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ABSTRACT

Results of numerical simulations related to the application of three processing
techniques in PIV are presented. The compared techniques are the standard correla-
tion method via Fourier transform, an optical flow method (Lucas-Kanade method)
and a combination of the latter and a artificial intelligence algorithm. The parame-
ters under analysis are the particle density, the diameter of the particles, the range
of displacement, the type of displacement (constant, vortex-like and sinusoidal), the
noise of displacement, the size of the subimage, the intensity variations, and the pro-
file of the particles (rectangle, Gaussian and triangular). Plots of percentage relative
errors are included for each parameter. The main findings are that the correlation
technique yields the best results in general and that the other two techniques show
their best performance when applied to low-contrast images.
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SUMMARY

In the velocimetry laboratory there is interest in developing a professional soft-
ware for the computation of displacement fields from images mainly of particle im-
age velocimetry (PIV) and digital image correlation (DIC). Currently, for that task,
there are basically two numerical methods, which have their strengthens and their
weaknesses. These two algorithms are studied in this work in order to assess their
performance and do a comparison. The algorithms are the correlation technique, the
Lucas-Kanade algorithm and a hybrid Lucas-Kanade, which incorporates an artificial
intelligence algorithm.

The correlation technique is the traditional technique in PIV and DIC. It uses
the concept of correlation to measure the displacement of the particles, and this
statistical measure of the displacement can be done by applying the Fourier trans-
form. The Lucas-Kanade algorithm computes the displacement by performing a
least squares minimization routine. The hybrid Lucas-Kanade includes an algorithm
called particle swarm optimization algorithm. The idea here is that the particle
swarm optimization algorithm helps Lucas Kanade to improve and optimize its re-
sult.

To compare these three algorithms, several parameters are evaluated: size of the
scan window, size of the diameter, magnitude of the displacement, noise level, con-
trast of the image, etc. The evaluation considers three types of displacement distribu-
tion: constant displacement, sinusoidal displacement and vortex-like displacement.

The main results of this work are that the correlation technique in general yields
more accurate results and that the hybrid Lucas-Kanade is especially accurate for
low-contrast images (but with heavier processing). Therefore, it is worth to incor-
porate both algorithms in a future version of processing software.
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Chapter 1

Introduccion

1.1 PIV

Particle image velocimetry (PIV) is an optical method of flow visualization used in
research. It is used to obtain instantaneous velocity measurements, displacements
and related properties in fluids.

The fluid is seeded with tracer particles which, for sufficiently small particles, are
assumed to faithfully follow the flow dynamics. The fluid with entrained particles is
illuminated so that particles are visible. The motion of the seeding particles is used
to calculate speed and direction (the velocity field) of the flow being studied.

Figure 1.1 describes a typical set-up for PIV recording in a wind tunnel. A
plane within a particular flow is illuminated in two instants by a high-intensity light
source, such as a laser. The light scattered by the particles is recorded generally
on two separate and consecutive video frames. The displacement undergone by the
particles between the video frames is to be determined and then by considering the
time between the two acquisitions, the local velocity can be obtained.[2]

Figure 1.1: Typical set-up for PIV recording.
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1.2 Methods for obtaining displacement

In this experimental technique, the calculation of the displacement vector for each
pixel of an image is of sheer importance. This is quite a complex problem since
matching one particle in two different frames is a task which may require heavy
processing. In this work we deal with three algorithms to carry out this task: the
correlation method, which is based on the covariance of corresponding subwindows of
an image; least squares method (Lucas-Kanade algorithm), that uses the information

of a surrounding pixels to calculate the displacement vector ~d of one pixel; and a
hybrid version of the latter, where an artificial intelligence code is applied.

The comparison of these three algorithms is the core of this work. So it is impor-
tant to understand their performance and find their advantages and disadvantages.

The parameters under analysis are the particle density, the diameter of the par-
ticles, the range of displacement, the type of displacement (constant, vortex-like
and sinusoidal), the noise of displacement, the size of the subimage, the intensity
variations, and the profile of the particles (rectangle, Gaussian and triangular).

The displacement of the tracer particles ~d can be expressed in its components u
and v, were u is the horizontal component and v is the vertical component.

1.2.1 The correlation method

The correlation method works with two images I1 and I2. This method finds the
similarity between samples of the two images by the computation of the correlation.

This method has two ways to do it, the first one is using the correlation by its
definition and another is by exploiting the Fourier transform properties (there is
a property of the Fourier transform that simplifies the correlation, the convolution
property of the Fourier transform). Both ways are equivalent, in Chapter 2 it is
explained the two ways and the corresponding characteristic of theses.[1,2,3]

1.2.2 The Lucas-Kanade algorithm

The Lucas-Kanade method finds the displacement ~d by assuming the two images
I1(x, y) and I2(x, y) are copies of one another, which means that the derivatives from
the images are equal and the images are function of the displacement d, so I2(x, y)
is a displaced copy of I1, i.e., I2(x, y) = I1(x + u, y + v). With this in mind, if we
want to minimize the discrepancy between the real I2(x, y) and the proposed I2,
I1(x + u, y + v), this can be carried out by applying the least squares method, and
the solution to the produced system of equations yields directly u and v. [6,7]
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When setting the system of differential equations, I1(x + u, y + v) is expressed
as Taylor series expanded to only 3 terms of the series (up to the linear term). The
approximation works effectively because the solution is found recursively. For more
information see the Chapter 3. [4,5]

1.2.3 Hybrid Lucas-Kanade algorithm

The Lucas-Kanade method has the ability to incorporate an artificial intelligence
algorithm to minimize the error function.[6,7,8]

The hybrid Lucas-Kanade corresponds to the original Lucas Kanade incorporat-
ing a swarm optimization algorithm. Particle swarm algorithm optimizes a problem
by having a population of candidate solutions, here particles, and moving these par-
ticles around in the search-space according to simple mathematical formulae over the
particle’s position and displacement. Each particle displacement is influenced by its
local best-known position, and to be guided toward the best known position, it is
updated taking into account the displacements of surrounding particles. This pro-
cess is expected to move the swarm of particle displacements towards the least-error
solution.
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Chapter 2

Particle image velocimetry by
correlation of images

2.1 Introduction

The correlation method calculates the displacement ~d of particles using two images.
The first image I1 is at time t, while the second Image I2 is at time t + dt, where dt
is a small portion of time.[1,2]

The method works with images in gray scale. Normally the scale is from 0 to 255,
where 0 is associated with the lowest value of light intensity and 255 represents the
highest intensity value. In this way, the white pixels in the images indicate particles
and the black background represents void. [3,2]

The main objective of the correlation method is to obtain the displacement of
every particle using the two images. Recognizing every particle in the two images
and then calculating the displacement is a really complex problem since an image can
contain thousands of similar particles. We can divide the image in small subimages,
with size of 16×16 pixels, for example, and work with these subimages. Now the
idea is to correlate the subimages of I1 with the corresponding subimages of I2.
By the correlation result, we can determine the displacement of the particle; this
will be discussed in detail along this Chapter. In Section 2.2 it is explained how the
correlation statistically works. In Section 2.3 the correlation PIV method is described
from the point of view of the Fourier transform; Section 2.4 describes how to find
the peak of correlation and in Section 2.5 the results of a preliminary simulation are
presented.
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2.2 Mathematical background

2.2.1 Statistical interpretation of correlation

Rather than estimating the displacement ~d analytically the method of choice is to
locally find the best match between the subimage Is1 and the subimage Is2 in a
statistical way. In the introduction of this chapter we mentioned that it is complex
to determinate ~d for every particle. So the analytical estimation is avoided and is
replaced by a statistical computation. Estimating the displacement ~d statistically
can be done through the use of the discrete cross-correlation function.[1,4]

To understand the statistical background of the cross-correlation function, Equa-
tion 2.1, is necessary to recall it.

R(x, y) =
k∑

i=−k

l∑
i=−l

Is1(i, j)Is2(i + x, j + y) (2.1)

R(x, y) is the measurement of correlation of the two samples at the current pixel
of index (x, y). The size of the neighborhood is determined by k and l. The variables
Is1 and Is2 are the subimages (intensity values) extracted from the original image
I1 and image I2 respectively. Is2 is larger than Is1, essentially the template Is1 is
linearly shifted around the sample Is2 without extending over the edges of Is2.

This expression is called the discrete cross-correlation. The cross-correlation func-
tion statistically measures the degree of match between the two samples for a given
shift. The highest value in the correlation plane can be used as a direct estimate of
the particle displacement.[1,5]

This is shown graphically in Figure 2.1.
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Figure 2.1: Example of the formation of the correlation plane by direct cross corre-
lation: here a 4×4 pix is correlated with a larger 8×8 pix sample to produce 5×5
pix correlation plane.

For shift values at which particles align each other.[1]
The cross-correlation will give a peak in the correlation plane when the particle

in subimage Is1 finds itself in subimage Is2. This happens since the cross-correlation
is just a sum of the products of the intensities between the two subimages. The
correlation of a particle and the void is zero.

Determining the coordinates of the peak of correlation, yields directly the com-
ponents of the corresponding subimage displacement. If in the subimages there are
more particles with negligible intensity, the information of their displacement will
be lost, since the peak of the correlation is just formed by the correlation of the
brightest particles.

2.2.2 Fourier interpretation of correlation

The Fourier transform has many properties that are useful, like: Linearity, time
shifting, scaling factor, etc. But there is a crucial property of the Fourier transform
for our purpose, the correlation property. To explain it, first we must need to recall
what the Fourier transform is.

The Fourier transform is defined by the following equation

F (ω) =

∫ +∞

−∞
f(x)e−2πiωxdx (2.2)

Where f(x) is the function to be transformed, F (ω) is the transformation of
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the function f(x), the exponential is the kernel of the Fourier transform, i is the
imaginary number and x is the spatial variable while ω is the variable of frequency.

So the Fourier transform of a function f(x) is just the decomposition of the signal
in its frequency components. The Fourier transform is just the Fourier complex series
applied to a function that has an infinity period.

There is an anti-transformation operation, which has the following form.

f(x) =

∫ +∞

−∞
F (ω)e2πiωxdω (2.3)

On the other side, the convolution in one dimension is defined as,

f(x) ∗ g(x) =

∫ +∞

−∞
f(x− x′)g(x′)dx′ (2.4)

The correlation is almost the same as the convolution but it has a difference, a
minus sign; this difference makes a different concept. The correlation is represented
in Equation (2.1).

f(x) ◦ g(x) =

∫ +∞

−∞
f(x + x′)g(x′)dx′ (2.5)

Now when we apply the Fourier transform to the correlation, we will prove the
result is given by the product of the Fourier transforms of both functions.

First we define the two functions to have the following forms in terms of their
Fourier transform; respectively:

f(x, y) = F−1[F (ωx, ωy)] =

∫ +∞

−∞

∫ +∞

−∞
F (ωx, ωy)e

2πi(xωx+yωy)dωxdωy (2.6)

g(x, y) = F−1[G(ωx, ωy)] =

∫ +∞

−∞

∫ +∞

−∞
G(ωx, ωy)e

2πi(xωx+yωy)dωxdωy (2.7)

On the other hand, the correlation for these functions of two dimensions has the
following form,

f(x, y) ◦ g(x, y) =

∫ +∞

−∞

∫ +∞

−∞
f(x + x′, y + y′)g(x′, y′)dx′dy′ (2.8)

Replacing Equation (2.6) in Equation (2.8) we get Equation (2.9).
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f(x, y) ◦ g(x, y) =

∫ +∞

−∞

∫ +∞

−∞
g(x′, y′)

∫ +∞

−∞

∫ +∞

−∞
F (ωx, ωy)e

2πi[ωx(x+x′)+ωy(y+y′)]

×dwxdwydx
′dy′(2.9)

Reordering the Equation (2.9) we have:

f(x, y)◦g(x, y) =

∫ +∞

−∞

∫ +∞

−∞
F (ωx, ωy)dwxdwy

∫ +∞

−∞

∫ +∞

−∞
g(x′, y′)e2πi[ωx(x+x′)+ωy(y+y′)]

×dx′dy′(2.10)
In Equation (2.10) the kernel has a positive sign; the integration inside the brack-

ets will give the conjugate of the Fourier transform of g(x′, y′).

f(x, y) ◦ g(x, y) =

∫ +∞

−∞

∫ +∞

−∞
F (ωx, ωy)G

∗(ωx, ωy)e
2πi[wx(x)+wy(y)]dwxdwy (2.11)

Equation (2.11) can be represented by the following form:

f(x, y) ◦ g(x, y) = F−1[F (ωx, ωy)G
∗(ωx, ωy)] (2.12)

Therefore, the transform of correlation of the images g(x, y) and f(x, y) is

F [f(x, y) ◦ g(x, y)] = F (ωx, ωy)G
∗(ωx, ωy) (2.13)

The transform of the correlation of the functions g(x, y) and f(x, y) is just the
multiplication of the Fourier transform of the function f(x, y) with the conjugate of
the Fourier transform of the function g(x, y).

This demonstration is for continuous data, but when integrals are replaced by
summations it can be applied to discrete data as well. Then, this equation can be
used for our purposes.

2.3 PIV evaluation

2.3.1 PIV step by step

This Section is the core of the chapter; it describes how to evaluate the PIV with
digital data. The digital PIV evaluation consists in working with stored computer
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images that are represented in a matrix form where every element of the matrix is
associated with a value of intensity (as earlier mentioned in this Chapter).

Working with this matrix (image) in software platforms is a great advantage as
the speed of the computers is getting higher. Also the problem becomes a digital
image processing problem [4,3].

The steps for the digital PIV evaluation algorithm are the following:
Step 1 Get the two Images I1 and I2 and store them on a computer in a gray

color scale.
Step 2 It is recommended to filter the images with a mean neighbor filter. The

neighbor filter is a filter that computes the average of every pixel with its closest
neighbors pixels; it helps to reduce the amount of noise in the images.[2,10]

Step 3 Divide the averaged images in small samples. Remember that the corre-
lation can be done by two ways, by its definition, Equation (2.1), or by the Fourier
transform. If the correlation is done by its definition, the samples of image I2 need
to be larger in size than the samples of image I1 (see Section 2.2.1). If the correlation
is carried out by the Fourier transform the samples of the image I1 and the image I2
must have the same size (see Section 2.2.2).

Step 4 Using the correlation by its definition: Calculate the correlation for
every pair of samples using Equation (2.1).

Step 4’ Using the Fourier correlation: Apply the FFT to every sample of
the images I1 and I2.

Step 5’ Using the Fourier correlation: Compute the product of the Fourier
transform of the subimage ISf1 with the corresponding conjugate of the Fourier
transform of subimage ISf2. Compute this operation for every pair of samples. Apply
the inverse FFT.

Step 5 Using the Fourier correlation: Find the coordinates of the correlation
peak which correspond directly to the displacement. The displacement is given by
the distance from the center of the correlation peak to the center of the correlation
image. (see Section 2.4).

2.3.2 Observations when FFT is applied to PIV

The use of the FFT for the computation of the cross-correlation plane has a number
of characteristics whose effects are important. Next, we list the main factors which
influence the performance of the Fourier method.

Fixed sample size: The FFT computational efficiency is mainly derived by
recursively implementing a symmetry property between the even and odd coefficients
of the discrete Fourier transform. In the case of digital PIV evaluation of the data

17



is supposed to have a base-2 dimension.[1]
Periodicity of the data: The definition of the Fourier transform is an integral

over a domain extending from minus infinity to plus infinity. In practice when the
FFT is computed over finite domains, it is assumed the data is periodic, that is,
the images continuously repeat themselves in horizontal and vertical directions from
minus infinity to plus infinity. [1,4]

Aliasing: Since the data input is supposed to be periodic, the FFT correlation
gets periodic correlation data. If the data of the image is length N and the sampling
period is less than 2 pix, then the correlation peak will be folded back into the cor-
relation plane and the resulting data appears on the opposite side of the correlation
image.[1]

Bias error: Another effect of the periodicity of the data is that the correlation
estimates are biased. This has to do with the geometrical shape of the window,
which is finite and it does have a Fourier transform as well, which weighs the Fourier
transform of the data. [1]

2.3.3 Observations in PIV evaluation

There are some occasions when the digital PIV fails, the situations are listed in the
following list.

Extremely noisy images: When the images are corrupted by noise, it is difficult
for the method to yield accurate results. So it is really important to filter the images
before hand or if necessary, repeat the capture of images.[2,10]

High particle density images: When the image has an extremely large amount
of particles and the particles overlap each other, the correlation will give wrong values
of the displacement estimations.[1,4,6]

High speed particles: The code gets wrong results when the particle is inside
the sample of image I1 but is not inside the corresponding sample of image I2. This
happens when the fluid speed is too large and dt is not short enough in comparison
with the time that it takes the particles to cross the sample of image I2.[7,8,9]

2.4 Peak detection

The position of the correlation peak is very important in the digital PIV evaluation;
this peak can be measured to subpixel accuracy. Since the input data is discretized,
the correlation value exists only for integral shifts. The peak value permits only an
accuracy of 1/2 pixel for the displacement.

18



To increase the accuracy of the measured displacement, there are a variety of
methods. Centroids, which are defined by the ratio between the first order moment
and the zeroeth order moment, where the larger the quantity of values contributing
to the calculation of the moment, the better. The most common of these methods
is called three-point estimator. It consists of only three neighbor values to estimate
a component of displacement.

The three-point estimator method consists in 3 steps, the steps are described
below.

Step 1 Scan the correlation peak R(i, j) and store its integer coordinates (i, j).
Step 2 Extract the neighboring four correlation values: R(i− 1, j) , R(i, j − 1),

R(i + 1, j) and R(i, j + 1).
Step 3 Use three points in each direction to apply the three point estimator,

generally a peak centroid or a fitting to a Gaussian curve.
The equation for the centroid and the Gaussian curve are estimated as,
Peak centroid:

x0 =
(i− 1)R(i−1,j) + iR(i,j) + (i + 1)R(i+1,j)

R(i−1,j) + R(i,j) + R(i+1,j)

(2.14)

y0 =
(j − 1)R(i,j−1) + jR(i,j) + (j + 1)R(i,j+1)

R(i−1,j) + R(i,j) + R(i+1,j)

(2.15)

Gaussian peak fit:

x0 = i +
lnR(i−1,j) − lnR(i+1,j)

2lnRi−1,j − 4lnRi,j + 2lnR(i+1,j)

(2.16)

y0 = j +
lnR(i,j−1) − lnR(i,j+1)

2lnRi,j−1 − 4lnRi,j + 2lnR(i,j+1)

(2.17)

These four equations give the coordinates in x and y for the peak centroid and
the Gaussian peak, respectively. [1]

2.5 Simulations and results

In this Section, by a typical example, it is described how the simulations are done in
this work.
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2.5.1 Simulations

The artificial particle image generator is a Matlab code that generates images with
artificial particles with known parameters: shape, diameter, dynamic range, spa-
tial density and image bit depth. The artificial particle image generator presented
here works with gray scale images and individual particles described by a Gaussian
intensity profile,

E(x, y) = E0e
−8[(x−x0)

2−(y−y0)
2]

d2r (2.18)

E(x, y) is the intensity at point (x, y). The center of the particles is located at
(x0, y0) with a peak of intensity of E0, and dr is the diameter of the particle.

The code first receives the positions of the center of every artificial particle, then
with Equation (2.18) it renders the intensity of every particle along the image. As
it can be seen in Equation (2.18) the intensity turns to zero for a position far from
the center of the particle, so the next step is to sum all the plots in one image
(matrix), like a superposition of waves. The result is a single image that contains
the corresponding intensity of every artificial particle.

The above description explains how the artificial particle image generator code
creates the initial image I1; now to get the second image I2, the particle image
generator code moves the center of every artificial particle with a previously known
displacement. Then the code repeats the same steps that generated the first image
I1.

The following pictures are typical images I1 and I2 that are generated by the
artificial particle image generator code.

Figure 2.2: Typical PIV images, without and with displacement.
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2.5.2 Results with the artificial particle image generator

Several tests are performed; the tests varied in the size of the image, the density of
the particles, the size of the samples and the displacement supposed by the artificial
particle image generator.

All the tests performed have the particularity that the displacement may change
from one test to another but is equal for every particle. This is because it is neces-
sary to realize if the code is working correctly. Since one image may contain many
particles, sometimes thousands of them, the testers will not recognize if the values of
the displacement computed by the code are correct if the displacement d is different
for every particle. The code behaves very well for all the samples, the values that the
code yields for the displacement are correct, sometimes changing a little bite (less
than one pix) since the code computes the peak detection using the centroid peak
Equation (2.14 and 2.15).

An example of these tests assumes two images I1 and I2 of size 1600 × 1600 pix.
Images I1 and I2 have 10000 artificial particles with diameter of one pixel. The
displacement given to I2 particles is 3 pix to the right in the horizontal direction
and 4 pix in the vertical direction. So every particle has a displacement d of 5 pix.
The algorithm divides the two images in 160 pairs of subimages of 16 × 16 pixels.
The subimages are correlated by Fourier transform and part of a result is shown in
Figure 2.3.

Figure 2.3: Displacement vectors obtained in a typical test performed with a constant
displacement.
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The results of the displacement of every subwindow of the initial test, is show in
Table 2.1.

Table 2.1: Displacements in pix

u 3 3.01 2.99 3 3 3 3.02 3 3 3 2.98 3 3 3 2.98 3

v 3.97 4 4 4 4.02 4.05 4 4 4 4 4 4 4 4 4 4

This example serves to realize the software is working properly; a more detailed
analysis of this algorithm is presented in Chapter 5 along with a comparison with
other codes.
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Chapter 3

The Lucas-Kanade algorithm

3.1 Introduction

Similar to the correlation method, the Lucas-Kanade algorithm has the goal; to
calculate the displacement of particles using 2 related images. The first image I1(x, y)
is at time t, while the second Image I2(x, y) is at time t + dt, where dt is the time
between the images. [1,2]

The Lucas-Kanade algorithm uses a system of differential equations to find the
diplacement components u and v. [3,4]

In Section 3.2 it is explained the mathematical background of the Lucas-Kanade
algorithm, in Section 3.3 we describe the Lucas-Kanade algorithm step by step along
with some highlights, and in Section 3.4 the results of the simulation by Matlab are
included.

3.2 Mathematical background

3.2.1 Suppositions

The goal of the Lucas-Kanade algorithm is to find the components of displacement
u and v. To do this, the code has some suppositions. The first image I1 is similar
to the second image I2.[1,5] Also, u and v are relatively small, and I1(x + u, y + v)
must be similar to I2(x, y). The objective of the code is to find u and v such that
the difference between I1(x + u, y + v) and I2(x, y) is a minimum.[1,2,3]
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3.2.2 Theoy

Equation (3.1) is the squared Error over a neighborhood of size N×M pixels, where
I1(x+ u, y + v) is the first image evaluated at the displacement components u and v
and I2(x, y) is the second image,[6]

Error2 =
N∑
i=1

M∑
j=1

[I1(x + i + u, y + j + v) − I2(x + i, y + j)]2 (3.1)

To minimize this Equation, it is better to express I1(x + u, y + v) in a Taylor
series (we take the first three terms),

I1(x + u, y + v) = I1(x, y) + u
∂I1(x, y)

∂x
+ v

∂I1(x, y)

∂y
(3.2)

Replacing Equation (3.2) in Equation (3.1), we get

Error2 =
N∑
i=1

M∑
j=1

[I1(x+i, y+j)+u
∂I1(x + i, y + j)

∂x
+v

∂I1(x + i, y + j)

∂y
)−I2(x+i, y+j)]2

(3.3)
To minimize the function, we apply a derivative respect to u and v, and equalize

to zero,

∂Error

∂u
= 2

N∑
i=1

M∑
j=1

[I1(x+i, y+j)+u
∂I1(x + i, y + j)

∂x
+v

∂I1(x + i, y + j)

∂y
)−I2(x+i, y+j)]

×∂I1(x + i, y + j)/∂x = 0(3.4)

and

∂Error

∂v
= 2

N∑
i=1

M∑
j=1

[I1(x+i, y+j)+u
∂I1(x + i, y + j)

∂x
+v

∂I1(x + i, y + j)

∂y
)−I2(x+i, y+j)]

×∂I1(x + i, y + j)/∂y = 0(3.5)

For shortening the notation, we omit the indices of the summations. Expanding
the two sums,
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∑∑
I1
∂I1
∂x

+ u
∑∑

(
∂I1
∂x

)2 + v
∑∑ ∂I1

∂x

∂I1
∂y

−
∑∑

I2
∂I1
∂x

= 0 (3.6)

and

∑∑
I1
∂I1
∂y

+ v
∑∑

(
∂I1
∂y

)2 + u
∑∑ ∂I1

∂x

∂I1
∂y

−
∑∑

I2
∂I1
∂y

= 0 (3.7)

What we get is a system of differential equations that can be expressed in matrix
form,

 ∑∑(
∂I1
∂x

)2 ∑∑
∂I1
∂x

∂I1
∂y∑∑

∂I1
∂x

∂I1
∂y

∑∑(
∂I1
∂y

)2
[ u

v

]
=

[ ∑∑
I2

∂I1
∂x

−
∑∑

I1
∂I1
∂x∑∑

I2
∂I1
∂y

−
∑∑

I1
∂I1
∂y

]
(3.8)

Equation (3.8) is similar to a typical system of linear equations with the form of
Equation (3.9),

Ax = b (3.9)

To solve Equation (3.9), we multiply both sides of the equation by the inverse
matrix of A,

[
u
v

]
=

 ∑∑(
∂I1
∂x

)2 ∑∑
∂I1
∂x

∂I1
∂y∑∑

∂I1
∂x

∂I1
∂y

∑∑(
∂I1
∂y

)2
−1 [ ∑∑

I2
∂I1
∂x

−
∑∑

I1
∂I1
∂x∑∑

I2
∂I1
∂y

−
∑∑

I1
∂I1
∂y

]
(3.10)

The solution of system of the differential equations is u and v, this u and v are
just for the neighborhood of length N×M .

3.2.3 The optical flow model

In this Section it is explained an alternative form of the Lucas-Kanade algorithm,
called the optical flow model. The optical flow model has a simpler notation and it is
easier to program than the minimization approach described in the previous section,
but both are equivalent, as it is shown next.

The same suppositions of the Lucas-Kanade algorithm are taken for the optical
flow model.

26



• The first image I1(x, y) is similar to the second image I2(x, y).
• The displacement u and v are relatively small.
• The first image 1(x, y) evaluated at x + u and y + v is equal to I2(x, y), I1(x +
u, y + v) = I2(x, y).[4,6]

Then, by assuming an exact differential (with small displacements) for the first
image,

I1(x + u, y + v, t + dt) = I1(x, y, t) +
∂I1
∂x

u +
∂I1
∂y

v +
∂I1
∂t

t (3.11)

Since the displaced image is assumed to be an exact copy of the first one, then

∂I1
∂x

u +
∂I1
∂y

v +
∂I1
∂t

t = 0 (3.12)

or

∂I1
∂x

u +
∂I1
∂y

v = −∂I1
∂t

t (3.13)

The derivative with respect to time is just the difference between the first and
the second image. Taking this into consideration, from Equation (3.13), we have,

∂I1
∂x

u +
∂I1
∂y

v = −(I2 − I1) (3.14)

Equation (3.14) is expressed for a single pixel; for a neighborhood of n pixels, the
following matrix form is obtained,

∂I11
∂x

∂I11
∂y

...
...

∂I1n
∂x

∂I1n
∂y

[ u
v

]
=

 I11 − I21
...

I1n − I2n

 (3.15)

Equation (3.15) is similar to,

A1x1 = b1 (3.16)

The system can be solved by using the pseudoinverse of A1. First, we need to
multiply both sides of the equation by (A1)

T to get a quadratic matrix A1(A1)
T on the

left side of the equitation:

AT1A1x1 = AT1b1 (3.17)
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Then, multiply both sides by the inverse of A1(A1)
T and the system is solved,

x1 = (AT1A1)
−1AT1b1 (3.18)

We can express (AT1A1) as

[
∂I11
∂x

. . . ∂I1n
∂x

∂I11
∂y

. . . ∂I1n
∂y

]
∂I11
∂x

∂I11
∂y

...
...

∂I1n
∂x

∂I1n
∂y

 =

[ ∑n
i=1(

∂I1i
∂x

)2
∑n

i=1

∂I1i
∂x

∂I1i
∂y∑n

i=1

∂I1i
∂x

∂I1i
∂y

∑n
i=1(

∂I1i
∂y

)2

]
(3.19)

which has the same form as the first term of the right-hand side of Equation
(3.10). Besides, (A1)

Tb1 yields

[
∂I11
∂x

. . . ∂I1n
∂x

∂I11
∂y

. . . ∂I1n
∂y

] I11 − I21
...

I1n − I2n

 =

[ ∑n
i=1

∂I1i
∂x

(I1i − I2i)∑n
i=1

∂I1i
∂y

(I1i − I2i)

]
(3.20)

which corresponds to the second term of Equation (3.10). The optical flow model
is equivalent to the Lucas-Kanade algorithm. However, Equation (3.10) has a double
sum, because the neighborhood of equation is N×M , and the terms of equation
Equation (3.19 ) and Equation (3.20) the neighborhood is the same but it uses a
one-dimensional path of length n =N×M .

3.3 Evaluation of the Lucas-Kanade algorithm

3.3.1 Lucas-Kanade algorithm step by step

It is important to see that Equation (3.10) is an approximate solution. To get the
best possible solution, the mathematical background explained in Section (3.2) must
be implemented recursively. This recursive approach compensates the use of only the
linear terms in the Taylor expansion. Thus, the first iteration gives a solution of the
type I1(x+u, y+v); then we apply the same process considering the previous answer
to find a new I1(x+u, y+v), and so on.[7,8] This implies that the subimage composed
by the M×N particles must be deformed according to the calculated displacement,
and this deformed subimage is the one used in the next iteration of the algorithm.
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Algorithm 1 Lucas-Kanade

1: Get the two subimages I1(x, y) and I2(x, y).
2: Take the first derivative of the first image I1(x, y) with respect to x and y.
3: Obtain the summations implied in Equation (3.10).
4: Calculate u and v.
5: With the new u and v, interpolate I1(x, y) to get I1(x + u, y + v).
6: The I1(x + u, y + v) becomes the new I1(x, y).
7: Go to step 2 and repeat the steps until the difference in displacement for two

consecutive iterations is less than a certain threshold.

3.3.2 Highlights of the Lucas-Kanade algorithm

There are some occasions when the Lucas-Kanade algorithm fails; the situations are
listed in the following list.

Noisy images. When the images are corrupted by noise or are saturated, it is
difficult for the method to yield accurate results, since pixel information gets lost.
This problem can be alleviated by preprocessing the images.[8]

Images with low particle density. When the image has less than 10 particles
per subimage, the derivatives of I1(x, y) may be zero, and equation 3.10 cannot give
a result.[1]

Particles with relatively large speed. The algorithm gets misleading results
when the particle is inside the neighborhood of I1(x, y) but not inside the corre-
sponding neighborhood of I2(x, y). This happens when the fluid reaches high speeds.
The problem is that I1(x, y) is no longer similar to I2(x, y).[1,6,7]

3.4 Simulations and results

Two synthetic particle images are generated, as described in the previous Chapter,
and the Lucas-Kanade algorithm is applied. The images are 128×128 pix with 1000
particles. The particle diameter is 1 pix. The displacement ~d for every particle is
constant, with components u = 1 and v = 1. The size of the subimages is 10×10
pix. The code processes all this information and computes the displacement. This
calculated displacement is then compared with the given displacement.

Also the code draws the vectors of the displacement. In the following Figure it
is shown the optical flow map of the above-mentioned example, for three iterations.
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Figure 3.1: A typical displacement map obtained by the Lucas-Kanade code. Three
iterations are shown.

In the next plot, Figure 3.2, we show the convergence of the values of displacement
for three different pixels selected from Figure 3.1.

Figure 3.2: The plot of the displacement of three pixels as the number of iterations
increases.
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Chapter 4

Artificial intelligence applied to
the Lucas-Kanade algorithm

4.1 Introduction

The main idea of this Chapter is to describe the addition of an artificial intelli-
gence algorithm to the Lucas-Kanade routine. This combination is called the hybrid
method.

In Section 4.2 we give a brief description of the artificial intelligence algorithm.
Then, in Section 4.3, the so-called particle swarm optimization algorithm is included.
In Section 4.4, a justification of the particle swarm optimization method is presented.
And finally in Section 4.5, the Matlab code of the hybrid algorithm is implemented
and described.

4.2 Introduction to artificial intelligence

Artificial intelligence is the intelligence shown by software or machines; also, it is an
academic field of study whose objective is to create intelligence. Some books describe
this field as the study and design of intelligent agents, where an intelligent agent is
a system that perceives its environment and takes actions that maximize its chance
of success.[1,2,3]

There are many types of intelligent agents. The agents are just algorithms with
the ability to perceive their environment and take decisions; in most of the codes,
these decisions are taken according to processes that have deterministic and random
steps [3,4]. Many of these algorithms are inspired by nature and they imitate how
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nature solves its problems. [5,6,7]
In this work just one type of these intelligence algorithms is described, the particle

swarm optimization algorithm.

4.3 The particle swarm optimization algorithm

4.3.1 Theory

This algorithm uses populations of solutions and iterations to find the best answer
in an optimization problem. The swarm algorithm is based on the behavior of the
populations of birds, when the crew is searching food; in this context the food means
the solution in the optimization problem.[7,8,10]

In the particle swarm optimization, there is a small population searching the
maximum value or the minimum value of a function; that function is the fit test
solution. The algorithm starts evaluating which particle is in the best position x(t)

in a certain function at time t (the best position refers to the position with the
minimum or maximum value in the population, depending if the code is searching
the minimum or the maximum value of the function). Then, the change of each
particle is determined. The next step is to obtain the position of all particles for the
next iteration t+1. The function of change depends on the current position of the
particle. Likewise, the function of position depends on the change function. In this
way all the birds in the population have communication with each other. Therefore,
when a bird finds food (which is equivalent to the maximum of the function), it
attracts other birds to its position and in the following iteration the other birds will
change their directions and will fly to the food, which means that the code converges
to the fittest solution. In every iteration, the current positions are evaluated, so the
leader of the crew (the bird with the best position) is changed when is required.[8,9]

So the algorithm has the following form:
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Algorithm 2 The particle swarm optimization algorithm

1: Initialize the population of particles with random positions.
2: Evaluate the positions of the population with a fit test.
3: Compare the progress of the population in the current iteration; compare the

performance of every bird/particle with its own historical record and find the
best of all.

4: With the position of the best particle, compute the change speed of every
bird/particle by [4,5]

Vi(t) = Vi(t− 1) + p1[xbesti(t) − xi(t− 1)] + p2[xbestofall(t) − xi(t− 1)] (4.1)

where p1 and p2 are two random numbers within 0 and 1, Vi is the velocity
of bird i, xi is the position of bird i, xbesti is the best historical position of i and
xbestofall is the best historical position of the population.

5: With the new velocities compute the new corresponding positions by

xi(t) = Vi(t) + xi(t− 1) (4.2)

6: Go to Step 2 and repeat until all the iterations are done.

4.3.2 Implementation example

In this Section a simple example of the use of the particle swarm optimization algo-
rithm is presented; we want to maximize the following equation,

y = 8x− x2 (4.3)

To do it, we can derive and equalize it to zero, but we will find the maximum
using the particle swarm optimization algorithm; Equation (4.3) is the fit test.

First we will use a population of four birds and we will have two iterations. We
start by setting all the initial velocities and initial positions to random values.

The values for p1 and p2 were selected randomly. The initial velocities are for the
first bird 0.013, the second bird 0.62, the third bird 1.06 and the last bird 0.41. In
the first iteration we have, Table 4.1.
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Table 4.1: Firts iteration

Initial positions Fit test p1 p2 Velocity New positions

1 7 0.55 0.21 0.58 1.58
2.2 12.76 0.65 0.11 0.79 2.99
1.7 10.71 0.22 0.32 0.60 2.30
3.7 15.91 0.98 0.85 0.41 4.11

Here the Fit test is calculated as Equation 4.3 is evaluated with the initial random
positions.

It can be seen that in the second iteration all the birds are converging to the
solution, 4, see Table 4.2

Table 4.2: Second iteration

Initial positions Fit test p1 p2 Velocity New positions

1.58 10.14 0.75 0.51 1.87 3.45
2.99 14.97 0.44 0.11 0.91 3.90
2.30 13.11 0.35 0.36 1.17 3.47
4.11 15.98 0.81 0.81 0.41 4.52

For Equation (4.3), the code converges rapidly and by the second iteration, all
the birds know that the food must be at position four. This procedure is really useful
when the equation is complex and where an analytical solution is not possible.

4.4 The hybrid algorithm

In this Section it is described the implementation of the swarm algorithm into the
Lucas-Kanade code.

The motivation is the following: since the Lucas-Kanade algorithm uses only
three terms of the Taylor series it needs a recursive algorithm to compute good
results. The idea is to help Lucas-Kanade algorithm to find the best u and v.

The primary goal of the Lucas-Kanade algorithm is to minimize the next error
function,
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Error2 =
N∑
i=1

M∑
j=1

[I1(x + i + u, y + j + v) − I2(x + i, y + j)]2 (4.4)

This function can be seen as the fit test function for the particle swarm algorithm.
This fit function is not analytical since the images I1 and I2 are numerical matrices.
This problem can be solved by recalling that image I1 is a function of u and v, and
that the Lucas-Kanade algorithm, in every iteration, updates the next image I1 by
an interpolation of current I1 by considering the current values of u and v. The
aim of the artificial intelligence algorithm is to find the u and v that minimizes the
difference by using the interpolation image generated by I1, u and v, and the second
image I2. Then, the fit function implemented in this code is the following expression,

Fit(u, v) = Interpolation(I1, u, v) − I2(u, v) (4.5)

Where Interpolation is the interpolation function in two dimensions of I1.
With the fit function defined, the following steps in the particle swarm optimiza-

tion algorithm are as described above.

4.5 Description of the implemented code

The code implemented is a hybrid of the Lucas-Kanade algorithm and the particle
swarm optimization algorithm.

4.5.1 Pseudocode of the hybrid algorithm

First, the Lucas-Kanade algorithm code gets u and v. Then, the swarm optimization
code uses a scan window that extracts the neighborhoods of u and v. Following, the
code uses the current u and v to find the best version of u and v that minimizes the
fit function in that neighborhood (the same process is applied to all scan windows).

So the code has the following form:
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Algorithm 3 The hybrid Lucas-Kanade algorithm

1: Get u and v with the Lucas-Kanade algorithm.
2: Extract the current u and v belonging to a neighborhood of a certain size.
3: Save the originals u and v in uoriginal and in voriginal.
4: Initialize the bird population of u and the bird population v with random values

between max(u) and min(u) and between max(v) and min(v), respectively.
5: Evaluate the populations of u and v with the fit test.
6: Get the best value for every element of populations and construct matrices ubest

and vbest with the best elements of the u and v populations, respectively.
7: With ubest, vbest, uoriginal, and voriginal, compute the velocity of every bird/particle.

Vui(t) = Vui(t− 1) + p1(ubest(t) − ui(t− 1)) + p2(uoriginal(t) − ui(t− 1)) (4.6)

Vvi(t) = Vvi(t− 1) + p3(vbest(t) − vi(t− 1)) + p4(voriginal(t) − vi(t− 1)) (4.7)

Here p1, p2, p3 and p4 are random numbers within 0 and 1, Vui is the velocity
of the bird i in the horizontal direction and Vvi in the vertical direction.

8: With the new velocities compute the new corresponding ui and vi.

ui(t) = Vui(t) + ui(t− 1) (4.8)

vi(t) = Vvi(t) + vi(t− 1) (4.9)

9: Go to Step 2 and repeat until all iterations are done.

4.5.2 An example of the implementation of the hybrid code

The same test taken by Lucas-Kanade algorithm of Section 3.4 now is processed by
the hybrid Lucas-Kanade code. The Lucas-Kanade works with images I1(x, y) and
I2(x, y), and gives an initial answer of u(x, y) and v(x, y); these u(x, y) and v(x, y)
have a matrix form in which their elements have the answers recollected for every
pixel in image I1(x, y).

The swarm optimization algorithm uses u(x, y) and v(x, y). These variables are
used in Equation (4.5). The code scans both matrices u(x, y) and v(x, y) and extracts
parts of these matrices and generate populations of birds and the listed points in
Section 4.5.1 are carried out. Normally the code extracts a neighborhood of 4×4 pix
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and produces populations of five birds with fifteen iterations. Recall that u(x, y) and
v(x, y) have a size of 128×128 pix, so the swarm optimization algorithm is applied
1024 times.

When the swarm optimization algorithm ends, the matrices u(x, y) and v(x, y)
are updated and should be better displacement values than the original ones; to prove
this statement, in Chapter 5 the original Lucas-Kanade algorithm and the hybrid
Lucas-Kanade are tested under several conditions.

In the result presented in Fig. 4.1, the swarm optimization algorithm uses a
population of five birds and 15 iterations are performed.

Figure 4.1: a) Lucas-Kanade algorithm result, b) hybrid Lucas-Kanade output.
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Chapter 5

Results

5.1 Introduction

This chapter is the core of the presented work; the three algorithms for calculat-
ing displacement maps described in Chapter 4 are tested by analyzing the effect of
distinct parameters on the accuracy of the results.

In Section 5.2, a description of the evaluation method is given. Then, in Sections
5.3 and 5.4 the results related with the correlation method and the Lucas-Kanade
method are presented, respectively. In these cases, synthetic particle images for
numerical analysis are assumed. In Sections 5.5, the performance of the combination
of the Lucas-Kanade method and an artificial intelligence algorithm is included.
Likewise, in Section 5.6 the performance of the three previous algorithms is shown
when applied to experimental images. In Section 5.7 we give the conclusions of this
work. Finally, in Section 5.8 we list the main challenges to be analyzed in a future
work.

5.2 Description of the numerical analysis

5.2.1 Relative error in percentage

To evaluate the different methods for calculation of displacement fields we use the
percentage relative error of the calculated displacement components, u and v, with
respect to the corresponding given values, ug and vg, respectively. The error equa-
tions for each displacement component are the following.[1,2,3]
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Eu =

√∑n
i=1(u

i
g − ui)2

n

100

max(ug)
(5.1)

Ev =

√∑n
i=1(v

i
g − vi)2

n

100

max(vg)
(5.2)

where n is the length of vector u and max(u) returns the maximum value of u.
This type of error is commonly used in the literature.[1]

For the numerical analysis of the methods, the following parameters are subjected
to variation.
1. Size of the window, from 16×16 pix to 64×64 pix in the correlation method and
from 5×5 pix to the 50×50 pix in the Lucas-Kanade algorithm.
2. Value of maximum displacement, depends of the type of displacement.
3. Diameter of the particles, from 1 pix to 3 pix.
4. Number of particles in the image, from 1000 to 3000 particles.
5. Noise level in the displacement, from 5% to 11%.
6. Contrast of the image, from 0% to 100%.
7. For the correlation method there is a test that evaluates the performance of the
method when the scan window is moved half its size.
8. Number of iterations, with the Lucas-Kanade algorithm.

The test about noise level consists in adding a percentage of random noise to the
images. This noise is computed with a matrix that has the size of the image, and its
elements take random values between zero and one; then, this matrix is multiplied
by the maximum value of the image, divided by one hundred, and multiplied by the
percentage of level noise. Each of the images to be compared has an independent
noise matrix.

The contrast of the image in turn refers to the ratio of the dynamic range of the
signal to the average signal, i.e., first the DC or average value is obtained:

DC = 255
100 − U

100
(5.3)

where U is the percentage of contrast that will have the image; then the upper
value of the image UP is computed, that is just the subtraction of the maximum
value of the image and the integer part of the DC:

UP = 255 − int(DC) (5.4)
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In Equation (5.4) int() means to take the integer part of the argument.
Finally, a normalization of each element I(i, j) of the image I is done, where

min(I) is the lowest value of the Image I and max(I) is the highest value of the
image I:

I(i, j) = int[
I(i, j) −min(I)

max(I) −min(I)
UP ] + DC (5.5)

To explain test seven, it is important to remember that in the correlation method
the images are divided by subwindows of a typical size of 32×32 pix. Then, the
Fourier algorithm is applied to every subwindow. The scan window moves with
steps of length of its own size. Similarly, when the scan window moves with steps
of half its size, the number of displacement vectors increases by 4 and the spatial
resolution improves. In Figure 5.1, a graphic demonstration of the above explanation
is given. In Figure 5.1 a) we have an example when the scan window moves in steps
of length of its size. In b) the scan window moves half of its size; in this case three
sub-windows are formed. This is an example only in the horizontal direction, but it
applies identically for the vertical direction.

Figure 5.1: a) Scan window moves in steps of same length of its size. b) Scan window
moves in steps of half its size.

For the study, first all the parameters take a-priori optimal values. Then, one
parameter is varied and its influence on the accuracy of the method is obtained.
Then, the optimal value of the latter parameter is taken and a second parameter is
analyzed. This process is repeated until analyzing all parameters.

The a-priori values are obtained with several runs of the code with different
parameters, the parameters that seems that minimizes the error.

The tests were performed for three types of displacements.

Constant displacement

Particles experience constant displacement in the horizontal and vertical directions.
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u = const1 v = const2 (5.6)

In the constant displacement tests, the second constant is bigger than the first
constant, const1 < const2, this is because with this condition, we can compute two
measurements in each test.

Sinusoidal displacement

Particles move according to a sinusoidal function.

u = Asin(x) v = 0 (5.7)

where A is the amplitude of the displacement and x is the horizontal position, see
Figure 5.2.

Figure 5.2: Sinusoidal displacement.

Vortex-like displacement

The particles tend to move along concentric circles.

u = Ax v = −Ay (5.8)

where A is a constant; x is the horizontal position and y the vertical position, see
Figure 5.3.
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Figure 5.3: Vortex-like displacement.

Similarly, we consider three types of synthetic particles, with different profile
functions:

• Gaussian particles have a exponential Gaussian profile (described in Chapter
2).[1,2,3]

•The images with binary particles assign 0 to the background and 255 to the
particles, like a squared function.

• The triangular particles are similar to the binary particles but these ones con-
tain a continuous distribution of gray levels, where the highest level of intensity is
at the center of the particle and the lowest level at the edges.

Figure 5.4: a) Gaussian profile particle. b) Binary profile particle. c) Triangular
profile particle.

All tests performed in Sections 5.3, 5.4 and 5.5 assume images of 128×128 pixels
containing synthetic particles, while in Section 5.6 a test using real images is pre-
sented. Every presented result corresponds to the average of five tests with the same
conditions.

The units for displacement values, size of the scan window, and the diameter of
the particles are pixels [pix].
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5.2.2 Subpixel displacement

Modeling of subpixel displacement is not straightforward for the cases of binary and
triangular particles. This is due to the discrete nature of these particles, their size
and their location.

In Figure 5.2 we show the process of achieving subpixel displacement for a binary
particle. For example, supposing that the particle is at pixel 5 and that 1 represents
the 100% of its size, of 1 pix, and that it undergoes a horizontal displacement. In
Figure 5.2 a) the displacement of the particle is 1 pix, so 100% of it moves 1 pix.
Now, if the displacement is of 1.8 pix, Figure 5.2 b), 20% of the particle stays in
position 5 while 80% of it moves to pixel 6. Another example, Figure 5.2 c), the
displacement is of 1.99 pix, therefore 99% of the particle experiences a displacement
of 2 pix and 1% 1 pix.

Figure 5.5: Subpixel displacement for a binary particle of diameter 1 pix.

Displacements of 0.5 pix cannot be modeled by the previous algorithm since in
that case its diameter increases from 1 pix to 2 pix, and this misleads the displace-
ment methods. For triangular particles, the same algorithm for modeling subpixel
displacements can be applied.

5.3 Results of the correlation method

In this Section, the results obtained with the correlation method are presented. Three
different types of displacement are considered. For each type of displacement, influ-
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ence of the different parameters on the accuracy of the results is obtained. Images
of 128x128 pix are assumed. In the corresponding tables, values for other param-
eters are shown (parameter radius refers to the radius of the particles, the double
of the radius is the diameter). Each Figure shows three plots, which correspond to
different type of particle profile: red for Gaussian, blue for binary and black
for triangular. [1,2,3]

For each testing parameter, we include a table that shows the values of the other
parameters (static parameters), a figure containing the results and a description of
the result.
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5.3.1 Constant displacement for correlation

Size of the scan window

Table 5.1: Static parameters

# Particles Radius [pix] u [pix] v [pix]

1000 1 2.2 2.4

Figure 5.6: Varying the size of the window of the correlation method with constant dis-
placement. a) Horizontal component of displacement. b) Vertical component of displace-
ment. Red plot for Gaussian particles, blue for binary particles and black for triangular
particles.

We notice that the larger the scan window, the smaller the error for the three types of
the particles and for both directions. Further, the average global influence of the type
of particle is relatively constant, considering the two components of displacement.
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Size of diameter of particles

Table 5.2: Static parameters

# Particles Size of the window u v

1000 16×16 2.2 2.4

Figure 5.7: Particle diameter versus percentage relative error. a) Horizontal component
of displacement. b) Vertical component of displacement.

In this case, the error increases directly with the diameter of the particles. This is
due to the following effect. Correlation is based on comparing spatial structures. If
the number of structures is low in each image the accuracy decreases. When the
particles get large, the number of pixels with large gray level increases and the image
background becomes white instead of black, and this decreases the number of spatial
structures.
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Size of displacement

Table 5.3: Static parameters

# Particles Size of scan window Radius

1000 16×16 1

Figure 5.8: Effect of the size of displacement. a) Horizontal component of displacement.
b) Vertical component of displacement.

It is observed that for large displacements the accuracy decreases. This is a con-
sequence of the decrease in the number of similar spatial structures in both images
being compared, since in the second one several particles move out of the scan win-
dow. As a rule of thumb, displacements greater than a quarter of the size of the scan
window should be avoided.
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Number of particles per image

Table 5.4: Static parameters

Size of the window Radius u v

16×16 1 2.2 2.4

Figure 5.9: Effect of the number of particles. a) Horizontal component of displacement.
b) Vertical component of displacement.

It is seen that the correlation method works better with a number of particles of at
least 1000, which correspond to 15 particles per scan window. This agrees with the
values found in the literature [1].
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Noise level

Table 5.5: Static parameters

Size of the window Radius # Particles u v

16×16 1 1000 2.2 2.4

Figure 5.10: Noise level influence. a) Horizontal component of displacement. b) Vertical
component of displacement.

As expected, the estimated error is affected by the level of noise. One can observe,
however, that the variation of the error is not significant, which implies that the
correlation method is relatively robust to this sort of noise. There is more error in v
since it has bigger displacement than u.
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Contrast

Table 5.6: Static parameters

Size of the window Radius # Particles u v

16×16 1 100 2.2 2.4

Figure 5.11: Influence of contrast. a) Horizontal component of displacement. b) Vertical
component of displacement.

Unlike the previous result, the effect of the contrast on the accuracy of the results
is significant. Actually, this results to be the most important parameter to take into
consideration. The cause of this is the lack of spatial structures as well. When the
contrast is low, the differences in intensities get smaller and the spatial structures
become part of the background.
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5.3.2 Sinusoidal displacement

It is supposed that the particles undergo horizontal displacement with a sine behavior
and that one period of the sinusoidal function covers the entire image. This implies
that displacement values are continuous and some are null and some point to the left
and others to the right.

Analyses as those in the previous sections are presented.
Size of the scan window

Table 5.7: Static parameters

# Particles Radius u v A

1000 1 Asin(x) 0 1

Figure 5.12: Size of scan window. a) Horizontal component of displacement. b) Vertical
component of displacement.

Compared to the result obtained for constant displacement, in this case, the size of
the window shows a larger effect on the accuracy. The reason for this is that images
contain a continuous distribution of displacements, instead of being constant. Then,
small windows do better because they do not tend to wash out the displacement
information.
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Size of diameter of the particles

Table 5.8: Static parameters

# Particles Size of the window u v A

1000 16×16 Asin(x) 0 1

Figure 5.13: Diameter. a) Horizontal component of displacement. b) Vertical component
of displacement.

There is an optimal value for the diameter of the particles, and it is around 2 pix;
this for the three types of particles. The cause of this is the same as in the constant-
displacement analysis. The error is larger when compared to the result with constant
displacement.
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Amplitude of horizontal displacement

Table 5.9: Static parameters

# Particles Size of the window Radius u v

1000 16×16 1 Asin(x) 0

Figure 5.14: Amplitude of the displacement. a) Horizontal component of displacement.
b) Vertical component of displacement.

It can be seen that for large displacement amplitude, the error is large as well. The
displacement must not be larger than the quarter of the size of the scan window. It
is worth noting the superior performance of the Gaussian particles.
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Number of particles per image

Table 5.10: Static parameters

Size of the window Radius u v A

16×16 1 Asin(x) 0 1

Figure 5.15: Number of particles. a) Horizontal component of displacement. b) Vertical
component of displacement.

It is shown that the error does not vary significantly with the number of particles.
However, as in the constant displacement, an optimal number of 1000 particles is
found.
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Noise level

Table 5.11: Static parameters

# Particles Window size Radius u v A

1000 16×16 1 Asin(x) 0 1

Figure 5.16: Noise level. a) Horizontal component of displacement. b) Vertical component
of displacement.

As in the case of the constant displacement, the noise level effect on the precision of
the results is almost constant. Also, the Gaussian particles yield the best results.
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Displacement of the scan window to half its size

Table 5.12: Static parameters

# Particles Radius u v A

1000 1 Asin(x) 0 1

Figure 5.17: Displacement of scan window to half its size. a) Horizontal component of
displacement. b) Vertical component of displacement.

Comparing these results with those in Figure 5.12, we can say that a slight improve-
ment is obtained when the scan window moves half its size.
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Contrast

Table 5.13: Static parameters

# Particles Window size Radius u v A

1000 16×16 1 Asin(x) 0 1

Figure 5.18: Contrast. a) Horizontal component of displacement. b) Vertical component
of displacement.

The error is affected by the contrast more severely than in the case of the constant
displacement, where errors on the order of 7% were observed.
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5.3.3 Vortex-like displacement
This sort of displacement field resembles a whirlpool. The important features of
this type of field are the mixture of displacements, negative and positive, and the
incorporation of a continuous set of amplitude values. Then, applying this dis-
placement field to the correlation algorithm, it may seem to be more challenging
for its performance. The amplitude of the maximum displacement is given by A.
For example, if A = 1/25, then the horizontal maximum displacement in pix is
Ay = (1/25)(128/2) = 2.56 pix.

Size of the scan window

Table 5.14: Static parameters

# Particles Radius u v A

1000 1 Ay −Ax 1/25

Figure 5.19: Size of the window of the correlation method. a) Horizontal component of
displacement. b) Vertical component of displacement.

It can be seen that the correlation method has an optimal size for the scan window
for this type of displacement; this size is 16×16 pixels. As expected, the error in this
case is greater than for the other types of displacement.
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Size of the diameter of the particles

Table 5.15: Static parameters

# Particles Window size u v A

1000 16×16 Ay −Ax 1/25

Figure 5.20: Diameter of particles. a) Horizontal component of displacement. b) Vertical
component of displacement.

As before, the best value for the diameter of the particles is 2 pix. However, the
calculated error is the largest one when considering the other types of displacement
distributions.
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Amplitude of displacement

Table 5.16: Static parameters

# Particles Window size u v Radius

1000 16×16 Ay −Ax 1

Figure 5.21: Amplitude of displacement. a) Horizontal component of displacement. b)
Vertical component of displacement.

The errors for horizontal and vertical components of displacements are similar.
Again, the largest errors are obtained for this type of displacement (as commented
above, this is the most challenging type of displacement to be analyzed).
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Number of particles per image

Table 5.17: Static parameters

Radius Window size u v A

1 16×16 Ay −Ax A/25

Figure 5.22: Number of particles. a) Horizontal component of displacement. b) Vertical
component of displacement.

As for other types of displacements, the optimal value for the number of particles
with vortex-like displacement is in the range from 1000 particles to 2000 particles.
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Nosie level

Table 5.18: Static parameters

# Particles Window size Radius u v A

1000 16×16 1 Ay −Ax 1/25

Figure 5.23: Noise level. a) Horizontal component of displacement. b) Vertical component
of displacement.

As it can be seen, the error arising from noise level is fairly constant and is on the
order of the obtained for sinusoidal displacement. The Gaussian particles perform
relatively better than the others.
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Size of the scan window, when it moves half of its size

Table 5.19: Static parameters

Radius # Particles u v A

1 1000 Ay −Ax 1/25

Figure 5.24: Scan window to half its size. a) Horizontal component of displacement. b)
Vertical component of displacement.

Compared with the sinusoidal result, the error for this sort of displacement distribu-
tion is larger. The best results are obtained for a window size of 16×16 pix as well.
Additionally, the errors do not show any dependency on the type of particles.
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Contrast

Table 5.20: Static parameters

# Particles Size of the window Radius u v A

1000 16×16 1 Ay −Ax 1/25

Figure 5.25: Contrast. a) Horizontal component of displacement. b) Vertical component
of displacement.

In general, this parameter is the one with the largest effect on the error. Therefore,
this variable should be carefully observed to attain large values in the experimental
stage. As previously noted, window sizes larger than 32×32 produce even larger
errors, but this parameter can be selected straightforwardly as to produce low errors.

Furthermore, considering the other two types of displacement, on average, the
vortex-type displacement yields slightly lower accuracy for the simulations.
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5.4 Results of the Lucas-Kanade algorithm

In this Section the results obtained with the Lucas-Kanade algorithm are presented
for all types of displacements. An analysis with the same changing variables is carried
out.[4,5,6]

5.4.1 Constant displacement for Lucas-Kanade algorithm

Number of iterations

Table 5.21: Static parameters

# Particles Size of the window Radius u v

1000 5×5 1 1.2 1.4

Figure 5.26: Varying the number of iterations. Percentage relative error. a) Horizontal
component of displacement. b) Vertical component of displacement.

The error converges to the lowest value of percentage error in 5 iterations. This
result is taken as a reference for the rest of the analysis.
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Size of the scan window

Table 5.22: Static parameters

# Particles Radius u v

1000 1 1.2 1.4

Figure 5.27: Window size. a) Horizontal component of displacement. b) Vertical compo-
nent of displacement.

The Gaussian particles present the best performance. Besides, the best condition for
the window size is at 20×20 pixels. This is an expected result since the larger of input
data points, the larger the level of information for the method. As in the correlation
method an average error of 4% was obtained, the Lucas-Kanade algorithm produces
worst results.

68



Size of diameter of the particles

Table 5.23: Static parameters

# Particles Size of the window u v

1000 5×5 1.2 1.4

Figure 5.28: Diameter. a) Horizontal component of displacement. b) Vertical component
of displacement.

It is noticed that a diameter of particle of around 3 pix gives the best overall results
in combination with the use of Gaussian particles. The obtained performance is
lower than for the correlation method.
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Size of the displacement

Table 5.24: Static parameters

# Particles Size of the window Radius

1000 5×5 1

Figure 5.29: Displacement. a) Horizontal component of displacement. b) Vertical compo-
nent of displacement.

The observed behavior is as the found for the correlation method (qualitatively and
quantitatively): when the displacement is beyond a threshold value, the similarity
of the images to be compared decreases.
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Number of particles per image

Table 5.25: Static parameters

Size of the window Radius u v

5×5 1 1.2 1.4

Figure 5.30: Number of particles. a) Horizontal component of displacement. b) Vertical
component of displacement.

In this test it can be concluded that the Lucas-Kanade works better for 1000 particles
in the region of 128×128 pix. When the number of particles is lower than 1000, the
error increases significantly because the image spatial information gets lower. When
compared with the correlation algorithm, the accuracy is lower.
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Nosie level

Table 5.26: Static parameters

# Particles Size of the window Radius u v

1000 5×5 1 1.2 1.4

Figure 5.31: Noise. a) Horizontal component of displacement. b) Vertical component of
displacement.

The computed percentage relative errors are around twice those obtained by the
correlation method even for the Gaussian particle that has the best performance.
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Contrast

Table 5.27: Static parameters

# Particles Size of the window Radius u v

1000 5×5 1 1.2 1.4

Figure 5.32: Varying the contrast of the images in the Lucas-Kanade algorithm. a)
Horizontal component of displacement. b) Vertical component of displacement.

The contrast of the images does not affect significantly the performance since the
variation of error is just 3%. When compared with the correlation result, the accuracy
of this result is on average greater.

In summary, for this type of displacement distribution, the performance of the
Lucas-Kanade is better than the computed by the correlation method, about 50%.
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5.4.2 Sinusoidal displacement

Size of the scan window

Table 5.28: Static parameters

# Particles Radius u v A

1000 1 Asin(x) 0 1

Figure 5.33: Varying the size of the scan window of the Lucas-Kanade method with
sine displacement. a) Horizontal component of displacement. b) Vertical component of
displacement.

The maximum displacement is less than a pixel; small windows are the best option,
because a big window gets an averaged result. When compared with the correlation
method, the accuracy is lower.
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Size of the diameter of the particles

Table 5.29: Static parameters

# Particles Window size u v A

1000 5×5 Asin(x) 0 1

Figure 5.34: Diameter versus error in the Lucas-Kanade method with sine displacement.
a) Horizontal component of displacement. b) Vertical component of displacement.

In this case, the Lucas-Kanade method outperforms the correlation method, where
errors of approximately 13% were computed.
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Horizontal displacement

Table 5.30: Static parameters

# Particles Window size u v Radius

1000 5×5 Asin(x) 0 1

Figure 5.35: Displacement. a) Horizontal component of displacement. b) Vertical compo-
nent of displacement.

In this test the triangular and the binary particles produce worst results. In the
correlation method an average value of 8% for the error was calculated.
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Number of particles per image

Table 5.31: Static parameters

Size of the window Radius u v A

5×5 1 Asin(x) 0 1

Figure 5.36: Number of the particles. a) Horizontal component of displacement. b)
Vertical component of displacement.

Anaccuracy lower than the obtained with correlation is observed.
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Noise level

Table 5.32: Static parameters

# Particles Window size Radius u v A

1000 5×5 1 Asin(x) 0 1

Figure 5.37: Adding noise to the displacement of the particles in the Lucas-Kanade al-
gorithm with sine displacement. a) Horizontal component of displacement. b) Vertical
component of displacement.

The error for the u component shows the same error as in the case of correlation.
Unlike this, for the v component, the accuracy decreases.
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Contrast

Table 5.33: Static parameters

# Particles Window size Radius u v A

1000 5×5 1 Asin(x) 0 1

Figure 5.38: Contrast. a) Horizontal component of displacement. b) Vertical component
of displacement.

In general, for this type of displacement the Lucas-Kanade algorithm outperforms
slightly the correlation method by around 10%.
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5.4.3 Vortex-like displacement

The method yields larger errors for displacements greater than 2 pix. Therefore,
these simulation results consider maximum displacement values of one third of those
used in the correlation algorithm (around 1 pix).

Size of the scan window

Table 5.34: Static parameters

# Particles Radius u v A

1000 1 Ay −Ax 1/75

Figure 5.39: Size of the scan window. a) Horizontal component of displacement. b)
Vertical component of displacement.

When compared with the correlation method, the errors are significantly larger. As
mentioned in the correlation section, this type of displacement is one of the most
challenging for evaluation purposes.
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Size of the diameter of the particles

Table 5.35: Static parameters

# Particles Size of the scan window u v A

1000 5×5 Ay −Ax 1/75

Figure 5.40: Diameter versus error in the Lucas Kanade algorithm with vortex-like dis-
placement. a) Horizontal component of displacement. b) Vertical component of displace-
ment.

The optimal value of the diameter is not clear, but is greater than for the previous
types of displacement.
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Amplitude of displacement

Table 5.36: Static parameters

# Particles Size of the scan window u v Radius

1000 5×5 Ay −Ax 1

Figure 5.41: Varying the displacement of the particles of the Lucas-Kanade method. a)
Horizontal component of displacement. b) Vertical component of displacement.

When the displacement has a vortex-like behavior the constant A must have a small
value because this type of displacement increases a lot in the edge of the image and
almost all the particles escape from the window and the scan window can not detect
them. For comparing purposes, the correlation average error was 15%.

82



Number of particles per image

Table 5.37: Static parameters

Radius Size of the scan window u v A

1 5×5 Ay −Ax 1/75

Figure 5.42: Number of the particles. a) Horizontal component of displacement. b)
Vertical component of displacement.

The optimized value of particles coincides with that obtained in the correlation
method, but error values are larger. The correlation method has better performance
than the Lucas-Kanade algorithm.
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Noise level

Table 5.38: Static parameters

# Particles Window size Radius u v A

1000 5×5 1 Ay −Ax 1/75

Figure 5.43: Noise level. a) Horizontal component of displacement. b) Vertical component
of displacement.

For this variable and the next, the tendency of the error is similar to the observed
for correlation, but again the accuracy is smaller.

Considering this type of displacement distribution, the results show that the
accuracy of the Lucas-Kanade method is lower than the obtained by the correlation
algorithm (about 60%).
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Contrast

Table 5.39: Static parameters

# Particles Window size Radius u v A

1000 5×5 1 Ay −Ax 1/75

Figure 5.44: Changing the contrast of the image of Lucas-Kanade algorithm with vortex-
like displacement. a) Horizontal component of displacement. b) Vertical component of
displacement.

Small contrast affects less drastically the performance of the Lucas-Kanade algo-
rithm. In this test the Gaussian particles have the best performance of all the three
types of particles.
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5.5 Results of hybrid Lucas-Kanade

The performance of the hybrid method is, in the best cases, about 10% better than
the Lucas-Kanade algorithm. The qualitative form of the obtained results is prac-
tically the same as the form of the results obtained by the Lucas-Kanade method.
Therefore, the plots and descriptions are omitted. The details of the numerical sim-
ulations are as follows. First, we apply 5 iterations of the Lucas-Kanade algorithm.
Then, 15 iterations are executed by the swarm algorithm. In this case, we use a
population of 25 birds and a scan window of 4×4 pix for the swarm code.

5.6 Experimental results

The experimental setup has the objective to test the performance of the three algo-
rithms with real images. The setup is similar to the setup described in the intro-
duction of this work: a laser sheet of light illuminates the object under test and a
camera registers a certain number of images.

Figure 5.45: Diagram of the experimental setup.
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Figure 5.46: Photograph of the experimental setup.

This setup consists of a box-like recipient with water that is heated by an elec-
tronic heater. For the seeding of the water we use talcum powder. Because of the
heat, a convection water flow is established. To capture the movement of the water
flow, a laser sheet is used in such a way that only one plane of the object is studied.
The light sheet is obtained by using a spherical lens and a cylindrical lens.

Following, the main parameters of the system are listed.
• Temperature at the lower part, 600C
• Temperature at the top part, 250C
• The laser is a 400-mW Nd:YAG laser emitting at 532 nm
• The camera is from Lumenera, model lm165m
• Frames per second, 15
• Exposition time, 67 ms
• Size of the recipient, 20x10x30 cm3
• Size of the images, 1040X1392 pix
• The range of values of displacements go from -4 pix to 4.5 pix
• The range of values of velocity are within -7.2 to 9.8 mm/s
• The diameter of the particles goes from 2 pix to 6 pix
• The focal length of the camera is 35mm
• The distance between the camera and the recipient is 1.07 m
• The distance between the recipient and the laser exit is 34.5 cm
• The spherical lens has a focal length of 500 mm
• The cylindrical lens has a focal length of -12.5 mm

Next, a pair of typical PIV images is shown in Figure 5.47. As it is noted, the
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contrast of the images at the upper part is lower than at the bottom. Besides, the
diameter of the seeded particles is not uniform.

Figure 5.47: Shows two typical images obtained in the experiment.

By applying the three algorithms to the previous images, the following Figure
shows the obtained results. The a) part is the result obtained with the correla-
tion technique, b) and c) correspond to the results produced by the Lucas-Kanade
algorithm and by the hybrid Lucas-Kanade algorithm, respectively.
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Figure 5.48: Typical experimental result, by a) the correlation technique, b) the
Lucas-Kanade algorithm and c) the hybrid Lucas-Kanade algorithm.

As noticed, the three methods give similar results. The discrepancy is less no-
torious between the Lucas-Kanade and the hybrid methods, since the latter works
with the results given by the Lucas-Kanade routine.
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5.7 Conclusions

In this Section, the main conclusions of this work are listed.
• The variable that shows the most influencing behavior on the accuracy of the meth-
ods is the level of spatial details of the images. This parameter is most influenced in
turn by the number of particles and the contrast.
• The Gaussian particles are the easiest to implement digitally and in most of the
cases are the ones that have best performance.
• The binary and the triangular particles have almost the same performance for all
the tests. Their implementation is complicated for sub-pixel displacements.
• Considering the type of displacement, the more challenging is the vortex-like dis-
placement, then the sinusoidal type and at last the constant type (yielding accuracies
50% higher than the other two). For the vortex -like distribution, the error decreases
around 10% considering the sinusoidal distribution.
• For all methods, the size of the displacement can’t be larger than a quarter of the
size of the scan window.
• In general, the correlation method outperforms both the Lucas-Kanade method
and its hybrid version, which includes artificial intelligence, by about 50%. The ex-
ception particular case to this is for the sinusoidal displacement distribution, where
the Lucas-Kanade presents an improvement of 10%.
• The Lucas-Kanade algorithm has better performance than the correlation method
in the contrast test. This has to do with the derivatives that the Lucas-Kanade code
has implicitly.
• The hybrid version of the Lucas-Kanade method shows an overall improvement of
approximately 10% with respect to the standard Lucas-Kanade method.
• The Lucas-Kanade algorithm and the correlation method need a minimum of par-
ticles in the image, otherwise the codes collapse.
• A disadvantage of the correlation method is that it produces displacement vectors
only for each subwindow. Unlike this, the Lucas-Kanade and its hybrid version yield
displacement vectors at each pixel of the image.
• Experimentally, the most difficult variable to control and optimize is the contrast.
For example, for relatively large fluid flow velocities, it is complicated to carry out
the seeding of particles. Further, when the laser does not have the necessary power,
the intensity and the contrast are reduced and the level of noise is amplified.
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5.8 Future work

In this Section the main points for a future work are listed.
•The next step of this work is to apply a genetic algorithm instead of the swarm
particle optimization algorithm.
• Apply artificial intelligence to the correlation algorithm.
• Make a library with this code for a commercial software.

91



Bibliography

[1] M. Raffel, C. Willert and J. Kompenhans, Particle Image Veocimetry A Practical
Guide. (Springer, 1998).

[2] R. Adrian and J. Westerweel, Particle Image Velocimetry. ( Cambridge Univer-
sity Press, 2011).

[3] J. Westerweel, Digital Particle Image Velocimetry Theory and Application. (Delft
University Press, 1993).

[4] B. Lucas and T. Kanade (1981), “An iterative image registration technique with
an application to stereo vision.” Workshop, Canada (Proceedings of Imaging
Understanding, 1981).

[5] S. Birchfield , ”Derivation of Kanade-Lucas-Tomasi tracking equation”. (Private
communication, 1997).

[6] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learing.
(Addison-Wesley,1989).

92


