolving mirrors. So,
the super-resolving functions depend on the mirrors and lens aperture values, and must be
designed for each particular case.

We must say that the PSF’s shown in this work were analyzed at its best focuses; hence
the values of tb used in Equation (4.7) differed slightly from those used in their respective
geometrical designs. We found those focal shifts using Equation (4.7) to evaluate the on-
axis intensity for a range of values of tb.

When dealing with image formation it is important to know the out-of-axis behavior
of the super-resolving PSF’s. So, we will present some results using the biconvex lens
of section 4.2.1. After determining the two thickness functions corresponding to those
with and without the super-resolving function, we use Equation (4.7) to evaluate their re-
spective PSFs. We choose e(x, y) to describe a tilted flat wave along the x-direction (this
way our PSF tilts along the u-direction). Figure (4.16) shows the PSFs in two positions:
u ≈ 100u1 ≈ 150µm and u ≈ 400u1 ≈ 600µm , where as mentioned before, u1 = 0.61λf/D.
It can be appreciated that Figure (4.16 (a)) is almost a replica of Figure (4.3), that is,
it is quite similar to its on-axis PSF; however in Figure (4.16 (b)), it is clearly seen the
effects of the out-off-axis aberrations like coma and astigmatism. For the PSF without the
super-resolving pupil the central core is increased and becomes assymetric. On the other
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Figure 4.16: Out-off-axis PSFs of the biconvex lens of Section 4.2.1
calculated at two distances from axis: (a) 100 u1 and (b) 400 u1.
u1 is the first zero position of the non super-resolving PSF on axis.
Continuous and dashed lines correspond to lens with and without
super-resolving function, respectively.

hand, the PSF corresponding to the super-resolving lens the central core remains almost
unaffected but the side lobes increases their height respect to the central one; that is, their
Ω value are reduced when the PSF distance respect to the optical axis is increased. In this
way we can determine the optimus image height were the super-resolution is maintained just
by measuring the u-value were the respective value of Gamma achieves certain threshold
value. In our example u ≈ 140u1 ≈ 210µm, give us Ω = 4 , our defined threshold value.

Let us talk a little about the Schwarzchild representation of function zb(r) + z̃b(r).
Once having the polynomial representation of the super-resolving surface, for fabrication
purposes, it would be convenient to write it like Equation (4.4). It is an easy task to do it
by using a non-linear fitting. Just give the initial values like

Cb=2B2 (4.29)
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Kb = −1 + B4
B3

2
(4.30)

where Bj are the coefficients given by Equation (4.16). These initial values are the ap-
proximation to the curvature and conic constant obtained from the Taylor expansion of
the radical function of Equation (4.4). In general, we suggest using the polynomial repres-
entation instead of that of Schwarzchild, since we found various super-resolving sags that
cannot be represented accurately with the latter, especially for big aperture optics. We
believe that this is not a serious limitation, since for fabrication purposes there are various
polishing machines of aspherics that accept polynomial representations, for example [40].

Another important aspect of our proposal is related with the fabrication tolerances. If
they are too tight, the fabrication of the super-resolving lenses will be difficult. In order to
study this topic, we give the super-resolving sag of Equation (4.17) a fabrication error of 5%;
that is, if we used z̃b(r) = (1 + 0.05)z̃b(r) instead of z̃b(r) , after evaluating the respective
PSFs, we found that this sag error introduces only a slight change of the spot reduction
of about 3%. So, the resulting lens with the errors would be super-resolving again (Figure
(4.17)). The tolerances are an interesting topic that may help to find super-resolving pupils
with better tolerances to fabrication errors.

Focusing efficiency and side lobe height are important aspects of superresolution. In
this work we have fixed a side lobe eight of 0.2 (Ω = 5) and left unconstrained the Strehl
ratio S, our measure of the focusing efficiency, since we were more interested in controlling
the spot reduction and the side lobes control, however, such constraint can be introduced in
Equation (4.11). With our designs we have obtained S around 0.2, with means an efficiency
around 20%, which is acceptable. Constraining Ω to higher values will render in higher
image quality and less image artifacts. With the superresolving pupil defined by Equation
(4.8) we can achieve higher values of Ω but ε increases as well, which is undesirable. So, in
order to get the adequate balance among them, better optimization algorithms, to achieve
global solutions, could be used [28], or use indirect techniques like those reported in [41].

As a final remark we must emphasize that in this report we have optimized a super-
resolving sag given by Equation (4.12). In such equation is involved the refractive index,
and inherently, we have assumed that such refractive index was equal to that of the lens;
however, our analysis is not limited to this restriction. We can use a different refractive
index to design the adequate thickness function, and with a different technique, add it to the
lens. This means that we can use existing lens designs to convert them into super-resolving
lens. Moreover, we have analyzed aspheric lenses and mirrors but our method could be used
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Figure 4.17: PSF modification due to lens fabrication errors.

to introduce super-resolution into other optical systems providing its thickness functions.

It has been demonstrated in this work that it is possible to design super-resolving lenses
using smooth deformation functions and that the deformation functions can be polishable
with fabrication tolerances not too tight. However, it still remains the challenge of fabricate
such lens. The use of binary phase plates for achieving reduction of the central spot have
been used in the past [42] and could be another alternative to smooth functions, how- ever,
its incorporation to the lenses and mirrors would be the theme of future researches.

4.6 Conclusions

We have demonstrated that singlet lenses and mirrors can achieve super-resolution by adding
deformation functions. It is reported that in general the super-resolving functions are de-
pendent of the lens aperture. We developed analytical expressions and a design procedure
that can help the fabrication of super-resolving lenses. Fabrication tolerances and out-off-
axis analysis have been outlined. We expect that the combination of super-resolving lenses
and super-resolving mirrors provide optical instruments with superior imaging character-
istics.

We designed a lens to prove the theoretical method to obtain super-resolving lenses. We
demonstrated that amplitude pupils reduce PSF.
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Chapter 5

Paraboloid-aspheric lenses free of
spherical aberration

Many researchers have used paraboloid lenses in their inventions [43]-[44]. For example,
Hutchins [44] used a paraboloid lens to collect the light of a fiber-bundle. Paraboloid lenses
have been used extensively to design tunable liquid lenses with thin elastic membranes or
plates [45]-[46] and with tunable free surfaces manipulated by electrostatic fields [47]. Also,
it is important to remember that paraboloid lenses have been designed in the opthalmic
industry, specifically for spectacle lenses [48], hard and soft contact lenses [49]-[50] and
intra-ocular lenses (IOLs) [51]. Note that the back surface of the eye´ s lens, according
to the Navarro´ s simplified eye model as described by Gross et al. [52], is parab oloid.
Paraboloid lenses have been used to solve specific problems in high-power optics as pulse
formers for femto-second lasers [53], and these have been used for X- ray imaging [54]-[55].
All the paraboloid lenses above have spherical aberrations.

Technological advances make it possible to manufacture lenses with high surface qual-
ities (resolution near to one Ångström: 1 Å= 0.1 (nm) ) [56]. It is possible to make lenses
with paraboloid surfaces using gravity [57]. These lenses can be adapted to several port-
able devices with cameras, such as smartphones and tablets. They can be converted to
low-magnification portable microscopes.

In this work we describe the second surface of a lens, which corrects all spherical ab-
errations introduced by the first paraboloid surface, thus obtaining a perfect image of an
object point situated on the optical axis. The first surface of the lens has a parabolic meri-
dional section, which is described in a cylindrical-coordinate (r, z(r)) system with the same
notation used in [37]. In other words, we determined the geometric profile of the second
surface zb(r) for any given first preset paraboloid surface za(r) = r2/(4fa), where fa is the
front vertex-focus distance of the paraboloid (and it corresponds to the focal distance of
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Figure 5.1: Design of positive paraboloid-aspheric lenses free of all
orders of spherical aberration.

a paraboloid mirror with the same surface), shown in Figure (5.1). The Figure (5.1) is a
design prescribed with a relative refractive index n, the first paraboloid surface za(r) with
focal distance fa, an edge thickness te, a vertex anterior-object distance) ta, a vertex-image
point distance tb, and a maximal-aperture diameter dl. Center thickness t is calculated
(in this example with te = 0). The main purpose of this work is to know the geometry of
the second surface. A left-to-right ray tracing convention is used. A gaussian sign rule is
assumed. It is important to mention that the maximal aperture can be bounded by the
tangential marginal rays when the object is real and near the front vertex. The procedure
will be described in the next section.

The first lenses free of spherical aberration, particularly bi-conical aspheric lenses and
some kinds of spheric-oval or oval-spheric lenses, were studied by Descartes [22]. These rota-
tional symmetrical lenses do not introduce spherical aberration in their interfaces separating
isotropic and homogeneous mediums. In 1944, Luneburg [58] established the foundations in
order to design aspheric-flat lenses for an object located at a finite distance, avoiding spher-
ical aberration and using trigonometry to create parametric solutions. Also, he described
spherical-aspheric lenses for an object at infinity to image a focal point on the optical axes
without spherical aberration. With his classroom notes [58], Wasserman [59] and Wolf [3]
propose a famous problem, well known as the ’Wasserman-Wolf problem’, giving a numer-
ical solution of a differential equation to determine the geometry of the last surface of an
optical system to correct all spherical aberrations introduced by previous interfaces.

It is also important to highlight the work done by Stavroudis [60] and Shealy et al.
[61]-[62], who tried to find the general analytical solution of the eikonal equation (they only
managed to find the analytical solution of a corrective surface for certain non-paraboloid
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cases), which ensures that rays are always perpendicular to the wavefronts, to determine,
by means of vectorial, algebraic and differential methods, the last refracting surface of a
lens system that generates a spherical wavefront in order to form an image on optical axis
free of spherical aberration. Valencia et al. [37] managed to solve the eikonal problem for a
single isotropic and homogeneous lens that is immersed in a medium that is also isotropic
and homogeneous; they used algebraic artifices instead of numerical methods for the sake
of accuracy. For this paper, we used Valencia’s work to characterize the corrector surface
of the spherical aberration introduced by a first paraboloid surface.

Many authors have studied the spherical aberration ([23],[63], [64],[65],[66],[2]) enhan-
cing the image on an optical axis. With this work, many practical applications have ap-
peared on the market, as singlet lenses for lithography, laser fusion, data storage and readout
of optical disks ([67],[68],[69]).

In 2012, Valencia et al. [70] developed an analytical method to solve the Wasserman-
Wolf problem for any kind of optical system composed of a single lens, with parametric
and explicit solutions using the Schwarzchild´ s approximations. They show the general
procedure to find the analytical rigorous solution, and they show practical solutions to
design flat-aspheric and spherical-aspheric lenses. But until now, nobody has described a
bi-aspheric lens with a corrective surface for all orders of spherical aberration, keeping in
mind that an aspherical surface is a non-spherical surface (where the prefix ’a-’ indicates
absence of sphericity). Every conical surface of revolution is aspheric, and thus, a parabol-
oid of revolution is an aspheric surface with a conical constant K = −1.

5.1 The exact aspheric corrective surface

The first surface with subindex a corresponds to a revolution paraboloid with a meridional
section, which can be represented as

za(ra) = r2
a

4fa
= car

2
a

2 = car
2
a

1 +
√

1− (1 +Ka) c2
ar

2
a

, (5.1)

with a curvature at vertex ca = 1/(2fa) and a conical constant Ka = −1 using Schwar-
zchild´ s representation, well described by Malacara[2].

The derivative of the meridional function Equation (5.1) was calculated following the
Valencia´ s method[37]:

dza(ra)
dra

= ra
2fa

= ca ra , (5.2)

52



to calculate the odd abscissa rb(ra) of a refracted ray at the posterior aspheric surface with

rb(ra) =
B2FG−s4OP+s5 sign(ra)B

√
(FP−s4OG)2 +K(P 2−B2G2)

B2(F 2 +K)−O2 |
ra

, (5.3)

and the even ordinate zb(ra) with

zb(ra) =
[1

2car
2
a +D (ra − rb(ra)) + s1E |ra − rb(ra)|

]
|
ra

, (5.4)

where the absolute value is a safeguard to protect the lens maker, with recursive variables
B, D, E, F , G, K, O, and P . Note that the recursive variables are functions of parameter
ra, which corresponds to the height of the input ray. For this reason, the notation of eval-
uation |ra is used to indicate that the recursive variables are parametric functions.

The method presented here to design singlet lenses free from all orders of spherical
aberration is an application of the method used in [37]. Thus, the general solution was
slightly modified to reduce the number of recurrent variables required for Equations (5.3)
and (5.4).

53



B =
√
r2
a(c2

a r
2
a − 2 cata + 2)2 ,

D = n2ca[(car2
a − 2 ta)2 + 4 r2

a]
ra (ca{ca(n2 − 1)[(car2

a − 2 ta)2 + 4 r2
a] + 8 ta} − 4) ,

E =

√
(c2
ar

2
a − 2 cata + 2)2√

r2
a

×

√
n2(c2

ar
2
a + 1)[(car2

a − 2 ta)2 + 4 r2
a]− r2

a(c2
ar

2
a − 2 cata + 2)2

ca{ca(n2 − 1)[(car2
a − 2 ta)2 + 4 r2

a] + 8 ta} − 4 ,

F = n2
√

(car2
a − 2 ta)2 + 4 r2

a ,

G = ra
2 (n2[c2

ar
2
a − 2 ca(t+ tb) + 2]

√
(car2

a − 2 ta)2 + 4 r2
a + s2

√
(c2
ar

2
a − 2 cata + 2)2

×
[
2(−ta + nt+ tb) + sign(ta)

√
(car2

a − 2 ta)2 + 4 r2
a

] )
,

K =r2
a(ca{(n4 − 1)ca[(car2

a − 2 ta)2 + 4 r2
a] + 8 ta } − 4) ,

O = ra
(
s4

(
n2(n2 − 1)ca[(car2

a − 2 ta)2 + 4 r2
a] (c2

ar
2
a − 2 cata + 2)2

ca{(n2 − 1)ca[(ca r2
a − 2 ta)2 + 4 r2

a] + 8 ta} − 4

)
+ s1

×
√

(c2
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a − 2 cata + 2)2

(
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√
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a
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a − 2 ta)2 + 4 r2

a] + 8 ta} − 4
ca{(n2 − 1)ca[(car2
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a − 2 ta)2 + 4 r2
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+s1 s4

√
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a]− r2

a(c2
ar

2
a − 2 cata + 2)2

×
√

(c2
ar

2
a − 2 cata + 2)2}− 1

2
{
2n4ca[(car2

a − 2 ta)2 + 4 r2
a] + (c2

ar
2
a − 2 cata + 2)2

×[car2
a − 2(t+ tb)] + s2 n

2 ca

√
(c2
ar
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×{2(−ta + nt+ tb)
√

(car2
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,



(5.5)

and unknown dichotomic sign functions s1, s2, s4 and s5 .
The above solution Equations (5.3)-(5.5), with the rules for each sign found by means

of numerical analysis, can be resumed using a new system of lowercase recurrent variables
(that are functions of the parameter ra) to improve and speed up the computing process:

rb(ra) =
ra(f mp− t̂ u+ ŝ5 sign(tb) e

√
(mu− t̂ p)2 + c q(u2 − f p2))

f(m2 + c q)− t̂2
|
ra

, (5.6)
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zb(ra) =cac2 + a k(1− rb/ra) + ŝ1 sign (ta) e
√
a(d+ 1)h− cf

√
(1− rb/ra)2

r̂
|
ra

,
(5.7)

with the following recurrent variables in lower case:

a = n2 ,

b = a− 1 ,

c = r2
a ,

d = c2
a c ,

e = −d+ 2(ca ta − 1) ,

f = e2 ,

g =
√

(ca c− 2ta)2 + 4c ,

h = g2 ,

k = ca h ,

l = b k ,

m = a g ,

o = e[sign(ta)(n t+ tb − ta) + g/2] ,

p = [d/2− ca (t+ tb) + 1]m+ o ,

q = ca [(a+ 1) l + 8ta]− 4 ,

r̂ = ca (l + 8ta)− 4 ,

s = sign(ta) q e
√
a (d+ 1)h− c f ,

t̂ = a l f + s

r̂
,

u = a k q + s

r̂
− [a2k + f

2 (ca c− 2(t+ tb)) + a ca g o] ,



(5.8)

with the following rules for only two signs (ŝ1 and ŝ5 ) included in the general solution
Equations (5.6)-(5.7):
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p̂ = r2
a + 2

c2
a

− 2ta
ca
−

2n
√

(n2 − 1)(1− 2cata)
c2
a (n2 − 1) ,

q̂ = r2
a + 2

c2
a

− 2ta
ca
−

2n2
√

(n4 − 1)(1− 2cata)
c2
a (n4 − 1) ,

v̂ = r2
a − 4f ta + 8f2 .

ŝ1 = 1 ,

ŝ5 = sign(v̂) .

If ta > −2 fa/(n− 1) and ta < 0 ,
then ŝ1 = sign (p̂) ; ŝ5 = sign (p̂) sign (q̂) sign (v̂)
End If .
If ta >= 0 and ta <= 2 fa/(n2 + 1) ,
then ŝ5 = sign (q̂) sign (v̂)
End If .



(5.9)

The rule of signs (Equation (5.9)) ensures the continuity of corrective surfaces. With
this rule invalid solutions are never presented. The final solution is infinitely differentiable
with respect to parameter ra. The solutions Equations (5.6)-(5.8) always are reals using
the rule signs, Equation (5.9).

5.2 Different cases of design of thick lens with object and
image at finite distances

We show some results obtained for a front convex paraboloid surface (fa > 0) whose sagitta
is given by Equation (5.1). The internal rays of this solutions have no inversion. So, we
present some examples of different cases of design of convex paraboloid-aspheric lens. In
this section, Ob. represents object point and Im. is the image point.
The simplified general solution, for a first convex paraboloid surface with a proximal1 or
distant object and a proximal image, according to Equations (5.6)-(5.7) with the recurrent
variables according to Equation (5.8) and signs Equation (5.9), was verified by means of ray
tracing. Also, to verify the solution, the back vertex curvature of these paraboloid-aspheric
lenses can be obtained by means of the Pinching Theorem described by Weisstein [71, 72],
at the points of discontinuity when ta = −2 fa/(n− 1), ta = 0 and ta = 2 fa/(n2 + 1) using
Valencia’s formulas with Ra = 2 fa:

1For Equations (5.6)-(5.8), to give ever valid results (regular surfaces), the anterior vertex-object distance
ta, of its five irregular values, should be of at least 1 (nm), either above or below these four critical values,
if the object is real when ta = −2 fa/(n − 1) and ta = −2 fa/(n2 − 1), or virtual when ta = 2 fa/(n2 + 1)
and ta = 2 fa/(n + 1); when ta = 2 fa, it should be below the critical point.
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cb(0) =

dzb(ra)
dra

∣∣∣∣
ra = 0[

lim
ra→0

(
rb(ra)
ra

)]2 , (5.10)

cb(0) = (n− 1)(t+ n tb) ta + 2 fa[t+ n(tb − ta)]
(n− 1) tb[2 fa(n ta − t)− (n− 1) t ta]

= 1
Rb
, (5.11)

a solution that corresponds to a Gaussian central back curvature radius 2

Rb = (n− 1) tb[2 fa(n ta − t)− (n− 1) t ta]
(n− 1)(t+ n tb) ta + 2 fa[t+ n(tb − ta)]

, (5.12)

In order to guarantee that the Equation (5.6) and Equation (5.7) with recurrent variables
(Equation (5.8) ) and signs established in Equation (5.9) yield an optical design without
spherical aberration, we proved them through ray tracing of a lot of designs. Figures (5.2-
5.5) show some examples of each case respectively.

In Figure (5.2), aspherical back surfaces zb(ra) were calculated using Equations (5.7)
-(5.8) with the rules of Equation (5.9), in (a), (b), (c) and (d), to obtain image-points free
of all orders of spherical aberration. Rays are traced with several prescribed variables: re-
lative refraction index n = 1.5, front vertex radius Ra = 2 fa = 50 (mm), image distance
tb = 100 (mm), center thickness t = 10 (mm), and object distance ta = −1000, −100, −50,
and −25 (mm) for (a), (b), (c), and (d) respectively. The back aperture diameters db =
50, 46.09753, 38.199538 and 30.358034 (mm) were preset for (a) and numerically calculated
with
db = dl for (b), (c) and (d) respectively. Lens (a) diameter dl = 61.124557 was calculated.
Rays travel upwards. In this case, maximum lens diameter is bounded by dl ≤ 2

√
−fa ta.

In Figure (5.3), four lenses were prescribed with a relative refraction index n = 1.7, a
front vertex radius of Ra = 2 fa = 50 (mm), a back vertex-image distance tb = 60 (mm),
a lens diameter dl = 30 (mm), and a center thickness with t = 5 (mm). Object distances
ta = 100, 65, 25, and 6 (mm) were prescribed for (a), (b), (c), and (d) respectively. Aspher-
ical back surfaces zb(ra) to obtain zero spherical aberration were calculated using Equations
(5.6)-(5.9). Edge thicknesses were calculated with te = 4.169306, 5.236779 and 13.306509
for (a), (b) and (c) respectively. Lens (d) has to be lenticular. Rays travel upwards. Two
additional extended emergent rays are shown with phantom lines in each lens to indicate

2Using formulas for the axial lensmaker [37] with finite conjugate planes, valid for all lenses without
quadrant inversion within the same ( I and II Figure (5.1)).
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the position of the virtual object-point O.

In Figure (5.4), designs can be negative or positive. Five lenses were prescribed with
relative refraction index n = 1.6, front vertex radius Ra = 2 fa = 70 (mm), center thickness
t = 5 (mm), back vertex-image distance tb = −50 (mm), and front vertex-object distances
ta = −120, −80, −40, −25 and −12 (mm) for (a), (b), (c), (d) and (e) respectively. Lens
diameter dl = 50 (mm) was prescribed for (a), (b) and (c) with negative designs. Maximum
diameters dl = 47.136995 and 23.243589 (mm) for the positive designs (d) and (e) were cal-
culated. Aspherical back surfaces zb(ra) were calculated to obtain zero spherical aberration
using Equations (5.6)-(5.9). Edge thicknesses were calculated with te = 9.348011, 7.689600
and 3.527993 for negative designs (a), (b) and (c) respectively. Rays travel upwards. Two
additional extended incident rays are shown with phantom lines in each lens, to indicate
the position of the virtual image-point I . In this case, maximum lens diameter is bounded
by dl ≤ 2

√
−fa ta.

In Figure (5.5), four lenses were prescribed with negative design, relative refraction index
n = 1.7, front vertex radius Ra = 2 fa = 60 (mm), center thickness
t = 4 (mm), diameter dl = 35 (mm), back vertex-image distance tb = −60 (mm), and front
vertex-object distance ta = 65, 40, 30 and 20 (mm) for (a), (b), (c) and (d) respectively. As-
pherical back surfaces zb(ra) were calculated to obtain zero spherical aberration using Equa-
tions (5.6)-(5.9). Edge thicknesses were calculated with
te = 11.829075, 16.418563 and 29.630340 for negative designs (a), (b) and (c) respectively.
Lens (d) has to be lenticular in order to avoid backward rays. Rays travel upwards. Four
additional extended (incident and refracted) rays are shown with phantom lines in each lens
to indicate the position of the virtual object-point O and the virtual image-point I.
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5.2.1 Real Ob. - Real Im.

-30 30

100

50 50

z z z z

r

d
l

t
a

t
b

t

O O

O

O

I I I I

n

100100100

50

20-10 10-202010-10-20

5050

100

-10 10 10-10

100

50 5050
d

b

z
b
(r) 

(a) (b) (c) (d)

z
a
(r) = 

r 
2

4f
a

Figure 5.2: Positive design of paraboloid-aspherical biconvex lenses with zero spherical
aberration, with several real objects O and the same real image I, maximum possible
diameter dl and null edge thicknesses te = 0.
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5.2.2 Virtual Ob. - Real Im.
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Figure 5.3: Positive or negative designs of paraboloid-aspherical convex-concave lenses fea-
turing zero spherical aberration with a virtual object O and a real image I.
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5.2.3 Real Ob. - Virtual Im.
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Figure 5.4: Paraboloid-aspherical convex-inflexed simple lenses with a real object O and a
virtual image I.
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5.2.4 Virtual Ob. - Virtual Im.
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Figure 5.5: Paraboloid-aspherical convex-concave simple lenses with a virtual object O and
a virtual image I.
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5.3 An approximation of the formula of Schwarzschild with
coefficients of deformation

In order to find solutions with Schwarzschild’s formula with coefficients of deformation (ISO
standard 10110-12), Valencia shows the general procedure in [37] . Thus, we used it. We
consider that the first four aspheric coefficients are more important, so the sum of Equation
(5.13) is finite.

In the other hand, to find the appropriate conic constant Kb (of the correcting surface)
that determines the best fit when the result is dependent on the aperture diameter, we can
begin with the numerical solution for Kb in

5∑
j=2

[
B2j

(
db
2

)2j]
= 0, (5.13)

or with a better solution that can be obtained through approximation using software, where
db is the back aperture diameter, and db ≤ dl.

Once a suitable conic constant has been obtained, this can be iteratively optimized with
very small changes of Kb to minimize the spherical aberration.

An example of the results obtained following Valencia’s method, asphericity coefficients
according ISO formula (which determine the best fit of the correcting surface of spherical
aberration for a first paraboloid interface) for an object at infinity were obtained using
Equations (5.6)-(5.7) with recurrent variables Equation (5.8) and signs Equation (5.9), and
calculating their limits when ta tends toward minus infinity, to obtain

B2j = Q2j
mjU 3j−2 ( 2 tb) 2j−1 − (−1) j+1 c 2j−1

b (1 +Kb)j−1Bin
[1

2 , j
]

(5.14)

with recursive variables U = 2n fa −mt and p = n + 1, and polynomials Q2j that corres-
pond to:
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Q4 = pU4 −mn tb(m3p t t2b + 2mtb U
2 + 2U3) ,

Q6 = 2m6 n p2t t5b (2mt+ U) + 2mn tb U
2{4m4 p t t3b +m3 t2b [p (t+ tb)− 2U ]U

−m (n− 3)tb U3 + 3pU4} − 2p2U7 ,

Q8 = −2m3n t3bU
6{m[(5n− 8)n+ 7] tb − 2[n(n+ 7)− 4]U}+ 4m3n p t2bU

4{m3

×(4n− 11)t t3b +m2t2b [(n− 4)tb − 6t]U + 5U4}+ 2mnp2tb U
2[−28m7t2t5b

−4m6t t4b (t+ 5tb)U − 2m5t5b U
2 − 3m3t t2bU

4 − 10U7]− p3(24m10n t3t7b

+24m9n t2t7bU + 5m8n t t7bU
2 − 5U10) ,

Q10 =176m13n p4t4t9b + 264m12n p4t3t9bU + 4m11n p3t2t8b(120t+ 29p tb)U2 + 2m10

×n p3t t7b(24t2 + 288t tb + 7p t2b)U3 − 16m9n p2t t7b [(6n− 31)t− 11p tb]U4

+2m8n p2t6b [2(5n+ 42)t2 − (41n− 201) t tb + 5p t2b ]U5 + 8m7n p t5b{3p2t2

+[3n(3n− 4) + 35] t tb−(n−8)p t2b}U6 − 4m6n p t5b{[n(6n+ 19)− 43]t− [n

×(3n−16) + 23]tb}U7−4m5n t4b(4(2n− 5)p2t+{n[n(7n−20) + 9]−20}tb)U8

+4m4n t3b(5p3t+ {n[n(9n+ 19)− 31] + 15}tb)U9 + 20m3n[n(2n− 9)

+3]p t3bU10 − 10m2(11n− 7)n p2t2bU
11 + 70mnp3tb U

12 − 14p4U13 .



(5.15)

Figure (5.6) shows ray tracing for a paraboloid-aspherical lens with reduced spherical ab-
erration, with deformation coefficients Equation (5.14). Figure (5.6 a) shows the ray tracing
for the lens, obtained by OSLO R© without optimization algorithm nor defocus. Aspherical
back surface was calculated with an entrance beam radius of 25.2 (mm) that corresponds
to output aperture (stop diameter) dd = 48.720006 (mm), with back vertex radius Rb =
−141.463415 (mm), conical constant Kb = −7.84569, and four coefficients B4 = 1.7315 ×
10−8 (mm−3), B6 = 4.6923 × 10−12 (mm−5),
B8 = −2.7666 × 10−15 (mm−7), and B10 = 1.0514 × 10−18 (mm−9). Figure (5.6 b) shows
the respective spot diagram (mm), also obtained without the optimization algorithm nor
defocus.
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Figure 5.6: Paraboloid-aspherical lens with object at infin-
ity and real image, with prescribed variables n = 1.5,
Ra = 2 fa = 80 (mm), ta = −∞, t = 8 (mm),
tb = 100 (mm), lens diameter dl = 50.4 (mm), and working
F# = 2.052545.
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5.4 Conclusion

We have presented the analytical equations to design singlet lens with a paraboloid con-
vex surface without spherical aberration. Since for optical designers it is convenient to use
the Schwarzchild’s formula with coefficients of deformation, we present the corresponding
approximation for the described lenses for an object placed at infinity. The aspheric coeffi-
cients are shown as well.

The formulas used in [37] were applied in the case in which the lens has a first convex
spherical surface; in this paper, we consider a first-convex paraboloid surface. It is worth
noting that the formulas presented for concave cases are exactly alike. Besides, the general
method presented in [37] applies to many kinds of singlet lenses, but the deductive process
to obtain the rigorous or approximate solution of the corrective aspheric surface, which is
ISO-compliant, is specific for each kind of lens, and it also aids in analytically determining
the coefficients of deformation.

The exact parametric solutions allow designs to be made with extremely low F-numbers
(F/# << 1). However, the explicit solutions approximated according to ISO formula are
solutions in a series with up to four deformation coefficients, which can have fast convergence
or slow convergence (O(r) o o(r)). There is not a formula that predicts a fast convergence
for the parameters of the prescribed designs. In order to guarantee that the residual spher-
ical aberration is below the diffraction limit, we recommend using a ray tracing by means
of software.

Paraboloid surfaces are very common in optics, especially to design tunable mirrors [69]-
[70] or fixed mirrors [73] manufactured by molding or spin casting. Note that a free surface
of a rotating liquid in a gravitational field is a paraboloid, considering a small departure
meniscus at the edge of the field generated by the hydrophilic or hydrophobic substrate.
Sometimes, it can be practical to make paraboloid-aspheric lenses as substrate for mirrors,
or use the same spin casting processes to make paraboloid surfaces of these lenses or inserts
for plastic or glass molds.

Additionally, it is important to mention that there are many recent papers published
concerning the refraction through singlet lenses to reduce the spherical aberration [74],
[75],[76],[77],[78], trying to find the best corrective surfaces with an approach, which fits
the ISO formula. So, we hope this work can help optical designers to do their work more
quickly and easily.
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Chapter 6

A numerical method to design
lenses without spherical aberration

We present a numerical way to find the sign functions; that are necessary to know the
equations to design any kind of singlet lenses without spherical aberration. It is valid for
the case of real object and real image. It is showed a comparison between a theoretical
model and the presented method.

The spherical aberration is one of the most studied monochromatic aberrations of an
optical system. This is because the optimization of it can improve significantly the quality
of the image on an optical axis. So, many researchers have studied this phenomenon: Roger
Bacon identified it in spherical mirrors [79]. Later, J. Kepler (1611) and R. Descartes (1637)
described it [80]. Descartes also studied the first lenses without spherical aberration, but
he only considered the Cartesian ovals of revolution [22]. Afterwards, Luneburg proposed a
method to avoid spherical aberration, but only for two particular cases [58]. Born and Wolf
[3], Dijkterhuis [81], Hawking [82] and Ghatak [83] also studied the spherical aberration and
described it.

Despite the many studies of spherical aberration, no one had been able to completely
eliminate spherical aberration, until Valencia [37] proposed an analytical method for design-
ing any kind of singlet lenses. As an example, he developed all analytic method to design
spherical-aspheric and flat-aspheric lenses. Later, in [84] it is shown the same procedure for
families of singlet paraboloid-aspheric lenses.

To apply the method to design singlet lenses free of all orders of spherical aberration
is necessary to know the equations of the first surface and its derivative, the hard part is
finding the signs functions involved in this method covering all possible cases for an specific
family of singlet lenses. The authors of [37] and [84] have not described the method to find
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these signs functions. So, the goal of this work is to propose a way to find these functions
signs and consequently to have the analytic formulas to design any singlet lenses without
spherical aberration supported by the Valencia’s formulas.

Thus, following sections describes the method to obtain the function signs. In examples
section, we present a comparison with the previous article ( [84]). Finally discussions of the
results are given.

6.1 Method

Singlet lens have two surfaces: za and zb. Analytically any first surface za can be possible
represented by

za(ra) = car
2
a

1 +
√

1− (1 +Ka) (cara)2
, (6.1)

where ca is the curvature at vertex, Ka is conical constant according to Schwarzchild’s
representation [2] and ra is a parameter that represents the height of the input ray.
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Figure 6.1: Design of any kind of singlet lens free of all orders of spherical aberration. The
lens has a relative refractive index n, a first surface za(r), a vertex anterior-object distance
ta, a vertex-image point distance tb, a maximal-aperture diameter d and center thickness
t. O represents the object and I the image. P is a point in za(r) and G is a point in zb(r).
Assume the ray tracing from left to right and gaussian sign rule. The procedure will be
described in the next section
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Then, to find the second surface of a singlet lens without spherical aberration, we use
parametric equation (rb, zb) given by Valencia´ s method:

rb(ra) =
B2FG−s4P (s1EK + s4N)+s5 sign(ra)B

√
(FP−s4G(s1EK + s4N))2 +K(P 2−B2G2)

B2(F 2 +K)− (s1EK + s4N)2

∣∣∣∣∣∣
ra

,

zb(ra) = t+ tb +
J − Ir − s3|B|

√
(G−Fr)2 + (H2 −B2)r2

H2 −B2

∣∣∣∣∣∣
ra

,

with letters A - R like recursive variables showed in [37]. All of these recursive variables are
functions of the parameter ra.

Note that there are signs functions s1, s3, s4 and s5, which can take dichotomic values.
Therefore, there are 16 posibles formulas. So, we propose a simple way to select which of
this posibles formulas (rb, zb) generate a lens without spherical aberration.

To determine the correct solution, we use the Fermat principe [2]. Let us consider any
ray in Figure 1, for example ray1= OP + PG+GI. By using Fermat principe the optical
path of ray1 which is OP + PGn+GI must be the same to ta+tn+tb.

On the other hand we obtain the optical path corresponding to each of the 16 pos-
ibles formulas for a particular ray (we choose the marginal ray). Then, we use the mean
squared error between the above-mentioned optical path and the optical path of an axial
ray (ta+tn+tb). We name er to this error. Lastly, we select the formula that generates the
minimum value of er.

Once having the sign functions, by ray tracing, we calculate the spot diagram to ensure
that the design lens is corrected to the diffraction limit. This means we choose the correct
sign functions.

Now, we present a example of our method in the next section to compare with [84].

6.2 Example

Using Eq. (6.1), we design a paraboloid-aspherical lens with the following parameters:
n = 1.5, Ra = 50mm, tb = 100mm, t = 10mm, ta = −100, dl = 46.09753mm. Figure
(6.2) shows the two profiles of the designed lens. zb varies depending on signs. Using the
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Figure 6.2: Design of paraboloid-aspherical biconvex lens, where the object is real and the
image is real too. The parameters of this lens are: n = 1.5, Ra = 50mm, tb = 100mm,
t = 10mm, ta = −100, dl = 46.09753mm.

proposed method, we find that s1 = 1, s5 =1. This implies that the profiles of the lens are
those drawn in Figure (6.2 a) These results agree with the analytical method.
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6.3 Conclusion

We proposed a numerical method to find the formulas to design any kind of singlet lenses
without spherical aberration. We compared this method with an analytic method for
paraboloid-aspheric lenses; these two methods converge to the same function for the case:
real object and real image.

The next step is to propose a numerical method to find the sign functions for the three
missing cases (real object-virtual image, virtual object-real image, virtual object-virtual
image ) and thus generalize the numerical method.
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Chapter 7

General discussion

Unlike work [33], this thesis shows an analytical lens design to generate super-resolving
properties. We have not found reports about optical design of lenses with super-resolution
characteristics . Therefore, for the first time an analytical design for the design of lenses
with super-resolving properties is shown.

In this chapter the contributions of this work are explained more in detail.

7.1 Theory of thickness

Following an extended procedure of Goodman [6], a thick lens can be represented by the
phase function given by

g(r) = eiktceik(nl−na)t(r) (7.1)

where t(r) is the lens axial thickness at abscissa, r =
√
x2 + y2, tc is the center thickness of

the lens, nl and na with na < nl are the refractive indexes of the lens and its surrounding
media, respectively.

It can be noted that our proposal is more general than proposal of Goodman. In Good-
man’s work, where the following analysis is made:

Let the máximum thickness of the lens and let the thickness at radial coordinates r be
t(r). Then the total phase delay suffered by the wave at coordinates r introduced by the
lens may be written by
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φ(x, y) = knt(r) + k(t0 − t(r)) (7.2)

where n is the refractive index of the lens material. The thickness function is obtained
splitting the lens into three parts to obtained

t(r) = t0 −R1
(
1−

√
1− r2

R2
1

)
+R2

(
1−

√
1− r2

R2
2

) (7.3)

The above equation can be simplified using the following paraxial approximation

√
1− r2

R2
1
≈ 1− r2

2R2
1√

1− r2

R2
2
≈ 1− r2

2R2
2

(7.4)

So, Equation (7.3) changes to

t(r) = t0 −
r2

2 ( 1
R1
− 1
R2

). (7.5)

And using the following equation

1
f

= (n− 1)( 1
R1
− 1
R2

), (7.6)

the paraxial representation of a thin lens is obtained, which is given analytically as

g(r) = e
−ik
2f r

2 (7.7)

We note that this expression is considerably simpler and less accurate than our non-
paraxial expression.

7.2 Super-resolving pupil used

The first step of the process consists in proposing the super-resolving functions, for instance,
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Figure 7.1: Super-resolving function z̃b of a flat-hyperbolic lens

z̃b(r) = b1[1 + cos(b22πr)]/[k(nl − na)] (7.8)

where b1 and b2 are parameters to be optimized. Some paraxial super-resolving pupil designs
using this function have been reported in [34]. Unlike Cagigal, we find that b1 and b2 are
not constants but parameters that depend on the diameter of the lenses and their shape
(flat-hyperbolic, biconvex, etc.).

In order to show the shape of the surface z̃b that should be added to the second surface,
we will take as an example the flat-hyperbolic lens, which was described in chapter 4 and
it has a diameter of 10 mm. The shape of the surface z̃b is showed in Figure (7.1). It can
be noted that z̃b has maximum changes of 1.2 micrometers.

The Wyko can solve at most 12 rings, which translated to units of son length approxim-
ately 3.8 micrometers. That is to say that between peak-valley greater than 3.8 micrometers.

It should be mentioned that the Wyko interferometer was ideally designed to measure
flat and spherical surfaces, but not aspherical. Therefore, when measuring aspheric surfaces
certain limitations, such as those mentioned above, occur.
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7.3 Experimental data with amplitude pupil

To test experimentally the theory of thickness function and its application in the design
of super-resolving lenses, we placed several pupils of amplitude of different diameters in
the lens that was previously manufactured. The purpose was to establish a non-paraxial
relationship between the diameter of the pupil, normalized to the real diameter of the lens,
and the reduction of its PSF and check with the theory we developed. We had to find the
degree of correlation between theory and experiment. In this stage we have the experi-
mental results of PSFs corresponding to 25 different diameters, however, we did not make
the comparison. In general, we can mention that effectively, by increasing the diameter of
the amplitude pupil, the diameter of the central disc of the PSF is reduced, the amplitude
of the secondary lobes is increased and the Strehl ratio is reduced.

It is worth mentioning that in [3] a paraxial study of this phenomenon is made. In this
work, the diffraction of an annular pupil is analyzed and explained below:

Suppose that the annular aperture is bounded by two concentric circles of radius a and
εa , where ε is some positive number less than unity. Then, the light distribution in the
Fraunhofer pattern is represented by

G(u) = 2
∫ a

0
J0(uρ)ρdρ− 2

∫ εa

0
J0(uρ)ρdρ (7.9)

where a is the radius of lens, J0 is Bessel function of order cero.
Then, the intensity is given by

I(u) = |G(u)|2 = I0
(1− ε2)2

[2J1(aw)
aw

− ε2 2J1(εaw)
εaw

]2
(7.10)

where I0 = a4(1− ε2)2 is the intensity at center w = 0 of the pattern. The positions of the
zeros of intensity are given by the roots of the following equation

J1(aw)− εJ1(εaw) = 0 (7.11)

As ε is increased, the first rood of Equation (7.11) decreases, which means that its
Airy disk decreases. From I0 = a4(1 − ε2)2, it is evident that the central intensity has its
maximum at ε = 1.
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We have the experimental data, we want to find a numerical relation between ε, reduc-
tion of Airy disc and increase of secondary lobe. Actually, we used data to made qualitative
analysis, but the quantitative analysis is left as future work.

7.4 Utility range

In this work we can notice that Equation (7.1) (exact lenses) do not have any limitation
regarding the diameter of the lenses or the focal distance of them; that is, they are not
limited to a paraxial development. Similarly, the fact that we have used the Rayleigh-
Sommerfeld diffraction represented by Equation (4.7) to find the super-resolution function,
we do not have any restrictions either. In this sense, We can design lenses from millimeters
to meters, since method do not have restrictions. The complexity, of course, it will be its
manufacture.

7.5 Simulated images with super resolution

An image is the result of the convolution of the PSF with the object. As a demonstration,
it compares two images: in one the PSF has a smaller Airy disk than the other. Depending
on the parameter ε, it is the size of the Airy disk. Figure (7.2) showed two PSF’s with
different size of Airy disc. These PSF’s were used to generate the images showed in Figure
(7.3). The image showed in a), it is the resulting image using the PSF shown in Figure
(7.2 (a)). Image showed in Figure (7.3 (b)) is the resulting image using the PSF shown in
Figure (7.2 (b)). Figure (7.3 (c)) is the original image.

It can be noticed that the image resulting from the convolution with a PSF with a
smaller Airy disk has more defined edges. This is because the mathematical operation con-
volution is an average. If the size of the filter is larger then the image becomes more blurred
as shown in Figure (7.3 (b)).
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Figure 7.3: Images as convolution
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7.6 Congruence of the themes

We may wonder why we use exact equations with spherical aberration corrected on the
optical axis. The reason was that in order to introduce the super-resolution we must first
have the optical systems limited by diffraction since it does not make sense to improve an
aberrated PSF. As an aberrated PSF increases its dimensions with the aberrations.

Then, it is very important to reduce or eliminate the aberrations. Since we worked in
the optical axis, we consider that it is enough to eliminate the spherical aberration, since
it is the only aberration that affects the optical axis.
We want to make our study more general. A method to generate lenses with super-resolution
properties not only in axis, but the analysis is more complex, since we must consider other
aberrations. So, it is also left as future work.

7.7 Aspherical lens manufactured

Regarding the lens designed and manufactured by CIO, it is a flat-hyperbolic lens. Since
we consider that a flat surface is easier to incorporate another surface (super-resolving
function), which acts as the super-resolving function. The lens is designed so that the
hyperbolic surface between the collimated beam and the flat part focuses the beam at a
point. First, the lens is designed to the diffraction limit.

It should be mentioned that the hyperbolic-plane lens limited by diffraction was man-
ufactured by the aspheres lens polishing machine, recently acquired by the Cio and the
lens is one of the first lenses manufactured by that machine. Figure (7.4) shows Zeeko lens
polishing machine.

The manufacturing process of the lens will be briefly described below. First a block of
glass is cut, then with the help of the polishing machine shown in Figure (7.5) a spherical
lens is manufactured, which is polished by the traditional method. Pitch molds are made,
shown in Figure (7.6), and placed in a lathe machine , which causes the surface of the lens
with the pitch mold to be kept in a homogeneous friction by all the surface.

To generate the lens design in Wyko Software, it is necessary only seven terms of as-
phericity, whereas the Zeeko Software has 20 terms of asphericity. Figure (7.7) shows the
aforementioned Software interface.

When the spherical lens is ready, it proceed to program the Zeeko polishing machine,
which automatically makes the lens disguises, since the lens has a profile as shown in Figure
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Figure 7.4: Zeeko lens polishing machine

(a) (b)

Figure 7.5: Generating machine.a) Machine,b) How mechanical tool makes contact with
glass to generate a spherical lens.
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(a) (b)

Figure 7.6: Process of polishing lens

(a) (b)

Figure 7.7: Software Interface, a) Wyko , b) Zeeko
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Figure 7.8: Wyko interface of aspherical surface

(7.8). Zeeko machine.

The machine is generating the profile that is requested in the Software, but often it does
not devastate the material well where it should be done. Therefore, when a first disguise
was made, the lens is measured in the Wyko interferometer, in order to analyze if it is the
required lens. For this a comparison is made between the lens generated by Zeeko and the
ideal lens, which is designed by the Wyko Software.

If the manufactured lens differs a lot from the designed one, then it will be return again
in the Zeeko machine, then it will be measured again in the Wyko until a difference between
the two tolerable lenses is achieved.

Experimentally, it is known that the values of the coefficients of asphericity must not
exceed certain ranges, since the Zeeko machine can not understand them and it seems that
it is locked.

For demonstration purposes that our method works, the method is applied to lenses; we
consider that it is easier to work with a flat surface than a curved surface. In which we will
add our super-resolution function. It is for this reason that it do not work with mirrors.
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Chapter 8

General conclusions and future
directions

It is important to generate super-resolution in various optical systems that are used on a
daily basis. Many areas such as biology, chemistry, medicine, genetics benefit from advances
in super-resolution, as this allowed to humanity analyze smaller objects for the advance of
science and technology improving the quality of the life.

The lens is the simplest optical system; thus, we chose to devote ourselves to develop-
ing a method to generate super-resolution in a lens. In this thesis it was demonstrated
theoretically and analytically the performance of the method. We proposed a method to
generate super-resolved lenses by modifying one surface of the lens. This allowed the PSF
to be reduced. This means that optical systems can solve smaller objects, that is, they are
super-resolving systems. To achieve this we started the method using lenses without spher-
ical aberration, which were previously designed by other authors. Some examples are shown.

To generate super-resolution is necessary to correct the aberrations, that is the reason
why this work is also dedicated to the reduction of spherical aberration in lenses, since this
aberration is the most difficult to correct.

We designed a corrected lens at the diffraction limit. It was fabricated. We tested the
lens with Wyko interferometer to prove the correction to the diffraction limit. Later, we
used amplitude pupils to show the super-resolution behavior.

Once the purpose of generating super-resolution lenses was achieved, we decided to go one
step further, that is, to find the mathematical formulas to generate parabolic-aspherical
lenses without spherical aberration. This in order to generate a more general method to
design any type of super-resolution lenses. The reason for choosing these types of lenses was
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because they are widely used in various applications, which translates to a work with impact.

The next step will be design a super-resolving lenses by using the paraboloid-aspherical
lenses.
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