
LENGTH VS. TRANSVERSAL GAUGE CALCULATIONS

FOR NONLINEAR OPTICS

By

Marco Antonio Escobar Acevedo

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE (OPTICS)

AT

CENTRO DE INVESTIGACIONES EN OPTICA, A.C.

DEPARTMENT OF PHOTONICS
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Abstract

We present a comparison of the optical nonlinear response calculations for bulk

semiconductors, using length and transversal gauges. Ab initio calculations of the

second-order optical susceptibilities for GaAs are presented as a case of study; cal-

culations were performed using local density approximation (LDA) and to correct

the underestimation of the band gap within density functional theory (DFT) scis-

sors correction was implemented. Both formalisms were derived from the density

matrix approach and the problem of gauge invariance is discussed.
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Toronto), José Luis Cabellos (CIO) for their helpful suggestions and patience.

I acknowledge the facilities and support of Centro de Investigaciones en Óptica,
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Chapter 1

Introduction

“...even at the simplest level of approximation – treating electrons
as independent particles interacting with the electromagnetic field in
the long-wavelength limit and neglecting local field effects – the cal-
culation of nonlinear optical coefficients of semiconductors has been
troublesome.” [1].

The research activity leading to possible improvements in the field of photonics
occupies an important place in the scientific community. In recent years much
effort has been done to understand nonlinear optical properties of materials in
order to implement photonic devices of practical use.

According to Aversa C. and Sipe J. E. [2] and Sipe and Shkrebtii [3], all-optical
generation and control of direct current in semiconductors, can be described within
the framework of nonlinear optics using susceptibilities. The use of this perspec-
tive leads to general expressions that are independent of the electronic structure
models, and give the opportunity to understand the process for resonant and
nonresonant excitations. To calculate the generation of current first a reliable
frequency dependent susceptibility should be computed and that is the aim of the
present thesis.

The interaction of photons and electrons with matter has been a major topic
of study. Today, most characterization tools as well as electro-optical devices are
based on our understanding of these interactions. Technological applications are
rapidly progressing, but many fundamental questions concerning theoretical and
numerical descriptions are still open.
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2 Chapter 1. Introduction

In theoretical calculations we can easily change one parameter and find its
response. In contrast, in real experiments it is difficult to isolate one variable and
measure its particular contribution. Nevertheless, theoretical calculations will not
replace traditional techniques. On the contrary, they complement each other,
Walter Khon won the 1998 Nobel Prize in Chemistry for his density functional
theory (DFT) of many-electron systems, within this theory a numerical barrier
was broken an whole new areas of investigation had emerged [4].

Calculations of the optical response occupies and important place in the phys-
ical computations. A material interacting with the intense light of a laser beam
responds in a “nonlinear” way. Consequences of this are a number of peculiar
phenomena, including the generation of optical frequencies that are initially ab-
sent. This effect allows the production of laser light at wave lengths normally
unattainable by conventional laser techniques. So the application of nonlinear
optics (NLO) range from basic research to spectroscopy, telecommunications and
astronomy. Second harmonic generation (SHG), in particular, corresponds to the
appearance of a frequency component that is exactly twice the input one.

The use of two different approaches to calculate optical response can serve to
infer if the calculations are correct. However, it will be demonstrated later on this
thesis the gauge invariance is an issue, and we have to be careful in that aspect.

The calculations presented in this thesis were made using pseudopotentials
band structures based on the local density approximation (LDA) + scissors cor-
rections, this approach is the most popular to calculate optical properties using
full zone band structures.

This work is organized as follows, the second chapter deals with the derivation
of the formulae used to calculate the second order non linear susceptibilities of
semiconductors, then the formal demonstration of gauge invariance is presented
followed by the comptutational details for such calculation, we present our results
in the transversal and length gauge and finally our conclusions and observations.



Chapter 2

Optical Response Calculation

“It is my experience that the direct derivation of many simple, well-
known formulae from first principles is not easy to find in print. The
original papers do not follow the easiest path, the authors of reviews
find the necessary exposition too difficult—or beneath their dignity—
and the treatises are too self-conscious about completeness and rigour.”

–J. M. Ziman, Principles of the Theory of Solids (1998).

2.1 Introduction

Electromagnetic waves cause polarization in a medium, which is interpreted as
electronic transitions from unoccupied to occupied states. The effect of the electric
field vector E(ω) of the incoming light is to polarize the material. This polarization
can be calculated using the following relation:

P a(ω) = χ
(1)
ab E

b(ω) + χ
(2)
abcE

b(ω)Ec(ω) + ... (2.1)

in this expression χ
(1)
ab is the linear optical susceptibility and χ

(2)
abc is the second

order nonlinear optical susceptibility.
In order to calculate the optical properties and optical response of semicon-

ductors a number of formalisms have been proposed [5–10], and for second order
response specialized articles can be found [3, 11, 12]. In general susceptibility ten-
sors can be derived using potentials as perturbations, by using standard quantum
mechanics perturbation theory which can be reviewed elsewhere [13, 14].

3



4 Chapter 2. Optical Response Calculation

2.2 Gauge transformation

In classical electrodynamics the fields described by the Maxwell equations can be
derived from a vector, A, and a scalar, φ, potential. Potentials are quantities
inferred (within the ambiguity of gauge invariance) by integration of the fields
along appropriate paths. In free space [15]:

E =
∂A
∂t

−∇Φ (2.2a)

H =
1
µ0
∇×A (2.2b)

The potentials are not unique since one can add a potential χ as

A′ = A−∇χ (2.3a)

Φ′ = Φ +
∂χ

∂t
(2.3b)

A fundamental aspect of the formulation of electrodynamics is the gauge in-
variance: potentials are not unique but all the derived responses must yield the
same results regardless of the gauge [15–18].

Gauge invariance is sometimes taken for granted, when in reality it should
be verified due to the fact that in real calculations several approximations are
made [1]. Explicit corroborations of gauge invariance in the calculation of optical
response are scarce [1, 5, 19], and that is the main reason we decided to confirm
numerically the gauge invariance for the second order nonlinear susceptibility in
semiconductors.

Let suppose that we know all the details of the ground state of the material,
to calculate the optical response we have to consider the interaction of electrons
with the incident electromagnetic field and use the minimal coupling principle.∗

The electromagnetic fields act as perturbations to the ground state. In general
the Hamiltonian of a system can be decomposed as

H = H0 + H′, (2.4)

where H0 stands for the ground state Hamiltonian and H′ is the perturbative part.

∗The coupling between particles and fields depends only on the potentials [20].



2.2. Gauge transformation 5

In the transversal gauge Φ = 0, ∇ ·A = 0 and

E = −Ȧ/c, (2.5)

so the single particle canonical moment can be written as [21]:

P = p− e

c
A. (2.6)

The Hamiltonian of an electron in the presence of a light field is

H =
1

2m
(p− e

c
A)2 + V, (2.7)

where V is time independent and due to the interaction with the crystal potential.
In the long wavelength approximation†

A = A(t) = A0e
−iωt (2.9)

so it commutes with p, also it can be shown that the term A2 can be neglected
[22], so

H =
p2

2m
− e

mc
A · p + V, (2.10)

and thus the perturbative part is

H′ = − e

mc
A · p (2.11)

To get the Hamiltonian in the length gauge we perform a gauge transformation
to the transversal gauge [23]:

χ(r, t) = −r ·A(t) (2.12)

substituting in Equations (2.3a) and (2.3b) leads to

H = H0 − er ·E (2.13)

†We expand A(r, t) such that

eik·r = 1 + ik · r +
1

2!
(ik · r)2 + . . . (2.8)

notice that |k · r| << 1 so eik·r ∼ 1



6 Chapter 2. Optical Response Calculation

2.3 Quantum Mechanics Formalism

To derive the second order nonlinear susceptibilities we will follow the formalism
applied by Aversa C. and Sipe J. E. [1] to the length gauge, that formalism is
based on the use of the density matrix. We use the fact that the expectation
value of any single particle operator O can be calculated using the density matrix
trough the relation

< O >= Tr(ρO), (2.14)

where the trace is defined by

Tr(AB) =
∑
m

〈m|AB|m〉 (2.15)

=
∑
m,n

〈m|A|n〉〈n|B|m〉

= AmnBnm

The dynamical equation of motion for ρ is given by

ih̄
dρ
dt

= [H, ρ] (2.16)

we change to the interaction picture because the equation of motion involving
total Hamiltonian simplifies (see Appendix A) to the form given by

ih̄ ˙̃ρ = [H̃′, ρ̃] (2.17)

where only the perturbation term of the Hamiltonian, H′, is involved [12]. In the
interaction picture the operator Õ is defined as

Õ = UOU †, (2.18)

with
U = exp(iH0t/h̄). (2.19)

Notice that Õ has a time dependency even if O does not. The equation (2.16)
leads to

ih̄
dρ̃(t)
dt

= [−eH̃′, ρ̃(t)], (2.20)
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that leads to

ρ̃(t) = ρ̃(t = −∞) +
ie

h̄

∫ t

−∞
dt′[H̃′(t′), ρ̃(t′)]. (2.21)

We assume that the interaction is switched-on adiabatically, and choose a time-
periodic perturbing field, to write

E(t) = Ee−iωteηt, (2.22)

where η > 0 assures that at t = −∞ the interaction is zero and has its full strength,
E, at t = 0. After the required time integrals are done, one takes η → 0. Instead
of Equation (2.22) we will use implicitly

E(t) = Ee−iω̃t, (2.23)

with
ω̃ = ω + iη. (2.24)

Also, ρ̃(t = −∞) should be independent of time, and thus [H̃, ρ̃]t=−∞ = 0, which
implies that ρ̃(t = −∞) ≡ ρ̃0, where ρ̃0 is the density matrix of the unperturbed
ground state, such that

〈nk|ρ̃0|mk′〉 = fn(h̄ωn(k))δnmδ(k− k′), (2.25)

where fn(h̄ωn(k)) = fnk is the Fermi-Dirac distribution function.
We solve Equation (2.21) using the standard iterative solution, for which we

write
ρ̃ = ρ̃(0) + ρ̃(1) + ρ̃(2) + · · · , (2.26)

where ρ̃(N) is the density operator to order N in E(t). Then, Equation (2.21)
reads

ρ̃(0) + ρ̃(1) + ρ̃(2) + · · · = ρ̃0 +
ie

h̄

∫ t

−∞
dt′[H′, ρ̃(0) + ρ̃(1) + ρ̃(2) + · · · ], (2.27)

where by equating equal orders in the perturbation, we find

ρ̃(0) ≡ ρ̃0, (2.28)

and

ρ̃(N)(t) =
ie

h̄

∫ t

−∞
dt′[H̃′, ρ̃(N−1)(t′)]. (2.29)
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To calculate the expectation value of the macroscopic current density we use
[24]:

J = eTr(ρv) (2.30)

The polarization is related to the microscopic current through

dP
dt

= J, (2.31)

we will demonstrate later that for the transversal and length gauges the polariza-
tion of the system can be written as

dP a

dt
=

e

m

∑
nmk

pa
mnρnm, (2.32)

and after integration over time the susceptibility can be obtained; to first order
related to ρ(1) and to second order related to ρ(2).

2.4 Transversal Gauge

The operator v is defined for the transversal gauge as

v =
p
m
− e

mc
A (2.33)

and thus

J =
e

m
Tr(ρp)− e2

mc
Tr(ρA), (2.34)

the term containing A cancels (see Appendix B).
In this gauge Equation (2.29) becomes

ρ̃
(N+1)
V =

ie

h̄mc

∫ t

−∞
dt′[p̃(t′) ·A(t′), ρ̃(N)

V (t′)] (2.35)

To first and second order we have

ρ̃
(1)
V (t) =

ie

h̄mc

∫ t

−∞
dt′[p̃(t′) ·A(t′), ρ̃0(t′)] (2.36a)

ρ̃
(2)
V (t) =

ie

h̄mc

∫ t

−∞
dt′[p̃(t′) ·A(t′), ρ̃(1)

V (t′)] (2.36b)
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using the fact that the ρ0 matrix elements are

ρ0,nm = fnδnm (2.37)

where δnm is the Kronecker delta, and fn is the fermi occupation level, for a clean
cold (T= 0 K) semiconductor it is zero if n is a conduction band and one if n is a
valence band.

The matrix elements of (2.36a) are then

ρ
(1)
nm,V (k; t) =

ie

mch̄
fmnkp

b
nm(k)Ab

∫ t

−∞
dt′ei(ωnmk−ω)t′

=
e

mch̄
fmnkp

b
nm(k)Ab e

i(ωnmk−ω)t

ωnmk − ω
(2.38)

with fnm ≡ fn − fm.
Replacing (2.38) in (2.36b), and generalizing to two perturbing fields we obtain

ρ̃
(2)
V,nm =

ie2

h̄2m2c2

∫ t

−∞
dt′
∑

`

(
pb

nlfmlp
c
nm

ω`m − ω
−
f`np

b
n`p

c
`m

ωn` − ω

)
eiωnmt′Ab(t′)Ac(t′), (2.39)

performing the integral and using A = cE/iω we arrive to the final form of the
second order density matrix elements

ρ
(2)
V,nm = − e2

h̄2m2ω2

1
ωnm − 2ω

∑
`

[
pa

n`fm`p
c
`m

ω`m − ω
−
f`np

c
n`p

b
`m

ωn` − ω

]
EbEc (2.40)

Substituting (2.40) into (2.32) we obtain

dP a

dt
= − e3

h̄2m3ω2

∑
n,m,`,k

[
pa

mnp
b
n`fm`p

c
`m

(ωnm − 2ω)(ω`m−ω)
−

pa
mnf`mp

c
n`p

c
`m

(ωnm − 2ω)(ωn` − ω)

]
EbEc

(2.41)
and after integration over time and comparing with Equation (2.1) we get

χ
(2)
abc =

−ie3

2h̄2m3ω3

∑
n,m,`,k

[
pa

mnp
b
n`fm`p

c
`m

(ωnm − 2ω)(ω`m−ω)
−

pa
mnf`mp

c
n`p

c
`m

(ωnm − 2ω)(ωn` − ω)

]
(2.42)

using the identity

1
(ωnm − 2ω)(ωn` − ω)

=
2

ωnm − 2ωn`

1
ωnm − 2ω

+
1

ωnm − 2ωn`

1
ωn` − ω

(2.43)
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the expression (2.42) can be rewritten as

χ
(2)
abc =

ie3

2h̄2m3ω3

∑
`,m,n,k

[
pa

mnp
b
m`p

c
`nfn`

ωmn − 2ω`n

(
1

ω`n − ω
− 2
ωmn − 2ω

)

−
pa

m`p
b
nmp

c
`nfn`

ω`n − 2ω`n

(
1

ω`n − ω
− 2
ω`m − 2ω

)]
(2.44)

In these expressions, ω is really ω+ iη where η is a small positive number,‡ in
the limit η → 0

lim
η→0

1
ωmn − ω − iη

= P
(

1
ωmn − ω

)
+ iπδ(ωmn − ω) (2.45)

where P denotes the Cauchy principal value.
Using the relation (2.45) into (2.44) we get

χ
(2)
abc = − πe3

2h̄2m3ω3

∑
`,m,n,k

[
pa

mnp
b
m`p

c
`nfn`

ωmn − 2ω`n

(
δ(ω`n − ω)− 2δ(ωmn − 2ω)

)

−
pa

m`p
b
nmp

c
`nfn`

ω`n − 2ω`n

(
δ(ω`n − ω)− 2δ(ω`m − 2ω)

)]
(2.46)

Notice the fact that in expressions like δ(ω`m − 2ω), ω`m must be positive in
order for the delta to resonate, imposing that condition, and fnn = 0, we can
change `,m, n to valence or conduction bands, and then it is straightforward to
arrive to the expression derived by Mendoza, Gaggiotti, and del Sole [25] for the
imaginary part of the second order susceptibility.

The expression Equation (2.46) was derived whitout knowledge that the result
was previously reported by Ghahramani, Moss, and Sipe [26] although the proce-
dure was not presented in that paper. It is important to notice that we arrived
to the same results that are obtained following the formalism of Reining et al. [6],
which is based on time dependent perturbation theory and second quantization.

It is clear that expression (2.44) has a divergence at zero frequency. It was
demonstrated by Aspnes and Studna [27] that such divergence do not exists for
cubic crystals, but it was until the work by Ghahramani et al. [26], nine years later,

‡This is due to the adiabatic switch-on
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that a sum rule to demonstrate that the divergence does not exist, independent
of the crystal symmetry, was stated.

The basic idea is to expand (2.44) into partial fractions

1
ω3(2ω − ωji)

[
fil

ω − ωli
+

fjl

ω − ωjl

]
=
A
ω3

+
B
ω2

+
C
E

+ F(ω) (2.47)

where

A =
1
ωji

(
fil

ωli
+
fjl

ωjl

)
(2.48a)

B =
fil

ωjiωli

(
2
ωji

+
1
ωli

)
+

fjl

ωjiωjl

(
2
ωji

+
1
ωjl

)
(2.48b)

C =
fil

ωjlωli

(
4
ω2

ji

+
2

ωjiωli
+

1
ω2

li

)
+

fjl

ωjiωjl

(
4
ω2

ji

+
2

ωjiωjl
+

1
ω2

jl

)
(2.48c)

F =
16

ω3
ji(2ω − ωji)

(
fil

ωji − 2ωli
+

fjl

ωji − 2ωjl

)
+

fil

ω3
li(2ωli − ωji)(ω − ωli)

+
fjl

ω3
jl(2ωjl − ωji)(ω − ωjl)

(2.48d)

By taking advantage of the time reversal symmetry, whose main results are
summarized in the following relations [26, 28]:

fij(k) = fij(−k) (2.49a)
ωij(k) = ωij(−k) (2.49b)
pij(k) = −pji(−k) (2.49c)
rij(k) = rji(−k) (2.49d)
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and the intrinsic permutation symmetry,§ the only nonvanishing term is F , so

χ
(2)
abc = − πe3

2m3h̄2

∑
i,j,l,k

pa
ijp

b
jlp

c
`i

[ 16
ω3

ji

(
fil

ωji − 2ωli
+

fjl

ωji − 2ωjl

)
δ(2ω − ωji)

+
fil

ω3
li(2ωli − ωji)

δ(ω − ωli)

+
fjl

ω3
jl(2ωjl − ωji)

δ(ω − ωjl)
]
, (2.51)

and this expression has not divergence at zero frecuency.
It is important to mention that the real and imaginary parts of the susceptibil-

ity are related through the Kramers-Krönig relations [30], in general the imaginary
part of the susceptibilities is calculated, and from it the real part is computed. To
our specific case [31]:

Reχ(2)(ω, ω) =
2
π

∫ ∞

0

ω′Imχ(2)(ω′, ω′)
ω′2 − ω2

dω′ (2.52)

2.5 Length Gauge

The formalisms to find the nonlinear optical susceptibilities of semiconductors by
length gauge analysis was proposed by Aversa C. and Sipe J. E. [1], more recent
derivations can be found in References [3, 12], A detailed discussion can be found
in Reference [32]. Here we will highlight the most important steps.

H0 has eigenvalues h̄ωn(k) and eigenvectors |nk〉 (Bloch states) labeled by a
band index n and crystal momentum k. The r representation of the Bloch states
is given by

ψnk(r) = 〈r|nk〉 =

√
Ω

8π3
eik·runk(r), (2.53)

§To fullfill intrinsic permutation symmetry, a symmetrization of the last two indices (b, c)
should be made. The intrinsic permutation symmetry states that the susceptibility must be
invariant under permutation of the incoming fields, thus [29]

P a = χabcEbEc = (
χabc + χacb

2
)EbEc (2.50)
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where unk(r) = unk(r + R) is cell periodic, and∫
Ω
d3r u∗nk(r)umq(r) = δnmδk,q, (2.54)

with Ω the volume of the unit cell.
The key ingredient in the calculation are the matrix elements of the position

operator r, so we start from the basic relation

〈nk|mk′〉 = δnmδ(k− k′), (2.55)

and take its derivative with respect to k as follows. On one hand,

∂

∂k
〈nk|mk′〉 = δnm

∂

∂k
δ(k− k′), (2.56)

on the other,

∂

∂k
〈nk|mk′〉 =

∂

∂k

∫
dr〈nk|r〉〈r|mk′〉

=
∫
dr
(
∂

∂k
ψ∗nk(r)

)
ψmk′(r), (2.57)

the derivative of the wavefunction is simply given by

∂

∂k
ψ∗nk(r) =

√
Ω

8π3

(
∂

∂k
u∗nk(r)

)
e−ik·r − irψ∗nk(r). (2.58)

We take this back into Equation (2.57), to obtain

∂

∂k
〈nk|mk′〉 =

√
Ω

8π3

∫
dr
(
∂

∂k
u∗nk(r)

)
e−ik·rψmk′(r)

−i
∫
drψ∗nk(r)rψmk′(r)

=
Ω

8π3

∫
dr e−i(k−k′)·r

(
∂

∂k
u∗nk(r)

)
umk′(r)

−i〈nk|r|mk′〉. (2.59)
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Restricting k and k′ to the first Brillouin zone, we use the following valid result
for any periodic function f(r) = f(r + R),∫

d3r ei(q−k)·rf(r) =
8π3

Ω
δ(q− k)

∫
Ω
d3r f(r), (2.60)

to finally write,

∂

∂k
〈nk|mk′〉 = δ(k− k′)

∫
Ω
dr
(
∂

∂k
u∗nk(r)

)
umk(r)

−i〈nk|r|mk′〉. (2.61)

where Ω is the volume of the unit cell. From∫
Ω
umku

∗
nkdr = δnm, (2.62)

we easily find that∫
Ω
dr
(
∂

∂k
umk(r)

)
u∗nk(r) = −

∫
Ω
drumk(r)

(
∂

∂k
u∗nk(r)

)
. (2.63)

Therefore, we define

ξnm(k) ≡ i

∫
Ω
dru∗nk(r)∇kumk(r), (2.64)

with ∂/∂k = ∇k. Now, from Equations (2.56), (2.59), and (2.64), we have that
the matrix elements of the position operator of the electron are given by

〈nk|r|mk′〉 = δ(k− k′)ξnm(k) + iδnm∇kδ(k− k′), (2.65)

Then, from Eq. (2.65), and writing r = re + ri, with re (ri) the interband (intra-
band) part, we obtain that

〈nk|ri|mk′〉 = δnm

[
δ(k− k′)ξnn(k) + i∇kδ(k− k′)

]
, (2.66)

〈nk|re|mk′〉 = (1− δnm)δ(k− k′)ξnm(k). (2.67)

To proceed, we relate Equation (2.67) to the matrix elements of the momentum
operator as follows. We start from the basic relation,

v =
1
ih̄

[r,H0], (2.68)
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with v the velocity operator. Neglecting nonlocal potentials in H0 we obtain, on
one hand

[r,H0] = ih̄
p
m
, (2.69)

with p the momentum operator, with m the mass of the electron. On the other
hand,

〈nk|[r,H0]|mk〉 = 〈nk|rH0 −H0r|mk〉 = (h̄ωm(k)− h̄ωn(k))〈nk|r|mk〉, (2.70)

thus defining ωnmk = ωn(k)− ωm(k) we get

rnm(k) =
pnm(k)
imωnm(k)

=
vnm(k)
iωnm(k)

n 6= m. (2.71)

Comparing above result with Equation (2.67), we can identify

(1− δnm)ξnm ≡ rnm, (2.72)

and the we can write

〈nk|re|mk〉 = rnm(k) =
pnm(k)
imωnm(k)

n 6= m, (2.73)

which gives the interband matrix elements of the position operator in terms of the
matrix elements of the well defined momentum operator.

For the intraband part, we derive the following general result,

〈nk|[ri,O]|mk′〉 =
∑
`,k′′

(
〈nk|ri|`k′′〉〈`k′′|O|mk′〉

−〈nk|O|`k′′〉〈`k′′|ri|mk′〉
)

=
∑

`

(
〈nk|ri|`k′〉O`m(k′)

−On`(k)|`k〉〈`k|ri|mk′〉
)
, (2.74)

where we have taken 〈nk|O|`k′′〉 = δ(k−k′′)On`(k). We substitute Equation (2.66),
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to obtain∑
`

(
δn`

[
δ(k− k′)ξnn(k) + i∇kδ(k− k′)

]
O`m(k′)

−On`(k)δ`m
[
δ(k− k′)ξmm(k) + i∇kδ(k− k′)

])
=

([
δ(k− k′)ξnn(k) + i∇kδ(k− k′)

]
Onm(k′)

− Onm(k)
[
δ(k− k′)ξmm(k) + i∇kδ(k− k′)

])
= δ(k− k′)Onm(k) (ξnn(k)− ξmm(k)) + iOnm(k′)∇kδ(k− k′)

+iδ(k− k′)∇kOnm(k)− iOnm(k′)∇kδ(k− k′)

= iδ(k− k′)
(
∇kOnm(k)− iOnm(k) (ξnn(k)− ξmm(k))

)
≡ iδ(k− k′)(Onm);k. (2.75)

Then,
〈nk|[ri,O]|mk′〉 = iδ(k− k′)(Onm);k, (2.76)

with
(Onm);k = ∇kOnm(k)− iOnm(k) (ξnn(k)− ξmm(k)) , (2.77)

the generalized derivative of Onm with respect to k. Note that the highly singular
term∇kδ(k−k′) cancels in Equation (2.75), thus giving a well defined commutator
of the intraband position operator with an arbitrary operator O.

Summarizing, the position operator can be decomposed in

r = ri + re (2.78)

where ri stands for the intraband and re for the interband. The matrix elements
of the interband part are simply defined by

rnm =
pnm

imωnm
(2.79)

for n 6= m and rnn = 0, while we will only deal with the intraband term trough
commutators with simple operators,¶ O, in which the following equality stands

〈nk|[ri,O]|mk′〉 = iδ(k− k′)(Onm);k (2.80)

¶A simple operator is defined as one whose Bloch state matrix elements involve only δ(k−k′).
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where the ;k operator represents a generalized derivative. With the aid of equation
(2.77) and commutator relations it can be shown that [32]

(rb
nm);ka =

ra
nm∆b

mn + rb
nm∆a

mn

ωnm
+

i

ωnm

∑
l

(ωlmr
a
nlr

b
lm − ωnlr

b
nlr

a
lm) (2.81)

defining ∆ by

∆a
nm ≡ pa

nn − pa
mm

m
(2.82)

The equivalent of equation (2.35) in the length gauge is

ρ̃
(N+1)
L =

∫ t

−∞

ie

h̄
[r̃(t′) ·E(t′), ρ̃(N)

L ] (2.83)

to first and second order yields explicity

ρ̃
(1)
L (t) =

ie

h̄

∫ t

−∞
dt′[r̃(t′) ·E(t′), ρ0] (2.84a)

ρ̃
(2)
L (t) =

ie

h̄

∫ t

−∞
dt′[r̃(t′) ·E(t′), ρ̃(1)

L ] (2.84b)

By decomposing the r operator into ri and re from (2.83) and considering the
matrix elements we get

ρ̃
(N+1)
nm,L (t) =

ie

h̄

∫ t

−∞
dt′eiωnmt′E(t′) · [R(N)

e (t′) + R(N)
i (t′)], (2.85)

where

R(N)
e =

∑
l

(rnlρ
(N)
lm,L − ρ

(N)
nl,Lrlm) (2.86a)

R(N)
i = (ρ(N)

nm,L);k (2.86b)

To second order

ρ
(2)
nm,L(t) =

e

ih̄

1
ωnm − 2ω

[
− (Bb

nm);k + i
∑

`

(rc
n`B

b
`m−Bb

n`r
c
`m)
]
EbEce−2iωt (2.87)
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with

Bb
nm =

e

h̄

fnmr
b
nm

ωnm − ω
(2.88)

For the length gauge the velocity operator is

v = p/m, (2.89)

thus we can substitute (2.87) into (2.32) to obtain the second harmonic tensor,
even more it can be written in terms of intraband and interband contributions
[10]:

χabc(−2ω;ω, ω) = χabc
e (−2ω;ω, ω) + χabc

i (−2ω;ω, ω), (2.90)

where

χabc
i = − e3

2mh̄2ω

∑
m,n,k

pa
mn

ωnm − 2ω
( fmnr

b
nm

ωnm − ω

)
;kc

(2.91a)

χabc
e = − e3

2mh̄2ω

∑
`,m,n,k

pa
mn

ωnm − 2ω

(
fm`r

b
n`r

b
`m

ω`m − ω
−
f`nr

b
n`r

c
`m

ωn` − ω

)
(2.91b)

Equation (2.91a) can be simplified by the chain rule(
fmnr

b
nm

ωnm − ω

)
;kc

=
fmn

ωnm − ω
(rb

nm);kc − fnmr
b
nm

(ωnm − ω)2
(ωnm);kc (2.92)

here

(ωnm);ka =
pa

nn − pa
mn

m
(2.93)

now we can rewrite Equations (2.91a) and (2.91b) to

χabc
e =

e3

h̄2

∑
m,n,`,k

ra
nm

(
rb
m`r

c
`n + rc

m`r
b
`n

)
2(ω`n − ωm`)

[
2fnm

ωmn − 2ω
− fn`

ω`n − ω
− f`m

ωm` − ω

]
(2.94)
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and

χabc
i =

i

2
e3

h̄2

∑
m,n,k

2fnmr
a
nm

(
(rmn)b

;kc + (rc
mn);kb

)
ωnm(ωmn − 2ω)

+
i

2
e3

h̄2

∑
m,n,k

fnm

(
(ra

nm);kcrb
mn + (ra

nm);kbrc
mn

)
ωmn(ωmn − ω)

+
i

2
e3

h̄2

∑
m,n,k

fnm

ω2
nm

(
1

ωmn − ω
− 4
ωmn − 2ω

)
ra
nm(rb

mn∆c
mn + rc

mn∆b
mn)

− i

2
e3

h̄2

∑
m,n,k

fnm

2ωmn

( 1
ωmn − ω

)
((rb

nm);karc
mn + (rc

nm);karb
mn). (2.95)

Separating the contributions of ω, I, and 2ω, II, and using (2.45) we arrive to
our final expressions for the imaginary part of the secon harmonic suceptibility
tensors:

χabc
eI = − iπe3

h̄2

∑
m,n,k

fnm

[
rc
mn

2

∑
p

(
ra
npr

b
pm

ωmn − ωpm
+

rb
npr

a
pm

ωnp − ωmn

)

+
rb
mn

2

∑
p

(
ra
npr

c
pm

ωmn − ωpm
+

rc
npr

a
pm

ωnp − ωmn

)]
δ(ωmn − ω) (2.96)

χabc
eII =

iπe3

h̄2

∑
m,n,k

fnmr
a
nm

∑
p

(
rb
mpr

c
pn + rc

mpr
b
pn

)
(ωpn − ωmp)

δ(ωmn − 2ω) (2.97)

and

χabc
iI = − πe3

h̄2

∑
mn

fnm

(ra
nm);kc(rb

mn + (ra
nm);kbrc

mn)
2ωmn

δ(ωmn − ω)

− πe3

h̄2

∑
m,n,k

fnm
ra
nm(rb

mn∆c
mn + rc

mn∆b
mn)

2ω2
mn

δ(ωmn − ω)

+
πe3

h̄2

∑
m,n,k

fnm

(
(rb

nm);karc
mn + (rc

nm);karb
mn

)
4ωmn

δ(ωmn − ω) (2.98)
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χabc
iII = − πe3

h̄2

∑
m,n,k

fnm

ra
nm

(
(rb

mn);kc + (rc
mn);kb

)
ωmn

δ(ωmn − 2ω)

+
πe3

h̄2

∑
m,n,k

fnm
2ra

nm(rb
mn∆c

mn + rc
mn∆b

mn)
ω2

mn

δ(ωmn − 2ω). (2.99)



Chapter 3

Analitical Demonstration of
Gauge Invariance

“The good news is that the formulation of nonlinear optical response
of extended systems... is approaching a satisfactory state. The refer-
ence here is not to the recent advances... in formulating and calcu-
lating many-body effects such as local field and excitonic corrections,
but rather the formulation of the very basic structure of the nonlinear
optical response coefficients even in the independent particle approx-
imation. The uninitiated might find it surprising that there could be
any problems here.” [24].

In this section we demonstrate explicitly the gauge invariance of the expressions.
For this purpose we have to choices: To demonstrate by algebraic manipulation
that the expressions (2.96) to (2.99) are equal to (2.51), or to find a relation
between χ(2)

L and χ(2)
V , we chose the second one.

3.1 Equivalence of Expressions

We present a general procedure to establish the equivalence between the longitu-
dinal and the transverse or velocity gauge, based on the article by Aversa C. and
Sipe J. E. [1]. In the velocity gauge Equation (2.20) leads to

ih̄(ρ̃V (t)− ρ0) =
−e
mc

∫ t

−∞
dt′[p̃(t′) ·A(t′), ρ̃V (t′)], (3.1)

21
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where V denotes the velocity gauge. From p̃ = m ˙̃r an integration by parts gives

ih̄(ρ̃V (t)− ρ0) = − e

c
[r̃(t) ·A(t), ρ̃V (t)]− e

∫ t

−∞
dt′[r̃ ·E(t′), ρ̃V (t′)] (3.2)

+
e

c

∫ t

−∞
dt′[r̃ ·A(t′), ˙̃ρV (t′)].

We take
ρV = ρ0 + ρ

(1)
V + ρ

(2)
V + · · · , (3.3)

where ρ(N)
V goes with the N -th power of the perturbation E(t). Then, to first

order we get

ih̄ρ̃
(1)
V (t) = − e

c
[r̃(t) ·A(t), ρ̃0(t)]− e

∫ t

−∞
dt′[r̃ ·E(t′), ρ̃0(t′)] (3.4)

+
e

c

∫ t

−∞
dt′[r̃ ·A(t′), ˙̃ρ0(t′)].

where ˙̃ρ0 = 0, and thus

ρ̃
(1)
V (t) = ρ̃

(1)
L (t)− e

ih̄c
[r̃(t) ·A(t), ρ̃0], (3.5)

with

ρ̃
(1)
L (t) =

−e
ih̄

∫ t

−∞
dt′[r̃ ·E(t′), ρ̃0(t′)], (3.6)

where L denotes the longitudinal gauge, since H′(t) = −er ·E in this gauge.
Now, we move to the second-order response, from Equation (3.2) we obtain

ih̄ρ̃
(2)
V (t) = − e

c
[r̃(t) ·A(t), ρ̃(1)

V (t)]− e

∫ t

−∞
dt′[r̃(t′) ·E(t′), ρ̃(1)

V (t′)] (3.7)

+
e

c

∫ t

−∞
dt′[r̃(t′) ·A(t′), ˙̃ρ(1)

V (t′)].

From Equation (2.20) and (2.17) we have that

ih̄ ˙̃ρ(1)
V = − e

mc
[p̃ ·A, ρ̃0]. (3.8)
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Substituting Equation (3.8) and Equation (3.5) into Equation (3.7) we obtain

ih̄ρ̃
(2)
V (t) = − e

c
[r̃(t) ·A(t), ρ̃(1)

L (t)] +
e2

ih̄c2
[r̃(t) ·A(t), [r̃(t) ·A(t), ρ̃0]] (3.9)

− e

∫ t

−∞
dt′[r̃(t′) ·E(t′), ρ̃(1)

L (t′)]

+
e2

ih̄c

∫ t

−∞
dt′[r̃(t′) ·E(t′), [r̃(t′) ·A(t′), ρ̃0]] (3.10)

− e2

ih̄mc2

∫ t

−∞
dt′[r̃(t′) ·A(t′), [p̃(t′) ·A(t′), ρ̃0]].

We use harmonic fields to write A(t) = (c/iω)E(t), then

ρ̃
(2)
V (t) = ρ̃

(2)
L (t) +

e

h̄ω
[r̃(t) ·E(t), ρ̃(1)

L (t)] (3.11)

+
e2

h̄2ω2
[r̃(t) ·E(t), [r̃(t) ·E(t), ρ̃0]]

− e2

ih̄2ω

∫ t

−∞
dt′[r̃(t′) ·E(t′), [r̃(t′) ·E(t′), ρ̃0]]

− e2

mh̄2ω2

∫ t

−∞
dt′[r̃(t′) ·E(t′), [p̃(t′) ·E(t′), ρ̃0]],

where

ρ̃
(2)
L = −e

∫ t

−∞
dt′[r̃(t′) ·E(t′), ρ̃(1)

L (t′)] , (3.12)

using the with the velocity operator in Equation (2.30) v = p/m − eA/mc,
we get

J(2)
V (t) =

e

m
Tr(ρ̃(2)

V p̃)− e2

mc
Tr(ρ̃(1)

V A). (3.13)
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Using Equation (3.11) we get (roman superscripts are Cartesian directions)

J
a(2)
V (t) =

e

m

(
Tr
(
ρ̃
(2)
L (t)p̃a(t)

)
+

e

h̄ω
Eb(t)Tr

(
[r̃b(t), ρ̃(1)

L (t)]p̃a(t)
)

(3.14)

+
e2

h̄2ω2
Eb(t)Ec(t)Tr

(
[r̃b(t), [r̃c(t), ρ̃0]]p̃a(t)

)
− e2

ih̄2ω

∫ t

−∞
dt′Eb(t′)Ec(t′)Tr

(
[r̃b(t′), [r̃c(t′), ρ̃0]]p̃a(t)

)
− e2

mh̄2ω2

∫ t

−∞
dt′Eb(t′)Ec(t′)Tr

(
[r̃b(t′), [p̃c(t′), ρ̃0]]p̃a(t)

))
− e2

mc
Aa(t)Tr(ρ̃(1)

L ) +
e3

ih̄mc2
Aa(t)Ab(t)Tr([r̃b(t), ρ̃0]).

From the Appendix B
Tr(ρ̃(1)

L ) = 0, (3.15)

and using the well known properties of the trace

Tr(ãb̃) = Tr(ab) = Tr(ba), (3.16)

we get
Tr([r̃b(t), ρ̃0]) = Tr([rb, ρ0]) = Tr(rbρ0)− Tr(ρ0r

b) = 0. (3.17)

Also,

J
a(2)
V (t) = J

a(2)
L (t) +

e

m

(
e

h̄ω
Eb(t)Tr

(
[p̃a(t), r̃b(t)]ρ̃(1)

L (t)
)

(3.18)

+
e2

h̄2ω2
Eb(t)Ec(t)Tr

(
[p̃a(t), [r̃b(t), r̃c(t)]]ρ̃0(t)

)
− e2

ih̄2ω

∫ t

−∞
dt′Eb(t′)Ec(t′)Tr

(
[[p̃a(t), r̃b(t′)], r̃c(t′)]ρ̃0(t′)

)
− e2

mh̄2ω2

∫ t

−∞
dt′Eb(t′)Ec(t′)Tr

(
[[p̃a(t), r̃b(t′)], p̃c(t′)]ρ̃0(t′)

))
,

where
J

a(2)
L (t) =

e

m
Tr
(
ρ̃
(2)
L (t)p̃a(t)

)
. (3.19)
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From Equation (3.15) and Equation (3.16) we get

Tr
(
[p̃a(t), r̃b(t)]ρ̃(1)

L (t)
)

= Tr
(
[pa, rb]ρ(1)

L

)
= −ih̄δabTr

(
ρ
(1)
L

)
= 0, (3.20)

where we used [ra, pb] = ih̄δab. Also,

Tr
(
[p̃a(t), [r̃b(t), r̃c(t)]]ρ̃0(t)

)
= Tr

(
[pa, [rb, rc]]ρ0

)
= 0, (3.21)

from the fact that [rb, rc] = 0.
Then, the Equation (3.18) reduces to

J
a(2)
V (t) = J

a(2)
L (t)− e3

imh̄2ω

∫ t

−∞
dt′Eb(t′)Ec(t′)Tr

(
[[p̃a(t), r̃b(t′)], r̃c(t′)]ρ̃0(t′)

)
− e3

m2h̄2ω2

∫ t

−∞
dt′Eb(t′)Ec(t′)Tr

(
[[p̃a(t), r̃b(t′)], p̃c(t′)]ρ̃0(t′)

)
= J

a(2)
L (t) +Ra(2), (3.22)

with

Ra(2)(t) = − e2

ih̄2ω

∫ t

−∞
dt′Eb(t′)Ec(t′)

(
Tr
(
[r̃b(t′), [r̃c(t′), ρ̃0(t′)]]p̃a(t)

)
+

1
imω

Tr
(
[r̃b(t′), [p̃c(t′), ρ̃0(t′)]]p̃a(t)

))
. (3.23)

Take

Tr
(
[r̃b(t′), [r̃c(t′), ρ̃0(t′)]]p̃a(t)

)
= Tr

(
U(t′)[rb, [rc, ρ0]]U †(t′)U(t)paU †(t)

)
(3.24)

=
∑
mn

〈m|U(t′)[rb, [rc, ρ0]]U †(t′)|n〉〈n|U(t)paU †(t)|m〉

=
∑
mn

eiωnmteiωmnt′〈m|[rb, [rc, ρ0]]|n〉pa
nm.

Now, let’s take matrix elements of

〈m|[rc, ρ0]|n〉 = 〈m|[rc
e, ρ0] + [rc

i , ρ0]|n〉 (3.25)

=
∑

`

(
rc
m`ρ0,`n − ρ0,m`r

c
`n

)
+ (ρ0,mn);kc ,
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where is understood that rmn are the interband, m 6= n, matrix elements related
to the momentum matrix elements by Equation (2.71). Also, the unperturbed
zero order density matrix satisfies ρ0,mn = fmδmn, so at T = 0, (ρ0,mn);kc = 0,
and then

〈m|[rc, ρ0]|n〉 = fnmr
c
mn. (3.26)

Finally,

〈m|[rb, [rc, ρ0]]|n〉 = 〈m|[rb
e, [r

c, ρ0]] + [rb
i , [r

c, ρ0]]|n〉 (3.27)

=
∑

`

(
fn`r

b
m`r

c
`n − f`mr

c
m`r

b
`n

)
+ ifnm(rc

mn);kb .

Likewise,

Tr
(
[r̃b(t′), [p̃c(t′), ρ̃0(t′)]]p̃a(t)

)
=
∑
mn

eiωnmteiωmnt′〈m|[rb, [pc, ρ0]]|n〉pa
nm. (3.28)

Now,

〈m|[pc, ρ0]|n〉 =
∑

`

(
pc

m`ρ0,`n − ρ0,m`p
c
`n

)
(3.29)

= fnmp
c
mn,

and finally

〈m|[rb, [pc, ρ0]]|n〉 = 〈m|[rb
e, [p

c, ρ0]] + [rb
i , [p

c, ρ0]]|n〉 (3.30)

=
∑

`

(
fn`r

b
m`p

c
`n − f`mp

c
m`r

b
`n

)
+ ifnm(pc

mn);kb .

From Equation (2.71) we have that

(pc
mn);kb = imrc

mn(ωmn);kb + imωmn(rc
mn);kb (3.31)

= im∆b
mnr

c
mn + imωmn(rc

mn);kb ,

with ∆ defined by Equation (2.82). We assume E(t) = Eωe
iωt, then the time

integral of Equation (3.23), using Equation (3.24) and Equation (3.28), reduces to

eiωnmtEb
ωE

c
ω

∫ t

−∞
dt′ei(ωmn−2ω)t′ =

e−i2ωt

i(ωmn − 2ω)
Eb

ωE
c
ω. (3.32)
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Using this into Equation (3.23) we obtain

Ra(2)(t) = − e2

ih̄2ω

∑
mn

[∑
`

(
fn`r

b
m`r

c
`n − f`mr

c
m`r

b
`n

)
+ ifnm(rc

mn);kb

+
1

imω

(∑
`

(
fn`r

b
m`p

c
`n − f`mp

c
m`r

b
`n

)
+ ifnm(pc

mn);kb

)]
× pa

nm

i(ωmn − 2ω)
Eb

ωE
c
ωe

−i2ωt. (3.33)

To obtain the non-linear susceptibility we use Equation (2.30), P(t) = P(2ω)e−i2ωt

and P a(2ω) = χabc(2ω)Eb
ωE

c
ω to obtain that

χabc
V (2ω) = χabc

L (2ω)− e2

i2h̄2ω2

∑
mn

[∑
`

(
fn`r

b
m`r

c
`n − f`mr

c
m`r

b
`n

)
+ ifnm(rc

mn);kb

+
1

imω

(∑
`

(
fn`r

b
m`p

c
`n − f`mp

c
m`r

b
`n

)
+ ifnm(pc

mn);kb

)]
× pa

nm

(ωmn − 2ω)
. (3.34)

Then, we define

Rabc = − e2

i2h̄2ω2

∑
mn

[∑
`

(
fn`r

b
m`r

c
`n − f`mr

c
m`r

b
`n

)
+ ifnm(rc

mn);kb (3.35)

+
1

imω

(∑
`

(
fn`r

b
m`p

c
`n − f`mp

c
m`r

b
`n

)
+ ifnm(pc

mn);kb

)]
pa

nm

(ωmn − 2ω)

=
e2

i4h̄2ω3

∑
`m

fm`

[(
rb
m`r

c
`m + rc

m`r
b
`m

)
+

1
imω

(
rb
m`p

c
`m + pc

m`r
b
`m

)]
pa

mm

− e2

i2h̄2ω2

∑
m6=n

[∑
`

(
fn`r

b
m`r

c
`n − f`mr

c
m`r

b
`n

)
+ ifnm(rc

mn);kb

+
1

imω

(∑
`

(
fn`r

b
m`p

c
`n − f`mp

c
m`r

b
`n

)
+ ifnm(pc

mn);kb

)]
pa

nm

(ωmn − 2ω)
,
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Where we can safely use Equation (2.71) to write

Rabc =
e3

i4mh̄2ω3

∑
`m

fm`

[(
rb
m`r

c
`m + rc

m`r
b
`m

)
+
ω`m

ω

(
rb
m`r

c
`m − rc

m`r
b
`m

)]
pa

mm (3.36)

− e3

2mh̄2

∑
m6=n

[(∑
`

(
fn`r

b
m`r

c
`n − f`mr

c
m`r

b
`n

)
+ ifnm(rc

mn);kb

)
ωmnr

a
nm

ω2(ωmn − 2ω)

+
(∑

`

(
fn`r

b
m`ω`nr

c
`n − f`mωm`r

c
m`r

b
`n

)
+ ifnm(ωmnr

c
mn);kb

)
ωmnr

a
nm

ω3(ωmn − 2ω)

]
.

We analyze each term separately, and add the sum over k that we have omitted
for brevity thus far. First term in right hand side (r.h.s.):∑
k`m

fm`

[(
rb
m`r

c
`m + rc

m`r
b
`m

)
pa

mm =
∑

k>0`m

fm`

[(
rb
m`(k)rc

`m(k) + rc
m`(k)rb

`m(k)
)
pa

mm(k)

+
(
rb
m`(−k)rc

`m(−k) + rc
m`(−k)rb

`m(−k)
)
pa

mm(−k)
]

=
∑

k>0`m

fm`

[(
rb
m`(k)rc

`m(k) + rc
m`(k)rb

`m(k)
)

(3.37)

−
(
rb
`m(k)rc

m`(k) + rc
`m(k)rb

m`(k)
)]
pa

mm(k) = 0,

where we used rmn(−k) = rnm(k) and pmn(−k) = −pnm(k). Second term in
r.h.s: we obtain its real part

ω`m

2ω
pa

mm

[(
rb
m`r

c
`m − rc

m`r
b
`m

)
+
(
rb
m`r

c
`m − rc

m`r
b
`m

)∗] =
2ω`m

ω
pa

mm

[(
rb
m`r

c
`m − rc

m`r
b
`m

)
+

(
rb
`mr

c
m` − rc

`mr
b
m`

)]
(3.38)

= 0,

where we used r∗mn = rnm and the fact the expectation value pmm is be real. Note
that this means that the contribution of the second term to the imaginary part of
Rabc is zero.

For the last two terms we use partial fractions for

ωmn

ω2(ωmn − 2ω)
=

1
ω2

+
2

ωωmn
+

4
ωmn(ωmn − 2ω)

, (3.39)

and
ωmn

ω3(ωmn − 2ω)
=

1
ω3

+
4

ωω2
mn

+
2

ω2ωmn
+

8
ω2

mn(ωmn − 2ω)
, (3.40)
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then, we obtain the following terms

A =
( (

fn`r
b
m`r

c
`n − f`mr

c
m`r

b
`n

)
+ ifnm(rc

mn);kb

)
(3.41)

×
( 1
ω2

+
2

ωωmn
+

4
ωmn(ωmn − 2ω)

)
,

and

B =
( (

fn`r
b
m`ω`nr

c
`n − f`mωm`r

c
m`r

b
`n

)
+ ifnm(ωmnr

c
mn);kb

)
×

( 1
ω3

+
4

ωω2
mn

+
2

ω2ωmn
+

8
ω2

mn(ωmn − 2ω)
)
. (3.42)

We expand to obtain 6 terms for A and 8 terms for B, and call these terms Ai

and Bi, so for instance

A2 =
(
fn`r

b
m`r

c
`n − f`mr

c
m`r

b
`n

) 2
ωωmn

, (3.43)

and
B8 = ifnm(ωmnr

c
mn);kb

8
ω2

mn(ωmn − 2ω)
, (3.44)

and so forth. We look for the imaginary part of each term, since we would like to
get Im(Rabc), and use

(ra
mn)∗;kb = (ra

nm);kb (ra
mn(−k));kb = −(ra

nm(k));kb , (3.45)

to get that Im(A) = 0, and Im(B) = 0. They way that the imaginary part of each
Ai and Bi is zero depends on several steps, that we proceed to mention but leave
the details of the straightforward calculation to the reader:

A1 exchange m↔ n, and the term is real.

A2 exchange m↔ n, add the k and −k contributions, and the term is zero.

A3 exchange m↔ n, calculate the imaginary part, add the k and −k contribu-
tions, and the term is zero.

A4,5,6 calculate the imaginary part, add the k and −k contributions, and the term
is zero.
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B1,2 exchange m↔ n, add the k and −k contributions, and the term is zero.

B3 exchange m↔ n, and the term is real.

B4 exchange m↔ n, calculate the imaginary part, add the k and −k contribu-
tions, and the term is zero.

B5,6,7,8 calculate the imaginary part, add the k and −k contributions, and the term
is zero.

Then, we have that Im(Rabc) = 0, and from Equation (3.34)

Im(χabc
V ) = Im(χabc

L ). (3.46)

Using the Kramers-Kronig relations we finally get that χabc
V = χabc

L . If we go
back to Equation (3.14), we realize that the time integral terms contribute zero,
and then the equality between the velocity and longitudinal gauges depends on
[ra, pb] = ih̄δab and [ra, rb] = 0 being satisfied. Of course, they are formally satis-
fied, but when a numerical calculation is done, both the numerical accuracy and
the approximations of the method itself, do not a priory guarantee the fulfillment
of the commutation relationships.

3.2 Commutator Relations

In order to see the fulfillment of the commutation relationships, we take as an
example the matrix elements of [ra, pb] = ih̄δab, then

〈nk|[ra, pb]|mk′〉 = ih̄δabδnmδ(k− k′), (3.47)

so
〈nk|[ra

i , p
b]|mk′〉+ 〈nk|[ra

e , p
b]|mk′〉 = ih̄δabδnmδ(k− k′). (3.48)

From Ref. [32]
〈nk|[ra

i , p
b]|mk′〉 = iδ(k− k′)(pb

nm);ka (3.49)

(pb
nm);ka = ∇kapb

nm(k)− ipb
nm(k) (ξa

nn(k)− ξa
mm(k)) , (3.50)
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and

〈nk|[ra
e , p

b]|mk′〉 =
∑
`k′′

(
〈nk|ra

e |`k′′〉〈`k′′|pb|mk′〉

−〈nk|pb|`k′′〉〈`k′′|ra
e |mk′〉

)
=

∑
`k′′

(
(1− δn`)δ(k− k′′)ξa

n`δ(k
′′ − k′)pb

`m

−δ(k− k′′)pb
n`(1− δ`m)δ(k′′ − k′)ξa

`m

)
= δ(k− k′)

∑
`

(
(1− δn`)ξa

n`p
b
`m

−(1− δ`m)pb
n`ξ

a
`m

)
= δ(k− k′)

∑
`

(
ra
n`p

b
`m − pb

n`r
a
`m

)
, (3.51)

where we use the fact that the interband matrix elements of r are defined by
Equation (2.72), where we see that ra

nm intrinsically have n 6= m. Also, from the
previous to the last step of Equation (3.51), we could obtain that

〈nk|[ra
e , p

b]|mk′〉 = δ(k−k′)
(∑

`

(
ξa
n`p

b
`m− pb

n`ξ
a
`m

)
+ pb

nm(ξa
mm− ξa

nn)
)
. (3.52)

Using Equations (3.49) and (3.52) into Equation (3.48) gives

iδ(k− k′)
(

(pb
nm);ka −i

∑
`

(
ξa
n`p

b
`m − pb

n`ξ
a
`m

)
−ipb

nm(ξa
mm − ξa

nn)
)

= ih̄δabδnmδ(k− k′), (3.53)

then

(pb
nm);ka = h̄δabδnm + i

∑
`

(
ξa
n`p

b
`m − pb

n`ξ
a
`m

)
+ipb

nm(ξa
mm − ξa

nn), (3.54)
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and from Equation (3.50),

∇kapb
nm = h̄δabδnm + i

∑
`

(
ξa
n`p

b
`m − pb

n`ξ
a
`m

)
. (3.55)

Now, there are two cases. We use Equations (2.72) and (2.71).

Case n = m

1
h̄
∇kapb

nn = δab −
m

h̄

∑
`

ω`n

(
ra
n`r

b
`n + rb

n`r
a
`n

)
, (3.56)

that gives the familiar expansion for the inverse effective mass tensor (m−1
n )ab [33].

Case n 6= m

(pb
nm);ka = h̄δabδnm + i

∑
`6=m6=n

(
ξa
n`p

b
`m − pb

n`ξ
a
`m

)

+i
(
ξa
nmp

b
mm − pb

nmξ
a
mm

)
+i
(
ξa
nnp

b
nm − pb

nnξ
a
nm

)
+ ipb

nm(ξa
mm − ξa

nn)

= −m
∑

`

(
ω`mr

a
n`r

b
`m − ωn`r

b
n`r

a
`m

)
+ iξa

nm(pb
mm − pb

nn)

= −m
∑

`

(
ω`mr

a
n`r

b
`m − ωn`r

b
n`r

a
`m

)
+ imra

nm∆b
mn, (3.57)

where ∆ is defined by Equation (2.82). Going back to Equation (3.47), we also
have two cases Case n = m
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〈n|[ra, pb]|n〉 =
∑
`6=n

(
ra
n`p

b
`n − pb

n`r
a
`n

)
+ i∇kapb

nn (3.58)

=
∑
`6=n

(
ra
n`p

b
`n − pb

n`r
a
`n

)
+ ih̄δab − im

∑
`

ω`n

(
ra
n`r

b
`n + rb

n`r
a
`n

)

=
∑
`6=n

(
ra
n`p

b
`n − pb

n`r
a
`n

)
+ ih̄δab −

∑
`6=n

(
ra
n`p

b
`n + rb

n`p
a
`n

)

= −
∑
`6=n

(
pb

n`r
a
`n + rb

n`p
a
`n

)
+ ih̄δab

= ih̄δab,

where the last equality is simple given by Equation (3.47), and we used Equa-
tions (3.51) and (3.56), also the k dependence is understood. Above equation
leads to ∑

`6=n

(
pb

n`r
a
`n + rb

n`p
a
`n

)
= 0, ∀n. (3.59)

Case n 6= m

〈n|[ra, pb]|n〉 =
∑

`6=m6=n

(
ra
n`p

b
`m − pb

m`r
a
`n

)
+ i(pb

nm);ka (3.60)

=
∑

`6=m6=n

(
ra
n`p

b
`m − pb

m`r
a
`n

)

− im
∑

`6=m6=n

(
ω`mr

a
n`r

b
`m − ωn`r

b
n`r

a
`m

)
−mra

nm∆b
mn

=
∑

`6=m6=n

(
ra
n`p

b
`m − pb

m`r
a
`n

)
−

∑
`6=m6=n

(
ra
n`p

b
`m − pb

n`r
a
`m

)
−mra

nm∆b
mn

=

=
∑

`6=m6=n

(
pb

n`r
a
`m − pb

m`r
a
`n

)
−mra

nm∆b
mn

= 0,
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where the last equality is simple given by Equation (3.47), and we used Equa-
tions (3.51) and (3.57), also the k dependence is understood. Above equation
leads to ∑

`6=m6=n

(
pb

n`r
a
`m − pb

m`r
a
`n

)
−mra

nm∆b
mn = 0, ∀n 6= m. (3.61)

Equation (3.59) and (3.61) could be numerically verified in order to see weather
or not the commutator [ra, pb] = ih̄δab is satisfied or not. In a similar way we
could verify other commutators like [ra, rb] = 0, etc.



Chapter 4

Results

“...the brevity of life does not allow us the luxury of spending time on
problems which will lead to no new results...”

–Landau, 1959.

In the first section we explain the computational details for the calculation of the
second order nonlinear optical response for bulk GaAs, subsequently we show the
results obtained for the transversal gauge and the length gauge calculations.

4.1 Computational Details

The ground state results have been obtained thanks to the use of the ABINIT code
[34], that is based on pseudopotentials and planewaves. The ABINIT program is
mostly based on DFT and we use it to calculate the energy eigenvalues and wave
function (WF) of the system, from these data we can calculate the momentum
and position matrix elements [35].

Due to the fact that bulk semiconductors are periodic, we expect the WF to
be periodic and thus a infinite number of plane waves is necessary to expand it in
a Fourier like expansion. The plane waves are a particular well suited set of basis
functions for extended systems and its simplicity leads to very efficient numerical
schemes for solving KS equations [36].

Pseudopotentials replace the true valence WF by pseudo wave-functions which
match exactly the true valence WFs outside the ionic core region, the direct im-
plication of this is to reduce the number of planewaves. Hartwigsen, Goedecker,

35
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Figure 4.1 : Calculation of the Band Structure for GaAs without the scissors correction, the

band gap calculated is .34 eV when the theoretical value is 1.519 eV. The theoretical value of

10.45 a0 for the lattice constant is used [28].

Hutter pseudopotentials where used [37], such potentials take into account the
spin orbit effect.

ψ(r) =
∑
G

Ci,k+Ge
i(k+G)·r (4.1)

The coefficients Ci,k+G used to expand a wave function with small kinetic
energy are more important than those with large kinetic energy [38]. Therefore,
we will only consider the plane waves with coefficients having a kinetic energy no
longer than a cutoff energy [39]. That is, we will truncate our calculations when
we reach the cutoff energy. It is important to choose the minimum cutoff energy
at which the results converge in order to save computing resources and time.

To correct the underestimation of the band gap within the DFT, as shown in
Figure 4.1, a “Scissors” correction is implemented, Figure 4.2. This correction is
a modification of the KS-LDA Hamiltonian to include a term that rigidly shifts
the conduction band energies up in energy so that the band gap is correct.

We must take into account that the scissors operator modifies the value of the
interband momentum matrix elements connecting occupied to unoccupied states;
the effect over the matrix elements is important in the evaluation of nonlinear
response. We use the Scissors implementation as proposed by Nastos F., Olejnik
B., Schwarz K., and Sipe J. E. [40] for the position matrix elements and as stated
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Figure 4.2 : Calculation of the Band Structure for GaAs with scissors correction, the band gap

was adjusted to 1.519 eV.

by Del Sole and Girlanda [5] for momentum matrix elements.
Momentum matrix elements are calculated from the WF output of the ABINIT

code, which is expressed as in Equation (4.1), so the momentum matrix elements
are [41]

〈ψm|p|ψn〉k = −i
∫
drψ∗m,kh̄∇ψn,k (4.2)

wherem,n stand for the band index. After straightforward algebraic manipulation
we get the following result

pmn,k = h̄
∑
G

C∗
k,m(G)Ck,n(G)(k + G) (4.3)

When the scissors operator is applied the momentum matrix elements must
be renormalized, [42]:

pCV = pLDA
CV

EC(k)− EV (k) + ∆
EC(k)− EV (k)

, (4.4)

where ∆ is the energy shift and C and V stand for conduction and valence bands.
The contributions to the momentum matrix elements from the non-local part

of the pseudopotential is excluded, as is usually done, see derivation fo Equa-
tion (2.69).
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Figure 4.3 : Ecut convergence test for the transversal gauge, at 20 Ha convergence was achieved,

the total band number is set to 24 and the number of kpoints to 11480.

As stated by Nastos F. et al. [40], ra
nm(k) and (ra

nm);kb are written in terms of
the momentum matrix elements and energy eigenvalues of the KS-LDA by

rmn(k) =
vLDA

mn (k)
iωLDA

mn

(4.5)

where ωmn = ωm−ωn. So the position matrix elements must be calculated before
the renormalization of the momentum matrix elements and before the scissors
correction is applied to the energy eigenvalues.

4.2 Transversal Gauge Results

The results are in CGS units and scaled by a factor of 106. We observe that the
transversal gauge convergence was achieved at an ecut of 20 Ha, Figure (4.3) and
it slowly converges at around 16200 kpts of equi-spaced sampling in the irreducible
Brillouin zone, Figure 4.4. The convergence in bands took place at 24 bands; 8
valence bands and 16 conduction bands, Figure 4.5.
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Figure 4.4 : Kpoints convergence test for the transversal gauge, it converges for more than

16000 kpoints, the ecut is set to 20 Ha and the band number to 24.

4.3 Length Gauge Results

The length gauge convergence was much more cumbersome: the convergence on
ecut was not achieved to any value, Figure 4.8, the kpoints convergence could not
been achieved by equidistant sampling, Figure 4.7, but the band convergence was
achieved at 24 bands, Figure 4.6.

The convergence of the kpoints in the length gauge was not achieved by stan-
dard procedures, the use of an adaptive approach for the kpoints sampling, such
approach is proposed by Nastos et al. [28]. The number of k points can be signif-
icantly reduced if one does not restrict oneself to an equi-spaced mesh of kpoints,
the adaptive scheme more k points are added around a targeted kpoints to pro-
duce a finer mesh without augmenting significantly the overall number of kpoints,
this scheme is very efficient to save computer time.

Using adaptive sampling we were able to obtain kpoints converged suscepti-
bilities, Figure 4.9. Once the convergence in kpoints was achieved we were able to
achieve convergence in ecut, Figure 4.10, at 24 Ha.

We use the adaptive sampling to perform another transversal gauge calcu-
lation, Figure 4.11, with the same results obtained previously for equi-spaced
sampling, Figure 4.4.
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Figure 4.5 : Bands convergence test for the transversal gauge, it converges for 24 bands total

bands: 8 valence bands and 16 conduction bands. The ecut is set to 20 Ha and the number of

kpoints to 11480.

4.4 Transversal vs. Length Gauge Results

When we compare the two gauges we notices that they slightly differ, Figure 4.12
although in both the peaks of χ(2) take place at eV values of half the band gap,
the band gap and twice the band gap.

The unphysical differences between both gauges calculations are from the ex-
pressions

Tr
(
[p̃a(t), r̃b(t)]ρ̃(1)

L (t)
)

= 0, (4.6)

and,

Tr
(
[p̃a(t), [r̃b(t), r̃c(t)]]ρ̃0(t)

)
= Tr

(
[pa, [rb, rc]]ρ0

)
= 0, (4.7)

that appears in Equation (3.18), the terms must be zero due to the fact that
the commutators are formally a constant or zero, Equations (3.20) and (3.21).
However when the term is numerically evaluated we find that it is different from
zero, Figure 4.13. The unfullfillment of the commutator relations are attributed
to exclusion of the non-local part of the pseudopotential contributions to the
momentum matrix elements, Equation (2.69).
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Figure 4.6 : Bands convergence test for the length gauge, it converges for 24 bands. The ecut

is set to 20 Ha and the number of kpoints to 11480

Figure 4.7 : Kpoints convergence test for the transversal gauge, convergence could not been

achieved even at 16000 kpoints. The number of bands is set to 24 and the ecut to 20 Ha.
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Figure 4.8 : Ecut convergence test for the length gauge, the convergence is not achived at any

value. The number of bands is set to 24 and the number of kpoints to 11480.

Figure 4.9 : Convergence is achieved at 16338 kpoints using the adaptive sampling, energies

below 5eV are targeted. The number of bands is set to 24 and the ecut to 20 Ha.
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Figure 4.10 : Ecut convergence test length gauge, the kpoints convergence was achieved trough

adaptive sampling, 16338, and now we see the ecut converge at 24 Ha.

Figure 4.11 : Kpoints convergence test transversal gauge, adaptive sampling, although conver-

gence was achieved before we wanted to compare the results with the adaptive sampling.
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Figure 4.12 : Comparison Length vs. Transversal, results should be identical, the causes of the

differences are the unfullfillment of commutation relations.

Figure 4.13 : The term presented is formally zero but when evaluated a numerical error is

detected.



Chapter 5

Conclusions

In this chapter we present our conclusions and observations on the use of the two
different gauges to calculate the second order nonlinear optical response, conclu-
sions and observations are organized as they appear during the thesis.

The second order non linear susceptibility using the transversal gauge was
deduced within the matrix density formalism. To our knowledge this procedure
has not been published.

A FORTRAN code to calculate the non linear susceptibilities using the length
and transversal gauges was implemented, and convergence tests were made for
bulk GaAs in the number of plane waves used to represent the wave function, ecut,
the number of conduction and valence bands and the sampling of the irreducible
Brillouin zone, kpoints.

From our results we found that the susceptibilities calculated with the length
gauge are more difficult to converge than the transversal ones this observation
opposes to the expected by Aversa C. and Sipe J. E. [1], where they predicted
that the length gauge should converge easily. In our work we find that while the
transversal susceptibilities can converge independently in ecut and kpoints, the
length susceptibilities must converge first in kpoints before converge in ecut.

For the first time to our knowledge gauge invariance for second order nonlinear
susceptibilities was formally demonstrated, such demonstration is independent of
the crystal symmetry.

Using LDA + pseudopotentials in the calculation of nonlinear response has im-
portant consequences in the gauge invariance, as the commutator relations present
a numerical error which is the source of gauge variance.
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The immediate future work includes the calculation of the nonlinear optical
response using all electron software like the Wien2k. This could serve to corrobo-
rate that the unfulfillment of the commutation relations is in part due to the use
of pseudopotentials.



Appendix A

Equation of Motion in the
Interaction Picture

In general

ih̄
dρ

dt
= [H, ρ] = [H0, ρ] + [H ′, ρ], (A.1)

in the interaction picture

ih̄
dρ̃

dt
= ih̄[

i

h̄
H0UρU

† − i

h̄
UρH0U

† + U
dρ

dt
U †]

= ih̄U
dρ

dt
U † + U [ρ,H0]U †, (A.2)

and
ih̄U

dρ

dt
U † = U [H0, ρ]U † + U [H ′, ρ]U † (A.3)

thus
ih̄
dρ̃

dt
= [H̃ ′, ρ̃] (A.4)
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Appendix B

Trace vanishing terms

We present the proof that the A term of the Equation (2.34) vanishes
The veolocity operator in the transverse gauge is

v =
p
m
− eA
mc

(B.1)

Thus, formally

J =
e

m
Tr(pρ(2)

V )− e2

mc
Tr(ρ(1)

V )A (B.2)

However

Tr(ρ(1)
V ) = 0 (B.3)

Because rmm = 0 and fmm = 0

Tr(ρ(1)
L ) =

ie

h̄c

∫ t

−∞
dt′
∑

l

(rmlfmδml − fmδmlrlm) ·E (B.4)

=
ie

h̄c

∫ t

−∞
dt′
∑

l

(rmmfm − fmrmm) ·E = 0
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Appendix C

List of abbreviations

DFT Density Functional Theory

ecut Energy cutoff

EM Electro Magnetic

KS Kohn-Sham

LDA Local Density Approximation

nkpt Number of k-points

QM Quantum Mechanics

SCF Self Consistent Field

PT Perturbation Theory

WF Wave Function
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Appendix D

List of symbols

A Magnetic vector potential

c Speed of light

e Electron charge

E Energy

E Electric field vector

G Reciprocal lattice vector

O Arbitrary operator used to represent an observable

r,R Position vector

t Time

U Unitary operator

V Electro-magnetic potential

δab Kronecker’s delta

ψ,Ψ Wave function

Φ Scalar potential

Ω Volume
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