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Abstract 
Although the formation of optical fiber gratings had been reported in 1978, intensive study on 

fiber gratings began after a controllable and effective UV method for their fabrication was 

devised in 1989. There are two types of fiber gratings: fiber Bragg gratings (FBGs) with a period 

of the order of the optical wavelength and long-period fiber gratings (LPFGs) with periodicities 

of several hundred wavelengths. Since Hill et al. and Vengsarkar et al. wrote the first FBG and 

LPFG in conventional fibers in 1978 and 1996 respectively, extensive studies have also been 

performed on new fabrication methods and novel applications of fiber grating. 

 

Particularly, Long-period fiber gratings (LPFGs) are versatile components used in multiple 

applications. Although LPFGs were originally proposed as band-rejection filters, nowadays, they 

are capable of a much broader scope of operation in all-fiber devices. LPFGs have been studied 

for applications in optical fiber polarizers, optical sensors, and optical switching, among others. 

They have been used in the reshaping gain spectra of active fiber devices like erbium-doped fiber 

amplifiers (EDFAs) and fiber lasers. LPFGs have found practical application in the equalization 

spectral gain of EDFAs, and tunable and selective elements in fiber lasers. The optimal 

performance of the LPFGs in most of the applications is determined, in part, by the polarization 

properties, such as the polarization dependent loss (PDL), and the birefringence. Such 

parameters are critical for some specific applications of LPFGs and also for improving the LPFG 

fabrication process. In the sensing applications, it is necessary to reduce the transmission type 

polarization dependence to isolate the sensing parameter. In this sense, it is important to obtain a 

full description of the polarization properties of LPFGs. 

 

In the thesis, an overview of long-period fiber gratings, including theoretical background, 

fabrication techniques and their applications are presented to explain fiber gratings properties, 

behavior and the importance of their characterization. The Mueller-Stokes matrix determination, 

as well as the concept of polarimetric metrics such as the depolarization index, the Q (M) 

depolarization scalar metric, the theorem of Gil-Bernabeu, and the degree of polarization, 

polarization dependent loss, are introduced to quantitatively describe the interaction of light with 

long-period gratings. 
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For the first time, an explicit method for the complete determination of the Mueller matrix 

associated to both mechanically and UV induced long-period fiber gratings is presented. The 

Mueller matrix is determined through the Stokes vectors, which are measured using an 

incomplete, commercial, Stokes polarimeter. A review of two explicit methods for the entire 

determination of the Mueller matrix is presented. Some scalar polarimetric metrics are applied 

for the determination of the diattenuation, PDL, gain, attenuation, depolarization degree of 

anisotropy, among others have been investigated. The results show a clear dependence on the 

incident polarization states, which could be employed to design and control the output signal 

from these devices. 

 

The outline of this dissertation is as follows. Chapter 1 is a review for the fabrication techniques 

of LPFGs and their application in optical communications and sensing fields. Additionally, the 

induced birefringence by the inscription of method and some compensation techniques are 

presented. Chapter 2 discusses the theoretical background required for the understanding the 

principle of operation and transmission basic properties of the LPFG based in the coupling mode 

theory.  Also, a brief review of methods of Jones calculus matrix and polarization-scanning that 

have been used to calculate the polarization properties of the fiber devices, such PDL were 

presented.  In Chapter 3 the elements to analyze the polarized light through the Stokes vectors 

and the Mueller matrix of an arbitrary optical system and some scalar polarimetric metrics are 

presented. For the first time, Experimental results of both mechanically and UV induced long-

period fiber gratings by using two explicit methods for the entire determination of the Mueller 

matrix are presented, compared and discussed in chapter 4. Finally a summary of this research 

work is presented. 
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1 The development of long-period fiber gratings 
 
 

1.1 Long-period fiber grating and their applications 
 
Long-period fiber gratings (LPFGs) were initially developed for use as band-rejection filters, and 

have been used for gain-flattening of erbium doped fiber amplifiers (EDFAs). The rejection bands 

of the LPFG can be being useful for polarization dependent loss compensation. The use of LPFGs 

as mode converters in two mode fibers and as wavelength selective polarizers has also been 

demonstrated. Long-period fiber gratings can be used to enhance coupling between different optical 

devices, such as, from a waveguide to a fiber, from a semiconductor laser to an optical fiber or 

between two fibers. On the other hand, by cascading two identical LPFGs is possible to obtain very 

narrow optical filters being therefore useful devices in wavelength division multiplexing or modal 

interferometers. Moreover, LPFGs also present unique opportunities as fiber optic sensors. 

 

1.1.1 Gain equalizers 

Erbium-doped fiber amplifiers can amplify multiple wavelengths within a gain bandwidth spectrum. 

However, the gain is not uniform over the entire bandwidth (from 1530 to 1560 nm). When an 

EDFA is used to amplify a multi-channel transmission, each channel experiences different gain. 

Eventually, the gain discrepancy between the channels can become sufficiently large to detrimental 

for WDM applications. There are two basic approaches to flattening the gain spectrum. The first 

approach involves tailoring the material properties of the erbium doped fiber. However, with this 

method, the gain spectrum of EDFA is still not flat enough for an advanced DWDM system and 

there still remain other problems. The second approach is to use gain flattening filters. In this case, 

filters are designed to approximate the inverse characteristics of the EDFA gain spectrum. Long-

period fiber gratings are the most promising candidates for gain flattening over other techniques 

because they are passive, can be used in transmission and can be tailored to flatten the full required 

bandwidth [1-3]. In addition, they exhibit low insertion loss, and are relatively easy to manufacture 

in a cost effective and consistent manner. 
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The other major application of long-period fiber gratings to EDFAs is the suppression of the 

amplified spontaneous emission (ASE). In a cascaded chain of EDFAs, the buildup of ASE travels 

in both forward and backward directions with a power that is proportional to the amplifier gain 

during complete population inversion and high gain. For increasing gain, the stimulated emission by 

ASE grows to a value where it starts competing with the pumping rate which causes the excited 

erbium ions to return the ground state. Due to reduction in medium inversion, the amplifier gain 

saturates even in the absence of any input signal. Self-saturation can be prevented by periodically 

filtering the forward ASE noise power along the fiber [4]. In line, long-period fiber gratings with 

low insertion loss are ideal filter elements for this purpose. 

 

1.1.2 Dispersion compensations 

One of the factors restricting the bit rate in modern communication links is the chromatic dispersion 

of fibers, which causes broadening and even overlap of laser pulses carrying information. The 

group-velocity dispersion in standard fibers at a wavelength of 1.55  is about 17 ps nm-1 km-1, so 

that, despite low losses in standard fibers (~0.2 dB km-1), the data transfer distance for the 40- Gbit 

s-1 transmission does not exceed 10 km. To increase this distance in operating fiber optic 

communication links, it is necessary to compensate their dispersion. This can be done by a compact 

fiber element, namely, a fiber Bragg grating with a variable period. Such a grating can introduce a 

certain time delay between the spectral components of a pulse, recovering in this way the initial 

pulse shape. But the use of fiber Bragg gratings requires the use of an expensive circulator besides 

the complexity of chirping the grating. Hence there has been a great interest to develop devices all-

fiber dispersion compensators working in transmission mode.  For this reason, the use of 

concatenated chirped long-period fiber gratings has been proposed for dispersion compensation [5-

6].  Das and Thyagarajan [7] have proposed the use of a uniform LPFG, fabricated on fiber with 

relatively high index value, as an efficient dispersion compensator. He showed that by appropriately 

choosing the length of the grating and the refractive index modulation it is possible to achieve large 

dispersion compensation over a reasonable bandwidth with very low transmission loss, and 

negligible delay ripples.  
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1.1.3 Add/drop filter for CWDM systems. 

Wavelength division multiplexing is one of the important enabling technologies for high speed 

communication network systems. This technique allows increasing the capacity of the networks by 

transmitting many channels simultaneously on a single optical fiber. While dense wavelength 

division multiplexing (DWDM) is mainly used for long haul applications, coarse wavelength 

division multiplexing (CWDM) is widely used in short and medium distance transmission systems. 

To date, multiplexing or demultiplexing components for WDM systems mainly fall into three 

categories, thin-film interface filters, fiber Bragg gratings, and array waveguide gratings [8]. 

Because a long-period grating provides both band-rejection and band-pass functions, it can be used 

as an all-fiber add/drop filter for CWDM systems with good channel isolation [9-10].  

 

1.1.4 Long-period grating sensors. 

Fiber grating sensors technologies are the most important application in optical fiber sensors. Long-

period gratings have been demonstrated as highly sensitive temperature, axial strain and index of 

refraction sensors [11-16]. The response of these sensors is a strong function of the grating period, 

the fiber parameters and the order of the cladding mode. The wavelength shift in the broad 

resonance loss bands due to an external perturbation can be used to implement simple demodulation 

techniques. Additionally, the multiple bands of a single long-period grating can be employed for 

simultaneous strain and temperature sensing. Long-period gratings possess a high degree of 

versatility that can be used to configure various optical fiber-based sensing systems. Over the next 

few years these sensors are expected to find widespread use in commercial and military 

applications. 

 

 

1.1.5 LPFG Temperature and Strain Sensing 

Any modulation of the core and cladding guiding properties will modify the spectral response of 

LPFGs, which is essential for sensing purposes. The external perturbations are detected as 

wavelength-dependent loss modulation of an LPFG. In 1996, Bhatia and Vengsarkar first 

demonstrated LPFG optical sensors capable of measuring temperature or strain as well as the 

external refractive index [11, 17]. They found that the average temperature sensitivity of LPFGs is 
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much larger than that of the fiber Bragg gratings (FBG) and strongly fiber type and grating structure 

dependent. In their investigation, LPFGs were fabricated in four different types of fiber and their 

spectral behavior was examined for the cladding modes of different orders. It was noticed that the 

third-order cladding mode of an LPFG with a 210 µm period produced in the 980 nm single mode 

standard fiber exhibited the highest temperature sensitivity of 0.154 nm/°C, ten times higher than 

that of an FBG (0.014 nm/°C). It should be particularly pointed out that, in LPFG temperature and 

strain sensing, the wavelength shift of the cladding modes of LPFGs can be toward either short 

wavelengths (blue shift) or long wavelengths (red shift) [18-19], depending on the dispersion 

property of the waveguide. 

 

1.1.6 Refractive index sensing 

The response of the long-period fiber gratings to external refractive index (RI) was systematically 

analyzed by Patrick and co-workers [12]. They prove the high dependence of LPFG spectral 

response to the external refractive index on the grating period. The refractive index sensitivity of 

LPFGs arises from the dependence of the phase matching condition upon the effective refractive 

index of the cladding modes. The effective indices of the cladding modes are dependent of the 

difference between the RI of the cladding and that of the medium surrounding the cladding. 

The central wavelengths of the attenuation bands thus show a dependence upon the RI of the 

medium surrounding the cladding, with the highest sensitivity being shown for surrounding 

refractive indices close to that of the cladding of the optical fiber, provided that the cladding has the 

higher RI. The highest sensitivity to the surrounding refractive indices is close to that of the 

cladding of the optical fiber. For surrounding refractive indices higher than that of the cladding, the 

central wavelengths of the resonance bands show a considerably reduced sensitivity. 

 

The RI sensitivity of an LPG is dependent on the order of the cladding mode that is coupled, 

allowing the tuning of the sensitivity by appropriate choice of grating period, with 427.72, 203.18, 

53.45 and 32.10 nm/refractive index unit (RIU) being reported for LPGs fabricated in SMF28 with 

periods 159, 238, 400 and 556 μm, respectively [12]. Another subject of further consideration is the 

geometry and composition of the fiber, with the sensitivity being shown to differ for the step index 

and W profile fibers and a progressive three-layered fiber [20]. In order to improve the sensitivity of 
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the long-period fiber gratings written in standard optical fiber configurations to surrounding RI, 

approaches such as tapering the fiber [21-24], or etching the cladding have been investigated [16, 

25]. Different approaches that require the involvement of processing of the fiber, polishing, etching 

and tapering produce significant enhancements in sensitivity, but at the cost of requiring careful 

packaging to compensate the inevitable reduction in the mechanical integrity of the device. 

 
 
The deposition of thin film overlays (thickness of the order of 200 nm) of materials with RI higher 

than that of the cladding has also been investigated for the enhancement of RI sensitivity [26-28]. In 

this studies has been shown previously experimentally and theoretically [29, 30] that the effective 

indices of the cladding modes, and thus the central wavelengths of the core-cladding mode coupling 

bands of LPFGs show a high sensitivity to the optical thickness of high RI coatings when the 

coating’s optical thickness is such that one of the low order cladding modes is phase matched to a 

mode of the waveguide formed by the coating. 

 

1.1.7 Bend sensors 

Long-period fiber gratings have also been implemented as optical bend sensors [31-32]. Two 

techniques have been demonstrated to measure the bending curvature; one involves detecting the 

bend induced cladding mode resonance wavelength shift [33], and the other is based on measuring 

the asymmetry generated cladding-mode resonance splitting [31]. Also, the LPFGs are used for 

structural bend sensing by noting the changes in wavelength and attenuation strength of LPFGs 

under bending. A clear correlation between the applied bending curvatures and the resonance 

wavelength shift was identified for LPFGs produced by several specific fibers [34]. This detection 

sensing method has limitations associated with nonlinear response, fiber orientation and decaying of 

the attenuation band. Given that these limitations are hard to overcome, the implementation of real 

bend sensors devices could be highly problematic. 

 

In comparison, the mode resonance splitting detection technique shows some advantages for 

bending curvature measurement. The mode splitting under bending can be attributed to the 

symmetry break of the fiber geometry. The imposed curvature in the fiber splits the degeneracy of 

the cladding mode of the circular fiber, leading to two closely separated cladding modes, one with 
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its field predominantly on the outer side of the cladding relative to the center of the bend, and the 

other with its field mainly on the inner side of the cladding. These separate cladding modes have 

correspondingly higher and lower effective index values compared to the value of the straight fiber. 

 

 

1.2  Long-period fiber grating fabrication technique 
 
The fabrication of LPFGs implies the introduction of a periodic index modulation of the core in the 

optical fiber. This can be obtained by permanent modification of the refractive index of the fiber 

core or by temporal physical deformation of the fiber, respectively. The magnitude of change of the 

refractive index ( depends of certain factors, such as wavelength, intensity, material composition 

of the fiber core and fiber processing before an exposition to ultraviolet (UV) light. Techniques like 

UV irradiation, laser CO2 exposure, electric arc discharge, mechanical microbends, etched 

corrugations, ion beam implantation, and femtosecond laser exposure, among others, have been 

used in the fabrication of this kind of devices in fiber optic [35].  The index profile and the fiber 

type give the response spectral of these rejection bands and these characteristics make of its 

sensitive to physical variables such as; bending, temperature, strain, torsion, and external refractive 

index. The strain and temperature response of a long-period grating can be either positive or 

negative, depending on the differential responses of the core and cladding.  In the following section, 

a brief overview of the manufacture of LPFGs will be described.  

 

1.2.1 LPFGs manufactured by UV radiation  
 
The ultraviolet (UV) irradiation was the first method used to manufacture Bragg gratings in 1989 by 

Meltz et al., who used holographic interference between two coherent beams directed to the fiber 

axis [36]. The UV exposure method requires that the fiber first be made sensitive to UV irradiation, 

i.e. the fiber must be made photosensitive prior to writing the grating. It can be obtained by doping 

the fiber core with atoms (such as germanium, boron or a combination of these elements through the 

fabrication process) or by hydrogen loading exposing the fiber to high-pressure H2 gas at elevated 

temperatures for a long period of time so that hydrogen diffusion into the core material takes place. 

The later method is preferable because hydrogen loading can be achieved in standard fibers, 

providing a cheaper and simpler way to obtain UV photosensitivity fibers [37]. 
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The UV inscription method for LPFGs can be made in two ways. One of them consists on the 

irradiation of the photosensitive fiber to UV laser beam through an amplitude mask (AM) [18, 

35]. The inscription occurs when the optical fiber placed directly behind the mask is sweep off 

by the UV radiation (see Figure 1.1 (a)). The exposure is repeated until the index modulation has 

reached a sufficient level to provide the desired attenuation depth in the LPFG transmission 

spectrum. This technique implies a permanent modification of the refractive index of the fiber 

core. The AM technique is wavelength specific since the periodicity is defined by the mask 

periodicity Λ. A second way to generate long-period gratings with UV irradiation is based on a 

periodic point by point modulation of the core refractive index until the desired grating length is 

obtained. In general, both techniques above described are considered expensive.  

 

 

Figure 1.1 LPFGs manufactured by UV radiation: a) phase amplitude mask and b) point by point 
technique 

 

1.2.2 Mechanically induced long-period fiber gratings 

The refractive index of glass can be changed under stress. Since the period of a LPFG can be as 

large as hundreds of micrometers, it is possible to induce it mechanically via the photoelastic effect. 

Different techniques of mechanically induced M-LPFGs have been reported in standard fibers and 

microstructured fibers, where corrugated plates, strings, grating period variations, twisting the fiber, 

etching of the fiber cladding, and springs have been used to apply periodic mechanical stress on the 

optical fiber in order to induce the effective index modulation to obtain the coupling of light from 

the fundamental mode to cladding modes [38-43]. One of the most relevant characteristics that 

share these techniques is their tunability by simple adjustment of the mechanical stress period, in 

addition of being erasable and reconfigurable in real time. Under this concept, M-LPFGs offer a 

tuning range at least one order of magnitude wider than other methods reported in tunable 

permanent recorded LPFGs with similar isolation loss and line-width. Figure 1.2(a) shows the 
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mechanical system designed and fabricated in our facilities which allow a fine tuning of the grating 

period by changing the angle between the fiber axis and grooves [44-45]. Each long-period fiber 

grating is obtained by applying a transverse force over a section of fiber using two grooved aluminum 

plates. The plates were mechanically polished in order to get rectangular grooves like are shown in 

Figure. 2(b) 

 

 

Figure 1.2. Experimental setup used to fabricate the M-LPFG, a) the mechanical system, b) Grooved 
plate [43] 

 

1.2.3 Arc induced long-period gratings 

The electric arc technique is one of the simplest methods to manufacture LPFGs, see Figure 1.3. 

It does not need expensive laser systems for its fabrication; the manufacture is done through a 

fusion splice machine. Besides enables the inscription of the LPFGs in almost any kind of fibers, 

because it is not necessary that the fibers be photosensitive. Moreover, this kind of LPFGs 

provides a high thermal stability. 

The unjacketed fiber is held between the electrodes of the splice machine so that it can be pulled 

by a translation stage connected to a micro control motor. After applying an electric arc on the 

fiber, it is translated by a few micrometers in the longitudinal direction and the arc is applied 

again. The electric arc applied modifies the refractive index by diffusion of dopants, also 

changing the profile in the core as well as the cladding. During the fabrication process, the fiber 

is kept under tension. [46-48].  
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Figure 1.3. Manufacturing station of LPFGs by electric arc discharge [46] 

 

1.2.4 CO2 laser pulses exposure 

Long-period fiber gratings fabricated by exposure to CO2 laser pulses have been shown a high 

thermal stability. Attenuation bands characteristics are unchanged in resonant wavelength even 

when subjected to temperatures up to 1200 °C. Thus CO2 laser induced long-period fiber 

gratings are candidates for both long lifetime and high temperature applications [49-50].  

 

Typically, in most of LPFG fabrication setups employing a  laser, as shown in Figure 1.4, the 

fiber is periodically moved along its axis direction via a computer-controlled translation stage 

(this movement is indicated in the Figure 1.4 as 1st, 2nd), and the laser beam irradiates 

periodically the fiber through a shutter controlled by a same computer. A light source and an 

optical spectrum analyzer are employed to monitor the evolution of the grating spectrum during 

the laser irradiation. This is a typical point-to-point technique for writing a grating in an optical 

fiber. Such a LPFG fabrication system usually requires an exactly controlling of both the shutter 

and the translation stage to achieve a good simultaneousness of the laser irradiation and the fiber 

movement. Additionally, the vibration of the employed fiber, resulting from the periodic 

Light 
source 

 

Traslation 
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Fusion splice 
machine 

OSA 

Optical 
fiber 
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movement of the fiber, could occur during the irradiation of the laser beam, which is of 

disadvantage to the stability and repeatability of the grating fabrication. 

 
 

 

Figure 1.4. Schematic of the setup used for the fabrication of LPFG by CO2 laser pulses exposure [50] 

 
The table 1.1 shows the typical properties and some physical parameters of LPFG to 

manufacture with the technique described above. 

 
Table 1.1 Parameters reported in a LPFG with different fabrication methods [35]. 

Parameters UV Residual 
thermal 
stress 

Mechanical 
stress 

Etching CO2 Electric 
arc 

Length (cm) 2-4 2-5 3-5 2-3 3-5 2-3 
Isolation depth (dB) 10-30 10-25 10-20 10-15 10-25 10-15 

 >10 >10 >15 >10 >10 >15 
Insertion loss (dB) 0.1-0.2 0.1-1 0.1-0.5 0.1-0.3 0.1-2 0.1-0.2 

Modal birefringence  2(10)-7 1.7(10)-6 1.7(10)-6 -- 1.7(10)-6 -- 

 >100 >300 >250 >500 >400 >500 
Temperature range of 
operation (°C) 

< 250 <1100 <600 <1200 >1200 >1200 
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1.3 Birefringence induced in LPFG 
 

At a fundamental level, any standard optical fiber will exhibit low inherent randomly 

birefringence. In the telecommunication and sensor application fields, the presence of inherent 

and induced birefringence is crucial. Inherent or intrinsic birefringence is a fundamental property 

of an optical fiber and can be either low or high, depending on the fiber type. The presence of 

birefringence may cause an undesirable state of polarization change. In the case of high-speed 

data transmission on long distances, the polarization mode dispersion may occur. Due to this 

effect the light pulses are broadened. This may result in inter-symbol interference. In the case of 

sensor application, when the state of polarization is a carrier quantity, the possibility of output 

characteristic distortion and sensors sensitivity decreasing may occur. Birefringence is a non-

vanishing difference of the propagation constants of the two fundamental mode polarizations; it 

may result in different spectral responses for two polarizations in fiber gratings [45]. On the 

other hand, the UV induced birefringence can be exploited to affect the polarization behavior of 

fibers and gratings, for a control of the output polarization of fiber lasers [51].   

 

The polarization dependence of long-period fiber gratings results in undesirable polarization 

dependent loss (PDL) and polarization mode dispersion (PMD), thereby deteriorating the 

property of the LPFG as an optical communication device. Birefringence in long-period fiber 

gratings is manifest as a change in the grating resonant wavelength and attenuation band in the 

transmission spectrum, with changing polarization of incident light. If birefringence is present 

within a grating structure, then that grating will exhibit polarization dependent loss. The 

refractive index modulation is different for each state of polarization. Meanwhile for each state 

of polarization the amount of light coupled to the relevant cladding modes changes [49]. As a 

result of these changes that grating undergo, each incident of state of polarization will has a 

particular resonant wavelength and transmission spectrum. The sources of birefringence can be 

either inherent to the optical fiber or induced by a mechanism that creates the refractive index 

change. The birefringence induced in a long-period fiber grating depends on the fabrication 

technique employed.  
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1.3.1 Birefringence induced in long-period fiber gratings 

There are three categories of long-period fiber gratings based on the locations of the 

birefringence over the fiber cross section: core birefringence, cladding birefringence, and both 

core and cladding birefringence. The third category represents the most general situation in 

LPFGs. The more popular technique to determinate the category an LPFG belongs can be 

established by measurement of the transverse refractive index profile over the grating region by 

use of computed tomography methods [52]. Figure 1.5 illustrates the location of birefringence 

for these categories over the optical fiber cross section: (a) core only birefringence, (b) cladding 

only birefringence, (c) core and cladding birefringence. Shade areas indicate the presence of 

birefringence in the cross section (right hand side). The raised portions of the line profiles (left 

hand side) indicate the same.  is representative of birefringence. UV-induced LPFGs are the 

first example of long-period gratings that belong in the core birefringence. The main reason of 

this phenomenon is due to the presence of photosensitive dopants only in the fiber core; 

therefore, the index change is limited to this region. Birefringence in this type of LPFG has been 

studied extensively [50-54].       

 

Long-period fiber gratings written in low-intrinsic birefringence optical fiber, in which an index 

change is induced over the optical fiber cross section, tend to belong in the cladding 

birefringence category.  When the index change is over the entire fiber cross section, both the 

core and the cladding may be birefringent. For an azimuthally asymmetric refractive index that is 

not rapidly varying over the cross section, the index change in the core region can be azimuthally 

symmetric because the core covers a small portion of the overall fiber cross section. The 

birefringence in the core is much smaller than that in the cladding, therefore the core 

birefringence can be neglected and the cladding is the only portion of the fiber cross section that 

is birefringent. CO2 induced, and electric arc LPFGs are a typical examples of this category [51]. 

 

Birefringence in both regions of a fiber can be due to the inherent properties of the fiber or to the 

induced index change.  UV induced LPFGs fabricated in stress induced polarization maintaining 

fibers (PMF) possess birefringence in both, the core and the cladding, because of the inherent 

properties of PMF not because of UV exposure. LPFGs created by application of pressure with a 

grooved plate, also belong in this category [55]. Another type of LPFGs fabricated in etched 
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optical fibers by ion implantation belong in this category, for certain ion energy levels, the 

induced refractive index change covers the core and a portion of the cladding [56].   

 

 

Figure 1.5. Illustration of the location of birefringence of long-period fiber gratings 

 
 

1.3.2 Birefringence in mechanical-induced LPFG 

Ceballos-Herrera and co-workers [40] characterized the spectral transmission of a long-period 

holey fiber grating mechanically induced in two different holey fibers. In the experiment (see 

Figure 1.6), they analyzed the twist sensitivity, tuning of the grating, and polarization response. 

The two long-period holey-fiber gratings (LPHFGs) were formed using two different holey 

fibers. The LPHFG was induced by pressing a section of holey fiber (HF) between two 

corrugated grooved plates (CGPs). In both cases, the results showed that the rejection bands of 

the grating split when each holey fiber was twisted prior pressure application and the splitting 

observed grows linearly with the increase in the twist rate. Additionally, results showed that the 

shift sensitivity in the splitting depends directly on the holey fiber structure. A white light source 

(WLS) and an optical spectral analyzer (OSA) were used for the spectral measurements. 

Additionally, a linear polarizing plate and the fluorescence of an ytterbium fiber laser (YFL) 

were included for the polarization spectra measurements. 
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Also, they measured the polarization response of the grating inscribed in both holey fibers. The 

results in Figures 1.7 and 1.8 shows that the rejection bands in the fiber 1 have higher 

polarization dependence than that in the fiber 2. In these figures it is observed that when the 

input polarization is changed from vertical (S), which coincides with the pressure direction of the 

grooved plates, to horizontal (P), each resonant peak is shifted 1.3 and 0.6 nm for fibers 1 and 2 

[40]. This behavior varies slightly for different values of twist and it does not depend if the fiber 

is twisted clockwise or counterclockwise. This result agrees with the fact that the transverse 

structure of the fiber 1 shows an asymmetric microstructured cladding and consequently, a 

higher linear intrinsic birefringence. On the other hand, it is worth to mention that, in some 

applications, this polarization dependence is not attractive in LPFG based devices; nevertheless, 

it is possible to find alternative experimental setups that can reduce or eliminate this polarization 

response [40]. 

 

 

 

 

Figure 1.6. Schematic of experimental mechanically induced LPHFG set up under torsion [40]. 
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Figure 1.7. Polarization response of the rejection bands with: (a) fiber 1 and (b) fiber 2 with zero turns 
[40]. 

 

Figure 1.8. Polarization response of the rejection bands with: (a) fiber 1 with 4 turns and (b) fiber 2 with 

15 turns, respectively [40]. 
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1.3.3 Birefringence in arc-induced LPFGs 

There are some important applications of LPFGs in optical communications in which, the 

performance of the optical filter is directly related to its polarization properties. Rego and 

coworkers [46] have investigated polarization dependent loss on arc induced long-period 

gratings by considering solely two orthogonal polarizations. They discuss the polarization 

dependent loss of arc induced gratings under different fabrication parameters.  

 

 

 

Figure 1.9. Experimental setup for polarization dependent loss measurement of electric arc long period 

fiber gratings 

 

The polarization dependent loss of the arc induced long-period gratings were investigated using 

the setup shown in Figure 1.9. The PDL values were measured by searching at a particular 

wavelength in the vicinity of the resonant wavelength, for the maximum and minimum 

transmitted power. Afterwards, the spectrum of the grating corresponding to the fast and slow 

axis was registered and the PDL determined by the absolute difference of those spectra. The two 

extreme PDLmax values are shown in Figure 1.10(a). While, Figure 1.10(b) also shows that two 

gratings with similar wavelength separation (~1 nm) may exhibit completely different PDL 

values. Therefore, an important conclusion can be drawn of this experiment, that is, the PDL 

values depend not only on the wavelength separation, but also on the gratings strength and 

bandwidth [46]. 
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Figure 1.10.  PDL values of two LPFGs manufactured by electric arc technique [46]. 

 

1.3.4 Birefringence in CO2 laser exposure LPFG 

Conventional LPFGs based on single-side CO2 laser beam exposure could lead to asymmetric 

refractive index (RI) modulation, which could result in fiber grating birefringence and generate 

high PDL [52, 57]. Van Wiggeren et al calculated the energy distribution over fiber gratings 

fabricated by single-side CO2 laser beam exposure and their results showed that the energy 

absorbed by the exposed side is much higher than that absorbed by the opposite side [58]. 

Consequently, fabricating LPFGs by single-side CO2 laser beam exposure could lead to fiber 

birefringence and generate high PDL, which would compromise their application in optical 

communications and sensing systems. 

 

Figure 1.11 shows the transmission characteristics of the LPFG with two orthogonally polarized 

lights, parallel (p) and vertical (s). The two loss peaks are separated by 1.0 nm in wavelength, 

whereas the maximum PDL is ~1.2 dB near 1524-nm wavelength. The small inset in Figure 1.11 

shows the full transmission spectrum of the LPFG with a non-polarized light source. Since only 

one side of the fiber was exposed to the CO2 laser, the distribution of stress relaxation across the 

fiber cross section was expected to be asymmetric. 
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Figure 1.11. Polarization-dependent transmission spectrum modified [52] 

 

 

1.4 Compensation techniques for unwanted induced birefringence in 
LPFGs 
 
In the previous section, it has been explained how the birefringence in the LPFGs affects the 

input polarization state. Usually, the transformation of the input polarization state is often 

unwanted, if the fiber is used as carrier information. It is important to suppress the polarization 

mode dispersion in telecommunications applications, in order to avoid pulses broadening, which 

is caused mainly by linear birefringence. In the same way is also important to avoid the 

unwanted birefringence in polarimetric sensors applications. The fact showed above place 

demand for methods for unwanted birefringence suppression. The following lines present a brief 

overview of the selected methods. The methods differ in view of this principle, efficiency or 

usability in various applications. 

 

Reduction of induced birefringence in M-LPFGs  

It is well known that mechanically induced long period fiber gratings (M-LPFGs) are sensitive to 

the polarization state of the input light [50-51]. This effect is caused by the linear birefringence 

induced when the fiber is pressed only in one direction by the flat plate over the grooved plate 
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[59]. To reduce this behavior, it is necessary to compensate the linear birefringence induced in 

the fiber. One method consists of using two identical LPFGs at 90 degrees from each other (see 

Fig. 1.12). Thus, two linear orthogonal polarizations that are transmitted along the gratings 

experience the same perturbations [59].  

 

 
Figure 1.12. Concept of a birefringence compensation for M-LPFGs [59] 

 

 

Fiber twist method for reducing birefringence in UV LPFGs 
 
One of the major causes of the birefringence in UV induced grating is the geometrical 

asymmetry of the writing process, UV induced refractive index changes are different between the 

incident side and the far side on the core and hence can give rise to birefringence. To avoid UV-

induced birefringence along the fiber axis, the fiber is twisted during the UV exposure process 

and then is released after UV writing, this method was implemented by Kim and collaborators 

[60]. The transmission spectra of a LPFG is different according to the light polarized along the 

two birefringent orthogonal axes and that causes the PDL of a long-period fiber grating, as 

shown in Figure 13 there is a wavelength dependent PDL, agreed with the difference between 

spectra for two orthogonal axes. 
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Figure 1.13. Transmission spectra and PDL for light linearly polarized in the fast and slow axis of a UV 

long-period fiber grating [60]. 

 
This fiber twist causes the refractive index changes of the core to be spiraled along the fiber axes 

and can hence reduce the birefringence along the fiber principal orthogonal axes. Figure 1.14 

shows the transmission spectra for the light polarized along the two orthogonal birefringent axes 

of LPFG inscribed by a conventional side writing technique (a) and the fiber twist method (b). 

By using the twist method the PDL was reduced to about 60% compared with the side writing 

technique.  

 

Research on transmission properties of LPFGs has revealed that PDL in LPFGs can vary over a 

widely range of less than 0.1 dB to more than about 1 dB, depending of the type of fiber and the 

type of filter. The PDL is proportional to , where L is the grating length [61]. This implies 

that filters that have sharp features are more susceptible to PDL. Therefore, there is also a need 

for a method for reducing PDL after the grating has been written in the fiber 
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Figure 1.14. Transmission spectra and PDL for light polarized of a long-period fiber grating [60].  

 
 
By twisting the LPFG, a circular birefringence is induced through the stress optic effect. The 

induced circular birefringence partially compensates the linear fiber birefringence that is intrinsic 

in most fiber. There is an optimum amount of twist for which the combination of linear and 

circular birefringence is minimized. Without twist, the linear birefringence dominates. With too 
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much twist, the fiber becomes highly circular birefringent. Both of these extremes produce PDL. 

The twist also changes the refractive index of the cladding more than that of the core of the fiber. 

This produces a peak wavelength shift, since the cladding mode is affected differently than the 

core mode. By twisting the LPFG, not only PDL may be reduced, but also the wavelegth may be 

tuned to control the peak wavelength of the LPFG within as little as 0.1 nm.  

 

1.5 Polarimetric characterization of LPFGs 
 
The equalization of the gain spectra of erbium doped fibre amplifiers (EDFAs) is one of the most 

important applications of long-period fibre gratings (LPFGs) in optical communications. In such 

application, the performance of the optical filter is directly related to its polarization properties. 

Several studies concerned with the polarization dependent loss (PDL) of gratings produced by 

UV, CO2 laser radiation, mechanical stress and electric arc technique have been published [45, 

60-61]. However, this property has been only described for considering solely two orthogonal 

polarizations and, therefore, they correspond somehow to an approximation. 

 

It is well known that PDL measurements are largely based on the knowledge of the Mueller 

matrix elements of the optical component [62]. While PDL can readily be measured with well-

established procedures [63], only a few Mueller matrix analyses of the polarization properties of 

LPGs have been proposed so far. The theoretical approach of LPFGs is based on coupled-mode 

equations, which describe co-directional coupling between the fundamental mode and high-order 

cladding modes. The mode coupling, however, is considered polarization-insensitive, and 

consequently, the results do not take into account polarization-dependent properties of the LPFG. 

 

Using polarization-sensitive coupled-mode equations, Eftimov et al. derived explicit expressions 

for the Stokes parameters and the Mueller transfer matrix of a uniformly birefringent LPFG that 

allow calculating the state of polarization at the output of a birefringent LPFG. Explicit 

expressions for the PDL and the DoP of a LPG were also derived [64-65]. He established that 

LPFGs made of photonic crystal fiber exhibit cladding birefringence caused essentially by whole 

ellipticities. Eftimov performs a theoretical Mueller–Stokes analysis of a linearly birefringent 

LPFG and study the causes of its presence in LPFGs based on photonic crystal fibers (PCFs). He 

considers several specific cases and obtains explicit expressions for the PDL and the degree of 



Chapter 1. The development of long period-fiber gratings 

 

-23- 
 

polarization (DoP) at the LPFG output. Figure 1.15 shows the PDLs for Y polarized input and 

DoP for two mutually orthogonal polarizations. 

 

 

 

 

 

 

Figure 1.15. PDLs for Y polarized input and DoP for two mutually orthogonal polarizations [64]. 

 
Eftimov also obtained curves that show the evolution of the polarization on the Poincaré sphere 

in the LPFG for two almost orthogonal states of polarization (see Fig. 1.16). 
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Figure 1.16. Evolution of the polarization on the Poincaré sphere in the LPFG [64] 

  

Finally, polarization maintaining photonic crystal fiber (PM-PCFs) used for sensing applications 

attracts lots of research interests in recent years. The high birefringence can be introduced in PCF 

due to different air-hole diameters along the two orthogonal axes, which makes this kind of fiber 

an excellent candidate for fiber sensing based on the polarimetric technique, such as a torsion 

measurement [66]. 
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2 Long-period fiber gratings 
 

Fiber gratings have found many applications in lightwave communications. These applications 

include rare-earth doped fiber grating lasers, dispersion compensations, WDM demultiplexers, 

add/drop multiplexers, mode couplers, fiber amplifier gain control, grating-based sensors, 

nonlinear effect switches, etc. with the development of Dense Wavelength Division Multiplexing 

(DWDM) networks. This chapter gives an overview of long-period fiber gratings, including the 

theoretical background, transmission properties, and polarized light in LPFGs. 

 
2.1 Theory of long-period fiber grating 

Long-period gratings (LPFGs) are periodic structures that couple light from the fundamental 

guided mode to discrete cladding modes [1]. The periodicity of the refractive index modulation 

ranges in hundreds of micrometers and this causes light to couple from the fundamental guided 

mode to discrete forward propagating cladding modes. The response of this device is a strong 

function of the parameters of the host fiber, the grating period and the writing conditions. The 

principle of operation of LPFGs proposed by Vengsarkar et al [1] is depicted in Figure 2.1. Light 

in the fundamental  guided mode is perturbed by the presence of the grating in the fiber 

core. The difference between the propagation constant of the guided mode and the phase 

matching vector of the grating are equals the propagation constant of one or more cladding 

modes at appropriate wavelengths. Cladding modes result from the radiation modes that are 

trapped by cladding outer surface. These modes attenuate rapidly on propagation due to bends in 

the fiber and absorption due to the cladding, and hence light at the phase matched wavelengths is 

lost from de fiber.  

 

 
Figure 2.1. Coupling of the fundamental guided mode to cladding modes in a long-period fiber grating 
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2.2  Coupling mode equation 
 
The transfer of power between two propagating modes has been analyzed since 1953[2]. In optical 

fibers, the power is transferred in the form of modes. In a lossless unperturbed system, each mode 

propagates without losing or gaining power along the fiber length. Nevertheless in reality, any small 

disturbance in the system can cause power to couple between two or more modes. Interesting and 

useful devices can be fabricated by utilizing the mode coupling in one or more fibers. These 

components include directional couplers [3], and gratings [4-5] that are finding increased 

applications in fiber optic systems. Hence to perform a comprehensive analysis of these devices it 

becomes necessary to understand the finesse of mode coupling in optical fibers. 

 

2.2.1 Co directional coupling 

By using the approach used by Taylor and Yariv [6] under the influence of a periodic perturbation is 

possible to present the solution to coupled mode equations for two modes propagating in the same 

direction. In the same way using coupled mode equations to depict the importance of phase 

matching condition between two modes for significant exchange of power. 

 

 

Figure 2.2. Optical fiber under perturbation 

 

Consider an optical fiber of Figure that is disturbed by a periodic perturbation along of the fiber 

axis, originating at z=0 and ending at z=L. the perturbation can be caused by a periodic variation in 

the core index or simply by external bends in the fiber. Consider two modes denoted by  and  

traveling in the positive  direction with propagation constants and  respectively, such that, 
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(2.1) 

Where  is the angular frequency and  and  are complex normalized amplitudes and are 

independent of  in an unperturbed fiber. The presence of a disturbance causes two modes to 

exchange energy such that and  become functions of the propagating distance. The electric 

field of the perturbed fiber is expressed as a linear combination of the two eigenmodes in equation 

(2.1) and substituting in the scalar wave equation for the perturbed system. Integrate over the fiber 

cross section to obtain two coupled, the equations describing this coupling can be written by:  

 

 

 

 

 

(2.2) 

Where  and  are the cross coupling coefficients and dictate the magnitude of coupling 

between the two modes,  is the phase mismatch between the propagating modes and is typically 

the difference in their propagation constants, such that  

 

 
 

(2.3) 

In the presence of a periodic perturbation . Since and  are functions of the optical wavelength 

the phase mismatching,  has a strong spectral dependence. For a synchronous transfer of power 

between the two modes, the value of  should ideally be zero. Using equation (2.3), the phase 

matching condition between two modes is,  

 

 
  

(2.4) 

Where is their differential propagation constant. 

The perturbation simply interacts with the mode  to generate a propagating polarization wave that 

finally results in mode . This mode further interacts with the perturbation to alter the energy in 
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mode . This exchange of power between the two eigen modes is hence dependent of the 

differential propagation constants and the periodicity of the perturbation. For the phase matched 

case, the mode coupling is optimized and the power transference between the two modes is a 

function of the coupling coefficients. The magnitude of interaction between the two modes is 

expected to be negligible far away from the phase matching condition.   

 

The total power carried by modes  and  is given by  and , respectively. Since 

in a lossless system, there is no variation of total power in the  direction, and manipulating the 

equation 2 is possible to obtain [6],  

 

 

 

(2.5) 

Where, * denotes the complex conjugate. If we assume that only mode  carries power at , 

we get the following boundary conditions, 

     

 

 

 

(2.6) 

 

 

 

Which can be used to solve the mode coupled equations. The complex modal amplitudes can be 

written as 

 

 

 

(2.7) 

And  

 

 

 

(2.8) 

Where 

 

 

 

(2.9) 

The eigenmodes can now be obtained by substituting the values of the complex amplitudes  and 

 in equation (2.1). The power in the two modes is given by, 
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(2.10) 

 

And, 

 

 

 

(2.11) 

Where  is the detuning parameter and  is the incident power in eigenmode 

 the two modes have sinusoidal variations in the propagating power. The frequency 

and magnitude of power coupling is a function of the detuning ratio . The figure 2.2 shows the 

variation in the incident power normalized values of  and  as function of  for two 

different values of detuning ratio. When  , the mode coupling is small and becomes negligible 

for . For the phase matching condition ( , equations (2.10) and (2.11) can be 

modified to yield,        

 (2.12) 

and 

 (2.13) 

Which predict a large degree of interaction between the two modes depending on the value of the 

coupling coefficient, this can be observed in Figure 2.3(b) which shows that the modes continuously 

exchange power in the region of perturbation with a spatial period given by . The modal 

interaction ends at . At that point the perturbation terminate, and the ratio   of the 

power in mode to the originally in  can be determined from equations (2.10) and (2.11) as,  
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Figure 2.3. Variation of the power of the two co-propagating modes involved in coupling for (a) phase 
mismatched , and (b) phase matched   case. [6] 

 

 

(2.14) 

 

At  the normalized power remaining  in mode  is simply given by . For most 

applications the length L of the perturbation region is constant while the coupling coefficient  is 

varied to achieve complete power transfer from mode  to . Although the maximum power 

transfer occurs when , where is an integer, the device operation is typically optimized 

for , which yields       

 

In certain applications, it is essential to couple light from the  mode to other forward 

propagating guided modes. In next lines will be described briefly the operation and properties of 
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gratings that implement the transformation of one guided mode to another. The  plot in Figure 2.4 

depicts the mode coupling mechanism between two forward propagating guided modes. Since the 

differential propagation constant  is small in this case, large values of the grating periodicity 

are required to satisfy the phase matching condition (equation (2.4)). The periodicity of the resultant 

devices are typically hundreds of micrometers compared to less than one micrometer for fiber 

Bragg gratings. Long-period fiber gratings couple light between two guided modes. Hill was the 

first to propose the use of these gratings for guided mode coupling [8]. He used a point by point 

writing technique to couple the  mode to  mode employing a periodicity of    

Since coupling in this case occurs from a circularly symmetric to asymmetric mode, the grating 

needs to be blazed to arraign optimum mode coupling [7].  

 

 

Figure 2.4. Mode coupling between two forward propagating guided modes  

 

In 1991, Bilodeau and coworkers [8] proposed a grating that coupled the fundamental guided mode 

to the circularly symmetric  mode. The grating did not require blazing because both  and 

 modes possess circular symmetry. In the same year, Vengsarkar et al. demonstrated internally 

written gratings for coupling to the  mode in dual mode, elliptical core fibers [9]. In 1992, 

Johnson proposed long-period fiber gratings that couple light from one polarization component of 

the fundamental mode to the other in standard telecommunication fibers [10]. The differential 

propagation constant between the two orthogonal polarizations is very small, resulting in a large 

period. The rocking filter coupled light from one polarization to another with a 99% efficiency.  

 

In Figure 2.4 [11] is shown a typical variation of the differential propagation constant  between 

two forward propagating guided modes. The value of  can be the same at two different 

operating wavelengths. Therefore, the same grating period might result in modal coupling at two 

values of wavelength  The spectral dependence of the coupling coefficient might cause 
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a difference in the coupling magnitude at the two wavelengths. The wavelength at which the slope 

of  versus  curve is zero, i.e., where the  and   modes have the same group velocity, is 

termed the equalization wavelength  [10].         

 

Figure 2.5. Typical variation of the differential propagation constant with wavelength for a two forward 

propagating modes [11] 

 

The coupling between two modes propagating in the same direction is a strong function of the 

detuning ratio , where  is the detuning parameter and  is the coupling coefficient of the 

grating. The detuning parameter is dependent on the proximity of the operating wavelength to the 

phase-matching wavelength for the grating. The coupling coefficient is a function of the index 

change and the modal overlap between the guided and cladding modes over the region of 

perturbation. It is typically desired that the value of the detuning ratio be as small as possible for 

maximum power transfer to occur which implies that the coupling coefficient should be optimized 

to improve the grating performance.  

 

By use a function  to describe the periodic refractive index modulation in the fiber core such 

that the modified profile  is possible to derive an expression for the coupling coefficient adopt 

the approach used by Snyder and Love [12], Such as 

 

 (2.15) 
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Where  is the unperturbed core index of refraction. For a rectangular index modulation the 

function  is given by . The periodic variation in the index can be 

expressed in terms of its Fourier series [13]. 

 

 
(2.16) 

 

Where  is the grating periodicity,  is the peak index change and  are the Fourier coefficients. 

For coupling to all cladding modes . The coupling coefficient  is given by the square root of 

the product of the two cross coupling coeficients  and  [12]. 

 

 (2.17) 

The cross coupling coefficients  are functions of the order of the mode  and yield [12]. 

  

 

(2.18) 

 

Where  and  are the electric field distributions of the fundamental guided mode and 

the circularly symmetric cladding mode of order m respectively. The integration in the numerator is 

over the core only since the refractive index perturbation for the grating is confined to the fiber 

core. By assuming that the index modulation is small compared with unperturbed core index and 

hence from equation (15), . Defining the overlap integral  as, 

 

 

(2.19) 

 

We can rewrite the coupling coefficient as,  
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(2.20) 

 

Where we have assumed that the coupling coefficient is constant across the spectral width of a 

resonance band of order m and centered at . The coupling coefficient for a LPFG hence has the 

same form as that for a FBG [14]. Since the coupling coefficient is directly proportional to the 

overlap integral, the modal distribution of the cladding mode will have a strong influence on its 

magnitude. Also since the index modulation has no azimuthal variation, the coupling of the guided 

mode can occur only to circularly symmetric cladding modes, and for all other cladding modes, the 

overlap integral is zero. Blazing the grating will give the index modulation an azimuthal 

dependence  and result in coupling to cladding modes that have the same variation 

[15]. A typical rectangular amplitude mask used to write LPFG has a 50% duty cycle and yields the 

index modulation given by . The Fourier series of the rectangular index 

modulation with a period  may be expressed as [10], 

   

 
(2.21) 

 

Comparing equations (16) and (2.21) we deduce that the Fourier coefficients (N>1) are 

 

 
(2.22) 

 

For , the Fourier coefficients is  and , and hence for a grating with a 

perfectly rectangular modulation the second order interaction between the guided and cladding 

modes does not exist. Thus the coupling coefficient for the first order of interaction in a LPFG with 

rectangular index modulation is given by 

  

 
(2.23) 
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Since the overlap integral is a dimensionless quantity, the coupling coefficient is expressed in the 

units of per unit length (cm
-1). Probst et al. [16] have shown that the coupling coefficient is a 

strong function of the order of the cladding mode, the operating wavelength, and the fiber 

parameters and power profile. For LPFGs, the index modulation during the writing process 

makes the coupling coefficient of the transmittance function of the amplitude mask and the peak 

index change.  

  

2.3 Transmission properties 
 
Resonance band separation  

To calculate the resonance band separation, it is necessary to calculate the wavelength difference 

between the band of order  at  and , the coupling wavelength corresponding to a mode 

with effective index equal to the index of refraction of the cladding  [1]. By combining the 

expression for (See Appendix A) and the phase matching condition, we can obtain 

 

 
(2.24) 

 

where the effective index of the guided mode is assumed to be equal at  and  [1]. The 

maximum value of the cladding mode propagation constant yields a wavelength parameter 

termed . Equation (2.24) reveals that the wavelength separation between  and  is an 

increasing function of the order m and the grating period Λ. Thus for a given period, the 

wavelength difference will increase as we move to higher order cladding modes.  

 

If m is small  and  can be assumed to very close and the wavelength separation 

 between the resonance bands of orders m and m+1 can be obtained from equation 

(2.24) 

 

 
(2.25) 
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The wavelength separation between the resonance bands increases as the value of m is increased. 

Also the wavelength separation between any two attenuation bands increases as the cladding 

radius b is reduced.  The ratio C of the power coupled to a cladding mode of order m to the initial 

power in the fundamental guided mode is approximated by [17]. 

 

 

 

(2.26) 

 

Where L is the length of the grating and  and  are the coupling coefficient and the 

detuning parameter for the corresponding cladding mode, respectively, the detuning parameter at 

a wavelength λ is defined by 

 

 
(2.27) 

And is zero at the phase matching wavelength . The normalized power T transmitted by the 

fundamental mode through the grating is given by 

 

 

 

(2.28) 

 

 Which at the phase matching wavelength reduces to expression for the attenuation band  of 

the grating 

 (2.29) 

The grating normalized transmission is expressed in decibels (dB) and typically ranges from 5 

dB (68.3%) to 35 dB (99.97% coupling). Equation (2.29) reveals that the minimum power in the 

guided mode is transmitted at the phase matched wavelength and depends on the coupling 
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coefficient and the length grating. Thus if the length of the grating is known, the coupling 

coefficient and hence the peak index change can be calculated by combining equations (2.18), 

(2.23) and (2.29). The condition of complete power transfer to the cladding mode corresponds to 

[1] 

 

 
(2.30) 

For gratings with the same period that are written for either complete power transfer or the same 

isolation, for a given order m, the coupling wavelengths will be functions of the grating length. 

The reason is because is necessary to maintain the product  constant to satisfy equation 

(29). Which implies that if the wavelength dependence of the coupling coefficient is ignored, 

different values of L will require distinct peak index changes  (equation (2.18)). The 

characteristics curves of a LPFG written in a SMF28 as function of  are shown in Figure 6 [1]. 

    

 

Figure 2.6. Typical curves of period versus wavelength obtained for LPFG written in SMF28 fiber when 

 (solid lines),  (dashed curves), and  (dotted curves), respectively. 

Only modes with m=5 to 10 are presented [1]. 

 
Since the effective index of the mode changes during the inscription of the LPFG, a shift in the 

spectral position of the resonance band is also expected. Figure 2.7 shows the evolution of a 
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resonance band in a grating with a period of and a grating length of in a SMF28 

fiber by UV exposure [1].  

 

 

Figure 2.7. Evolution of simulated transmission spectrum of LPFG written in SMF28 fiber with 

. The curves A through E represent the transmission spectrum at intervals of a one minute each 

from the time exposure was initiated [1]. 

For a resonance band of a LPFG and by assuming complete power transfer and putting  

in equation (2.26) and using equation (2.29). 

 

 

 

 

(2.31) 

Where equation (26) gives 

 

 

(2.32) 

 

By using the phase matching condition and assumed that the cladding mode effective indices at 

the 3 dB loss wavelength  and the coupling wavelength  can be approximated by the index 
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refraction of the cladding  and substituting in equation (2.32)  The solution for  we 

obtain the FWHM [1].  

 

 

(2.33) 

where we have assumed that   
 

Bandwidth of a resonance band is inversely proportional to the length of the grating L. thus the 

resonance band can be made narrower if the length of the grating is increased which is illustrated 

in Figure 2.8. The spectra will be offset due to different coupling coefficients and hence distinct 

.  

 

 

Figure 2.8. Simulated transmission spectra of two LPFG written in SMF28 fiber with . The 

inner spectrum is for a grating length of 2 cm while than on the outside is for a grating with L=1 [1]  

 

Peak isolation 

Figure 2.9 shows the transmission spectrum of a LPFG written in single mode fiber (SMF28) 

with period and length  [18]. The peak isolation is 14 dB at a wavelength 
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of 1540 nm. The value of full width at half maximum (FWHM) gives LPFGs an advantage over 

other filters such as fiber Bragg gratings in broadband applications. For a grating written for 

complete power transfer, the resonance band typically has an isolation varying from 15 to 35 dB 

and FWHM between 20 and 30 nm. The out of band losses for wavelengths far off from the 

phase matching wavelength are 0.2 dB [1]. The small insertion loss enables concatenation of two 

or more such devices with similar resonant wavelengths for applications that require large 

isolation. The polarization mode dispersion and polarization dependent loss of a typical grating 

are 0.001 ps and 0.02 dB, respectively [1]. The polarization mode dispersion gives an estimate of 

time difference for grating transversal between two signals launched along the orthogonal axes 

of the fiber. The polarization dependent loss is a measure of the difference in the losses of the 

two orthogonal signals.  

 

Figure 2.9. Transmission spectrum of a LPFG written in SMF28 with and  using 

electric arc technique, the red line shows a transmission characteristics of white light source in the fiber 

[21] 

The spectrum of the grating in figure 2.9 possesses a sideband on the lower wavelength side of 

the resonance peak. Typically, a LPFG can have two to three sidebands on the short wavelength 

side with peak loss ranging from 0.5 dB to 4 dB [1]. These gratings with sidebands on only one 

side of the phase matching wavelength are termed apodized gratings [19]. Apodization typically 

results from the variation of the peak refractive index modulation or the effective index of the 
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guided mode along the length of the grating.  The effect of the grating length on the transmission 

serves to reduce the spectral width of the resonance bands of a grating.  

 

The small back reflection of the LPFG is an attractive feature for a multimode sensing and 

communication systems where the optical feedback is a limiting factor. A typical optical 

feedback of less than -80 dB may be attributed to the small Fresnel reflections in the grating 

region and the resulting value of the peak index change ( ) is calculated to be [1]. 

Figure 2.10 shows the back reflection from a LPFG in AT&T dispersion shifted fiber [1]. 

 

 

Figure 2.10.  Optical coherence domain reflectometer back reflection measurement in a LPFG written in 

AT&T dispersion shifted fiber [1] 

 

Polarization dependent loss refers to the maxim change in the power transmitted by an optical 

component or device as the input state of polarization is varied over all possible polarization 
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states. Polarization mode dispersion (PMD) is a fundamental characteristic of single mode 

optical fiber and fiber optic components that describes their propensity to split an optical signal 

into two orthogonal polarization modes with different propagation velocity, resulting in a 

different propagation time in each mode, called the differential group delay (DGD). The PDL 

and other polarimetric properties must therefore be characterized accurately in order to assess the 

potential impact on the performance of optical devices such as fiber gratings that becomes 

critically import for system design and evaluation.  

 

2.4 Polarized light in LPFG [PDL] 
 

There are two categories of PDL measurements techniques: deterministic and no deterministic 

[20-21]. The deterministic techniques compute the PDL value from the device´s Jones or Mueller 

matrices, which are obtained by measurements of Stokes parameter for a set of input polarization 

states [22].  The non-deterministic techniques determine the PDL value by measuring the 

maximum polarization sensitivity of a device over all possible input polarization states.  

 

2.4.1The polarization-scanning method 

The polarization-scanning method (called power min/max method) is a non-deterministic 

measurement technique [23-24]. A polarization controller and a power meter are needed to 

determine the maximun and minimum changes in power transmission trough the device (LPFG) 

over a large number of input polarization states. The polarization controller must be able to 

provide all possible ouput polarization states. The measurement set-up used for characterizing 

optical componets is shown in Figure 2.11. The 3 dB coupler must be removed for measurements 

in transmission. 

A power calibration procedure is required to remove the PDL contributions of the polarization 

controller and other optical components in the set-up. Accounting for the system transmission 

variation, the PDL of the device under test (DUT) is then determined by 

 

 
(2.34) 
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Where  refer to wavelegths within the wavelegth range of interest 

, refer to the transmission/reflection power at a set of polarization states 1 to N. 

and  denote the transmission/reflection power without the DUT (power calibration) and 

with the device under test (LPFG). 

 

The polarization scanning is especially valuable for wavelength PDL measurements in 

broadband fiber optic components, since a large number of measurements must be obtained at 

each wavelength of interest to ensure measurements accuracy. 

 

Figure 2.11. PDL measurement set-up used using the polarization scanning method . the polarization 

controller comprises a polarizer (P), followed by a quarter wave plate (Q) and a half wave plate (H). the 

oupt port C of the coupler us terminated to avoid back reflection. [23] 

 

2.4.2 Jones Matrix method  

The Jones matrix method measures the device´s polarization response to three input states of 

polarization at a wavelength of interest [24]. The PDL value of the DUT is the derived from 

these responses. The measurement set up used for characterizing optical components in 

reflection is shown in Figure 2.12. For measurements in transmission, de 3 dB coupler is 

removed. A polarization analyzer, having a polarization adjuster is used to set three linear 
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polarization states, measure the stokes parameter for the trhee states, calculate the Jones matrix 

and derive the PDL value. 

In this measurements the Jones vector  represents the input electric field. In transmission, the 

fiber pigtails interconnecting the DUT are represented by their Jones matrices  and . In 

reflection,  and  represent the backward and forward Jones matrices of the 3 dB optical 

coupler used shown un Figure 12, respectively. The DUT is represent by Jones matrix . The 

output field through the optical coupler and the DUT are expressed as . The Jones matrix 

of the coupler and DUT combined is , wich is obtained from the measured stokes 

parameter for three linear polarization states at 0, 60 and 120 degrees. 

 

Figure 12. PDL measurement setup for characterizing a device using the Jones matrix method [25] 

 
The intensity of an input field  is proportional to the inner product  where  

denotes the conjugate transpose of vector , thus the intensity is constant and normalized. The 

intensity of the output field is proportional to the inner product . Measuring PDL involves 

finding the extrema of the inner product  over all input . Since  the 

latter represents the field of values of a Hermitian matrix  . Therefore the maximun and 

minimun reflected powers can be represented as  with  where  and  

are the eigen values of , and  are the singular values of matrix J. thus 

 

 
(2.35) 

 

Where  denotes the complex conjugate transpose of matrix J, and  denotes the 

measured PDL of device under test combined with the coupler. 
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In the case of polarization insensitive pigtails used for the intercinnection of the DUT in 

transmission, their Jones matrices  and  are unitary [25]. According to P. Lancaster [26], the 

singular values of a square matrix are invariant under a unitary transformation. Then the equation 

(2.35) becomes 

 
(2.36) 

 

Where  denotes the PDL of DUT. It can be seen from equation (2.36) that the single 

mode fibers or components interconnecting the DUT will not impair the measurement accuracy 

as long as they are polarization independent.  

 

Figure 2.13 shows the wavelength dependent PDL of a LPFG used in transmission for EDFA 

gain flattening by using the setups shown in Figures 2.11 and 2.12. In this case the coupler was 

removed and the LPFG connected directly either the polarization controller and a power meter, 

or the optical input and output ports of the polarization analyzer.   

 

 

Figure 2.13. Measurements of PDL for a LPFG using the Jones matrix (JM) method, the polarization 
scanning method (PS) and the transmission response. 
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3 Polarized light 

Polarization effects play a key role in the operation of many important optical devices. The 

complete characterization of scattered light is described by Stokes vectors and Mueller 

matrices. The most general form of the scattering matrix coupled with polarizer and quarter 

wave plates demonstrates the physical relationships among the matrix elements and 

polarization measurements. The state of polarization in a lightwave signal can be used to 

carry information in an optical system. In this chapter, we show some elements to analyze 

the polarized light through the Stokes vectors and the Mueller matrix.  

 
3.1 Description of lightwave polarization  

In free space, light is a transverse wave, where the wave motion is perpendicular to the 

direction of propagation. Such a transverse electromagnetic wave can be divided into 

unpolarized and polarized. All field components of polarized light have a fixed phase 

difference to each other. Each state of polarization (SOP) can be split into any two 

orthogonal states.  

 

When the superposition of both orthogonal states is oriented in only one direction of the 

transverse plane is called linearly polarized light. In an elliptical polarization state, both 

orthogonal states have a fixed phase between 0 and 90°. A special case is the circular 

polarization where the phase difference is 90° and both field components have the same 

magnitude. Then the electric field vector rotates by 360° within one wavelength (see Figure 

3.1). 

 

Figure 3.1. Electromagnetic wave in free space [1] 
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The complex electric field envelope can be expressed as [2-3] 

 
 

 

(3.1) 

The vector of the electric field intensity E (t) is determined by the superposition of the x 

and the y component. At a fixed time, it points to a trace direction and has a defined 

magnitude. Figure 2 illustrates two-dimensional descriptions of various polarization states 

of polarized lights, such as linear polarization, circular polarization, and elliptical 

polarization. 

 

 

Figure 3.2. Two dimensional descriptions of various polarizations states of polarized light. 

 

The pattern of the optical field traced on a fixed point in the xy plane can be described by 

the polarization ellipse, 

 

 

(3.2) 
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Generally, an optical signal may not be fully polarized. That means that the x and y 

components of the light are not completely correlated with each other; in other words, the 

phase difference  between them may be random. Many light sources in nature are un-

polarized, such as the sunlight, whereas the optical signal from lasers are mostly polarized. 

An optical signal can usually be divided into a fully polarized portion and a completely un-

polarized portion. The degree of polarization (DoP) is often used to describe the 

polarization characteristics of a partially polarized light; which is defined as [3] 

 

 

(3.3) 

 

Where  and  are the powers of the polarized portion and unpolarized 

portion, respectively.  is therefore the ratio between the power of the polarized part and 

the total power.  is equal to zero for an unpolarized light, and it is equal to unity for a 

fully polarized light. 

 

3.2 Stokes parameters and the Poincaré sphere 

The state of polarization of a lightwave signal is represented by the maximum 

amplitudes , in the x and y directions, and a relative phase  between them. In 

addition, if the signal is not completely polarized, the DoP also has to be considered. The 

Stokes vector is one of the most popular tools to describe the state of any polarization 

associated to of an optical signal. A Stokes vector is determined by four independent Stokes 

parameters, which can be represented by optical powers in various specific reference 

polarization states. The Stokes vector is defined in terms of the orthogonal components of 

the electric field vector (Ep ,Es) as [4-5] 
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, 

 

(3.4) 

where . Angular brackets represent temporal averages 

and * indicates complex conjugation, 12
-=i  is the complex number. The upper (lower) 

sign in the right hand side of  corresponds to a description of polarization states as 

looking to the source (propagation direction). The normalized Stokes vectors can also be 

written in terms of the azimuthal   and the ellipticity  

angles of the polarization ellipse of the wave, respectively [6] 

, 

 

(3.5) 

 

where  represents the intensity associated to the Stokes parameters; usually, it is fixed 

to the unitary value. 

For a totally polarized beam of light, Eq. (3.4) is reduced to 

 

 

 

(3.6) 

 

The positive (negative) sign in s3, Eq. (3.4) and Eq. (3.6), means the sense of circular light 

is measured as seen to the source (propagation direction) and δ is the phase difference 

between the orthogonal components of the electric field. Note that Eq. (3.4) implies, at least 

for the integrating time used for the detector employed, a spatial coherence among the 

orthogonal components is implicit.  
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The value of each normalized Stokes parameter ranges between -1 and +1. If the optical 

signal is fully polarized, the normalized vector endpoint is always on a sphere surface with 

unit radius, which is commonly referred to as Poincaré sphere. On the other hand, if the 

optical signal is partially polarized, the endpoint of the normalized Stokes vector should be 

inside the unit sphere and the length of the vector is equal to the DoP of the optical signal. 

An appropriate way to display the state of polarization is the representation via the Poincaré 

sphere. The center of the Poincaré sphere is located in the origin of the Cartesian coordinate 

system. The Cartesian coordinates of any point on the Poincaré sphere represent the 

corresponding three normalized Stokes parameters s1, s2 and s3 (Shown in figure 3.2). 

Each point on the Poincaré sphere describes a defined state of polarization. The equator 

plane represents all possible linear states of polarization. The two poles represent the states 

of circular polarization (right or left-hand sense of rotation). All the other points on the 

upper (lower) half sphere correspond to elliptical polarizations with right (left) handed 

rotation. From a geometrical point of view, partially polarized states are represented as 

points inside the unitary sphere. [2] 

 

Figure 3.3. Polarization states represented on a Poincaré sphere   
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The value of each normalized Stokes parameter ranges between -1 and +1. If the optical 

signal is fully polarized, the normalized vector endpoint is always on the sphere (with 

unitary radius). On the other hand, if the optical signal is partially polarized, the endpoint of 

the normalized Stokes vector should be inside the unit sphere and the length of the vector is 

equal to the degree of polarization (DoP) of the optical signal. Observe that a totally un-

polarized state must have a null DoP value, which is located at the center of the sphere. An 

unphysical sense is associated to points outside the Poincaré sphere.  

 

3.3 Optical polarimeter 

It is well known that an electromagnetic wave has four basic parameters: amplitude, 

frequency, phase, and the state of polarization. For an optical signal, its amplitude is 

represented by the brightness and its frequency is represented by the color. The brightness 

can be easily measured by an optical power meter and the wavelength can be measured by 

an optical spectrum analyzer. An optical polarimeter is an instrument used to measure the 

polarization state of light. The polarization states can be represented analytically, Eq. (3.1), 

by the Stokes parameters, Eq. (3.4), as points on the Poincaré sphere, among many other 

representations [2-3]. According to the definition of Stokes parameters given by Equations 

(3.4) and (3.6), they can be obtained by measuring the optical powers after the optical 

signal passes through polarization-sensitive optical devices such as linear polarizer and 

retarders.  

3.4 The Mueller matrix method 

The Mueller matrix method is most generally suited for describing irradiance-measuring 

instruments, including most polarimeter, radiometers and spectrometers. In the Mueller 

matrix method, the Stokes vector S is used to describe the polarization state of a light beam, 

and the Mueller matrix (MM) to describe the polarization-altering characteristics of a 

sample. This sample may be a surface, a polarization element, an optical system, biological 

tissues, and any other light-matter interaction which produces a reflected, refracted, 

diffracted, absorption, and scattering of the light beam. 
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Popular theories of polarized light interaction with optical elements or scattering media 

may be divided into two groups: Jones matrix, which assumes a coherent addition of 

waves; and the Stokes-Mueller matrix, which assumes an incoherent addition of waves. In 

both approaches, one usually starts a theoretical analysis with severely restrictive 

assumption. In the Jones matrix, one starts out with Maxwell´s equations, whereas in the 

Mueller matrix, it starts by postulating a linear relation between the input Stokes vector and 

the output Stokes vector emerging from the optical medium. The development of the 

Mueller analysis is heuristic and has an advantage in that it deals with intensities rather than 

field vectors.  

A Mueller Matrix represents the polarization rotation characteristics of an optical device 

such as an optical fiber, which is determined by the relationship between a set of input 

polarization vectors and their corresponding output polarization vectors. The linear 

response of a physical system can be expressed in terms of the intensities, through the 

relation, [2, 4] 

 

 

(3.7) 

where M is called the Mueller matrix of the system, represented as a   matrix of real 

elements, and S is the Stokes vector. S represents the polarization state of light, defined in 

terms of the orthogonal components of the electric field vector (Ep ,Es). 

A typical polarimeter arrangement consists of a Source + PSG + Sample + PSA + Detector. 

See Figure 3.4. The incident Stokes vectors are generated by a Polarizer State Generator, 

PSG, and a source; while the out Stokes vector from the sample under study is analyzed or 

“filtered” by a Polarizer State Analyzer, PSA. The sample under study is an optical fiber. 

The exiting intensity from the PSA is measured by a sensor or detector device. Usually a 

PSA is named as a Polarization State Detector, PSD, when the analyzer is a system 

composed of a PSA plus a sensor (detector) of intensity. It is common to find a mirror-

symmetry order between the optical components that constitutes a PSG (linear polarizer + 

half-wave retardation plate + quarter-wave retardation plate) and a PSA (quarter-wave 
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retardation plate + half-wave retardation plate + linear polarizer). For a passive Ideal 

Polarimeter Arrangement, IPA, the output Stokes vector reaching the detector is given as  
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(3.8) 

Where A is the Mueller matrix that describes the action of the PSA on the Stokes vector 

scattered (So) from the sample (M). An IPA arrangement is formed by classical, passive, 

optical polarization elements, like linear polarizers based in calcite crystal (of the Glan-

Thompson, Glan-Laser, Glan-Taylor, Rochon, of Wollaston-type), wave-plate retarders 

made of mica, quartz, polarizing thin-films, among many other possibilities, and where the 

theoretical linear response is supposed to be ideal. Indeed, there is not any formal 

restriction if the passive retarders of an IPA are changed by Liquid Crystal Variable 

Retarders, LCVR, set to a fixed voltage and with an oscillatory high frequency value. This 

is true if the integration time for the detector used is larger than the period associated to the 

oscillating frequency applied to the voltage of the LCVR and the sample under study is 

passive.

 

Figure 3.4. A typical passive ideal polarimeter arrangement (IPA) 

 

3.4.1 Four- Mueller matrix method 

For an arbitrary optical system and by considering an IPA setup, it has been shown that the 

16 Mueller elements can be obtained from a set of 4 incident Stokes vectors (PSG) and 4 

states filtered or analyzed (PSA): p, s, +45, and r [4]. The incident Stokes vectors 

correspond to linear polarization states parallel (p), perpendicular (s), and to +45 degrees 
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(+) respect to the incidence plane, respectively, and to a right-hand (r) polarization state. 

The polarized states mentioned above, form a tetrahedron inscribed into the Poincaré 

sphere, whose vertex are contained on the surface. The 16 arbitrary Mueller elements can 

be determined from the following 16 intensity-measurements taken from the so detected 

Stokes element [5]: 
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(3.9) 

 where Imn = (s0)mn denotes the intensity measured when an m-polarized state illuminates 

the sample and an n-polarized state is analyzed. The Mueller matrix is obtained by solving 

the equation (3.7) for each of the 16 mij elements [4, 5]. 

Indeed, it has been shown explicitly the existence of four-equivalent sets for the PSG and 

PSA configurations for the complete determination of the MM of a given optical system 

[6]. As a matter of fact, there are an infinite number of four-sets for the PSG and for the 

PSA configurations that fulfills the condition they describe a regular tetrahedron inscribed 

into the Poincaré sphere, able to be used for the determination of the complete MM 

elements. It has been shown this number of measurements provides an optimized, stable 

result [4, 6-8]. 
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In the following paragraphs we will present an explicit method for the experimental 

determination of the complete Mueller matrix of a given general system, employing a 

partial Stokes polarimeter analyzer. 

The normalized Stokes vector is: 
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(3.10) 

It is considered as an “incomplete” polarimeter because the first element is not displayed 

explicitly by the automated system. In order to obtain the complete, un-normalized detected 

Stokes vector, it is necessary to multiply the four Stokes parameters for the total intensity 

present into each incident polarization state. From Eq. (3.7), the scattered Stokes vector 

incident onto the PSD is closely related to the incident Stokes vector on the sample. For the 

set of incident polarization states (i = p, s, +45, and r), the scattered Stokes vectors from the 

sample  are expressed, respectively, as 
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(3.11) 

The “power” detected is given by the total intensity associated to each scattered Stokes 

vector, according to 

03000020000100001000 ,,, mmsmmsmmsmms rddsdpd
+=+=-=+=

+  (3.12) 

On the other hand, the detected normalized Stokes vectors (Sid) are displayed as 
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And  
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The 16 elements of the Mueller matrix are obtained from equation (3.12) 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) 300333300332030331030330

2002232002220202210202120

100113100112010111010110

000030000200010000

,,
2

1
,

2

1

,,
2

1
,

2

1

,,
2

1
,

2

1

,,
2

1
,

2

1

mssmmssmssssmssssm

mssmmssmssssmssssm

mssmmssmssssmssssm

msmmsmssmssm

rdrdddsdsdpdpdsdsdpdpd

rdrdddsdsdpdpdsdsdpdpd

rdrdddsdsdpdpdsdsdpdpd

rddsdpdsdpd

-=-=-=+=

-=-=-=+=

-=-=-=+=

-=-=-=+=

++

++

++

+

 

 

  

(3.15) 

3.4.2 Six-Mueller matrix method 

The Mueller matrix elements were obtained now from a set of six incident Stokes vectors, 

where we have added the -45 degrees linear polarization and also the left-hand circular 

polarization state to the 4-incident polarization method. In practice, the method of 6-

incident polarization states provides more stable, less noise, results than the 4-incident 

polarization states method [5, 7-8]. 

The incident and the output Stokes vectors correspond to linear polarization states parallel 

(p), perpendicular (s), to +45 degrees (+), and to -45 degrees (-) respect to the horizontal 

plane of the working optical table, respectively, and to a right-hand (r) and a left-hand 
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polarization state (l). The total intensity associated with each incident polarization state (si 

is denoted as the “power” and is measured in dBm units.  

For the set of incident polarization states (i = p, s, ±45, r, and l), the scattered Stokes 

vectors from the sample (Sio) are expressed, respectively, as 
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(3.16) 

 

The “power” is given by the total intensity associated to each scattered Stokes vector, 

according to 
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(3.17) 

On the other hand, the detected normalized Stokes vectors (Sid) are displayed as 
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and 
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The 16 elements of the Mueller matrix are obtained from equations (3.17)  
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 (3.21)    

 

The above development has been realized under the consideration that the experimental 

setup has been calibrated with respect to the incident intensity associated to each 

polarization state. This is an essential step, in order to assign a physical sense to the 

measured Mueller matrix. It means that in the absence of any polarization-sensitive effects 

in the optical medium placed between the PSG and the PSA, any polarization state detected 

corresponds to the same polarization state generated.  

 

3.5 Depolarization scalar metrics 

When the Mueller matrix has been obtained, it is convenient to analyze the polarimetric 

properties associated to the system under study. In this sense, a very important property 

associated to an optical system is its capability to depolarize light, which is measured by 

using some of the following depolarization scalar metrics. The depolarization index, DI(M), 

and its physical realizable limits are defined by [4-5, 8-17 ]: 
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DI(M) is directly related to the Mueller matrix elements only. This means this metric can be 

applied only to the Mueller matrix elements associated to the optical system under study 

and not to the outgoing beam of light emerging from the system under consideration. 
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The degree of polarization, DoP(M,S), and its physical realizable limits have been defined 

by [5, 8-9]: 
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(3.23) 

DoP(M,S) is directly related to both, the Mueller matrix elements of the system under study 

and the incident Stokes vector. The DoP(M,S) usually is measured directly from the Stokes 

vector emerging of the system under study and the measured value is associated to the 

outgoing light; however, it is inherently related to the optical response of the system, as can 

be noted from Eq. (3.7).  

The upper limit associated to both, DI(M) and DoP(M,S), means the optical system does 

not depolarize, the lower limit is associated to total depolarization, and the medium limits 

correspond to partial depolarization. 

The anisotropic degree of depolarization, Add, is a relationship that gives insight into the 

isotropy or anisotropy depolarization capability of the medium. It has been defined by [6, 8]  
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(3.24) 

where the lower limit, 0, is interpreted as the depolarization generated by the system under 

study is isotropic. The upper limit, 1, is associated to a medium totally anisotropic. The 

intermediate values are associated to a partially anisotropic medium. 

The Diattenuation, D(M), and the Polarizance parameters, P(M), are respectively defined 

by [9] 
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and  
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By consider the decomposition of a Mueller matrix as a valuable complementary tool for 

characterizing the properties of systems, as well as the non-depolarizing properties of the 

media we can write the Diattenuation and the polarizance linear and circular parameters as 

[2]: 
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(3.27) 

The diattenuation parameter is a measure of the absorption of light by the sample and the 

polarizance parameter is a measure of the capacity to polarize light by the sample. 

The Q(M) metric and its physical realizable bounds are defined as [15,16] 
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(3.28) 

Where 0)( =MQ  for a totally depolarizing optical system; 1)(0 << MQ  for a partially 

depolarizing optical system; if 3)(1 <£ MQ  and 1)(0 << MDI  the system partially 

depolarizes also, but if 1)( =MDI , it is a non-depolarizing diattenuating optical system; and 

3)( =MQ  for a non-depolarizing non-diattenuating optical system, respectively [4, 8, 15-

16].  

There exists a common criterion to test when a Mueller matrix is derivable from a Jones 

matrix, named the theorem of Gil-Bernabeu [11] 

       
2
004)( mMMTr t

=  (3.29) 
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The physical meaning can be understood in this way: If a Mueller matrix fulfills the 

theorem, then it is associated to a non-depolarizing system; otherwise, it is associated to a 

depolarizing optical system. This criterion is valid for any passive optical system. 

The polarization dependent loss, PDL, is the maximum change in transmission/reflection 

with respect to polarization states x, y. Many fiber-optic components, such as isolators, 

couplers, circulators, fiber gratings, exhibit PDL. The polarization dependent loss is defined 

in terms of the Mueller parameters, as [8]. 
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where Tmax and Tmin are the maximum and the minimum values of the transmittance, 

respectively. 

Another way to calculate the PDL is by using the Diattenuation as follow: 
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(3.31) 

PDL is a random phenomenon and their value has a statistical distribution depend upon 

wavelength and the environment (temperature, vibration, etc.). Therefore, the 

characterization and the measurement of PDL in optical fiber and fiber optic devices are 

very important for optical fiber systems design and evaluation. 
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 4 Polarimetric characterization of long-period 

fiber gratings. 
 

One of our main interests in this thesis work is just to know the behavior of fiber optics devices 

to polarized light. In this chapter, we focus our attention to a Mueller-Stokes analysis of the 

polarization characteristics of both mechanical and ultra-violet long-period fiber gratings. Some 

scalar depolarization metrics are applied for the determination of the diattenuation (absorption), 

PDL, gain, attenuation, depolarization degree of anisotropy, among others important parameters. 

The Mueller matrix (MM) is determined through the Stokes vectors, which are measured using 

an incomplete, commercial, Stokes polarimeter. 

 

4.1 Mueller Matrix of the mechanically induced long-period 

fiber grating 

The Four-incident polarization states method has been used for the determination of the MM 

associated to a mechanically induced long-period fiber grating (M-LPFG) in a photonic crystal 

fiber, in an open space measurement [1-2]. Results show an increasing in the birefringence when 

the LPFG is present in the fiber. The PDL values of the UV-LPFG are intrinsically high in 

comparison to the grating produced by ultraviolet induced technique. 

 

4.1.1 Experiments and results 

To show the quality of the polarization states generated and detected by the polarimetric system, 

the equipment was self-calibrated with respect to the air where we have obtained the following 

numerical results for the Four-incident polarization states method, explained in Chapter two. 
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Observe the power measurements are very similar (ideally they should have the same value for 

any incident polarization state), where a He-Ne un-polarized laser has been used as the source 

(emitting at 632.8 nm) and the PSG consists of a linear polarizer of the Glan-Thompson type and 

a liquid crystal variable retarder (LCVR) [3], see Figure 4.1.  

 

 

Figure 4.1. Setup employed for the complete determination of the Mueller-Matrix for the air. 
 

The normalized experimental Mueller matrix for the air, at room temperature, is given by 
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The wavelength employed here is to show the capacity of the experimental arrangement to 

generate and to detect polarization states of high quality, which are easier to handle in the visible 

than in the infrared spectral region. We have obtained an eccentricity of 0.99 for the right-hand 

circular polarization state, which is greater than the usually obtained in practice [2]. The 

deviation from the ideal eccentricity (1.00) is due to the lack of control to generate and to detect 

circular polarization (here we are considering the eccentricity as the ratio of the minor to the 

major axis of the polarization ellipse). This experimental condition can be easily identified 

within the m00 value, when the system under study is the air.  

 

Figure 4.2 shows the results obtained for the gain (employing un-normalized Mueller matrix 

elements), the degree of polarization, the Poincaré output sphere, and the attenuation, when the 

system under study is the air.    
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Figure 4.2. Results obtained for a) the gain (employing un-normalized Mueller matrix elements), b) the 

degree of polarization (DoP), c) the Poincaré output sphere, and d) the attenuation, when the system under 

study is the air.    

 

The gain has the unitary value for all the incident polarization states, according to Figure 4.2(a).  

The output degree of polarization is close to one, for any incident polarization state (Figure. 

4.2(b)). The anisotropic degree of depolarization has a value of 0.0039, instead of 0.0000 (the air 

is an isotropic non-depolarizing medium at short distances). This deviation is a consequence of 

the instrumentation restrictions present in the generation and detection employed here (we could 

not get a better condition). As a consequence, the lack of perfect control on the generation and 

the detection of polarization states also affect the both DoP output and the Poincaré output 
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response Figure 4.2(b) and Figure 4.2(c) respectively. The Poincaré output sphere maps almost 

identically the polarization states taken from the unitary Poincaré input sphere, Figure 4.2(c). 

Observe that our measurements are within the accuracy and resolution parameters provided by 

the manufacturer of the equipment (see the PAX manual). 

 

To characterize the polarization response of the long-period fiber grating, it was necessary to 

analyze the photonic crystal fiber (PCF) first. We have used the experimental setup depicted 

schematically in Figure 4.3. It consists of a partial Stokes polarimeter analyzer (Thorlabs, model 

PAX5710/IR2) and an infrared source (Ytterbium Doped Fiber Laser with CW at 1064 nm, from 

IPG Photonics, PYL-10LP). This laser illuminates the polarizer state generator, PSG, which 

consists of a linear polarizer of the Glan-Laser type whit high polarization purity and an 

extinction ratio of 100000:1 (Thorlabs, model GL10), a half-wave plate (Thorlabs, WPMH05M-

1064), and a quarter-wave plate (Thorlabs, WPMQ05M-1064). The polarizer is used to obtain a 

linear polarization with a great extinction rate at the output source (the source provides a 30:1 

extinction ratio, a truly poor quality for our requirements). The half-wave plate acts as a rotator 

for the linear polarization (when the fast axis of the plate is set to an angle θ with respect to the 

linear polarization plane, generates a 2θ rotated linear polarization). The quarter-wave plate 

transforms the linear polarization into right-hand circular polarization when the fast axis of the 

plate is set to +45° with respect to the linear polarization plane. A couple of microscope 

objectives of numerical aperture 0.65 and focal length 4.48 mm are employed to concentrate the 

light from the PSG into the PCF (a distance of 10 cm separates one microscope objective from 

the other).  

 

The PCF is a commercial photonic crystal fiber F-SM10 that has a core/cladding diameter of 

10/125 μm, with a 3.4 μm hole diameter and lattice pitch of 6.8 μm, and shows an almost perfect 

hexagonal arrangement of holes without asymmetry in its cladding structure (Figure 4.4). The 

PCF is connected directly to the polarizer state analyzer, PSA (Thorlabs Polarimeter, 

PAX5710/IR2) and the measurements are taken for the 4-incident polarization states p, s, +45 , r. 

For each polarization state generated, the polarimeter analyzes the outgoing Stokes vector from 

the PCF.  
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Figure 4.3. Experimental setup employed for the determination of the Mueller matrix associated to a 

Photonic Crystal Fiber and to a Photonic Crystal Fiber with a Mechanically-Induced Long-Period Fiber 

Grating, respectively. 

 

Figure 4.4. Cross sectional view of the F-SM10. 

 

The experimental configuration shown in Figure (4.3) also was used to characterize de long-

period fiber grating. The Mechanically-Induced LPFG was generated by pressing a section of the 

Photonic Crystal Fiber, between two corrugated grooved plates (CGPs). The dimensions of both 

grooved plates were 70 mm long and 24 mm wide, and each one had a square groove pattern 

with 480 μm of period. The PCF was placed between the CGP by a fixed and rotational holder. 

Figure 5 shows the transmission wavelength response of the M-LPFG. 
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Figure 4.5. Transmission wavelength response of M-LPFG. 

 

The experimental setup of Fig. 4.3 has also been self-calibrated, where an azimuth angle of -18 

degrees for the setup of the polarimeter has been used. Figure 6 shows the results obtained for 

the gain (output energy/input energy), the degree of polarization, and the Poincaré output sphere, 

when the system under study is the PCF. 
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Figure 4.6.  Analysis of the Mueller matrix associated to the PCF. Figures a) show the gain, b) the output 

degree of polarization, and c) the Poincaré output sphere. 

 

4.1.2 Discussion 
 

The gain has the unitary value for all the incident polarization states, according to Figure 4.6(a).  

The output degree of polarization varies around the unitary value and the PCF has a strongly 

dependence on the input polarization states (Fig. 4.6(b)). The anisotropic degree of 

depolarization provides a value of 0.1718. This value is two-orders of magnitude greater than the 

condition for the illumination under a free space setup (and for another incident wavelength). We 

believe this value reflects an intrinsic anisotropic depolarization behavior associated to the PCF, 

which cannot be identified if only the orthogonal polarizations p and s are used. Finally, the 

Poincaré output sphere suffers a slightly deformation with respect to the spherically symmetric 

Poincaré sphere associated to the input polarization states.  

 

The normalized Mueller matrix obtained for the PCF, is given by 
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Where, one can observe the main diagonal Mueller parameters are close to the unitary value, 

which indicates a tendency to maintain the incident polarization states. The first row indicates 

there is not diattenuation. However, the presence of non-zero values on the upper and the lower 

side of the main diagonal indicates the presence of phase retardation and depolarization effects 

also. The depolarization of light by an optical system is generally due to selective absorption or 

correlation of pure states related to the sample. This information could not be obtained if only the 

p- and the s-polarization states were employed. 

 

We have measured the polarimetric response of a PCF when a long-period fiber, has been 

formed by the Mechanical-Induced Pressure Method. The results obtained are shown in Figure 

4.7 where, we can observe that the gain, Figure 4.7(a), and the DoP, Figure 4.7(b), have some 

kind of anisotropy-behavior dependent on the ellipticity angular values of the incident 

polarization states. This behavior can be understood if the anisotropic degree of depolarization, 

can be associated to a partially anisotropic depolarizing medium (i.e., some incident pure states, 

are more affected than others). In this case, the Mueller matrix provides a value of 0.1751 for this 

parameter. The Add value increases with the presence of the LPFG on the PCF, which means the 

system becomes more anisotropic as depolarizer. On the other hand, the Poincaré output sphere 

has not a spherical symmetry, which can be interpreted as a depolarization effect due to the 

presence of the LPFG on the PCF (Figure 4.7(c)). Observe that the poles rotate; this behavior is 

interpreted as an increasing in the birefringence associated to the M-LPFG. 

 
The normalized Mueller matrix obtained for the PCF with LPFG, is given by 
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(4.4) 

 

The form of this matrix suggests effects clearly associated to the presence of the induced LPFG. 

One evident effect is the presence of diattenuation (first row) and a marked depolarization effect 

(main diagonal values). In this case there is an increase of phase retardation and depolarization 
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effects also, according to the values shown in the upper and the lower diagonal parts of the 

Mueller matrix given by Eq. (4.4). 

               

 

      

Figure 4.7. Analysis of the Mueller matrix associated to the PCF with the M-LPFG. Figures a) show the 

Gain, b) the output degree of polarization, c) the Poincaré output sphere and, (d) the attenuation. 

 
 
Comparing the Figures 4.6 and 4.7, some considerable differences are found between them. 

These differences are mainly due to the presence of the LPFG in the PCF. With the LPFG, the 

gain (Figures 4.6(a) and 4.7(a)) depends strongly on the polarization state incident in the optical 

fiber. On the other hand, the output degree of polarization (Figures 4.6(b) and 4.7(b)) shows a 

tendency to polarize light linearly and to depolarize with the presence of the LFPG; however, the 
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un-perturbed PCF exhibits an intrinsic tendency to slightly depolarize the transmitted light. 

Finally, the Poincaré output sphere (Figures 4.6(c) and 4.7(c)) confirms the previous arguments: 

a reduction of the unitary radius is associated to isotropic depolarization effects, and a deviation 

of the spherical shape is associated to an anisotropic degree of depolarization, and the rotation of 

the axis is associated to the presence of birefringence. These effects increase with the presence of 

the LPFG in the photonic crystal fiber. 

 

Additional information about the behavior of the PCF with and without a LPFG can be obtained 

from the polarimetric data. The PCF is a self-calibration, see Table 4.1. 

 

 

Tabla 4.1. Polarimetric data obtained from the Mueller matrix associated to the PCF and to the PCF+M-

LPFG.[1] 

 D(M) P(M) DI(M) Q(M) Tr(MTM)/4(m00)
2 PDL(dB) Add 

PCF  0.0000 0.0255 0.9914 2.9489 0.9872 0.0000 0.1718 

PCF+LPFG 0.4006 0.0818 0.8604 1.7755 0.8052 8.4864 0.1751 

 

 

From Table 4.1, the following information can be deduced. The diattenuation parameter, D(M), 

that indicates the LPFG generates a diattenuation effect, not present without the induced grating 

(which is used here as the reference). In this sense the polarizance, P(M), increases 320% with 

the presence of the LPFG. This behavior can be understood as follows: The period of the LPFG 

induced in the PCF has been designed to show resonance at the wavelength employed (1064 

nm). In this way, the transmission is reduced because the resonance occurs; that is, the 

diattenuation (absorption) is increased. The LPFG affects the response to the transmitting 

polarization also. We can observe that transmitting an un-polarized state reaches a great output 

degree of polarization when the LPFG is present in the PCF. This means the polarizance 

parameter value increases. The physical mechanism responsible of this behavior must be 

associated to a dichroic, highly birefringent behavior due to the LPFG induced. The 

depolarization index, DI(M), the Q(M) depolarization scalar metric, and the theorem of Gil- 
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Bernabeu, all of them provide consistent results that indicate the presence of the LPFG increases 

in a 15% the effect of depolarization. These numerical results are coherent with the qualitative 

behavior presented with the deformation spherical shape of the Poincaré output sphere, Figure 

7(c). We can also observe that the PDL parameter value just indicates that the PCF is affected by 

the presence of the LPFG. Even more when the response to each of the four polarization incident 

states generates a high degree of polarization output states (see Table 4.1), the arithmetic average 

behavior shows a tendency to a loss of the DoP for any PSG when the LPFG is on the PCF. 

 

4.1.3 Conclusions 
 
The Four-incident polarization states method has been used for the determination of the Mueller 

matrix associated to a photonic crystal fiber (PCF) with and without a long-period grating 

(LPFG). Results show the diattenuation, D(M), and the polarizance parameters, P(M), increases 

greatly with the Mechanically-Induced Long-Period Fiber Grating present in the PCF. The 

depolarization index, DI(M), the Q(M) depolarization scalar metric, the theorem of Gil-

Bernabeu, the degree of polarization, DoP,  and the anisotropic depolarization degree, Add, 

provide consistent results that indicate the existence and the increasing of depolarization effects 

due to the presence of the LPFG in the PCF. Finally, the polarization dependent loss, PDL, also 

increases for the PCF with the MLPFG. It should be noted that the method employed here to 

determine the scalar depolarization metrics provides more accurate information than the usually 

reported similar experimental works where only two orthogonal linear polarizations are used [5-

6]. The basic difference is provided just by the phase difference between the two orthogonal 

linear polarizations, which contains additional information. One important result we have found 

here is just that the PCF we have employed has an intrinsic anisotropic degree of depolarization. 

It is very hard to obtain experimentally a perfect generation and analysis of the polarization 

states, mainly for circular polarization. This is the fundamental reason why the output degree of 

polarization is slightly up to its physical limit. However, the results we reported here are as close 

as possible within the precision values considered by the manufacturer of our equipment. 

 
 
 



Chapter 4. Polarimetric characterization of long-period fiber gratings 

-82- 
 

4.2 Mueller Matrix of the UV long-period fiber grating for 

the Four-incident polarization states method 

 

In Section 3.1.1, the Mueller matrix for a mechanically induced long-period grating was showed. 

Now, the Four-incident polarization states method has been used for the determination of the 

Mueller matrix and the polarimetric characterization associated to the long-period fiber grating 

(UV-LPFG) in a H2 pre-loading fiber. 

 

4.2.1 Experiment and results 

In order to determine the Mueller matrix of the ultraviolet long-period fiber grating (UV-LPFG), 

the setup shown in Figure 4.8 was used [6]. The light source is a semiconductor laser tunable 

within 1450-1590 nm range (Anritsu, Tunics Plus SC). This laser is connected to a Deterministic 

Polarization Controller (Thorlabs, model DPC5500) input. The output signal from the DPC is 

used as a PSG for the fiber under study, which is connected directly to the polarizer state 

analyzer PSA (Thorlabs, model PAX5710/IR3) and the measurements are taken for the four 

incident polarization states p, s, +45, and r, respectively. A computer controls the PSG and the 

PSA, and a computer program provides the results obtained. For each polarization state 

generated, the polarimeter analyzes the Stokes vector of the light beam leaving the system under 

study.   

 

Figure 4.8. Experimental setup applied for the determination of the Mueller matrix associated to a UV-

LPFG. 
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Figure 4.9 shows the transmission spectra of the UV-LPFG, and it has a transmission wavelength 

response centered at 1543 nm. The grating was manufactured by O/E Land Inc., model OEFBG-

100. The UV-LPFG transmission spectra have been measured using an un-polarized source 

(white-light source AQ4305) and an optical spectrum analyzer (AQ6315A) with a wavelength 

resolution of 2 nm. 

 

Figure 4.9. Transmission wavelength response of the UV-LPFG fiber under study, the resonance is 

centered at 1543 nm. 

For the analysis of the polarimetric properties, the Mueller matrix of the fiber with and without 

the UV-LPFG at the main resonance (1543 nm) was determinate. The normalized Mueller matrix 

obtained for the fiber without grating, at 1543 nm, is given by  
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(4.5) 

 

One can obtain some insight about the polarimetric characteristics of a given system, by 

analyzing the form of its associated Mueller matrix. The form of this matrix, Eq. (4.5), suggests a 

depolarization effect (the presence of non-zero values on the upper and the lower side of the 

main diagonal) and phase retardation also. It should be noted that this information could not be 

obtained if only the p- and the s-polarization states were employed as the incident Stokes states.  
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To show the general potential from the MM obtained, Eq. (4.5), the polarimetric response for 

some characteristic parameters (Table 4.2 and Figure 4.10) has been calculated. The gain has the 

unitary value for all the incident polarization states, according to Figure 4.10(a). The degree of 

polarization DoP, Figure 4.10(b), has some kind of anisotropy behavior dependent of the incident 

polarization states. The deterioration mechanism in the polarization degree is based on the 

assumption that an arbitrary incident polarized light is split into two separate eigen-polarization 

modes, which propagate at different group velocity values. Calculating the anisotropic degree of 

depolarization, a value of 0.022 is obtained. The Poincaré output response, Figure 4.10(c), has 

not a spherical symmetry, which can be interpreted as the presence of depolarization effects due 

to the reduction of the degree of polarization of light at the propagation through the optical fiber. 

As a consequence of the birefringence, due to possible deviations of the core from the circular 

cross section, as well as transverse stress, the poles of the sphere rotate. 
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Figure 4.10. Mueller matrix associated to the fiber studied here at 1543 nm with (a) un-normalized gain, 

(b) output degree of polarization, (c) the Poincaré output sphere, and (d) attenuation. 

 

In order to investigate the influence of UV-LPFG on the fiber, at 1543 nm, the corresponding 

(normalized) Mueller matrix obtained is given by  
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(4.6) 

 

The form of this matrix, suggests the presence of diattenuation effects, polarizance and a marked 

depolarization effect that can be attributed to the presence of UV-LPFG in the fiber (the 

exposure of the fiber to the UV beam creates an index change in the core). The grating coupling 

strength occurs at 1543 nm for un-polarized broadband white light source. In this way, the 

transmission is reduced; that is, the diattenuation increases also. The results obtained are shown 

in Figure 4.11 and Table 4.2. 

 

According to Figure 4.11(a), the gain depends strongly of the polarization state incident in the 

optical fiber (basal plane indicates all the possible incident polarization states from the Poincaré 

sphere); the variation is due to the intrinsic birefringence of the fiber. On the other hand, the 

output degree of polarization, Figure 4.11(b), shows a tendency to polarize light linearly and to 
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depolarize slightly for some incident polarization states. The Poincaré sphere representation of 

the output polarization states, Figure 4.11(c), confirms the presence of depolarization effects and 

an increase of birefringence induced in the fiber core due to the UV radiation exposure. The 

attenuation, Figure 4.11(d), shows a strong dependence of the polarization state incident in the 

optical fiber, which is caused because the transmission is reduced due to the presence of the UV-

LPFG. 

 

  

 

    

 

Figure 4.11. Mueller matrix associated with the UV-LPFG with (a) un-normalized gain, (b) the output 

degree of polarization, (c) the Poincaré output sphere, (d) the attenuation. 



Chapter 4. Polarimetric characterization of long-period fiber gratings 

-87- 
 

Additional information about the behavior of the fiber, with and without an ultraviolet long-

period fiber grating, can be obtained from the polarimetric data (Table 4.2). 

 

Table 4.2. Polarimetric data obtained from the Mueller matrix associated to the fiber without and with 

UV-LPFG. 

 D(M) P(M) DI(M) Q(M) Tr PDL Add 

Fiber 0.0000 0.0511 0.9804 2.8834 0.9709 0.0000 0.0222 

UV-LPFG 0.0671 0.0543 0.9631 2.7658 0.9547 1.3449 0.0574 

 

 

4.2.2 Discussion 

From previous results (Table 4.2), one can build the following information: The diattenuation 

parameter, D(M), indicates the UV-LPFG generates a diattenuation effect, not present without 

the induced grating. In this sense the diattenuation, D(M), increases greatly with the presence of 

the UV-LPFG. This behavior can be understood as follows: The period of the LPFG shows a 

resonance wavelength at 1543 nm. In this way, the transmission is reduced because the 

resonance occurs; that is, the diattenuation is increased. The LPFG affects the response to the 

transmitting polarization also. The physical mechanism responsible of this behavior must be 

associated to a dichroic, highly birefringent change in the core due to the UV-LPFG. The 

depolarization index, DI(M), the Q(M) depolarization scalar metric, and the theorem of Gil-

Bernabeu, all of them provide consistent results that indicate effect of depolarization. We can 

also observe that the PDL parameter value just indicates that the fiber is affected by the presence 

of the UV-LPFG as a consequence of the birefringence present in the grating structure. The PDL 

values are intrinsically low in comparison to gratings produced by other techniques used to 

fabricate them like through mechanical stress [5, 7-8], electric arc discharges, gratings produced 

by CO2 laser radiation, among others. Even more when the response to each of the four 

polarization incident states generates a high degree of polarization output states (see Table 4.2), 

the arithmetic average behavior shows a tendency to a loss of the DoP for any PSG when the 

UV-LPFG is on the fiber. 
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4.2.3 Conclusions 
 

The Four-incident polarization states method has been used for the determination of the Mueller 

matrix associated to UV induced long-period fiber gratings. Because the performance of the 

optical fiber is directly related to its polarization properties, the depolarization index, DI(M), the 

Q(M) depolarization scalar metric, the theorem of Gil-Bernabeu, the degree of polarization, DoP,  

and the anisotropic depolarization degree, Add was calculated. These depolarization scalar 

metrics provide consistent results that indicate an increasing in the birefringence when the LPFG 

is presented in the fiber. The PDL values of the UV-LPFG are intrinsically low in comparison to 

gratings produced by the mechanically induced technique. 

 

4.3 Mueller Matrix of the UV long-period fiber grating for 

the Six-incident polarization states method. 

 

In the following section a description of the full determination of the Mueller matrix associated 

to a commercial ultraviolet long-period fiber grating (UV-LPFG) is presented. The Mueller 

matrix elements were obtained now from a set of six incident Stokes vectors, where we have 

added the -45 degrees linear polarization and also the left-hand circular polarization state to the 

4-incident polarization method [2-3]. In practice, we have found the method of Six-incident 

polarization states provides more stable, less noise, results than the Four-incident polarization 

states method. 

 

4.3.1 Experiments and results 
 
For the measurements of polarization properties of the ultraviolet long-period fiber grating, the 

same experimental setup sketched in Figure 4.8 was used. In order to obtain the UV-LPFG 

response and make an analysis of its polarimetric properties, the Mueller matrix of the fiber with 

and without the grating at two symmetrically-spaced wavelengths around 1543 nm was 

determined. The normalized Mueller matrix obtained for the fiber without grating, at 1543 nm, is 

given by  
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(4.7) 

 

The form of this matrix, Eq. (4.7), suggests a depolarization effect (the presence of non-zero 

values out of the main diagonal), and also the phase retardation. From the Mueller matrix 

obtained, the polarimetric response for the most important characteristic parameters was 

calculated. The results obtained are shown in Figure 4.12. The gain has the unitary value for all 

the incident polarization states, according to Figure 4.12(a). The degree of polarization DoP (see 

Figure 4.12(b)), has some kind of anisotropic behavior dependent of the incident polarization 

states. Calculating the anisotropic degree of depolarization, a value of 0.0179 is obtained. The 

Poincaré sphere (see Figure 4.12(c)) does not have a spherical symmetry, which can be 

interpreted as small depolarization effects due to the reduction of the degree of polarization of 

light propagated through the core of the optical fiber without long-period grating inscribed. As a 

consequence of the birefringence arising from possible geometrical deviations of the core from 

the circular cross section, from uncontrollable transverse stress, as well as from some other 

achievable reasons, the poles of the sphere are rotated. One should note that the fiber attenuation 

is practically zero due to the length fiber is short (a few centimeters long) [3], see Figure 4.12(d).  
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Fig. 4.12. Mueller matrix associated to the fiber studied here at 1543 nm with (a) unnormalized gain, (b) 

output degree of polarization, (c) the Poincaré output sphere, and (d) attenuation. 

 

The normalized Mueller matrix obtained for the UV-LPFG at 1543 nm, is given by 
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(4.8) 

 

4.3.2 Discussion 
 

The matrix form suggests the presence of diattenuation effects (non-zero values in the first row) 

and polarizance (non-zero values in the first column). Moreover, one can observe a marked 

depolarization effect that can be attributed to the presence the UV-LPFG on the fiber core. 

According to this, we can infer that the exposure of the fiber to the UV light beam used for the 

grating writing creates a slight birefringence in the fiber core [4-5]. The wavelength of resonance 

of the UV-LPFG occurs at 1543 nm for un-polarized broadband white light source. In this way, 

the grating transmission decreases, that corresponds to the diattenuation increasing. The results 

obtained are shown in Figure 4.13. 
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The following information can be deduced of the graphical elements of the Mueller matrix. 

According to Figure 4.13(a), the gain depends strongly of the polarization state incident in the 

UV-LPFG; meanwhile, the gain variation is due to the intrinsic birefringence of the fiber. On the 

other hand, the output degree of polarization (see Figure 4.13(b)) shows a tendency to polarize 

the light linearly and to depolarize slightly for some others incident polarization states. The 

Poincaré sphere representation of the output polarization states, Figure 4.13(c), confirms the 

presence of depolarization effects and an increase of birefringence induced in the fiber core due 

to the UV radiation exposure. The attenuation, Figure 4.13(d), shows a strong dependence of the 

polarization state incident in the optical fiber, which is caused primarily by existence of UV-

LPFG inscribed in the fiber core.  

 

Figure 4.13(e) shows the total-, the linear-, and the circular- diattenuation and the polarizance 

contributions for the incident light at various wavelengths of the tunable laser (1533, 1538, 1543, 

1548, and 1553 nm). The main contribution in the total diattenuation D depends of the linear 

diattenuation DL, which is greater for the main resonance (1543 nm) and decreases at detuning 

from this. The observed circular diattenuation DC, has smaller, but non-negligible values. 

Another parameter calculated in this work is the polarizance; the total polarizance, P, increases 

with the presence of the UV-LPFG, and the linear- and the circular polarizance, PL and PC, are 

also wavelength-dependent (see Figure 4.13(e)). The linear polarizance is bigger than the circular 

polarizance; however, its contribution also decreases with wavelength detuning from the grating 

main resonance. Figure 4.13(f) shows the total diattenuation, D, and the total polarizance, P, of 

the fiber with and without the grating. When the UV-LPFG is presented on the fiber, the 

polarizance increases to 106%; from this Figure, one can see that the contribution of the circular 

polarizance is greater in the fiber with the grating but anyway, the contribution of the linear 

polarizance is dominant. 
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Figure 4.13. Mueller matrix associated with the UV-LPFG with (a) un-normalized gain, (b) the output 

degree of polarization, (c) the Poincaré output sphere, (d) the attenuation, (e) the total, linear, and circular 

diattenuation and polarizance parameters, (f) the total diattenuation and polarizance for the fiber with and 

without the grating, (g) PDL for the fiber with and without the UV-LPFG, and (h) the depolarization 

index for the fiber with and without the grating. 

 

 

Figure 4.13(g) shows the PDL for the fiber with and without the grating. The PDL results as a 

consequence of the birefringence presented in the grating structure, and it is stronger at the 

principal resonance and diminishes with the wavelength at the ends of the UV-LPFG. Bearing in 

mind that the value of PDL was null in the fiber without LPFG (see Figure 4.13(g)), finally, we 

calculated the depolarization index that appears strongly with the presence of the UV-LPFG, 

according to Figure 4.13(h). From the calculus, one can conclude that the depolarization effect is 

stronger at the grating resonance wavelength, and it symmetrically decreases at detuning to both 

sides from the resonance wavelength (1543 nm).  

 

Table 4.3 shows the results obtained for several scalar depolarization metrics, where all of them 

have physically realizable values. The depolarization index DI(M), the Q(M) depolarization 

scalar metric, and the theorem of Gil-Bernabeu show consistent results that prove that the UV-

LPFG shows a small depolarization effect at the resonance wavelength. This means the Jones 
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formalism can be employed to describe it there, once the small depolarization effects are taken 

into account, at other wavelengths the effect of depolarization occurs in a smaller proportion.  

 

 
Table 4.3. Polarimetric data obtained from the Mueller matrix associated to the UV-LPFG. 

λ 
(nm) 

D(M) DL(M) DC(M) P(M) PL PC DI Q(M) Tr PDL 
(dBm) 

Add 

1553 0.0276 0.0196 0.0194 0.0242 0.0241 0.0023 0.9957 2.9714 0.9936 0.5512 0.0103 

1548 0.0212 0.0160 0.0138 0.04351 0.0435 0.0011 0.9981 2.9869 0.9972 0.4235 0.174 

1543 0.0359 0.0214 0.0288 0.0543 0.0536 0.0092 0.9776 2.8621 0.9668 0.7175 0.0339 
 

1538 0.0113 0.0113 0.0000 0.0541 0.0498 0.0211 0.9939 2.9631 0.9909 0.2266 0.0153 

1533 0.0190 0.0189 0.0011 0.0952 0.0951 0.0026 0.9978 2.9854 0.9967 0.3797 0.0555 

 
 

Additional information about the behavior of the UV-LPFG can be obtained from the 

polarimetric data, through their respective Mueller matrices [9-11]. Unlike commonly reported 

results that are obtained by considering solely two orthogonal polarization states, s and p, which 

correspond somehow an approximation when the system under study does not have a simple 

symmetry, we are capable to provide more precise information such as the circular diattenuation, 

the circular polarizance, among others. All of them depend on the incident polarization state and 

could be used to design and control the output signal from these fibers or from potential 

polarization-based-devices. 

 

4.3.3 Conclusions 
 

A set of six incident Stokes vectors has been used for the determination of the Mueller matrix 

associated to a commercial UV-LPFG and also has been applied to the fiber without the UV-

LPFG, for comparison. These depolarization scalar metrics provide consistent results that 

indicate an increasing in the birefringence induced in the fiber core due to the exposure of the 

fiber to UV radiation. The anisotropic depolarization degree, Add, indicates the polarization 

direction at which this behavior occurs. The obtained polarization-dependent loss (PDL) values 

are intrinsically low in comparison to ones in gratings produced by other fabrication techniques. 
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Experimentally we have been observed an important improvement by using a six incident 

vectors, we can observe a measurements less noisy, and more accurately [12]. The disadvantage 

of this method opposite a four method is more time consuming data processing.    
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Results and conclusion 
 

In this thesis, the experimental determination of the Muller matrix and the estimation of some 

scalar polarimetric metrics associated with UV and mechanically induced long-period fiber 

gratings are presented. 

 

This study begins with a review of the different methods that have been proposed in literature for 

the inscription of LPFGs and their more relevant applications in optical communications and 

optical fiber sensing. Furthermore, a short revision of induced birefringence during the 

inscription process and the induced birefringence compensation techniques are presented, to 

introduce the readers in the importance of the birefringence on the polarimetric response of 

LPFGs. Then, the background required for the understanding of principle of operation of the 

LPFGs and their transmission properties, based in the couple mode theory are presented. A brief 

review of Jones calculus and scanning method that have been used to calculate the polarization 

properties of the fiber devices, such as PDL and PMD is also presented.  

 

We showed some elements to analyze the polarized light through the Stokes vectors and the 

Mueller matrix of an arbitrary optical system. Then, we have characterized, for the first time, 

both mechanically and UV induced long-period fiber gratings by using two explicit methods for 

the entire determination of the Mueller matrix. One method employs 4-incident polarization 

states (linear parallel, vertical, +45 degrees, and right-hand circular) and the other uses six-

incident polarization states (where we have added the −45 degrees linear polarization and also 

the left-hand circular polarization state to the 4-incident polarization method) for the 

experimental determination of the Mueller matrix. In practice, we have found the method of 6-

incident polarization states provides less noise and more stable results than the 4-incident 

method. 

 
The Mueller matrix was determined through the Stokes vectors, which were measured using an 

incomplete, commercial, Stokes polarimeter. Some scalar polarimetric metrics were applied for 

the determination of the diattenuation, PDL, gain, attenuation, depolarization degree of 

anisotropy, among others. Experimental results obtained with these two methods were presented, 
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compared, and discussed. In addition, graphical elements of the Mueller matrix were presented in 

order to predict the behavior of the LPFG at any polarization state.  

 

Our results offer a proof that the UV-LPFG shows a small depolarization effect at the resonance 

wavelength. This means; the Jones formalism can be employed to describe it, once the small 

depolarization effects are taken into account, and at other wavelengths, where the effect of 

depolarization occurs in a smaller proportion. This behavior is different to the M-LPFG, which 

decrease the degree of polarization. As a consequence, it can not be described by the Jones 

matricial formulism. 

 

The result presented here provides more accurate information than what is usually reported, 

when only two orthogonal linear polarizations are considered. It seems that experimental noise 

decreases with an increase of measurements in the determination of the Mueller matrix.  In this 

sense, a full polarimetric analysis could be used to design and control the output signal from 

these LPFGs or from potential polarization-based devices to realize the wavelength switchable 

fiber laser, among other applications.  
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Future work 

The characterization of LPFGs realized in this work can be extended to LPFGs induced by other 

fabrication techniques like electric arc discharges and laser CO2 exposure.  

 

Extending the analysis to measure polarization mode dispersion (PMD) 

 

Extending the analysis to measure polarization properties in fiber devices like optical couplers, 

pump diode pigtails, Mach Zehnder interferometers, among many other applications. 
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List of acronyms 
Amplified spontaneous emission, ASE 

Amplitude mask, AM 

Azimuth,  

Circular Diattenuation, D(C) 

Circular Polarizance, P(C) 

Coarse wavelength division multiplexing, CWDM 

Corrugated grooved plates, CGPs 

Decibeles, dBm 

Degree of polarization, DoP 

Dense wavelength division multiplexing, DWDM 

Ellipticity,  

Erbium doped fiber amplifiers, EDFA 

Fiber Bragg gratings, FBG 

Gain, (G) 

Glan-Laser, GL 

Grating length, L 

Holey Fiber, HF 

Ideal Polarimeter Arrangement, IPA 

Left-hand, (l)  

Linear Diattenuation, D(L) 

Linear Polarizance, P(L) 

Liquid Crystal Variable Retarders, LCVR 

Long-period fiber grating, LPFG 
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Long-period holey-fiber gratings, LPHFG 

Mechanically induced long-period fiber grating (M-LPFG) 

Optical spectrum analyzer, OSA 

Parallel state, P 

Perpendicular state, S 

Photonic crystal fiber, PCF 

Polarization mode dispersion, PMD 

Polarizer State Analyzer, PSA 

Polarization State Detector, PSD 

Polarizer State Generator, PSG 

Refractive index, RI 

Refractive index unit, RIU 

Right-hand, r 

Single mode fiber, SMF 

State of polarization, SOP 

Stokes vector, S 

The anisotropic degree of depolarization, Add, 

The Degree of polarization, DoP(M,S), 

The Depolarization index, DI(M) 

The Diattenuation, D(M),  

The Mueller matrix (MM) 

The Polarizance parameters, P(M), 

The polarization dependent loss, PDL,   

The Q metric, Q(M) 

Ultraviolet light, UV 



List of acronyms 
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Wavelength Division Multiplexing, WDM  

White Light Source, WLS 

Ytterbium fiber laser, YFL 

+45 degrees, (+), 

-45 degrees, (-), 

 


