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Abstract

In this thesis we calculate, using ab–initio quantum methods, the degree of
the electronic spin polarization when a circularly polarized beam incides over
Graphane. The Graphane is obtained when Graphene is selectively doped
with hydrogen. Graphene is a bi–dimensional material made with carbon
atoms; its discoverers where awarded with the Nobel Price of Physics in
2010. We have that, for an specific hydrogen doping the electronic spin of
Graphane can be totally polarized. This is a really promissory result for a
large number of Spintronics applications.

En esta tesis se calcula, usando métodos cuánticos de primeros principios,
el grado de polarización del espín electrónico cuando un haz polarizado
circularmente incide sobre Grafano. El Grafano es obtenido del Grafeno
al doparlo selectivamente con hidrógeno. El Grafeno es un material bi–
dimensional de átomos de carbono; sus descubridores fueron galardonados
con el premio Nobel de Física en el 2010. Se obtiene, que para un dopaje de
hidrógeno específico, el espín electrónico del Grafano puede ser polarizado
en su totalidad. Este es un resultado muy promisorio para un gran número
de aplicaciones en la Espintrónica.
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Chapter 1

Introduction

Contents
1.1 Generalities of Graphene and Graphane . . . . . 1
1.2 About this thesis . . . . . . . . . . . . . . . . . . . 5

Graphene is a structural configuration, or allotrope of carbon consisting of
planar monoatomic sheets of sp2 bonded carbon atoms. The structure is a
densely packed two–dimensional honeycomb or equilateral triangular crystal
lattice [1] with a carbon–carbon chemical bond length of 0.142 nm [2]. Early
work on the subject by Hanns–Peter Boehm [3, 4] dates back to 1962 with
his paper on single layer carbon foils.

1.1 Generalities of Graphene and Graphane

Graphene has some interesting properties – fractional quantum Hall effect at
room temperature [5–7], ambipolar electric field effect along with ballistic
conduction of charge carriers [8], tunable band gap [9] and high elastic-
ity [10]. Other noteworthy properties are extreme mechanical strength and
thermal conductivity in two–dimensional films, electronic characteristics like
Dirac particles with linear dispersion, its transport energy gap, and its op-
tical absorption coefficient [1, 11]. Ideal graphene is a perfectly flat, single
layer material; this is generally not the case as ripples occur due to thermal
fluctuations [1].

Thanks to these diverse properties, graphene became one of the most rel-
evant research topics in condensed matter physics and material science for
the last eight years [1, 2, 12–14] since its first synthesis in 2004. In 2010
the Nobel Prize in Physics was awarded to Andre Geim and Konstantin
Novoselov for their groundbreaking work in this field1.

1Nobel Foundation announcement of Nobel Price, 2010.

http://nobelprize.org/nobel_prizes/physics/laureates/2010/
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Recent studies on the aforementioned properties and the structural and
electronic properties of carbon–based materials have created a wide array
of applications for graphene. Carbon–based nanostructures (such as nan-
otubes) are ideal for hydrogen storage due to their large surface area [15];
hydrogen is a promising new fuel for automobiles and can potentially be
exploited in smaller devices. Multi–layered graphene also has applications,
such as bi–layer graphene that creates a band gap when an external electric
field is applied [16,17].

Graphene sheets are mainly produced by shaving graphene flakes off bulk
graphite and depositing them on a SiO2/Si substrate. However, the size and
crystalline quality are not easily controlled. Other groups have grown gra-
phene sheets epitaxially on SiC (0001) [18] but these layers have inconsistent
thickness.

The monolayer graphene sheet shown in Fig. (1.1) is considered the basic
building block of all graphitic forms. Keeping the sp2 hybridization, the
2D carbon sheets can be wrapped up into 0D fullerenes (Fig. 1.2a), rolled
into 1D nanotubes (Fig. 1.2b), or stacked into 3D graphite (Fig. 1.2c).
Graphite consists of a large number of graphene sheets stacked one over
the other with an average interplanar spacing of 0.335 nm. Table 1.1 is a
comparison of different parameters between different dimensions of carbon–
based structures.

Figure 1.1: A monolayer graphene sheet.

Graphene samples with few of layers are being investigated with equal in-
terest. According to our interest we can define three different types of
grapheneswith one, two or some few layers (less than ten). Although single–
layer graphene and bi–layer graphene were first obtained by micromechanical
cleavage [8] and graphenes containing different numbers of layers have been
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(a) Graphene sheet wrapping into fullerene.

(b) Carbon nanotube with honeycomb lattice.

(c) Graphite.

Figure 1.2: Graphitic forms obtained from graphene.
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Dimensions 0 1 2 3
Isomer fullerene nanotube graphene diamond
Hybridisation sp2 sp2 sp2 sp3

Density 1.72 1.2 - 2.0 2.26 3.515
Bond length (Å) 1.40 1.44 1.42 1.54
Conductivity semiconductor metal or

semiconductor
zero gap sem-
iconductor

insulator

Band gap (eV) Eg = 1.9 Eg ≈ 0.3− 1.1

Table 1.1: Comparison between carbon–based compounds of different di-
mensionalities.

obtained using different methodologies [2,19,20]. There are other reports of
the properties of few–layer graphene.

Graphene has been characterized by a variety of microscopic and physi-
cal techniques including atomic force microscopy, transmission electron mi-
croscopy, scanning tunneling microscopy and Raman spectroscopy [1–5].

Using the atomic force microscopy technique the number of graphene layers
can be observed directly [2,13]. Also the Transmition Electron Microscopy is
a useful procedure to determine the morphology and structure of graphene
like is depicted in Fig. 1.3a [21]. Raman spectroscopy is an important
tool that can be used to characterize graphene samples; also it can provide
information about the quality and number of layers in a given sample as
shown in Fig. 1.3b [22–26]. An unespected result is that the single–layer
graphene placed on a Si wafer with a 300 nm thick layer of SiO2, becomes
visible under the optical microscope [2, 13,14].

As was mentioned before, from the structure of graphene most of the graphitic
forms can be obtained. Also, planar polycyclic aromatic hydrocarbons with
only benzenoid hexagonal rings, could be considered as fragments of a gra-
phene sheet with the peripheral atoms saturated with hydrogen, and thus
provide molecular models of graphene segments. Graphene segments have
interest from the scientific and technological perspectives. Moreover, pla-
nar polycyclic aromatic hydrocarbons or graphene segments themselves are
of great research interest because they are widely found in the residues of
domestic and natural combustion of coal, wood, and other organic material
that include chemical bonds between C, H, O and other elemements. Their
unique electronic properties providing opportunities for novel functionalized
nanomaterials and nanodevices [27]. Understanding the mechanism of for-
mation of graphene segments is necessary to control its formation and in
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(a) (b)

Figure 1.3: (a) Image took with the technique of Transmision Electron Mi-
croscopy and (b) Raman spectrum of single–layer graphene, prepared by
micromechanical cleavage.

turn, to meet its application requirements.

The role of hydrogen has been studied during the chemical vapor deposition
of carbon materials [28] including graphene and diamond. There are some re-
ports on the phenomena of luminescence in various chemical vapor deposited
diamond and a-C:H films [29–33]. Visible photoluminescence has been ob-
served in carbon nanoclusters embedded in a SiO2 matrix [34] and from C60
thin films [35]. Unlike a -Si:H, the photoluminescence efficiency of a -C:H
film is high and it shows luminescence even at room temperatures [36–39].
A clear understanding of the luminescence phenomenon would help to pro-
duce high–quality luminescent films by a proper control of the experimental
conditions [40].

As was supposed to be, at the beginning, a large number of the studies about
graphene have been in the direction of synthesis of single–layer graphene and
few–layer graphene using different techniques. Some of those techniques are
presented in the next section of this chapter.

1.2 About this thesis

This thesis which has the title “Optical Spin Injection in Graphane” is part
of our research under the supervision of Dr. Bernardo Mendoza Santoyo
while I was studying the Master in Science at Centro de Investigaciones en
Óptica, A.C. León, Guanajuato México.

http://www.cio.mx/
http://www.cio.mx/
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The first objective is to present some of the properties of a recent topic
of scientific research in semiconductors and solid state physics: graphene
and graphane (hydrogenated graphene). The second one is to develop the
background quantum theory to describe and characterize anisotropic media
and describe optical spin injection. The third and last one consists of the
computational calculations to characterize the spin injection in the C16H16–
chair (Fig. 4.1a) and C16H8–up (Fig. 4.1b) graphane’s molecules.

To achieve the first objective in chapter 1 we presented some chemical
and mechanical procedures that can be followed to obtain the graphene
and graphane molecules. Also we presented the functionalization and some
chemical, electronical and optical properties. Both molecules are depicted
in Fig. (4.1).

In chapter 3 we present the quantum theory to reach the second objective. In
this chapter we present the Density Functional Theory and the Spin–Density
Theory (section 3.3) and how the Bloch’s theorem (section 3.4.2) together
with the Plane Waves Expansion (section 3.5) helped us to characterize the
Optical Spin Injection. The main results of the chapter 3 correspond to the
equations from (3.71) to (3.75).

In sections 4.1.1 and 4.1.2 we present the software ABINIT and TINIBA.
This software was used to attain the last objective of characterize the prop-
erties of the graphane molecules previously mentioned.

Results and conclusions can be found, respectively, in sections 4.4 and 5.1.

http://www.abinit.org/


Chapter 2

Properties

In this chapter we present some extended properties of Graphene and Graphane.

2.1 Synthesis

2.1.1 Single–Layer Graphene

The first structure of our subject of study was the single–layer graphene.
Initially it was prepared by micromechanical cleavage from a high order
pyrolytic graphite [8]. When this procedure is done, a layer is peeled of
from the crystal of high order pyrolytic graphite simply using a scotch tape
and later transferring it to a silicon substrate. Is important to say that
when this method is used the size and crystalline quality are not easily
controlled [41].

A better technique to obtain the single–layer graphene is using a chemical
method that involves the reduction of single layer–graphene oxide dispersion
in dimethylformamide with hydrazine hydrate [42]. The stirring procedure is
as follows: graphite oxide is first prepared by an oxidative treatment of gra-
phite by employing the Hummers procedure [43], by the reaction of graphite
powder (500mg) with a mixture of concentrated H2SO4 (12ml) and NaNO3
(250mg) in a 500ml flask kept in an ice bath. While stirring the mixture,
1.5 g of KMnO4 is added slowly and the temperature brought up to 308K.
After stirring the mixture for 30 minutes, 22ml of water is slowly added and
the temperature raised to 371K. After 15 minutes, the reaction mixture is
diluted to 66ml with warm water and treated with 3% of H2O2. Then the
suspension so obtained is filtered to obtain a yellow–brown powder. This
is washed with warm water. Graphite oxide readily forms a stable colloidal
suspension in water and the suspension is subjected to ultrasonic treatment
(300W, 35KHz) to produce single–layer graphene oxide.The single–layer
graphene oxide suspension (0.3mg/ml) in a H2O+ N,N-dimethylformamide
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mixture (50ml) is treated with hydrazine hydrate at 353 K for 12 h [42].
This yields a black suspension of reduced graphene oxide; to make a stable
dispersion of it, a further amount of N,N-dimethylformamide is added to the
suspension.

In comparison of this technique with the micromechanical cleavage of gra-
phite is important to mention that the crystalline quality and size of the
resulting structure is improved, making the reduction of single–layer gra-
phene oxide produces a material that can contain some residual oxygen
functionalities [44].

Quantities in the order of grams of single–layer graphene have been obtained
by a solvothermal procedure using sodium and ethanol [45].Also, exfoliation
of graphite in N–methylpyrrolidone or a surfactant/water solution employing
ultrasonication yields stable single–layer graphene dispersions [46,47].

Single–layer graphene is also prepared using chemical vapor deposition by
decomposing hydrocarbons on films or sheets. Single–layer graphene films
are produced on the Si terminated (0001) face of single–crystal 6H-SiC, a
kind of Silicon Carbide crystal, by thermal desorption of Si [48–50]. In this
procedure, the substrates are subjected to electron bombardment in ultra-
high vacuum at temperature near to 1300K to remove oxide contaminants
and then heated to temperatures ranging from 1523 to 1723K for periods
from one to twenty minutes. Single–layer graphene is prepared more conve-
niently making the chemical vapor deposition in films of transition metals
such as Ni, Cu, Co, and Ru [51] by decomposing a variety of hydrocarbons
such as methane, ethylene, acetylene, and benzene. The number of layers
variate depending on which hydrocarbon is used and reaction parameters.

In reference [52] there were used different transition metals to grow gra-
phene by decomposing the variety of hydrocarbons mentioned. In those
experiments, nickel and cobalt foils with thickness of 0.5 mm and 2 mm,
respectively, were used as catalysts. These foils were cut into 5 × 5mm2

pieces and polished mechanically. The chemical vapor deposition process
carried out by decomposing hydrocarbons around 1073 – 1273K. By employ-
ing a nickel foil, the chemical vapor deposition was carried out by passing
methane (60 – 70 sccm1) or ethylene (4 – 8 sccm) along with a high flow of hy-
drogen around 500 sccm at 1273K for 5 – 10 minutes. With benzene as the
hydrocarbon source, benzene vapor diluted with argon and hydrogen was
decomposed at 1273K for 5 minutes. On a cobalt foil, acetylene (4 sccm)

1The flow measurement term, sccm, means Standard Cubic Centimeters per Minute.
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and methane (65 sccm) were decomposed at 1073 – 1273K, respectively. In
all these experiments, the metal foils were cooled gradually after the decom-
position. In Fig. (2.1) a schematic diagram of growing procces of graphene
is shown and h-Bn films using chemical vapor deposition [52].

Figure 2.1: Schematic diagram to obtain graphene and h-BN films by chem-
ical vapor deposition.

2.1.2 Few–Layer Graphene

An important method to prepare few–layered graphene is by thermal ex-
foliation of graphitic oxide at high temperatures [53, 54]. In this method,
graphitic oxide is first prepared by the Staudenmaier method. This method
starts with a mixture of, sulfuric acid (10ml) and nitric acid (5ml) that
is put in a 250ml reaction flask cooled in an ice bath. Graphite (0.5 g) is
added under vigorous stirring to the acid mixture. After the graphite pow-
der is fully dispersed, potassium chlorate (5.5 g) is added slowly over fifteen
minutes. The reaction mixture is stirred for 96 h at room temperature.
On completion of the reaction, the mixture is filtered and the residue of
graphitic oxide is washed in a 5% solution of HCl. Graphitic oxide is then
washed repeatedly with deionized water until the pH of the filtrate is neutral
and then dried in vacuum at 333K. Graphitic oxide so prepared (0.2 g) is
placed in an alumina boat and inserted into a long quartz tube sealed at one
end. The sample is purged with Ar for ten minutes, and then the quartz
tube is quickly inserted into a tube furnace preheated to 1323K and kept
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in the furnace for 10 minutes. The sample obtained after this procedure
corresponds to the few–layers graphene.

Another method of preparing few–layers graphene is by reacting single–layer
graphene oxide in water with hydrazine hydrate at the refluxing tempera-
ture or by microwave treatment [19, 55]. In this method 1ml of hydrazine
hydrate is added to 100ml of stable aqueous exfoliated graphene oxide solu-
tion (1mg/1ml) and refluxed for twenty four hours. The reduced graphitic
oxide turns black and precipitates at the bottom of the flask. The resulting
precipitate is filtered and washed with water and methanol. Instead of using
hydrazine hydrate one can also use ethylene–glycol as a reducing agent to
prepare few–layers graphene. In this procedure, the homogeneous mixture
of 25 ml of exfoliated graphene oxide and 2ml of ethylene–glycol is taken in
a 50ml PTFE–lined bomb. The sealed autoclave is kept in an oven at 443K
for twenty four hours under autogenous pressure and allowed to cool room
temperature gradually. The product is washed with water and ethanol.

Graphene can be prepared, like was mentioned before, by heating nanodi-
amond in an inert or a reducing atmosphere, condition in which oxidation
is prevented by removal of oxygen and other oxidising gases. The effect of
heating nanodiamond at different temperatures has been studied by Enoki
et al., [56, 57]. Annealing of nanodiamond at high temperatures in an inert
atmosphere produces few–layered graphene [54–56]. In reference [44] were
treated that procedure in detail. In the preparation, using nanodiamond
particles by soaking in concentrated HCl before using in order to avoid con-
tamination with magnetic impurities. Then was heated 100mg of pristine
nanodiamond powder (particle size 4 – 6 nm, Tokyo Diamond Tools, Tokyo,
Japan) placed in a graphite container and was heated in a graphite furnace
in a helium atmosphere at different temperatures (1923, 2123, 2323 and
2473K) for one hour.

In general, graphene synthesized by chemical vapor deposition has a high
quality and a large area. This is attributable to multiple factors: the growth
mechanism on transition metal surfaces, the multi–crystalline nature of the
catalyst substrate, and the simultaneous nucleation of carbon atoms from
multiple sites of the substrate surface. Therefore, scientific research is re-
quired in order to fabricate high quality graphene with large single crystal
domains. Recent experimental experiments showed the domain formation
of chemical vapor deposition when synthesized graphene and the defects
are present in the boundaries of the substrate [58]. There have been made
many experimental researches about the growth mechanism of graphene on
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the catalyst surface [59, 60] having highlighted the significance of carbon
dimer super–saturation on the metal surface to initiate the nucleation of
graphene.

2.1.3 Graphane

Arc evaporation of graphite in the presence of hydrogen yields hydrogenated–
graphene, also called graphane, with exclusively 2–3 layers. Although flake
size is smaller having 100 – 200 nm [61]. This makes use of the knowledge
that the presence of H2 during arc–discharge process terminates the dangling
carbon bonds with hydrogen and prevents the formation of closed structures.
To prepare the hydrogenated graphene direct current arc discharge of gra-
phite, evaporation was carried out in a water–cooled stainless steel chamber
filled with a mixture of hydrogen and helium in different proportions without
using any catalyst. The proportions of H2 and He used in the experiments
are, H2 (70 torr) -He (500 torr), H2 (100 torr) -He (500 torr), H2 (200 torr)
-He (500 torr) and H2 (400 torr) -He (300 torr).

In a typical experiment, a piece of graphite rod (alfa Aesar with 99.999%
purity, 6mm in diameter and 50mm long) is used as the anode and another
graphite rod (13mm in diameter and 60mm in length) was used as the cath-
ode. The discharge current was in the 100 – 150A range, with a maximum
open circuit voltage of 60V. In Fig. 2.2 a transmission electron microscopy
and atomic force microscopy images of the hydrogenated graphene sample
are show. An important aspect of the arc–discharge method is its use in
doping graphene with boron and nitrogen [62]. Boron and nitrogen doped
graphene have been obtained by carrying out the discharge in the presence
of H2+diborane and H2+ (pyridine or ammonia) respectively. In spite of
the many advances made in the last four years, controlled synthesis with a
desired number of layers remains a challenge.

2.2 Graphene and graphane functionalization

The functionalization of carbon nanotubes, done before the functionaliza-
tion of graphene, was done by covalent and non–covalent procedures in order
to disperse or solubilize them in different solvents [63,64]. Later, functional-
ization of graphene took similar strategies. Acid–treated graphene contain-
ing surface -OH and -COOH groups was first reacted with SOCl2 to create
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(a)

(b)

Figure 2.2: (a) Transmission electron microscopy and (b) atomic force mi-
croscopy of graphane (hydrogenated graphene). [8]
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-COCl groups, followed by reaction with a long chain aliphatic–amine2 to ob-
tain the amide derivative soluble in nonpolar solvents [65]. Another method
is by inserting aryl groups (which are a group of atoms derived from ben-
zene or from a benzene derivative by removing one hydrogen that is bonded
to the benzene ring) through diazotization reaction [66]. Soluble graphene
layers in tetrahydrofuran can be generated by the covalent attachment of
alkyl chains to graphene layers via reduction of graphite fluoride with alkyl
lithium reagents [67]. Such covalent functionalization enables solubilization
in organic solvents such as CCl4, CH2Cl2 and THF [54].

The reaction of graphene with a mixture of concentrated H2SO4 and HNO3
gives water–soluble graphene which is stable for several months. Graphene
is solubilized in CCl4 by interaction with organosilane, a kind of chemical
compound that involves carbon and silicon, and organotin, which are chem-
ical compounds based on tin with hydrocarbon substituents, and reagents
such as hexadecyltrimethoxysilane and dibutyldimethoxytin [68].

Without making changes in the electronic structure, Graphene can be func-
tionalized through non–covalent modification by enveloping with surfactants
or through π–π interaction with aromatic molecules such as1–pyrenebutano-
ic acid succinimidyl ester (I) and thepotassium salt of coronene tetracar-
boxylic acid (II).

Interaction with molecules of the type II with few–layers graphene produce
exfoliation and selectively solubilizing single and double–layer graphenes in
water through molecular charge–transfer interaction [53]. Non–covalent in-
teraction of graphene with surfactants such as compounds of type (poly-
oxyethylene nonylphenylether, IGP), sodium dodecylsulfate(SDS) and cetyl-
trimethylammoniumbromide (CTAB) gives water–soluble graphene. Water–
soluble graphene can also be obtained by PEGylation method. In this
method acidified graphene is treated with excess of polyethylene glycol -HCl
under solvothermal conditions [54].

2An aliphatic–amine is an amine in the molecule of which there are no aromatic rings
directly on the nitrogen atom.
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2.3 Some Chemical and Electronical Properties of
Graphene

The distinctive electronic, thermal and mechanical properties of graphene
make it a very promising candidate for a wide range of applications in
nanoscience and nanotechnology. The versatile properties of graphene are
very well documented in the exponentially growing literature. Some of its
interesting properties and its technological implications are discussed here-
after.

2.3.1 Electronic properties

The great potential to use graphene for electronics is due to the extraordi-
narily high mobility of its charge carriers at room temperature. Now when
the Si–based technology is reaching its fundamental limits, graphene seems
to be a possible answer to take over from silicon [1]. The band gap property
in semiconductors has a central role in modern device physics. Moreover, it
is a inherent property of semiconductors and insulators and determines their
charge transport and optical properties [17]. An important discovery was
that tere is possible to open and tune the band gap of graphene by applying
an electric field [17] or by doping, like is shown in Fig. (2.3) [69]. According
to these results graphene has the potential to be used in electronics. The
structure of graphene can be modeled to change its electronic properties by
several methods. Moreover, the structural manipulation of graphene can
induce optical properties, like band–gap opening, and then resulting to have
potential for opto–electronic applications. Some of these possibilities are
discussed in the next subsection.

2.3.2 Interaction of graphene with other molecules

Raman bands of graphene are affected strongly by electron–phonon interac-
tions and then by doping with holes and electrons. It has been found recently
that a top–gated single layer graphene transistor is able to reach doping
levels of up to 5 × 1013 cm-1 by Raman spectroscopy measurements [70].
The G–band and 2D–band show changes when doping. Electron–donor
and electron–acceptor molecules have been found to affect the Raman spec-
trum of few–layers graphene giving rise to rather large shifts in the Raman
bands positions and band widths. The changes in the Raman spectrum done
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Figure 2.3: Evolution of gap closing and reopening by changing the doping
level by potassium adsorption. Experimental and theoretical bands (solid
lines) (A) for an as–prepared graphene bilayer and (B and C) with progres-
sive adsorption of potassium.

due to the interaction of tetrathiafulavalene (TTF) and tetracyanoethylene
(TCNE) with few–layers exfoliated graphene present [71], the shifts in the
G–band going up to 25 cm-1. A possibility for that changes in the Raman
spectrum is considered to be due to surface effects. There has been investi-
gated the effects of TTF and TCNE on the Raman bands using few–layers
graphenes prepared by three different methods and then there has been
associated with differences in the nature of the surface according to [72].

There has been followed the variation in the G–bands of EG, DG and HG
changing the concentrations of TTF and TCNE. All the samples showed an
increase in the G–band frequency when the interaction was with TCNE and
a decrease in the G–band frequency when the interaction was with TTF. The
changes in the G–band frequency becomes a maximum in the case of EG and
least in HG. Thus, the shifts in the G–band in the EG, DG and HG samples
are 25,17 and 11 cm-1 respectively on interaction with 0.1M TCNE. The
full–width–at–half–maxima (FWHM) of the G–bands of the three graphene
samples also vary with the concentration of TTF and TCNE. The FWHM
of the G–band generally increases on interaction with TTF and TCNE, the
magnitude of increase being highest in the case of EG. We also notice that
the initial increase is generally sharp. We could obtain reliable data on the
changes in the G’ band in the case of HG. The FWHM of the G’ band also
increases with the increase in concentration of TTF or TCNE.

In Fig. 2.4 [44] the ratio of intensities of the of 2D and G bands, I(2D) /I(G)
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against the concentrations of TTF and TCNE. It is possible to see that the
2D–band intensity decreases with the increase of concentration of TTF and
TCNE has been plotted ; the decrease in intensity is higher with EG and DG
in comparison to HG. The intensity of the defect–related D band also varies
with the TTF/TCNE concentration, but in an opposite direction to that of
the 2D–band as depicted in Fig. 2.4b. This behavior is due to difference
between the origin of the 2D and D bands: the D–band, unlike the 2D–band,
couples to electronic states with the wave vector ~k such that 2q = k [73]. In
the case of the D–band two scattering events are present: one is an elastic
process involving defects and the other is inelastic involving. On the other
hand, in the case of the 2D–band, both processes involving phonons are
inelastic.

2.3.3 Properties of non covalent binds

The weak, intermolecular, Van der Waals’ and π−π interactions [74] have a
crucial role in the crystal packing of organic molecules containing aromatic
rings [75, 76]. Graphene sheets can be stacked into bilayers and multilayers
due to the π–π interactions between the surrounding sheets. The electronic
properties of multilayer graphene vary with the stacking order and evolve
with the number of layers approaching the 3D limit of graphite [1, 77].

To make a theoretical model of weak Van der Waals’ interaction in the
conventional density functional theory is necessary to make an appropriate
correction in the term for Van der Wals’ interaction. With such a treatment,
there have been shown that the stacked segments sheets of graphene can be
held together in different orientations by π − −π interactions and then the
binding energy is dependent on the size of the polycyclic aromatic hydro-
carbons, on the heaping order, and on the number of stacked layers [78].
The bi–layer graphene has some uncommon electronic properties like the
anomalous integer quantum Hall effect which is different with respect to a
single–layer graphene [79–81], and which can be used to discriminate be-
tween single–layered and bi–layered graphene. Moreover, the bi–layered
graphene’s band–gap is tunable in different ways [17, 69]. The importance
of bilayer graphene emphasizes the importance to understand the binding
between the two sheets. There has been shown in bilayer models that the
binding energy increases with size until it saturates when the size of about 80
atoms is reached [78]. So, according to the studies of graphene mentioned
before, understanding the weak Van der Wals’ interactions is relevant to



2.3. Some Chemical and Electronical Properties of Graphene 17

(a)

(b)

Figure 2.4: Variation in (a) 2D/G and (b) D/G intensity ratios with the
concentration of TTF and TCNE [44]
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have potential applications of graphene.

2.4 Optical Properties of Graphene and Graphane

The quantum phenomena of graphene manifiest when the π electrons are
confined laterally e.g. in graphene segments [40, 78] or graphene nanorib-
bons [9]. The energy gap opens up when carriers are confined to a quasi–
one dimensional system like in graphene nanoribbons. That kind of systems
have optical properties which can change with their width, family, crystallo-
graphic orientation and edge termination [82,83]; a similar behavior apears
in carbon nanotubes. There has been found that the energy gap of litho-
graphically patterned graphene nanoribbons scales inversely with the ribbon
width. According to that, there exists the possibility to engineer the band
gap of graphene nanostructures by lithographic processes [9]. Another pos-
sibility to induce the formation of a band gap is, as was mentioned before,
by the hydrogenation of graphene [84–86]. The modification in the carbon
bonds associated with the hydrogenation maintain the crystalline lattice but
leads to rehybridization of the carbon atoms from a planar sp2 to a distorted
sp3 state [87]. Recent experimental studies have shown that is possible to
have a reversible hydrogenation through heating [84].

Figure 2.5: Arrange of carbon atoms in two adjacent planes in ABA stacking.

Previously it was mentioned that hydrogen plays an important role in lu-
minescence. The bandwidth luminescence between 1.5 ev and 2.5 eV from
carbon layer compounds has been attributed to the presence of a sp2 amor-
phous phase or graphite phase [88,89]. The distribution of states within the
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Figure 2.6: Variation of the energy gap with the size of graphene sheet
model dimers for the staggered, hexagonal, and parallel–displaced stackings,
respectively.
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energy gap introduced by an sp2 disordered phase in a nanodiamond film de-
posited by chemical vapor has been considered as the origin of the broadband
luminescence [29], based on the theory of amorphous material. Furthermore,
the process of luminescence and recombination in a C:H and its alloys has
been suggested because of modifications of the band edges in hydrogenated
amorphous silicon [90–92]. The band–tail states were assumed to come up
from clusters of sp2 sites. The π–bonding sp2 phase has been associated
to the origin of the luminescence [31, 32, 93]. The broadband luminescence
is often assumed to be related to the gap/tail states produced from small
sp2 clusters with different sizes and/or shapes. A new photoluminescence
model, taking account of individual clusters, has presented an overwhelming
mechanism [94]. At the moment, clear pictures of which structures or shapes
of sp2 carbon clusters bring the highly efficient luminescence were lacking.
In a diamond that is further a pure sp3–bonded material, the gap is indirect
and also wide: 5.49 eV at 77K. The gap of a nano–structural diamond–like
crystals may be larger, and so may not be related to the luminescence phe-
nomena that is concerned in the range of 1.5 − 2.5 eV produced by means of
optical transitions between band states. Otherwise, the π–bonding states of
graphite is near to the Fermi level, so apparently it is not possible to find the
relationship between the gap formed by these states and the luminescence
in the range of 1.5 and 2.5 eV. Nevertheless, a nano–sized π–bonding sp2
cluster may show a wide energy gap when is compared with that of the gra-
phite material, as has been shown in reference [40], which agrees with the
size–dependence rule that holds for many other materials. This property
has appeared in the calculations with a Hückel approximation for several
sp2 carbon clusters [95, 96]. Notwithstanding, all previous works was only
qualitative and did not discriminate the different characteristics of states in
the gap–tail due to the individual sp2 carbon clusters caused by differences
in sizes and/or shapes.

For the carbon–based materials mentioned before, like graphene, carbon
nanoribbons and carbon nanotubes, has been shown that both, the size and
shape, determine the energy gap and the broadband luminescence [90–92,
94]. However, any structural deviation from the “perfect stable” configura-
tions (some of them shown in table 1.1) may produce localized states that
can change the energy gap. As was mentioned in the previous paragraph,
the energy gap of localized states do not relate to the efficiency, room tem-
perature luminescence. Thus, the small clusters with structures such as a
fivefold ring, sevenfold ring and off–lane hexagonal, that are not the stable
hexagonal structures are doubtful of produce a contribution in the efficient
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broadband luminescence. Instead that, the main source for such lumines-
cence would be due to the stable hexagonal carbon clusters. According to
calculations of a series of small hexagonal carbon clusters like those in Fig.
1.1, or a fraction of it, demonstrated that the energy–gap distribution, due
to variations in size is substantially wide, which explains the broadband pe-
culiarity of luminescence. The weak π−π bond allows multilayer stacking of
graphene sheets the and possible ways [78] depicted in Fig. 2.5 and so helps
the generation of stable large–sized sp2 C-H films. Some calculations show
that the energy gaps of graphene are dependent on their sizes [78], whereas
the stacking order and the amount of stacked sheets have less influence.
There has been found that the energy gap decreases when the sheet size is
increased, as shown in Fig. 2.5 [15]. The open symbols and the insets show
the energy gaps of C24H12 and C54H18 monomers, and their trimers with
ABA and ABC stackings, and tetramers with an ABAB sequence. So, by
controlling the formation of graphene during a chemical vapor deposition,
is possible to tune its luminescent properties.

2.5 Summary

In this introductory chapter it has been presented some important knowledge
about graphene and graphane. There was described some process to obtain
graphene, like chemical vapor deposition, starting from other substances or
by mechanical methods. Also was explained the functionalization of this
interesting compound along with some of the physical. In the following
chapter some quantum, electric and optical properties will be presented.
They will help to reach the central theme of interest in this work.
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The spin–orbit interaction is a quantum process in which the particle’s spin
interacts with its motion. The best known example of this phenomena,
and the first studied, occurs when the spin–orbit interaction produces shifts
in an electron atomic energy levels due to the electromagnetic interaction
between the electron’s spin and the magnetic field generated by the electron’s
orbiting around the nucleus that produces the splitting of spectral lines. An
analogous effect, due to the connection between angular momentum and
the strong nuclear force, occurs with protons and neutrons which are in
movement inside the nucleus, producing a shift on their energy levels in
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the nucleus shell model. In the research of spintronics, the intrinsic spin of
electrons, the associated magnetic moment and the fundamental electronic
charge, are the basis to study the spin–orbit effects in semiconductors and
other materials.

Spintronics was developed from discoveries in the 1980s of spin–dependent
electron transport phenomena in the study of solid–state devices. This in-
cludes the observation of spin polarization injection in electrons from a fer-
romagnetic metal to a normal metal [97] and the discovery of “giant magne-
toresistance” effects over the expected order of magnitude [98]. The begin-
ning of spintronics can be traced back to the ferromagnet/superconductor
tunneling experiments and the first experiments on magnetic tunnel junc-
tions [99] in the 1975. The development of spintronics in semiconductors
initiated with the theoretical proposal of a spin field–effect–transistor [100]
in 1990.

In some materials, called “dilute magnetic semiconductors” [101], such as
GaMnAs and Si–3D [102] the spin current can be controlled by applying a
gate voltage but spin injection and spin device operation at room temper-
ature (RT) has not been achieved. Since graphene exhibits gate–voltage–
controlled carrier conduction, virtual absence of nuclear magnetic moments
and high field–effect mobilities and because it is constituted only by car-
bon atoms which have a low atomic mass that induces a small spin–orbit
interaction, graphene has the potential to be a material for spintronics in
which the polarized spin current can be controlled by a magnetic field, drain
voltage and by a gate voltage [103].

In this chapter the knowledge needed about the quantum theory behind
the spintronics and the process to study the optical spin injection will be
presented.

3.1 Quantum Theoretical Basis

3.1.1 Quantum Spin Theory

In nature there exist two kinds of elemental particles, bosons and fermions.
Bosons obey the Ferm–Dirac statistics which applies to identical particles
with half–odd–integer spin in a system in thermal equilibrium, where the
particles in the system are assumed to have negligible mutual interaction,
allowing the many–particle system to be described in terms of single–particle
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energy states. A system composed whit bosons does not obey the Pauli’s
exclusion principle and can be described by the Bose–Einstein statistics

n(ε) = 1
e(ε−µ)/kBT − 1

, (3.1)

where ni is the number of particles in the state i, gi is the degeneracy of
state i, εi is the energy of the ith state, µ is the chemical potential, k is the
Boltzmann constant and T is the absolute temperature. If the conditions
εi > µ and kT >> εi − µ are satisfied the Eq. (3.1) can be reduced to the
Rayleigh–Jeans Law distribution

ni(ε) = gikT

εi − µ
. (3.2)

In contrast with bosons, fermions, which can be elementary particles like
electrons, are particles with half–integer spin with intrinsic angular momen-
tum } and are distinguished because only one particle can occupy a quantum
state at any given time; if more than one fermion shares the same physical
space, at least one property of each fermion, such as its spin, must be differ-
ent. On the other hand, fermions are characterized by Fermi–Dirac statistics
which establishes that for a system of identical fermions, the average number
of fermions in a single–particle state i is

n(ε) = 1
e(ε−µ)/kT + 1

. (3.3)

Also, fermions obey the Pauli exclusion principle and so the wave function
of two identical fermions are anti–symmetric with respect to exchange of
particles.

The “total angular momentum”, Ĵ , of a particle is the sum of the “extrinsic”
angular momentum, L̂, plus to the “intrinsic” angular momentum, Ŝ,

Ĵ = L̂+ Ŝ. (3.4)

The angular moment corresponds to the movement of electrons around the
nuclei in specific zones called orbitals. The spherical harmonics, Y n

` , corre-
spond to the solution to the Laplace’s equation, ∇ϕ = 0, in the spherical
coordinated system and define the atomic orbital electron configurations
where there is a probability of 99% of finding an electron in a defined region
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of space. Some spherical harmonics, only for the values where 0 ≤ n ≤ 3,
and so, the corresponding given values to ` (` = −n, . . . , 0, . . . , +n) are
depicted in Fig. 3.1 [104].

Figure 3.1: Spherical Harmonics corresponding to the values of n = 0, 1, 2, 3
and the corresponding values for ` (−n, . . . , 0, . . . , +n).

The idea about a rotational motion, or spin, of electrons was proposed in
1926 by George Uhlenbeck and Samuel Goudsmit [105] to explain the char-
acteristic spectra in atoms which have only one electron. The existence of
spin in electrons has been confirmed by many experimental results; the most
important one was the Stern–Gerlach Experiment [106]. This experiment
was similar to the Thomson’s to determine the nature of cathodic rays. Both
involves a beam of particles through a magnetic field to measure their de-
flection. If an inhomogeneous magnetic field is used then it is possible to
avoid the large deflection due to the orbit of a charged particle. It allows
spin–dependent effects to dominate.

According to the characteristics explained before the total angular momen-
tum of the electron (Ĵe), a structureless point particle, can be obtained by
the sum of the orbital (angular momentum due to its orbital motion anal-
ogous to that around the nuclei) and spinorial contributions, as was men-
tioned in (3.4). It follows that the “algebraic” theory of spin orbital angular
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momentum, starting with the fundamental commutation relations [107,108]

[Si, Sj ] = i}εijkSk ; [Si, S2] = 0 . (3.5)

and then, the eigenvectors of S2 and Sz satisfy

S2|sm〉 = }2s(s+ 1)|sm〉; Sz|sm〉 = }m|sm〉, (3.6)

and
S±|sm〉 = }

√
s(s+ 1)−m(m± 1)|s(m± 1)〉 , (3.7)

where
S± ≡ Sx ± iSy . (3.8)

Because the eigenvectors are not Spherical Harmonics1 there is no apriori
reason to exclude the half–integer values of s and m [109] and then

s = 0, 1
2 , 1,

3
2 , . . . m = −s,−s+ 1, . . . , s− 1, s. (3.9)

Now, working with Eq. (3.8) we can obtain the expressions for the compo-
nents of the spin operator, Ŝ, in terms of the Pauli spin matrices

Ŝ = ŝi = }
2 σ̂

i , (3.10)

from where σ̂i represent the three Pauli matrixes

σ̂x =
(

0 1
1 0

)
; σ̂y =

(
0 −i
i 0

)
; σ̂z =

(
1 0
0 −1

)
. (3.11)

3.2 Electrons embedded in magnetic fields

If an electron, or any other charged particle, is spinning then it will produce
a magnetic field and so a magnetic dipole, µ, proportional to the intrinsic
angular momentum or spin, s,

1When we are solving the Schrödinger equation in spherical coordinates the “Spher-
ical Harmonics” are the solution. Then we obtain the wave function Ψn`m(r, θ, φ) =
An`J`(βn` r/a)Y m` (θ, φ). The values of n, `, and m are restricted to be integers.
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µ = γs, (3.12)

like is shown in Fig. 3.2. Here the proportionality constant, γ, is called the
“gyromagnetic ratio” and is defined as

γ = −ge
µB
}
,

from where ge is denominated the “electron spin g–factor” [110,111] and µB
is the Bohr magneton

µB = e}
2me

.
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Figure 3.2: Magnetic dipole generated for a spinning particle.

Also the number of possible orientations of the angular momentum vector is
2s+ 1. It follows that when a magnetic dipole is placed in a magnetic field,
B, a torque is produced tending to line up the dipole in a parallel direction
to the field. The energy, E, associated with this effect is

E = −µ ·B , (3.13)

and so, the Hamiltonian of a spinning charged particle at rest placed in a
magnetic field can be written as

Ĥ = −γs ·B , (3.14)

where Ŝ is given by the expressions shown in (3.10) and (3.11). Studying the
case where the spin is 1

2 , which is the case when the third matrix of (3.11) is
taken and which corresponds to the electron, then the Hamiltonian matrix
can be written as

Ĥ = −γB0ŝ
z = −γB0

}
2

(
1 0
0 −1

)
. (3.15)
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and so, the vectorial component along the fixed axis only have two possible
values

sz = +1
2}, (3.16)

and
sz = −1

2} . (3.17)

These equations are called “spin up” and “spin down”, respectively.

3.3 Density Functional Theory and Spin–Density
Theory

In the formulation of the Density Functional Theory was shown that a special
role can be assigned to the density of particles in the ground state of a
quantum many–body system: the density can be considered as a “basic
variable,” and so, all properties of the system can be considered to be unique
functionals of the ground state density.

The Density Functional Theory can be used to develop electronic structure
calculations. Proposed by Walter Kohn and Lu Jeu Sham, they introduced
the concept in 1965 to supersede the many–body problem to an auxiliar
independent–particle problem, having “exact” calculations of many–body
systems. The Kohn–Sham approach involves independent particles but an
interacting density.

Using the Kohn–Sham approach it is possible to replace the difficult inter-
acting many–body system obeying the hamiltonian to a different auxiliar
system that can be solved in an easier way. Also, it is possible to assume
that the ground state density of the original interacting system is equal to
that of some chosen non–interacting system.The Kohn–Sham’s mathemati-
cal development requires to assume that:

1. The exact ground state density can be represented by the ground state
density of an auxiliary system of non–interacting particles.

2. The auxiliary hamiltonian is chosen to have the usual kinetic operator
and the effective local potential V eff(r)

σ acting on an electron of spin σ
at point r.

If an external magnetic field is applied to an electronic system, it generally
couples both to the electron spin and to the electronic orbital current. A
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framework for the description of spin coupling is provided by the “spin–
density–functional theory”. The variables of spin–density–functional theory
are the scalar electronic density, n(r), and the magnetization density vector,
~m(r). Then, the spin density matrix, n

αβ
(r), can be used where the indices α

and β can have only the “values” + and − (also sometimes denoted as ↑ and
↓) that corresponds to the spin–up (3.16) and spin–down (3.17) equations,
respectively. This variables can be written as

n(r) =
∑
α

n
αβ

(r); ~m(r) =
∑
αβ

= ~σ
αβ
n
αβ

(r) , (3.18)

where

n
αβ

(r) = 1
2n(r)δαβ + mx(r)σ x

αβ
+my(r)σ y

αβ
+mz(r)σ z

αβ
, (3.19)

from where σx
αβ
, σy

αβ
and σz

αβ
are the Pauli spin matrices given in Eq. (3.11).

The Hohemberg–Kon–Sham spin–density functional [112,113] is given by

E[n
αβ

(r)] = Ts[nαβ (r)] + e2

2

∫∫
n(r)n(r′)
|r − r′|

dr dr′

+
∑
αβ

∫
V ext
αβ

(r)n
αβ

(r) dr + Exc[nαβ (r)] , (3.20)

as a sum of the kinetic energy, Ts, of non–interacting electrons, the electron–
electron interaction in the Hartree approximation, the interaction energy
with the external potential, V ext

αβ
, and the exchange–correlation energy,

Exc[nαβ (r)].

Using the single–particle wavefunctions (orbitals) ϕiα(r) [114] the kinetic
energy functional, Ts[nαβ (r)], and the spin–density matrix, n

αβ
(r), it is

possible to write the kinetic energy functional as

Ts[nαβ (r)] =
∑
αi

∫
ϕi∗α (r)

(
− }2

2m∇
2
r ϕ

i
α(r)

)
dr , (3.21)

and the spin density matrix as

nαβ(r) =
∑
i

ϕi∗α (r)ϕiβ(r) , (3.22)

where the sum over i includes all occupied orbitals. The Eqs. (3.21) and
(3.22) give an implicit representation of the kinetic energy in terms of the
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spin–density matrix. Also, in terms of the “spin up” and “spin down” or-
bitals, denoted respectively as ϕi+(r) and ϕi−(r), the corresponding spin
densities can be represented as

n±(r) =
∑
i

|ϕi±(r)|2 . (3.23)

The Kohn–Sham equations provide a modification to the Schrödinger equa-
tion in order to describe a system of non interacting electrons that generates
the same electron density as any given system of interacting particles [115].
In a local effective potential, V eff

± , the Kohn–Sham equation for the orbitals
can be written as(

− }2

2m∇
2
(r) + V eff

± (r)
)
ϕi±(r) = εi±ϕ

i
±(r) , (3.24)

with an effective potential given by

V eff
± (r) = e2

∫
n(r′)
|r − r′|

dr′ + V ext
± (r) + V xc

± (r) . (3.25)

In Eq. (3.25) let us consider the case when an external magnetic field,
H, is applied and so, the external potential, V ext

± contains a field term
−(±µBH where the minus sign indicates that most of the spin–up electrons
are energetically favored in comparison with the spin–down electrons. Also,
the correlation potential

V xc
± (r) = δExc[n+(r), n−(r)]

δn±(r) , (3.26)

is defined by the functional derivative of the exchange correlation energy and
can have different values for the two possible spin directions even without
an external magnetic field applied.

3.4 Determination of electronic structure

The method of expansion in plane waves provides the methodology to solve
differential equations, including the Schrödinger’s equation. This method-
ology plus the Bloch’s theorem is specially appropriate for periodic systems
providing intuitive understanding algorithms for practical calculations.
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3.4.1 The independent–particle Schrödinger–like equation in
a plane wave basis

The eigenstates of any independent particle Schrödinger–like equation in
which each electron moves in an effective potential V eff(r), satisfy the eigen-
value problem given in Eq. (3.24). In the study of condensed matter is con-
veniently required that the states be normalized and obey periodic boundary
conditions in the volume Ω of an unit cell. Using the fact that any peri-
odic function can be expanded in complete set of Fourier components, an
eigenfunction can be writen as

ϕi(r) =
∑
q

ci,q
1√
Ω
exp(iq · r) ≡

∑
q

ci,q|q〉 , (3.27)

where ci,q are the expansion coefficients of the wavefunction in the basis of
the orthonormal plane waves |q〉 satisfying

〈
q′
∣∣ q〉 ≡ 1

Ω

∫
Ω

dr exp(−iq · r) = δq,q′ . (3.28)

To obtain the Schrödinger equation in the Fourier space we need to substi-
tute Eq. (3.27) in Eq. (3.24), multiply from the left by 〈q′| and integrate
as has been done in Eq. (3.28) to obtain∑

q

〈q′|Ĥeff|q〉ci,q = εi
∑
q

〈
q′
∣∣ q〉 ci,q = εici,q′ . (3.29)

Now we have that the matrix elements of the kinetic energy operator are
given by

〈q′| − }2

2me
∇2|q〉 = }2

2me
|q|2δq,q′ . (3.30)

If we have an anisotropic system, the potential V eff(r) is periodic and can
be expressed as a sum of Fourier components

V eff(r) =
∑
m

V eff(Gm)exp(iGm · r) , (3.31)

where Gm are the reciprocal lattice vectors and

V eff(G) = 1
Ωcell

∫
Ωcell

dr V eff(r)exp(−iG · r) , (3.32)



3.4. Determination of electronic structure 33

with Ωcell defined as the volume of the primitive cell. Then we have that
the matrix elements of the potential

〈q′|V eff|q〉 =
∑
m

(Gm)δq′−q,Gm , (3.33)

are different from zero only if q and q′ differ by some reciprocal lattice vector
Gm.

Now, defining q = k+Gm and q′ = k+Gm′ , then the Schrödinger equation
for any given k can be written as the matrix equation∑

m′

Hm,m′(k)ci,m′(k) = ei(k)ci,m(k) , (3.34)

where

Hm,m′(k) = 〈k +Gm|Ĥeff|k +Gm′〉

= }2

2me
|k +Gm|2δm,m′ + V eff(Gm −Gm′).

(3.35)

Eqs. (3.34) and (3.35) are the basic Schrödinger equations in a periodic
crystal, leading to the formal properties of bands; to explain it the Bloch
theorem is needed.

3.4.2 The Bloch’s theorem and electron bands

The Bloch theorem.

All eigenfunctions of the Schrödinger equation [Eq. (3.34)], for a given value
of k are given by Eq. (3.27) with the sum over q restricted to the values
q = k +Gm which can then be written as

ϕi,k(r) =
∑
m

ci,m(k)× 1√
Ω
exp[i(k +Gm) · r]

= exp(ik · r) 1√
Ncell

ui,k(r) ,
(3.36)

where Ω = Ncell and

ui,k = 1√
Ωcell

∑
m

ci,m(k)exp(iGm · r) , (3.37)

which has the periodicity of the media having an eigenvector of a product of
exp(ik · r), a periodic function. Is required ϕi,k(r) to be orthonormal over
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all the volume Ω; then the terms ui,k(r) are orthonormal in the primitive
cell, so

1
Ωcell

∫
cell

dru∗i,k(r)ui′,k(r) =
∑
m

c∗i,m(k)ci′,m(k) = δi,i′ . (3.38)

This equation means that the coefficients ci,m(k) are orthonormal vectors
in the discrete index m of the reciprocal lattice vectors.

Bands of eigenvalues and the Brillouin zone.

The first Brillouin zone is defined as the unit cell in the reciprocal space. The
boundaries of this cell are given by planes related to points on the reciprocal
lattice as is depicted in Fig. 3.3. It is found by the method of Wigner–Seitz
in the Bravais lattice [116]. Determining the first Brillouin zone is necessary
to describe the propagation of waves in a periodic medium

Etotal
[
V eff

]
=

1
Nk

∑
k,i

wk,i

∑
m,m′

c∗i,m(k)
[

}2

2me
|Km|2δm,m′ + V ext(Km,Km′)

]
ci,m′(k)


+
∑
G

εxc(G)n(G) + 1
24πe2 ∑

G6=0

n(G)2

G2 + γEwald +
(∑

κ

ακ

)
Ne

Ω .

(3.39)

Since Etotal is the total energy per cell, the average over k and the sum over
band is in the same form for the calculation [117]

n(r) = 1
Nk

∑
k,i

f(εi,k)ni,k(r) , with ni,k(r) = |ψi,k(r)|2 . (3.40)

Because the Schrödinger Eq. (3.34), is defined for each k separately, each
state can be labeled by the wave vector k. The eigenvalues and eigenvectors
for each k are independent unless they differ by a reciprocal lattice vector.

In the limit of large volume Ω, the k points become a dense and continuum
and the eigenvalues εi(k) tend to group in continuous bands. At each k there
are a discrete set of eigenstates labeled (i = 1, 2, . . .) that may be found
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(a) Square lattice.

  

(b) Hexagonal honeycomb lattice corre-
sponding to the graphene and graphane.

Figure 3.3: The reciprocal latices (dots) and the corresponding first Brillouin
zones (red area) for two different lattices.

by diagonalizing the Hamiltonian, (3.35), in the basis of discrete Fourier
components k +Gm, with m = 1, 2, . . .

Since all possible eigenstates are specified by the wave vector k within the
primitive cell of the periodic lattice in reciprocal space there is needed to
define the concept of the Brillouin zone. The “first Brillouin zone” is the
uniquely defined cell that is the most compact possible cell to represent
excitations. It is unique among all primitive cell because its boundaries
are the bisecting planes of the G vectors where Bragg scattering occurs
[117]. Inside the Brillouin zone there are no boundaries: the bands must be
continuous and analytic inside this zone. In Fig. (3.4) are shown the band
structure of graphene [118,119].

3.4.3 The empirical pseudopotential method

The actual model of pseudopotentials was developed by Phillips and Klein-
man [120]. They found that the band structure of sp–bonded metals and
semiconductors could be described by the values of the spherical atomic–like
potentials at few lowest reciprocal lattice vectors. They also found that by
using the empirical pseudopotential method and by fitting it to experimen-
tal data, a few parameters could be used to describe a large amount of data
related to the bands structure, effective masses and band gaps, optical prop-
erties, etc. Using this method is also possible to describe the band structure
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(a) 3D Band structure [118]. (b) Graphene band structure evaluation with
use of FP–LAPW method [119].

Figure 3.4: In figure (a) is depicted the 3D band structure corresponding
to a graphene honeycomb cell. In figure (b) the red–marked lines are well–
converged single–layered graphene bands while gray background corresponds
to continuous spectrum.

of materials using only few parameters, namely the “first few Fourier terms”
of the potential

3.5 Full calculations using plane waves

The “Orthogonalized Plane Wave” method described in previous section is
appropriate in cases where the potentials and wavefunctions are smooth.
The additional required steps to complete a full self–consistent ab initio2
calculation are:

1. If the calculation is “from first principles” then the pseudopotential
must be derived from theoretical calculations. Such pseudopotentials
are “bare potentials” and the total potential is determined.

2. The total effective potential in the Kohn–Sham Schrödinger–like equa-
tions is a sum of the bare ion pseudopotentials and the effective po-
tentials from the valence electrons, the Hartree, and the exchange–

2The “ab initio” term comes from the Latin and means "from first principles". This
term is widely used in literature of solid state physics. Furthermore, in this work is the
term is used because both of the software projects used to make the calculations in this
work, called “ABINIT” and “TINIBA”, took them names from it.
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correlation potential. This requires that the equations be solved in
the self–consistence way.

3. The primary results in a Kohn–Sham density functional theory are
the total energy and related quantities such as forces and stresses,
which are sufficient for ground state properties. In addition, there are
eigenvalues and eigenvectors that are only approximately related to
the true excitation energies.

3.5.1 Ab initio pseudopotential method

The variational expressions for energy in terms of the output wavefunctions
and density can be written [121–124]

Etotal
[
V eff

]
=

1
Nk

∑
k,i

wk,i

∑
m,m′

c∗i,m(k)
[

}2

2me
|Km|2δm,m′ + V ext(Km,Km′)

]
ci,m′(k)


+
∑
G

εxc(G)n(G) + 1
24πe2 ∑

G6=0

n(G)2

G2 + γEwald +
(∑

κ

ακ

)
Ne

Ω .

(3.41)

Since Etotal is the total energy per cell, the average over k and the sum over
a band is in the same form for the calculation of [117]

n(r) = 1
Nk

∑
k,i

f(εi,k)ni,k(r) , with ni,k(r) = |ψi,k(r)|2 . (3.42)

The sums, like those considered in reference [117], can be reduced to the
“irreducible Brillouin zone”. The potential terms involve K ≡ k +Gm; the
“xc” term is the total exchange–correlation energy. The expression given in
Eq. (3.41) is a functional of V eff which determines each term, except the
final two that depend only upon the structure and number of electrons [117].

To make a proper treatment of the Coulomb terms is necessary to sepa-
rate out the G = 0 components in the potential and the total energy. The
Hartree term in Eq. 83.41) describes the Coulomb repulsion interaction of
electrons, except the divergent term due to the average electron density.
Similary, the G = 0 Fourier component of the local potential is defined to



38 Chapter 3. Quantum Background Theory

be zero in Eq. (3.41). This last two terms mentioned before are included in
the Ewald term3, γEwald, which is the energy of point ion in a compensating
background containing the ion–ion terms as well as the interactions of the
average electron density with the ions and with itself. The final term in Eq.
(3.41) is a contribution due to the non–Coulombic part of the local pseu-
dopotential where Ne/Ω is the average electron density, and ακ is defined
as

ακ =
∫

4πr2dr

[
V local
κ (r)−

(
−Zκ
r

)]
. (3.43)

Following the analysis made in reference [117] it is possible to define a func-
tional

Ẽ = 1
Nk

∑
k,i

wk,iεi +
∑
G

[εxc(G)− Vxc(G)]n(G)

+

γEwald − 1
24πe2 ∑

G6=0

n(G)2

G2

+
(∑

κ

ακ

)
Ne

Ω ,

(3.44)

where all terms involve the input density n ≡ nin. This last expression, Eq.
(3.44), is very stable because it often converges faster to the final consistent
energy, so that it is useful at every step of a self consistent calculation.

The force on any atom τκ,j can be found straightforwardly from the “force
theorem” or “Hellmann–Feyman theorem” of reference [117] and so, from
Eq. (3.41) we can obtain

F j
κ = − ∂E

∂τκ,j
= −∂γEwald

∂τκ,j
− i

∑
m

Gme
iGm·τκ,jV local

κ (Gm)n(Gm)

× −i
Nκ

∑
k,i

wk,i
∑
m,m′

c∗i,m(k)
[
Km,m′e

i(Km,m′ ·τκ,j)

× δV NL
κ (Km,Km′)

]
ci,m(k) ,

(3.45)

where the Ewald contribution can be found in appendix (F.10) of [117].
Then, the external pseudopotential has been separated into the local part,
witch contains the long–range terms, and the short–range non–local operator
δV ext

κ (Km,Km′), with Km,m′ = Km −Km′ .
3The Ewald sum [125] is the best technique for calculating electrostatic interactions in

a periodic (or pseudo–periodic) system.
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3.5.2 Solution to the Kohn–Sham equations

The Kohn–Sham equations, shown in Eqs. (3.34) and (3.35) with the local
and non–local parts of the pseudopotential. Then, the local part of the
potential can be written straightforwardly as the Fourier transform of the
external local potential, Hertree, and “xc” potentials [117]. The first one,
corresponding to the Fourier transform, can be expressed as

V (G) ≡ 1
Ωcell

∫
Ωcell

V (r)exp(iG · r) dr ,

=
n species∑
κ=1

Ωκ

Ωcell
Sκ(G)Vκ(G) ,

(3.46)

where the structure factor for each specie κ is

Sκ(G) =
nk∑
j=1

exp(iG · τκ,j) , (3.47)

and the form factor is

Vκ(G) = i

Ωκ

∫
all space

Vκ(r)exp(iG · r) dr . (3.48)

Also, the “xc” potential is given by

V KS
σ = V ext(r) + VHartree(r) + V xc

σ (r) . (3.49)

Then we have that

V KS,local
σ (G) = V local(G) + VHartree(G) + V xc

σ (G) , (3.50)

where all G = 0 Fourier components are omitted. They represent the av-
erage potential which is only a shift in the zero of energy. This has no
consequence for the bands because the zero of energy is arbitrary in an
infinite lattice.

Then, the full potential is the sum of Eq. (3.50) plus the non–local potentials
[117]

δV NL
κ (Km,Km′) =

∑
lml

Ylml(K̂m)T ∗l (|Km|)× Tl(|Km′ |)Ylml(K̂m′)
〈ψPSlm |δVl|ψPSlm 〉

.

(3.51)
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The equations are solved by the self–consistent cycle shown in Fig. 3.5 where
is shown an schematic representation of the self–consistent loop needed to
find the solution to the Kohn–Sham equations. In general, one must iterate
two such loops simultaneously for the two spins, with the potential for each
spin a functional of the density of both spins.

  

Yes

Initial guess
n↑(r ) , n↓(r )

Self-consistent?

Calculate effective potential
V eff

σ
(r )=V ext(r )+V Hartree [ n]+V σ

xc
[n↑ , n↓]

Solve KS equation 

[−1
2

∇ 2+V eff
σ

(r )]ψ i
σ
(r )=ε i

σ
ψ i

σ
(r )

Calculate electron density

nσ(r )=∑ f i
σ
∣ψ i

σ
(r )∣

2

Output cuantities
Energy, forces, stresses, eigenvalues...

No

Figure 3.5: Schematic representation of the self–consistent loop for solution
of Kohn–Sham equations.

The solution for a fixed potential is the same as for the non–self–consistent
calculation; it is necessary to add just some more steps:

1. Calculation of the output density nout(G).

2. Generation of a new input density, nin(G), which leads to the new
effective potential.

3. After self–consistency is reached, calculation of the total energy or
related variational formulas.
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3.5.3 Approach to self–consistency

The simplest approach is linear mixing

Vσ,in(G) = αV i
σ,out(G) + (1− α)Vσ,in(G) . (3.52)

Choice of α by a trial–and–error process is often sufficient since the same
value will apply to many similar systems.

In order to go further and analyse the convergence, one can treat the region
near of convergence where the error in the output density or potentials is
proportional to the error in the input potential δVin.

The error in the output density δVout(G) = δVout(G)(G2/4πe2) is also gov-
erned by the dielectric function, and the kernel χ(G,G′) = ε(G,G′)G′2/G2.
In general, the dielectric function approaches to the large G or G′.

3.6 Degree of spin polarization

Using the density matrix formalism [107], the expectation value of an ob-
servable, O, is given by

O = Tr (ρ̂ ô) , (3.53)

where Tr denotes the trace, given by the sum over the diagonal matrix
elements, and ô is the operator associated to the corresponding observable
O.

Now, using the closure relationship
∑
c |ck〉〈ck| = 1 it is possible to write

[126]

O =
∫ d3k

8π3

∑
c

〈ck|ρ̂ ô|ck〉 =
∫ d3k

8π3

∑
c,c′

〈ck|ρ̂ |c′k〉〈c′k|ô|ck〉 ,

=
∫ d3k

8π3

∑
c,c′

(k)ρc,c′Oc′,c(k) .

(3.54)

And now, using the so called relation “interaction picture”

Õc′c = 〈c′k|eiĤ0t/} ôe−iĤ0t/}|ck〉 = Oc′,c e−iωcc′ t , (3.55)
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is then possible to write

O =
∫ d3

8π3

∑
ρ̃c c′(k)Õc′c(k) , (3.56)

that will help to calculate the expectation value of the operator using ρ̂ and
Ô in the Schrödinger representation. Then is possible to write the rate of
change of O as

dO
dt =

∫ d3k

8π3

∑
c,c′

dρ̃c c′(k)
dt Õc′c(k) , (3.57)

and considering the following definitions

α ≡ e2

i}2
1

8π3 , (3.58)

u(ω) ≡
( 1
ω − ωc′ν − iε −

1
ω − ωcν + iε

)
, (3.59)

then, we have that
dO
dt = e2

i}2

∫ d3k

8π3

∑
ν,c,c′

Õc′c racν rbνc′
( 1
ω − ωc′ν − iε −

1
ω − ωcν + iε

)

× Ea(ω)Eb∗(ω) ,

= α

∫
d3k

∑
ν,c,c′

Õc′c racν rbνc′ u(ω)Ea(ω)Eb∗(ω) .

(3.60)

Eq. 3.60 can be used to compute the spin–injection–rate Ṡ ≡ dS/dt if
instead of using the arbitrary operator ô, we consider the spin operator ŝi,
given by the Eqs. (3.10) and (3.11). Then

˙̂si = α

∫
d3k

∑
ν,c,c′

ŝic′c r
b
cν r

c
νc′ u(ω)Eb(ω)Ec∗(ω) . (3.61)

Using the time–reversal invariance

ωm(−k) = ω(k) , (3.62)
ramn(−k) = ranm(k) , (3.63)
ŝimn(−k) = ŝinm(k) , (3.64)
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it is then possible to add the k and the −k contributions to the integral Eq.
(3.61) and then

˙̂si = α

∫
k>0

d3k
∑
ν,c,c′

[(
sic′c r

b
cν r

c
νc′

)∣∣∣
k

+
(
sic′c r

b
cν r

c
νc′

)∣∣∣
−k

]
u(ω)EbEc∗ .

(3.65)

Now, making the definition

sibc ≡ sic′c rbcν rcνc′ , (3.66)

to simplify the notation and using the properties of Hermitian operators,
Omn(k) = O∗nm(k), is then possible to write

˙̂si = α

∫
k>0

d3k
∑
ν,c,c′

[
sibc
∣∣∣
k

+ sibc
∣∣∣
−k

]
u(ω)EbEc∗ ,

= α
1
2

∫
k>0

d3k
∑
ν,c,c′

[
sibc
∣∣∣
k
− sibc ∗

∣∣∣
k

]
u(ω)EbEc∗ ,

= α

∫
d3k

∑
ν,c,c′

Im
[
sibc
]
u(ω)EbEc∗ .

(3.67)

Using the relation

lim
ε→0

1
ω − ωcν − iε

= P (ω − ωcν) + iπδ (ω − ωcν) , (3.68)

where P means the “principal part”. Then the Eq. (3.67) can be written as

˙̂si =α

∫
d3k

∑
ν,c,c′

Im
[
sibc
]{

P

( 1
ω − ωc′ν

− 1
ω − ωcν

)

+ iπ [δ(ω − ωc′ν) + δ(ω − ωcν)]
}
EbEc∗ ,

=α

∫
d3k

∑
ν,c,c′

Im
[
sibc
]{

P

(
ωc′c

(ω − ωc′ν)(ω − ωcν)

)

+ iπ [δ(ω − ωc′ν) + δ(ω − ωcν)]
}
EbEc∗ , (3.69)

˙̂si 'α
∫

d3k
∑
ν,c,c′

′ Im
[
sibc
]

[δ(ω − ωc′ν) + δ(ω − ωcν)]EbEc∗ . (3.70)
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Since the term associated to the principal part is on the order of ωcc′ giving
a weak contribution. The primed sum symbol indicates that the sum should
be performed on pairs cc′ of quasi–degenerate conduction bands. Instead of
having tow resonance frequencies at ω = ωcν(k) and the other at ω = ωc′ν(k)
exist only one. To obtain this result it is necessary to change c by c′ in the
second δ to have

˙̂si = ζ ibcEb(−ω)Ec∗(ω) , (3.71)

where
ζ̃ ibc = α

∫
d3k

∑
ν,c,c′

′ Im
[
sibc + s′

ibc
]
δ(ω − ωcν) , (3.72)

from where sibc is given by the Eq. (3.66) and s′ ibc is took from Eq. (3.66)
changing the values of c by c′. The −ω argument refers to the complex
conjugate of the field in the frequency domain. This helps to clarify that
the only resonant frequency is ω = ωcν(k). The Eq. (3.72) is known as the
“spin–injection third–rank pseudo–tensor component” having the property
that ζ̃ibc = −ζ̃ibc [126] and being purely imaginary.

Both, the spin interaction rate, ˙̂si, and the spin–injection pseudo–tensor
component, ζ̃ ibc, describe the total spin injected to the conduction band.
To completely describe the spin polarization it is necessary to consider it as
an average of the electron spin, i.e., as the rate of the spin injection, ˙̂si, with
respect to the carrier injection rate, ṅ, to have the density spin polarization
Di in the given direction i

D i =
˙̂si

(}/2)ṅ , (3.73)

where the “Fermi’s golden rule4” derivation gives the carrier injection rate
ṅ ≡ dn/ dt

ṅ = ξibEi(−ω)Eb(ω) , (3.74)

from where

ξib ≡ 2iα
∫ ∑

c,ν

d3k riνc(k) rbcν(k)δ [ωcν(k)− ω] . (3.75)

4The Fermi’s golden rule is a way to calculate the probability of transition per unit time
from one energy eigenstate of a quantum system into a continuum of energy eigenstates,
due to a perturbation [107]

Wnk = 2π
h
|Vnk|2ρ(Ek)

where Ek = En.
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As was mentioned before regarding Eq. (3.71), the −ω argument refers again
to the complex conjugate of the field.

Using a circularly polarized electric field along the xy–plane,

E(ω) = E0(x̂− iŷ)/
√

2, (3.76)

we obtain that Eq. (3.73) reduces to

D i = 2
~

2ζixy

ξxx + ξyy
, (3.77)

and we obtain similar equations for polarization along xz and yz planes.

3.7 Summary

The main results of the chapter 3 corresponds from Eq. (3.77) to Eq. (3.75).
The software, ABINIT and TINIBA, use the basis of this theoretical treat-
ment in the calculations of this project. In the following chapter we will be
describe the way both programs work together. Also there will be presented
the results and conclusions of this thesis.
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To obtain the properties of graphane, we used the software TINIBA together
with ABINIT. In the following section it will be explained some of the gen-
eralities about this software and how it has been used to obtain the results
of this thesis and other scientific researches. Later we present the molecules
to describe and the procedure to obtain their properties.

4.1 The software projects

As was mentioned before in section 3.5, the software ABINIT, developed in
Belgium, took its name from the latin term ab initio, which means “from
first principles”, which is widely used in the literature of solid state physics,
and when the method of plane waves, described in chapter 3, is used. On
the other hand, the software TINIBA was developed at Centro de Investiga-
ciones en Óptica (CIO) as a complement to ABINIT, adding functionality
as a scientific research software.
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4.1.1 ABINIT [127]

The ABINIT software project started in 1997. The initial goal was to create
a software package for the ab initio study of material’s properties. Thinking
in users of Linux Operating Systems the developers of ABINIT decided to
make a Free Software license to help the community of material scientists.
The first publicly available version of ABINIT was released in December
2000. The developers community has grown to about fifty people.

Because of its large developer group, the capabilities of ABINIT can cover
now a wide spectrum of properties like computation of equilibrium cell pa-
rameters and atomic positions, vibrational properties, prediction of phase
(meta) stability or instability, elastic properties, dielectric and piezoelectric
properties, non–linear optical properties, thermodynamic behaviour, elec-
tronic properties, magnetic properties, space group analysis, and more using
parallelizating computation algorithms. Also this software is characterized
because of its ease of use, its accompanying high–level documentation and
brings to the user the capability to change the main software code.

ABINIT’s main program is based in the “Density Functional Theory” de-
scribed in section 3.3. For response functions, like vibrations, dielectric or
piezoelectric properties, the specialized “Density Functional Perturbation
Theory” has been implemented. However, selected electronic properties, in
particular the prediction of electronic band gaps and the metallic or insulat-
ing character, can be computed accurately due to the implementation of the
“Many–Body Perturbation Theory”, the so–called “GW approximation.”

ABINIT is based on the plane–wave expansion of the electronic wavefunc-
tions, described in section 3.4, with a periodic representation of the system in
a box under periodic boundary conditions. This representation is especially
suitable to study any anisotropic media: the box is taken as the “primitive
unit cell.” Taking a non–primitive cell (called “super–cell”) allows the study
of systems in which the translational symmetry is reduced.

For metals, different smearing schemes allow to keep the number of such
wavevectors reasonably small. Magnetism is also properly treated. Ferro-
magnetic as well as anti–ferromagnetic materials are as accessible as non–
magnetic ones. Calculations including spin–orbit coupling and non–collinear
magnetism are also possible.

Also, for a given geometry, ABINIT is able to compute analytically the
forces on atoms and stresses on the cell. Such information is important in

http://www.abinit.org/
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order to start an optimization of atomic position an unit cell parameters like
the generation of new trial geometries.

Is well known that in the treatment of the crystalline state symmetries plays
an important role. There has been included in ABINIT a database of the 230
(Fedrov) space groups and the 1191 (Shubnikov) magnetic groups following
the conventions used in the “International Tables for Crystallography”. With
this improvement different operations can be performed:

Reconstruction of the atomic coordinates in the full primitive
cell from its irreducible part.
Identification of the space group if all atomic coordinates are
given.
Automatic determination of the symmetry operations.

Because electronic charge densities are the basic output of the ‘Density Func-
tional Theory, presented in section 3.3, it is possible to know the structure
using this procedure. Also there was implemented the “GW methodology”
to achieve more satisfactory description of the band structure an band gaps,
with typical discrepancy less than 0.2 eV with respect to experimental data.

4.1.2 TINIBA

The software project called TINIBA1 was developed at Centro de Investi-
gaciones en Óptica (CIO).

TINIBA is a collection of routines to make calculations of optical responses
in semiconductors using parallel computation in a cluster. Being a free
software and written in languages of public domain like bash, pearl and
fortran, TINIBA runs in the free operating system GNU/LINUX.

Using TINIBA is possible to make the automation of some calculations in
parallel. Parallelization is needed because using a large number of comput-
ing cores, instead only one, the computation time is reduced to a fraction.
Because in a culster is possible to have different infrastructures of comput-
ing cores, TINIBA, with the help of the user, is able to set up the workload
destined to each core architecture and then optimize the computing time.

Some of the responses that TINIBA calculates are the Lineal Optical Re-
sponse, Second Harmonic Generation and the Optical Spin Injection in elec-

1Special thanks to J. L. Cabellos for choosing the name of the software like ABINIT
read backwards.
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trons.

TINIBA can be executed, copied, distributed, changed and improved for ev-
ery person2 with the sufficient knowledge about the theme and programming
languages previously mentioned. TINIBA and ABINIT use the mathemat-
ical and quantum background described in chapter 3.

In appendix A we show the International publications using TINIBA since
it’s creation of and to date when this thesis has been finished.

4.2 Graphane molecules

As was mentioned before, a graphane molecule is obtained when a graphene
molecule is hydrogenated. Graphane can be obtained by different chemical
procedures but our theme of interest is to characterize it using the quantum
description presented in chapter 3 and the software presented in sections
4.1.1 and 4.1.2.

Graphene consists of a single layer of carbon molecules, as shown in Fig.
(1.1). Some graphene layers can be stacked to produce bi–layered graphene
and few–layered graphene. This is not the case when we talk about graphane
because it is possible to have different bonds with hydrogen atoms and dif-
ferent proportions of hydrogenation to obtain different graphane molecules.

In this thesis was described and characterized only two of the possible
graphane molecules corresponding to the so called C16H16–chair and C16H8–
up molecules3 shown in Fig. (4.1).

According to the theory of expansion in plane waves and the Bloch’s theorem
presented in chapter 3, we defined the unit cells for the lattices of both
molecules to make the computational calculations in an more convenient
way. The corresponding unit cells for the C16H16–chair and the C16H8–up
molecules are shown in Fig. 4.2

2This is the main principle of the Free Software Foundation.
3With the same combination of atoms is possible to obtain the C16H16–boat and C16H8–

up–down molecular structures, respectively.

http://www.fsf.org/
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(a) C16H16–chair.

(b) C16H8–up.

Figure 4.1: Graphane molecules characterized in this thesis.

(a) C16H16–chair unit cell. (b) C16H8–up unit cell.

Figure 4.2: Scheme of the unit cells corresponding to the molecules shown
in Fig. (4.1).
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Figure 4.3: Convergence analysis for ξxx(ω) as a function of the energy
cut–off. The number of K-points is 2314. The system is C16H8–up.

4.3 Procedure of calculations

We first obtain convergence of the results as a function of the energy cut-off,
and then the corresponding convergence as a function of K–points [128].
So, using different values for the Energy Cutoff chosen by “trial–and–error”
we reach the convergence. Once the convergence of the Energy Cutoff is
reached we chose different values for the K–points, till the carrier injection
tensor ξij(ω) and the spin polarization tensor ζijk(ω) are converged.

4.4 Results

The results were obtained following the procedure explained in section 4.3
and using the unit cells shown in Fig. (4.2). The next two subsections are
for the two different graphane structures discussed before.

4.4.1 C16H8–up molecule

In Figs. (4.3) and (4.4) we show the convergence of ξxx(ω) and ζxxy(ω) as a
function of the energy cut–off. We see that a very high energy is required for
convergence, and that, even for 70 Ha, the results still show some deviation
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Figure 4.4: Convergence analysis for ζxxy(ω) as a function of the energy
cut–off. The number of K-points is 2314. The system is C16H8–up.

from the 60 Ha values. However, Di(ω), shows an adequate convergence for
cut–off energies between 60 and 70 Ha, as shown in Fig. 4.5. The number
of K–points used, 2314, is already the minimum value for convergence.

In Fig. 4.6 we show (converged) Di(ω) for the incoming field polarized (cir-
cularly) along xy, xz and yz planes, then, the field propagates along z, y
and x, respectively. We see that the largest value for the degree of spin
polarization comes from light propagating perpendicular to the plane of the
system, and gives a 100% spin polarization along x, whereas along z is an
still sizable 80%. Along y is only 25%. For the other two polarizations along
xz and yz we obtain values below ∼ 20%, for Di(ω) with i = x, y, z.

We also notice that the maximum of Di(ω) occurs right at the energy gap
of the system. This indicates that the optical transition induced by the
incoming field polarize the system at the onset with maximum probability.
The percentage of Di means that we can re-orient the spin of the electrons
along the direction of the incoming field, by that amount. However, when is
negative, as shown, for the xz–polarization, it means that the spin polarize
opposite to the direction of the field, in this case, along −x, −y and −z. We
finally mention that the energy region corresponds to infrared frequencies.
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electric field. The system is C16H8–up.



56 Chapter 4. Software, molecules, and results

4.4.2 C16H16–chair molecule

In Fig. 4.9 we show (converged) Dy(ω) and Dz(ω) for the incoming field
polarized (circularly) along xy. We see that the largest value for the degree
of spin polarization is along y and is only 0.1%! and it also occurs right at
the energy gap of the system, as in the previous case. This very low value
for the degree of spin polarization, rules out this graphane hydrogenated
sample as a viable system to polarize spin. Thus, we just explain where
this small value is coming from. Indeed, in Fig. 4.10 we show ξxx,yy and
ζzxy for energies around the gap. We see that both ξxx and ξyy rise very
sharply, indicating that at the onset of the electronic transitions the number
of injected carriers is very large. Then, although, ζzxy also raises sharply,
when we divide it over ξxx+ξyy, as required by Eq. (3.77), we quench Di(ω)
very dramatically, thus giving very small values. To corroborate this point,
in Fig. 4.11, we show the ξxx,yy and ζxxy for graphane C16H8–up, where
we notice that whereas ξxx,yy rises sharply at the energy gap, both ξxx and
ξyy start off more softly, thus when we calculate Di(ω) we obtain the very
large value seen in Fig. 4.6. Therefore we may say that in order to get large
values of the degree of spin polarization, we need systems for which the rate
of carrier injection starts off slowly at the energy gap.

To stress this point even further, in Fig. (4.12) we show the electronic band
structures for the C16H8–up (Fig. 4.12b) and C16H16–chair (Fig. 4.12a).
The lines in red are the valence bands and the ones in blue the conduction
bands. The vertical arrows corresponds to allowed electronic transitions
between the top valence and bottom conduction band for the corresponding
energy gap plus a tolerance of 10%. We see that for the C16H16–chair system
there are more transitions from the valence to the conduction band than in
for the C16H8–up system, specially those coming around the K-point. Since
the number of injected carriers, as characterized by ξii(ω), is proportional
to the number of transitions, we see that indeed, the C16H16–chair system
will have more injected carriers around the energy gap, than the C16H8–up
system. Thus, we obtain a very tiny fraction of spins polarized for C16H16–
chair .
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4.5 Chapter conclusions

For our systems we have that the C16H8–up is more spin–polarizable than the
C16H16–chair. The Di(ω) depends on the interplay between the possibility
for polarizing the spin of the electrons and the number of carriers that is
possible to inject.
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5.1 Conclusions

The analysis presented in this thesis could determine the possibility of in-
ducing optical spin polarization in a material. We found for our systems
that the C16H8–up is more spin–polarizable than the C16H16–chair. For the
C16H8–up system, the largest value of the degree of spin polarization comes
from light propagating perpendicular to the plane of the system giving a
100% spin polarization along x, whereas along z is also rather large at 80%.
On the other hand, the largest value for the degree of spin polarization in
the C16H16–chair system was obtained for the Dy using xy polarization.
The corresponding low value was near to 1%.

We have that the structural basis of both compounds is carbon and both
have a planar hexagonal honeycomb lattice. According to that we can con-
clude that the level of hydrogenation and the bond structures determines
the behavior of ξii(ω) and ζijk(ω) and so the possibility to have a larger or
lesser spin injection.

The Di(ω) directly depends on the interplay between the possibility to po-
larizing the spin of the electrons and the number of carriers that is possible
to inject. So, when the incident beam reaches the sample gap and starts the
absorption of energy, thus promoting the carriers to the conduction bands,
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it is better for our propose if this “turning–on” of the absorption is slower
than that responsible for polarizing the spin.

The optical spin injection has been studied in different materials. In Ref.
[129] an study of the stress–modulated optical spin injection in GaAs and Si
semiconductors is presented. According to the article, the maximum optical
spin polarization obtained for Si was 50%. On the other hand, in Ref. [130]
the optical spin polarization of CdSe was characterized, and they found a
100% of polarization at the band edge. According to that the our C16H8–up–
down system is suitable to be used in optical spin injection applications. This
is a really promissory result for a large number of Spintronics applications.

5.2 Perspectives

For the future work we are interested in the study and characterizing of
more graphane structures, like C16H16–boat and C16H8–up–down, in order
to describe the possibility to induce optical spin polarization and describe
the band structure for all graphanes. From the theoretical point of view
we would like to include “Many–Body” effects at the GW approximation in
order to achieve more accurate results, in particular, the determination of
the energy gap.



Appendix A
Publications made at Centro de Investigaciones en Óptica using
TINIBA:

Electronic entanglement via quantum Hall interferometry in analogy to an
optical method, Frustaglia, Diego and Cabellos, Adrian, Phys. Rev. B 80,
201312(R) (2009).

Stress–modulated optical spin injection in bulk Si and GaAs semiconductors,
Cabellos, J. L., Salazar, Cuauhtémoc and Mendoza, Bernardo S, Phys. Rev.
B 80, 245204 (2009).

Spin–Orbit Effects on the Optical Anisotropy of Semiconductor Surfaces, R.
A. Vázquez–Nava, B. S. Mendoza and N. Arzate, Phys. Stat. sol. (b) 242,
3022 (2005).

Layer–by–layer analysis of the linear optical response of clean and hydro-
genated Si(100) surface, B. Mendoza, N. Arzate, F. Nastos and J. Sipe,
Phys. Rev. B 74, 075318 (2006).

Second–harmonic and reflectance–anisotropy spectroscopy of vicinal Si(001)
/SiO22 interfaces: Experiment and simplified microscopic model, Jinhee
Kwon, M. C. Downer and B. S. Mendoza, Phys. Rev. B 73, 195330 (2006).

Second harmonic surface response of a composite, Bernardo S. Mendoza and
W. Luis Mochán, Optical Materials 29, 1–5 (2006).

Full band structure LDA and k · p calculations of optical spin–injection, F.
Nastos, J. Rioux, M. Strimas–Mackey, Bernardo S. Mendoza, and J. E. Sipe
Phys. Rev. B, 76, 205113 (2007).

Theoretical study of the optical response of the adsorption of Sb on the
GaAs(110) surface, Bernardo S. Mendoza, N. Arzate and R.A. Vázquez–
Nava, Phys. Stat. Sol. (c) 8, 2604–2609 (2008).

Effective optical response of metamaterials, Guillermo P. Ortiz, Brenda E.
Martínez–Zérega, Bernardo S. Mendoza, and W. Luis Mochán, Phys. Rev.
B 79, 245132–1–9 (2009).

Effects of nonlocality on second–harmonic generation in bulk sem-iconductors,
J.L. Cabellos, Bernardo S. Mendoza, M.A. Escobar, F. Nastos and J. Sipe,
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Phys. Rev. B 80, 155205–1–13 (2009). Citas página: 68.

Stress modulated optical spin–injection in bulk Si and GaAs semiconductors,
J.L. Cabellos, C. Salazar and Bernardo S. Mendoza, Phys. Rev. B. 80
245204–1–5 (2009).

Optical spin injection in semiconductors, Bernardo S. Mendoza, J.L. Cabel-
los, and C. Salazar Modern Physics Letters B 24, 1507–1522 (2010).

Reflectance anisotropy spectra of CdTe(001) surfaces, Raúl Vázquez–Nava,
N. Arzate and Bernardo S. Mendoza, Phys. Status Solidi B 247, 1979–1983
(2010).

Second harmonic response of the Si(111)7× 7 surface, J.E. Mejía, Bernardo
S. Mendoza and Kjeld Pedersen, Surface Science 605, 941–946 (2011).

Optical absorption spectroscopy of one–dimensional silicon nanostructures,
N. Arzate, R.A. Vaáquez–Nava, J.L. Cabellos, R. Carriles, E. Castro–Camus,
M.E. Figueroa–Delgadillo and B.S. Mendoza, Optics and Lasers in Engineer-
ing, 49 668–674 (2011).

Coherent effects in the sum–frequency generation at randomly rough sur-
faces, M. Leyva–Lucero, Bernardo S. Mendoza, E. Méndez and C. Valencia,
J. Opt. Soc. Am B, 28 1882–1894 (2011).

Second–harmonic spectroscopic study of silicon nanocrystals embedded in
SiO2, Junwei Wei, Adrian Wirth, Michael Downer and Bernardo S. Men-
doza, Physical Review B, 84 165316 (2011).

Optical coherent current control at surfaces: Theory of injection current, J.
L. Cabellos, Bernardo S. Mendoza, and A. I. Shkrebtii, Physical Review B,
84 195326 (2011).

Optical spin injection at semiconductor surfaces, Bernardo S. Mendoza and
J.L. Cabellos Phys. Rev. B 85, 165324 (2012).

Graphene and graphane functionalization with hydrogen: electronic and op-
tical signatures, A. I. Shkrebtii, E. Heritage, P. McNelles, J. L. Cabellos and
B. S. Mendoza, Phys. Status Solidi C 9, 1378–1383 (2012).
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