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Abstract

In this thesis we will formulate a theoretical approach of surface second-harmonic generation
(SSHG) from semiconductor surfaces based on the length gauge and the electron density opera-
tor. Within the independent particle approximation the surface nonlinear second-order surface
susceptibility tensor χabc

surface(−2ω;ω, ω) is calculated, including in one unique formulation (i) the
scissors correction, needed to have the correct value of the energy band gap, (ii) the contribution
of the nonlocal part of the pseudopotentials, and (iii) the derivation for the inclusion of the
cut function, used to extract the surface response. The first two contributions are described by
spatially nonlocal quantum mechanical operators and are fully taken into account in the present
formulation. We will also revisit the three layer model for the SSHG yield and demonstrate
that it provides more accurate results over several, more common, two layer models. This entire
framework is implemented in the TINIBA software suite, which was developed over the course of
this doctoral project. We will apply this framework for the clean Si(001)2×1 and Si(111)(1×1):H
surfaces, and compare with various experimental spectra from several different sources. These
surfaces provide an excellent platform for comparison with theory, and allows us to offer this
study as an efficient benchmark for this type of calculation. Finally, we can conclude that this
new approach to the calculation of the second-harmonic spectra is versatile and accurate within
this level of approximation.
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1.1 A Review of Nonlinear Optics

1.1.1 Historical Overview

The discovery of the optical maser by Townes [1] and the construction of the laser by Maiman in the
late 1950s and early 1960s ushered a new age of optical discoveries. The ability to produce optical
beams with these devices automatically lead to very highly focused energies distributed over very
small areas. These concentrated energies allowed scientists to finally move into the optical nonlinear
regime for many different materials. The laser allowed for the first recorded observation of optical
second-harmonic generation (SHG) by Franken et al. in 1961 [2]. They produced a second beam of
light at twice the frequency of the original by exciting a piece of crystalline quartz. This frequency
doubling effect was dubbed SHG and was observed to be much less intense than the exciting beam.
There is a humorous anecdote about this experiment. Apparently, the editor of Physical Review
Letters thought that the second harmonic dot on the photographic plate was a speck of dust, which

1



1. Introduction

he edited out. The image found in the article has an arrow pointing at the empty spot where it
should be. However, this did not detract from the importance of the find.

Other developments followed promptly. In 1962, Bloembergen et al. [3, 4] developed the math-
ematical framework to explain nonlinear optical phenomena. That same year, Terhune et al. [5]
observed SHG in calcite. These discoveries were amongst others [6] that lead to further research into
the geometrical dependence of nonlinear effects, and helped verify that the majority of the SHG
signal produced in a centrosymmetric material comes from surface contribution, where inversion
symmetry is broken. In the late 1960s, Bloembergen [7] and others [8] studied SHG in a variety of
centrosymmetric materials and semiconductors. The advent of pulsed lasers during the 1970s [9]
allowed for even greater intensities to be obtained. Dye lasers came to prominence during these
years, offering very large bandwidths and relatively short picosecond pulses. However, these lasers
were very difficult to maintain and the dyes used were typically very toxic and presented serious
health risks. Interest began to form around using SHG to study surfaces and interfaces, since it
had been proven [10] to be exclusive to the surface area of a centrosymmetric material in the dipole
approximation. Shen et al. published [11] that there is also a quadrupole bulk contribution for
this kind of material, and in 1989 [12] published a review article summarizing most of the trends
in surface spectroscopy using SHG. Theoretical work also played an important role in the 1990s,
with new theoretical models by Sipe [13] and others [14–17]. Downer et al. [18] and Lüpke [19] both
produced very thorough and referenced texts on SHG surface spectroscopy of semiconductors in
the late 1990s and early 2000s. This period of time provided the foundations for surface nonlinear
optics today.

At around the same time, the first Ti:sapphire lasers were being produced and analyzed [20].
These early ultrafast lasers were capable of producing femtosecond pulses via mode-locked oscil-
lators. Since the active medium is in solid state form, they present none of the risks of using
dyes. These lasers were considerably more compact than dye lasers since they no longer needed
external dye control systems. These lasers became commercial in the early 1990s. Chirped pulse
amplification (CPA) was invented in 1985 by Mourou and Strickland [21]. This technique allowed
Ti:sapphire lasers to achieve much higher peak energy without compromising the ultrashort pulse
duration. During the 1990s, CPA became the prominent method for increasing energy output in
Ti:sapphire lasers. At this point, Ti:sapphire lasers using the CPA technique were both compact,
efficient, and cost effective. These factors would only improve over the following decade as the
Ti:sapphire laser became the standard for high energy, ultrashort pulse applications.

1.1.2 Nonlinear Polarization and Susceptibility

So what happens when very intense light coincides on a given material? Let us talk about the
dipole moment per unit volume, or polarization P(t). This polarization describes the effect light
has on a material and vice versa; it represents the optical response of a material. Taking Maxwell’s
equations with the usual considerations of zero charge density (ρ = 0) and no free currents (J = 0),

2



1.1. A Review of Nonlinear Optics

we have

∇ ·D = 0, (1.1)
∇ ·H = 0, (1.2)

∇×E = −µ0
∂H
∂t

, (1.3)

∇×H = ∂D
∂t

. (1.4)

We take into account the nonlinearity of the material by relating the D and E fields with the total
(linear and nonlinear) polarization P,

D = ε0E + P. (1.5)

Proceeding in the usual manner for deriving the wave equation, we obtain

∇×∇×E + 1
c2
∂2

∂t2
E = − 1

ε0c2
∂2P
∂t2

, (1.6)

which can be considerably simplified thanks to the identity

∇×∇×E = ∇ (∇ ·E)−∇2E, (1.7)

so we can finally express the inhomogenous wave equation as

∇2E− 1
c2
∂2

∂t2
E = 1

ε0c2
∂2P
∂t2

. (1.8)

In this form, it is clear that the polarization acts as a source for this differential equation, analogous
to a simple harmonic oscillator. The polarization can be expressed by a power series of the form

P (t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

]
(1.9)

≡ P (1)(t) + P (2)(t) + P (3)(t) + . . . , (1.10)

where χ(n) is the nth-order susceptibility of the material. We can define the susceptibility as a
constant of proportionality that describes the degree of polarizability a material has in terms of the
strength of an incoming optical electric field. The first term

P (t) = ε0χ(1)E(t), (1.11)

is the linear term that describes most everyday interactions between light and matter. When
taking into account that the incoming fields are vectorial in nature, the linear susceptibility χ(1)

becomes a second-rank tensor. χ(2), the second-order nonlinear optical susceptibility is a third-rank
tensor [22]. The nonlinear susceptibilities are very small in nature. If χ(1) is unity, χ(2) is on the
order of ≈ 10−12 m/V. This explains why such high intensity fields are needed to produce nonlinear
interactions; each term in equation (1.9) depends on a higher power of the incoming field but has
a much smaller value for the corresponding susceptibility.
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A more general definition of the nonlinear polarization can be found when treating the input
field as a superposition of plane waves. We assume that the electric field vector is of the form

E(r, t) =
∑
n

En(r, t), (1.12)

where
En(r, t) = En(r)e−iωnt + c.c.. (1.13)

If we look at the form of equation (1.9), we can express the nonlinear polarization in its full form as

P(r, t) =
∑
n

P(ωn)e−iωnt. (1.14)

Since we are only interested in second-order effects we can define the corresponding nonlinear
polarization in terms of the second order susceptibility as

P a(ωn + ωm) = ε0
∑
bc

∑
(nm)

χ(2),abc(−(ωn + ωm);ωn, ωm)Eb(ωn)Ec(ωm), (1.15)

where the indices abc refer to the Cartesian components of the fields, and (nm) denotes that n and
m can be varied while the sum ωn +ωm remains fixed. We can study the generalized case when we
have two incoming scalar fields with frequencies ω1 and ω2. We can represent this in the following
form

E(t) = E1e
−iω1t + E2e

−iω2t + c.c.. (1.16)
Assuming the form of equation (1.9)

P (2) = ε0χ(2)E2(t), (1.17)

and substituting expression (1.16) we get

P (2)(t) = ε0χ(2)
[
E2

1e
−i2ω1t + E2

2e
−i2ω2t

+ 2E1E2e
−i(ω1+ω2)t + 2E1E

∗
2e
−i(ω1−ω2)t + c.c.

]
+ 2ε0χ(2) [E1E

∗
1 + E2E

∗
2 ] . (1.18)

We separate this expression into its components and the nonlinear effect represented, in the following
manner (abbreviations defined in table 1.1),

P (2ω1) = ε0χ(2)E2
1e
−i2ω1t + c.c. (SHG),

P (2ω2) = ε0χ(2)E2
2e
−i2ω2t + c.c. (SHG),

P (ω1 + ω2) = 2ε0χ(2)E1E2e
−i(ω1+ω2)t + c.c. (SFG),

P (ω1 − ω2) = 2ε0χ(2)E1E
∗
2e
−i(ω1−ω2)t + c.c. (DFG),

P (0) = 2ε0χ(2) (E1E
∗
1 + E2E

∗
2) + c.c. (OR).

(1.19)

Janner [23] has a wonderfully formatted table in her dissertation that summarizes the first few
optical processes, reproduced here in Table 1.1. From this point forward we will only be concerned
with second-order effects.
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1.1.3 Symmetry Considerations for Centrosymmetric Materials

As mentioned previously, χ(2) is a third-rank tensor with 27 elements. The amount of non-zero
elements varies with the symmetry properties of the medium. SHG has intrinsic permutation
symmetry for the incoming fields, such that χ(2),abc = χ(2),acb; this reduces the total components
from 27 to 18. Knowledge of the symmetry properties of the material can help us reduce the amount
of unknown elements to calculate.

A centrosymmetric material, or a material with an inversion center, is a material that for every
point at coordinates (x, y, z), there is an identical point located at (−x,−y,−z). For instance, many
crystals are centrosymmetric. If we assume that we are in the bulk of a centrosymmetric material,
we can write the nonlinear polarization as

P (r, t) = ε0χ(2)E2(t). (1.20)

If the medium is centrosymmetric, a sign change on the coordinates must affect both the electric
field and the polarization since they are polar vectors [24]. So,

−P (r, t) = ε0χ(2) [−E(t)]2 , (1.21)
= ε0χ(2)E2(t). (1.22)

However, substituting (1.21) into (1.20) we get P (r, t) = −P (r, t). We can finally deduce that

χ(2) = 0. (1.23)

Therefore, all second-order processes are forbidden in the bulk of centrosymmetric materials in
the dipole approximation. We will talk about another important approximation in section 1.1.4.
This property is broken at the surface since that region no longer presents an inversion center.
This very special property is what enables second-order nonlinearities to be so effective for surface

Table 1.1: Optical processes described with χ(n).

χ(n)(−(ω1 + . . .+ ωn);ω1, . . . , ωn) Process Order
−ω1 ; ω1 Linear absorption / emission and refrac-

tive index
1

0 ; ω1,−ω1 Optical rectification (OR) 2
−ω1 ; 0, ω1 Pockels effect 2
−2ω1 ; ω1, ω1 Second-harmonic generation (SHG) 2

−(ω1 + ω2) ; ω1, ω2 Sum-frequency generation (SFG) 2
−(ω1 − ω2) ; ω1, ω2 Difference-frequency generation (DFG) /

Parametric amplification and oscillation
2

−ω1 ; 0, 0, ω1 d.c. Kerr effect 3
−2ω1 ; 0, ω1, ω1 Electric Field induced SHG (EFISH) 3
−3ω1 ; ω1, ω1, ω1 Third-harmonic generation (THG) 3
−ω1 ; ω1,−ω1, ω1 Degenerate four-wave mixing (DFWM) 3
−ω1 ; −ω2, ω2, ω1 Two-photon absorption (TPA) / ioniza-

tion / emission
3
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1. Introduction

and interface measurements. Likewise, any other mechanism that breaks the symmetry, such as
an electric field or mechanical stress will also allow a second-order signal to be produced. See
Bloembergen’s [25] excellent review about second-order effects for surface spectroscopy for further
reading.

1.1.4 Bulk Quadrupolar and Other Contributions

We assume that the nonlinear polarization can take the form of a multipole expansion, as we ex-
pressed in Eq. (1.9). This work is interested exclusively in the dipole approximation, that assumes
that the dipolar contribution is significantly greater than the quadrupolar and higher order contri-
butions. This is not necessarily the case in many materials. In particular, we find that there can
be a non-negligible electric quadrupole contribution from the bulk of centrosymmetric materials.
Bloembergen et al. [7] elaborate on this as early as the 1960s. This adds a severe complication to
the use of second-order nonlinearities as surface probes since signal is actually produced from both
surface and bulk. Sipe et al. [26] go into some detail about this problem, stating that it is very
difficult to separate the surface and bulk contributions as the various nonlinear coefficients can-
not be measured separately. Guyot-Sionnest and Shen [11] go one step further and state that the
contributions are impossible to separate. They suggest that the best way to distinguish one from
the other is by taking measurements before and after altering the surface and observing the overall
changes to the produced signal. About a decade later, Shen et al. [27] state that bulk contributions
not only come from the electric quadrupole, but also from the magnetic dipole, although the latter
is typically much less intense than either of the former. They express the bulk polarization as a
multipole series as follows,

PB(ω) = PD(ω)−∇ ·Q(ω)−
(
c

iω

)
∇×M(ω) + . . . , (1.24)

where PD(ω) is the dipolar polarization, Q(ω) is the electric quadrupole polarization, and M(ω)
is the magnetic dipole polarization. Indeed, if only the dipolar contribution is forbidden for cen-
trosymmetric materials then there will be a contribution from the other two in addition to the
dipolar contribution at the surface. The group does however go on to explain that there are a few
experimental ways that can help distinguish between surface and bulk contributions.

If Q(ω) is assumed to take some form similar to

Q(ω1 + ω2) ≈ χ(2)
q (ω1 + ω2)E(ω1)∇E(ω2), (1.25)

then χ
(2)
q is a fourth-rank tensor with 81 independent elements. Clearly this adds considerable

complication to our problem; hence the importance of selecting the appropriate symmetry. In
summary, bulk electric quadrupole and magnetic dipole contributions to second-order surface effects
may not be negligible and need to be taken into account. However, in this work we study the
nonlinear optical properties of Silicon, and it is known that the quadrupolar effects are quite small
[28–33]. Therefore, we will neglect these effects for the remainder of this thesis.
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1.1.5 SFG and SHG

We call the third process in expression (1.19) sum-frequency generation (SFG). It is a second-order
process that involves two photons, of frequencies ω1 and ω2 that combine to form one photon of
frequency ω3 = ω1 + ω2. This is represented mathematically as

P (ω1 + ω2) = 2ε0χ(2)E1E2e
−i(ω1+ω2)t + c.c., (1.26)

where the term is explicitly stated in the exponential. A special case of sum-frequency generation
is when both incoming field frequencies are the same, i.e. ω1 = ω2; this case is also known as the
degenerate case. The resulting frequency is then exactly twice that of the input frequency.

As mentioned previously, second-order nonlinear processes are prohibited in the bulk of cen-
trosymmetric materials (in the dipole approximation). Since it has a very strong surface contri-
bution (where the inversion symmetry is broken), it can be used as a very precise diagnostic tool
for surface and interface regions. The use of these second-order nonlinearites for surface studies
had gained momentum in the 1990s. McGilp wrote a review about using SHG and SFG as surface
and interface probes in 1996 [34]. He added experimental confirmation to his theories in 1999 [35]
in a thorough review about using SHG on almost any surface. Aktsipetrov et al. [36] followed a
different approach by establishing what they call electric field induced second-harmonic generation,
or EFISH. In this paper they elaborate how the sensitivity of SHG to surfaces can be enhanced
by applying an electric field across the interface. More recently a book in the field of second-order
nonlinear optics has been published with a wealth of useful information [37].

The theoretical side of things was further developed in a paper by Maytorena et al. [17] discussing
the formalities of SFG from surfaces by finding the exact expressions for the susceptibility based
on modeling conductors and dielectrics. These models include fluid based, classical dynamics in
addition to the wave equation treatment. A couple of interesting review papers by Downer et
al. [18] and Scheidt et al. [38] exist, where they report results of SHG spectroscopies from a variety
of different surfaces and interfaces including nanocrystals.

1.2 The Nonlinear Surface Susceptibility

In recent years surface nonlinear optical spectroscopies, particulary surface second-harmonic gen-
eration (SSHG), have evolved as useful nondestructive and noninvasive tools to study surface and
interface properties. These properties include atomic structure, phase transitions, adsorption of
atoms, and many others. [31–33,39–54] Nowadays, SSHG spectroscopy is a crucial tool for research
and development in microelectronics [55], semiconductors [56], nanomaterials and bidimensional
materials [57,58], and many more recent areas of great scientific and commercial interest. [59] The
high surface sensitivity of SSHG spectroscopy is due to the fact that within the dipole approximation
the bulk SHG signal of centrosymmetric materials is identically zero. However, the SHG process
can occur only at the surface where the inversion symmetry is broken. As mentioned previously,
the bulk quadrupole contribution for centrosymmetric materials is different from zero, but usually
it is very small [32], and can be neglected. Much of the foundation of surface science has been
built from experiments involving emission or scattering of electrons from surfaces. These require
ultrahigh vacuum (UHV) environments and provide no access to buried interfaces. However, SSHG
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is compatible with non-UHV conditions and has access to interfaces buried beneath transparent
overlayers. Even when applied to surfaces in UHV, the light source and detectors can be aligned
and used outside the vacuum chamber.

The usefulness of SSHG could be limited by the lack of microscopic theoretical understanding
of the nonlinear spectra. The macroscopic phenomenological theory of SSHG, which relates the
intensity, phase, and polarization of detected fields to nonlinear and linear susceptibilities at the
material interface is now fully developed. [32] However, microscopic theory that relates electronic-
level structure to the nonlinear source polarization is still being developed. [50, 54, 60–72] Within
the independent particle approximation (IPA) some frameworks for bulk SHG have been developed
to study the nonlinear optical response of bulk materials. [50, 60–65] In this thesis we put forward
an approach to calculate the microscopic second-harmonic surface susceptibility that encompasses
several theoretical features not taken into account before in the case of a surface.

The most used framework for ab initio calculations, Density Functional Theory (DFT) within
the Local Density Approximation (LDA), [73] underestimates the energy band gap of semiconduc-
tors. It is well understood that one has to include the many-body interaction to correct for this
underestimation of the gap. In this context, the so-called GW approximation [74] is known to
correct the electronic gap of most semiconductors [75]. However this can be a very expensive calcu-
lation and thus one uses the much simpler scissors operator scheme. [76–78] This allows us to “open”
the DFT-LDA gap to its correct experimental or GW value for most bulk semiconductors. This
approximation has already been used in linear optical calculations for surfaces, [79] thus improving
the agreement with experimental results. In this context, to correct for the underestimation of the
energy band gap of semiconductors Nastos et al. [80] used the “length gauge” or “r · E” gauge to
show how to correctly include the many-body corrections through the scissors operator in the SH
susceptibility. Later, Cabellos et al. [81] elaborated a derivation of the “velocity gauge” or “A · v”
gauge properly including the scissors operator and proved gauge invariance with respect to the
length gauge. From these works it is clear the length gauge is a much better starting point to ob-
tain the surface second-harmonic (SSH) susceptibility, as will be elaborated in this thesis. However,
these considerations are only valid for bulk semiconductors.

Concerning the optical response of surfaces and interfaces, Reining et al. [82] introduced the
concept of a cut function in order to obtain the surface SH susceptibility tensor. This cut function
is required since one usually uses a slab approach when treating semi-infinite surface systems. [82]
If the slab is centrosymmetric the susceptibility tensor will be identically zero. The cut function is
such that it separates the nonlinear response for the two surfaces of the slab avoiding the destructive
interference between them giving a finite value that one identifies with the SSH susceptibility tensor.
If the slab is not centrosymmetric the cut function can be used to separate the different signals
coming from either surface of the slab. Indeed, one of the results of this thesis is to show that
the SSH susceptibility tensor obtained by using the cut function is correctly extracted from the
slab. After Reining et al., [82] Refs. [54, 67–70] followed upon this work and in particular Ref. [67]
went into a detailed analysis of the different contributions to the SHG spectra of a surface and the
nuanced relationship between bulk, surface, interband, intraband, 1ω and 2ω terms, and Ref. [71]
developed a layer-by-layer analysis for the nonlinear responses of semiconductor systems, within
a tight-binding framework. This model allows for obtaining results from selected regions of a
system including the surface. However, in these references the scissors operator is either excluded
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or incorrectly implemented. In the works that include this operator, the velocity gauge was used to
derive the expressions for the nonlinear second-order susceptibility, χabc(−2ω;ω, ω). Nevertheless,
a term in the time-dependent perturbation scheme necessary to satisfy the gauge invariance of
χabc(−2ω;ω, ω) was omitted. This was demonstrated in Ref. [81] where a comparison between the
velocity and the length gauge was carried out.

Finally, DFT-LDA calculations are often based on the use of pseudopotentials. As it will be
discussed in this thesis, the presence of a nonlocal part of the pseudopotential introduces correc-
tions to the momentum operator of the electron that have to be included with care in the SSH
susceptibility. For the bulk counterpart see for instance Refs. [83, 84]. Therefore, within the IPA
the most complete approach for the calculation of the SSH susceptibility is one which includes (i)
the scissors correction, (ii) the contribution of the nonlocal part of the pseudopotential, and (iii) the
cut function. One of the goals of this thesis is to derive a new expression within the length gauge for
the SSH susceptibility tensor χabc(−2ω;ω, ω) that includes the aforementioned contributions. The
inclusion of these three contributions makes our scheme unprecedented and opens the possibility to
study surface SHG with more versatility and providing accurate results.

1.3 The SSHG Yield

For calculating the SSHG yield, we will use the nonlinear surface susceptiblity tensor produced
with the framework mentioned in the previous section, and featured in Ref. [85]. This formulation
includes three features not previously found in a single formulation: (i) the scissors correction, (ii)
the contribution of the nonlocal part of the pseudopotentials, and (iii) the cut function used to
extract the surface response, all within the independent particle approximation. The inclusion of
these three contributions opens the possibility to study SSHG with more versatility and accuracy
than was previously available at this level of approximation. We also use the three layer (3-layer)
model for the SSHG yield, which considers that the SH conversion takes place in a thin layer just
below the surface that lies under the vacuum region and above the bulk of the material. Validating
these improvements is difficult, however, without experimental data for comparison.

SSHG experiments focusing on semiconductor surfaces are available, but they are often reported
over very limited energy ranges and lacking units and scale for the intensity. This lack of compre-
hensive experimental data has made comparison between theory and experiment difficult. However,
the Si(111)(1×1):H surface offers some respite in this area. This surface can be prepared to a high
degree of structural quality and has been experimentally characterized with SHG to a great de-
gree of accuracy [49, 69]. The added H saturates the surface Si dangling bonds and eliminates any
surface-related electronic states in the band gap. We consider that this surface represents an ideal
benchmark for ab initio SSHG studies. More specifically, SSHG from the Si(111)(1×1):H surface
was treated in detail in Ref. [69], and their approach yielded good qualitative results. However,
the expressions presented for the nonlinear susceptibility tensor, χ(−2ω;ω, ω), which is required for
the SSHG yield, are derived in the velocity gauge. This method incorrectly implements the scissors
quasiparticle correction and diverges for low energies [81]. We mention that the formulas presented
in Ref. [69], where the 3-layer model was introduced for the first time, have some minor mistakes
that have been corrected in Ref. [86]. They also propose a two layer (2-layer) model for SSHG
which does not accurately represent the real physical process for surfaces. We consider that the
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theoretical and computational aspects of this subject have evolved considerably since then, making
this topic ripe for revision.

In Chapter 4, I will present a comparison between theory and experiment by presenting the
improved theoretical calculations against experimental SSHG spectra from several sources, namely
Refs. [44,49,69,87], with two-photon energies ranging from 2.5 eV to 5 eV covering both the E1 and
E2 critical point transitions for bulk Si. These SHG experiments were carried out with different
polarizations of incoming and outgoing beams which are taken into account in the theoretical
analysis. We find that the new formalism compares favorably with experiment and permits insight
into the physics behind SSHG. In spite of the advances mentioned, our treatment neglects local field
and excitonic effects that are challenging from both a theoretical and a computational standpoint.
This topic merits further review and may prove to be crucial for more accurate SSHG theory.

1.4 Other Optical Nonlinear Phenomena of Interest

Besides the phenomena mentioned above, there are several other nonlinear effects that have become
particularly interesting with the advent of bidimensional materials, such as MoS2, MoSe2, WS2,
WSe2, and Graphene. In particular, Graphene is an allotrope of carbon with a planar, hexagonal,
two-dimensional honeycomb structure with one carbon atom at each vertex. It has attracted a
great deal of interest due to its distinctive properties, such as the fractional quantum Hall effect
at room temperature, and excellent thermal transport properties [88–91]. It behaves like a metal,
but can be modified to semiconductor behavior by tuning the band gap. This can be achieved by
changing the surface area [92], applying an electric field [93], applying uniaxial strain [94], or by
doping, amongst other methods. Previous works have explored doping with boron, nitrogen [95], and
hydrogen [96–98]. Hydrogenated graphene can achieve different spatial configurations by varying
the amount and location of the hydrogen bonds. When a hydrogen atom is bonded to a carbon
atom in graphene, it pulls the atom away from the plane. This modifies the carbon-carbon bond
length resulting in an opening of the band gap [96,99]. During my doctoral research, we carried out
a theoretical study of three optical nonlinear phenomena for two hydrogenated graphane structures:
optical spin injection, optical current injection and second-harmonic generation (SHG). I describe
the former two as follows.

1.4.1 Optical Spin Injection

The injection and detection of spin polarized electrons in nonmagnetic materials is at the core of
spintronics [100, 101] and an important problem in condensed matter theory. The idea of creating
and detecting spin polarized electrons from light originates in the 1960s with Ref. [102]. Following
that work, it was later demonstrated that converting the angular momentum of light into electron
spin is very efficient in III-IV semiconductors [103]. Optical spin injection is characterized through
the dimensionless degree of spin polarization (DSP), D(ω). DSP quantifies the fraction of injected
electrons in the conduction bands that are spin polarized. This effect occurs when circularly polar-
ized light is incident on a semiconducting material [103], thus allowing electrons to move from the
valence to the conduction bands. The resulting polarization is produced by the interaction between
the electron spin and its motion caused by the spin-orbit coupling in the material. DSP can be
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calculated with a full band structure method as shown in Refs. [81, 104]. There are theoretical
reports of DSP calculations for bulk media [81,104] and also for surfaces [105,106].

1.4.2 Optical Current Injection

The optical current injection is a second-order optical nonlinear effect that has been the subject of
research in recent years [106–110]. A photocurrent, J̇(ω), can be injected with a single optical beam
into noncentrosymmetric materials or at the surface of bulk centrosymmetric materials where the
inversion symmetry has been broken [106]. This phenomenon results from the interference of one-
photon absorption processes associated with different linear polarizations of light. In the process
of current injection, the energy increase of the injected carriers is provided by the electromagnetic
field, while the increase in momentum is provided by the crystal lattice [106]. One-photon current
injection is characterized by the current injection tensor, ηabc(ω), and since it is generated with
circularly polarized light, this phenomenon is also called the circular photovoltaic effect [111]. This
effect has been studied in bulk semiconductors [109, 112], two-dimensional systems [113, 114], and
one-dimensional nanotubes [113]. Bidimensional materials are quite often noncentrosymmetric and
present an optical current injection response.

1.5 Outline

This thesis is divided into 5 chapters including this introduction. Chapter 2 presents the derivation
of explicit expressions for the nonlinear surface susceptibility, χsurface(−2ω;ω, ω), featuring the
developments mentioned in Sec. 1.2. Chapter 3 presents the derivation of the expressions for the
SSHG yield that utilize the calculated components of the nonlinear surface susceptibility. Chapter 4
presents the spectra for both χsurface(−2ω;ω, ω) and the SSHG yield for two surfaces, Si(001)(2×1)
and Si(111)(1×1):H. I present comparisons with experimental data, and we will find that the results
from the newly derived theory compares quite favorably to the experimental spectra. Chapter 5 is
dedicated to the final observations and remarks. Appendix A contains the derivations for several
necessary terms needed for χsurface(−2ω;ω, ω), and Appendix B presents the complete, step-by-step
derivations for the SSHG yield. Finally, the complete bibliography is located at the end of the
document for easy reference.

11





2 The Nonlinear Surface
Susceptibility

Outline

2.1 The Nonlinear Surface Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Time-Dependent Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Length Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Layered Current Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Microscopic Surface Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 About the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

In this chapter we formulate a theoretical approach of surface second-harmonic generation from
semiconductor surfaces based on the length gauge and the electron density operator. Within the
independent particle approximation (IPA) the nonlinear second-order surface susceptibility tensor
χabc(−2ω;ω, ω) is calculated, including in one unique formulation (i) the scissors correction, needed
to have the correct value of the energy band gap, (ii) the contribution of the nonlocal part of the
pseudopotentials, routinely used in ab initio band structure calculations, and (iii) the derivation for
the inclusion of the cut function, used to extract the surface response. The first two contributions
are described by spatially nonlocal quantum mechanical operators and are fully taken into account
in the present formulation.

2.1 The Nonlinear Surface Susceptibility

In this section we will outline the general procedure to obtain the surface susceptibility tensor for
SHG. We start with the nonlinear polarization P(r) of a bulk system, written as

P a(r, 2ω) = χabc(−2ω;ω, ω)Eb(r, ω)Ec(r, ω) + χabcd(−2ω;ω, ω)Eb(r, ω)∇cEd(r, ω) + · · · , (2.1)

where χabc(−2ω;ω, ω) and χabcd(−2ω;ω, ω) correspond to the dipolar and quadrupolar susceptibil-
ity tensors, and E(r) is the incoming electric field along the different Cartesian directions denoted
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by the roman superscripts, and if repeated are to be summed over. For ease of notation, we will
drop the ω arguments from this point on. For simplicity, we use the MKS system of units. The
units of E(r) are [E] = V/m, and the units of P(r) are [P] = V/m since P(r) is a bulk polarization.
Therefore, the units of the bulk χabc are [χabc] = m/V.

If we consider a semi-infinite system with a centrosymmetric bulk, we can obtain a bulk and a
surface nonlinear polarization that differ from each other from symmetry considerations alone. To
show this, we take

P a(r) = χabcEb(r)Ec(r) + χabcdEb(r) ∂

∂rcE
d(r) + · · · , (2.2)

as the polarization with respect to the r coordinate system, and

P a(−r) = χabcEb(−r)Ec(−r) + χabcdEb(−r) ∂

∂(−rc)E
d(−r) + · · · , (2.3)

as the polarization in the inverted coordinate system, where we take r to −r. Note that we have
kept the same susceptibility tensors as they must be invariant under r → −r since the system
is centrosymmetric. Recalling that P(r) and E(r) are polar vectors [24], we have that Eq. (2.3)
reduces to

−P a(r) = χabc(−Eb(r))(−Ec(r)) + χabcd(−Eb(r))(− ∂

∂rc )(−Ed(r)) + · · · ,

P a(r) = −χabcEb(r)Ec(r) + χabcdEb(r) ∂

∂rcE
d(r) + · · · , (2.4)

that when compared with Eq. (2.2) leads to the conclusion that

χabc = 0,
(centrosymmetric bulk)

χabcd 6= 0,
(2.5)

for a centrosymmetric bulk.
The surface of a centrosymmetric system necessarily breaks the centrosymmetry; thus, there

are no symmetry restrictions imposed on the χabc produced from the surface region, see Fig. 2.1.
Therefore, it is convenient to define the surface nonlinear polarization Psurface as follows,

P a
surface ≡ χabc

surfaceE
bEc, (2.6)

where χabc
surface is the surface nonlinear susceptibility. In this case, the MKS units of [Psurface] are V,

and [χabc
surface] are m2/V. The contribution from χabcd to the surface polarization is neglected as it

originates from a higher order multipole. From Eq. (2.1) we have that for the bulk of a semi-infinite
system,

P a
bulk = χabcd

bulkE
b∇cEd, (2.7)

which is the bulk nonlinear polarization; in this case the dipolar contribution χabc
bulk = 0 since we

are in the centrosymmetric bulk. As it follows from Ref. [115], the surface nonlinear polarization
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d

z

R

1ω 2ω

2ω

χabc

χabcd

Surface

Centrosymmetric Bulk

Figure 2.1: Sketch of a semi-infinite system with a centrosymmetric bulk. The
surface region is of thickness ∼ d. The incoming photon of frequency ω is
represented by a downward red arrow, whereas both the surface and bulk cre-
ated second-harmonic photons of frequency 2ω are represented by upward blue
arrows. The red color suggests an incoming infrared photon with a blue second-
harmonic photon. The dipolar (χabc

surface), and quadrupolar (χabcd
bulk ) susceptibility

tensors are shown in the regions where they are nonzero. The z-axis is perpen-
dicular to the surface and R is parallel to it.

is of dipolar electric order while the bulk polarization is of quadrupolar electric and dipolar mag-
netic order. The surface χsurface and bulk χbulk susceptibilities are tensors of rank three and four,
respectively.

In this work, we will only concentrate on SSHG, even though bulk-generated SH is also a very
important optical phenomenon. To this end, we will neglect the contribution from Eq. (2.7) and
only consider the surface term from Eq. (2.6). We will also exclude other interesting surface SH
phenomena, like electric field induced second-harmonic (EFISH), which would be represented by a
surface susceptibility tensor of quadrupolar origin. As mentioned in Chapter 1, in centrosymmetric
systems for which the quadrupolar bulk response is much smaller than the dipolar surface response,
SH is a very capable and powerful optical surface probe [32].

In the following sections of this chapter, we show the theoretical approach to derive the expres-
sions for the surface susceptibility tensor χabc

surface.

2.2 Time-Dependent Perturbation Theory

We assume the IPA, a classical electromagnetic field, and quantum mechanical matter. We neglect
local field and excitonic effects. We can describe the system using the one electron density operator
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2. The Nonlinear Surface Susceptibility

ρ, with which we can calculate the expectation value of a single-particle observable O as

〈O〉 = Tr(ρO), (2.8)

with O the associated quantum mechanical operator and Tr the trace. The density operator satisfies

ih̄
dρ

dt
= [H, ρ] , (2.9)

with H(t) as the total single electron Hamiltonian, written as

H(t) = H0 +HI(t),

where H0 is the unperturbed time-independent Hamiltonian, and HI(t) is the time-dependent po-
tential energy due to the interaction of the electron with the electromagnetic field. To proceed with
the solution of ρ it is convenient to use the interaction picture, where a unitary operator

U = eiH0t/h̄, (2.10)

transforms any operator O into
Õ = UOU †. (2.11)

Even if O is time-independent, Õ is time-dependent through the explicit time dependence of U .
The dynamical equation for ρ̃ is given by

ih̄
dρ̃

dt
= [−er(t) ·E(t), ρ̃] = [H̃I(t), ρ̃], (2.12)

with solution
ih̄ρ̃(t) = ih̄ρ̃0 +

∫ t

−∞

[
H̃I(t′), ρ̃(t′)

]
dt′, (2.13)

where ρ̃0 = ρ̃(t = −∞) is the unperturbed density matrix.
We assume that the interaction is switched-on adiabatically and choose a time-periodic perturb-

ing field, to write
E(t) = Ee−iωteηt = Ee−iω̃t, (2.14)

with
ω̃ = ω + iη, (2.15)

where η > 0 assures that at t = −∞, the interaction is zero and has its full strength E at t = 0.
After computing the required time integrals one takes η → 0. Also, ρ̃(t = −∞) should be time
independent and thus [H̃I , ρ̃]t=−∞ = 0. This implies that ρ̃(t = −∞) ≡ ρ̃0, such that

〈nk|ρ̃0|mk′〉 = fn(h̄ωΣ
n (k))δnmδ(k− k′), (2.16)

with fn(h̄ωΣ
n (k)) = fn as the Fermi-Dirac distribution function. For a clean, cold semiconductor

fn = 1 when n is a valence (v) or occupied band, and zero when n is a conduction (c) or empty
band. We assume this for the remainder of this work. As we neglect spin-orbit coupling, the final
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2.2. Time-Dependent Perturbation Theory

expression for χabc(−2ω;ω, ω) has to be multiplied by a factor of 2 to account for spin-degeneracy.
The expectation values must always satisfy 〈O〉 = Tr(ρO) = Tr(ρ̃Õ).

We solve Eq. (2.13) using the standard iterative solution, for which we write

ρ̃ = ρ̃(0) + ρ̃(1) + ρ̃(2) + · · · , (2.17)

where the superscript of the ρ̃(N) terms denotes the order (power) with which each term depends
on the perturbation HI(t). Then, Eq. (2.13) reads

ρ̃(0) + ρ̃(1) + ρ̃(2) + · · · = ρ̃0 + 1
ih̄

∫ t

−∞

[
H̃I(t′), ρ̃(0) + ρ̃(1) + ρ̃(2) + · · ·

]
dt′, (2.18)

where, by equating equal orders in the perturbation, we find

ρ̃(0) ≡ ρ̃0, (2.19)

and the Nth-order term
ρ̃(N)(t) = 1

ih̄

∫ t

−∞

[
H̃I(t′), ρ̃(N−1)(t′)

]
dt′. (2.20)

It is simple to show that matrix elements of Eq. (2.20) satisfy 〈nk|ρ(N+1)(t)|mk′〉 = ρ
(N+1)
nm (k)δ(k−

k′), with

ρ̃(N+1)
nm (k; t) = e

ih̄

∫ t

−∞
〈nk|

[
r(t′), ρ̃(N)(t′)

]
|mk〉 ·E(t′)dt′. (2.21)

This shows that the N + 1 solution is determined by the Nth solution, which in turn is determined
by the N − 1 solution, and so on. Starting from the zeroth order solution given in Eq. (2.19), we
can solve Eq. (2.21) for any desired order.

We will look for the expectation value of the microscopic current density, J, given by

J = 〈J〉 = e

A
Tr(ρṙ),

where ṙ is the time derivative of the position operator of the electron with charge e, defined as

v ≡ ṙ = 1
ih̄

[r, H0], (2.22)

with v the velocity operator of the electron, and A the area of the unit cell. We calculate the
polarization density P, related to J by J = dP/dt. We write the second-order nonlinear polarization
as,

Pa(2ω) = χabc
surface(−2ω;ω, ω)Eb(ω)Ec(ω), (2.23)

where χabc(−2ω;ω, ω) is the nonlinear susceptibility responsible for surface second-harmonic gen-
eration (SSHG). The superscripts in Eq. (2.23) denote Cartesian components, and if repeated are
to be summed over. Without loss of generality we will define χabc

surface(−2ω;ω, ω) to satisfy intrinsic
permutation symmetry, χabc

surface(−2ω;ω, ω) = χacb
surface(−2ω;ω, ω).

The unperturbed Hamiltonian is used to solve the Kohn-Sham equations [73] of Density Func-
tional Theory (DFT). It is convenient to work within the Local Density Approximation (LDA), so
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2. The Nonlinear Surface Susceptibility

we label the hamiltonian with the corresponding LDA superscript. Any other approximation can
be used (like the generalized gradient approximation) and our derivation remains the same. Then,

HLDA
0 (r,p) = p2

2me
+ V (r,p) (2.24)

with me the mass of the electron, p = −ih̄∇ its canonical momentum, and V the periodic crystal po-
tential, where we neglect spin-orbit terms. To be more general in our derivation of χabc(−2ω;ω, ω),
we assume the contribution as is customary for most pseudopotentials, and then we replace V with

V ps(r,p) = V (r) + V nl(r,p), (2.25)

where V (r) and V nl(r,p) are the local and nonlocal parts, respectively. The argument (r,p) is
equivalent to the explicit (r, r′) nonlocal notation [83]. For this nonlocal part, we have that

V nl(r, r′) ≡ 〈r|V nl|r′〉 6= 0 for r 6= r′, (2.26)

where V nl(r, r′) is a function of r and r′ representing the nonlocal contribution of the pseudopoten-
tial. In case of a local potential, i.e. V = V (r), like that of all-electron schemes, we simply omit
the contribution of V nl(r,p) from the results that we have derived.

It is well known that the use of the LDA leads to an underestimation of the band gap. A
standard procedure to correct for this is to use the “scissors approximation”, where the conduction
bands are rigidly shifted in energy so that the band gap corresponds to the accepted experimental
electronic band gap. [76–78] This is often in fairly good agreement with the GW band gap based
on a more sophisticated calculation. [116] The LDA wave functions are used since they produce
band structures with dispersion relations similar to those predicted by the GW. Mathematically,
the scissors (non-local) operator S is added to the unperturbed or unscissored Hamiltonian HLDA

0 ,

HΣ
0 (r,p) = HLDA

0 (r,p) + S(r,p) (2.27)

where
S(r,p) = h̄∆

∑
n

∫
(1− fn)|nk〉〈nk| d3k, (2.28)

with h̄∆ the rigid (k-independent) energy correction to be applied. The unscissored and scissored
Hamiltonians satisfy

HLDA
0 (r,p)ψnk(r) = h̄ωLDA

n (k)ψnk(r),

HΣ
0 (r,p)ψnk(r) = h̄ωΣ

n (k)ψnk(r),

where the scissor-shifted energies, ωΣ
n (k), are given by

ωΣ
n (k) = ωLDA

n (k) + (1− fn)∆. (2.29)

Lastly, the Schrödinger equation reads(
−h̄2

2me
∇2 + V (r)

)
ψnk(r) +

∫
V nl(r, r′)ψnk(r′) dr′ = Eiψnk(r), (2.30)
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2.3. Length Gauge

where ψnk(r) = 〈r|nk〉 = eik·runk(r), are the real space representations of the Bloch states |nk〉
labeled by the band index n and the crystal momentum k, and unk(r) is cell periodic. We emphasize
that the scissored and unscissored Hamiltonian have the same eigenfunctions.

2.3 Length Gauge

According to Ref. [83], we first start with the interaction Hamiltonian expressed in the velocity
gauge, containing the nonlocal parts V nl(r,p) and S(r,p). Within the dipole approximation and
using a gauge transformation, it can be transformed into an effective Hamiltonian [117]

HI(t) = −er ·E(t). (2.31)

The treatment of the position operator r for extended Bloch states is problematic and has been
discussed in Refs. [118, 119] and will be dealt with in Appendix A.1. The matrix elements of r are
split between the intraband (ri) and interband (re) parts, where r = ri+re [118,119], and its matrix
elements are [64]

〈nk|ri|mk′〉 = δnm
[
δ(k− k′)ξnn(k) + i∇kδ(k− k′)

]
, (2.32)

〈nk|re|mk′〉 = (1− δnm)δ(k− k′)ξnm(k), (2.33)

such that re,nm = 0 for n = m, and

ξnm(k) ≡ i(2π)3

Ω

∫
Ω
u∗nk(r)∇k umk(r) dr, (2.34)

where Ω is the unit cell volume. The interband part, re, can be obtained as follows. We use HΣ
0 in

Eq. (2.22) to obtain the velocity operator

vΣ = 1
ih̄

[
r, HΣ

0

]
, (2.35)

and calculating its matrix elements

ih̄〈nk|vΣ|mk〉 = 〈nk|
[
r, HΣ

0

]
|mk〉 = 〈nk|rHΣ

0 −HΣ
0 r|mk〉 =

(
h̄ωΣ

m(k)− h̄ωΣ
n (k)

)
〈nk|r|mk〉.

(2.36)
Defining ωΣ

nm(k) = ωΣ
n (k)− ωΣ

m(k), we get

ξnm(k) ≡ rnm(k) = vΣ
nm(k)

iωΣ
nm(k) , n /∈ Dm, (2.37)

which can be identified as rnm = (1− δnm)ξnm → re,nm. Here, Dm are all the possible degenerate
m-states. For the intraband part, ri only appears in commutators during the derivation of the
optical response. We use [64]

〈nk| [ri,O] |mk′〉 = iδ(k− k′)(Onm);k, (2.38)
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2. The Nonlinear Surface Susceptibility

where
(Onm);k = ∇kOnm(k)− iOnm(k) (ξnn(k)− ξmm(k)) , (2.39)

is the generalized derivative of the operator O (see Appendix A.1). The vectors ξnn(k) are defined
in Ref. [64] though they do not need to be calculated explicitly in what follows.

As can be seen from Eqs. (2.27) and (2.24), both S and V nl are nonlocal potentials. Their
contribution in the calculation of the optical response must be considered in order to get reliable
results [83]. Before continuing, we derive a key result for the length gauge formulation. Then,

vΣ = v + vnl + vS = vLDA + vS

= p
me

+ 1
ih̄

[
r, V nl(r, r′)

]
+ 1
ih̄

[r,S(r,p)] ,
(2.40)

where we have defined

v = p
me

vnl = 1
ih̄

[
r, V nl

]
vS = 1

ih̄
[r, S(r,p)]

vLDA = v + vnl

(2.41)

p = −ih̄∇ is the momentum operator, and using [ra, pb] = ih̄δab, where δab is the Kronecker delta.
Using Eq. (2.28), we obtain that the matrix elements of vS are given by

vSnm = i∆fmnrnm, (2.42)

with fnm ≡ fn − fm, where we see that vSnn = 0. From Eqs. (2.37) and (2.40) it follows that

vΣ
nm = vLDA

nm + i∆fmnrnm

= vLDA
nm + i∆fmn

vΣ
nm(k)

iωΣ
nm(k)

vΣ
nm

ωΣ
nm −∆fmn
ωΣ
nm

= vLDA
nm

vΣ
nm

ωLDA
nm

ωΣ
nm

= vLDA
nm

vΣ
nm

ωΣ
nm

= vLDA
nm

ωLDA
nm

, (2.43)

since ωΣ
nm −∆fmn = ωLDA

nm . Therefore,

vΣ
nm(k) = ωΣ

nm

ωLDA
nm

vLDA
nm (k) =

(
1 + ∆

ωc(k)− ωv(k)

)
vLDA
nm (k) n /∈ Dm

vΣ
nn(k) = vLDA

nn (k),

(2.44)
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2.3. Length Gauge

and Eq. (2.37) gives

rnm(k) = vΣ
nm(k)

iωΣ
nm(k) = vLDA

nm (k)
iωLDA
nm (k) n /∈ Dm. (2.45)

The matrix elements of rnm(k) are identical using either the LDA or scissored Hamiltonian, thus
negating the need to label them. Of course, it is more convenient to calculate them through vLDA

nm (k)
which includes only the contribution of vnl

nm(k). These can be readily calculated for fully separable
nonlocal pseudopotentials in the Kleinman-Bylander form. [120–123] The advantage of using the
electron density operator along with the length gauge formalism for calculating linear and nonlinear
optical responses, for the scissored Hamiltonian, resides in the ease with which the scissors operator
can be introduced into the calculation by simply using the unscissored LDA Hamiltonian, HLDA

0 , for
the unperturbed system with −er ·E(t) as the interaction. We stress that within the length gauge,
we need only replace ωLDA

n with ωΣ
n at the end of the derivation to obtain the scissored results for

any susceptibility expression, whether linear or nonlinear [80]. In Appendix A.2 we outline how this
is accomplished.

We also need to derive the matrix elements of the density operator. In order to proceed, we
must now work out the commutator of Eq. (2.21). Then,

〈nk|
[
r(t), ρ̃(N)(t)

]
|mk〉 = 〈nk|

[
UrU †, Uρ(N)(t)U †

]
|mk〉

= 〈nk|U
[
r, ρ(N)(t)

]
U †|mk〉 (2.46)

= eiω
Σ
nmt

(
〈nk|

[
re, ρ(N)(t)

]
+
[
ri, ρ(N)(t)

]
|mk〉

)
,

where the time dependence of the operator in the interaction picture is explicitly shown by the
exponential factor, and the implicit dependence of ρ(N) inherited from Eq. (2.9) is given through
the t argument. We calculate the interband term first, so using Eq. (2.45) we obtain

〈nk|
[
re, ρ̃(N)(t)

]
|mk〉 =

∑
q

(
〈nk|re|qk〉〈qk|ρ̃(N)(t)|mk〉 − 〈nk|ρ̃(N)(t)|qk〉〈qk|re|mk〉

)
=

∑
q 6=n,m

(
rnq(k)ρ(N)

qm (k; t)− ρ(N)
nq (k; t)rqm(k)

)
≡ R(N)

e (k; t), (2.47)

and from Eq. (2.38),

〈nk|[ri, ρ̃(N)(t)]|mk′〉 = iδ(k− k′)(ρ(N)
nm (t));k ≡ δ(k− k′)R(N)

i (k; t). (2.48)

Then Eq. (2.21) becomes

ρ̃(N+1)
nm (k; t) = ie

h̄

∫ t

−∞
ei(ω

Σ
nm−ω̃)t′

[
Rb(N)
e (k; t′) +R

b(N)
i (k; t′)

]
Eb dt′, (2.49)
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2. The Nonlinear Surface Susceptibility

where the roman superindices abc denote Cartesian components that are summed over if repeated.
Starting from the linear response and proceeding from Eq. (2.16) and (2.47),

Rb(0)
e (k; t) =

∑
q

(
rb
nq(k)ρ(0)

qm(k)− ρ(0)
nq (k)rb

qm(k)
)

=
∑
q

(
rb
nq(k)δqmfm(h̄ωΣ

m(k))− δnqfn(h̄ωΣ
n (k))rb

qm(k)
)

= fmnr
b
nm(k), (2.50)

where fmn = fm − fn. From now on, it should be clear that the matrix elements of rnm imply
n /∈ Dm. We also have from Eq. (2.48) and Eq. (2.39) that

R
b(0)
i (k) = i(ρ(0)

nm);kb = iδnm(fnk);kb = iδnm∇kbfnk. (2.51)

For a semiconductor at T = 0, fn = 1 if the state |nk〉 is a valence state and fn = 0 if it is a
conduction state. Thus, ∇kfn = 0, R(0)

i = 0 and the linear response has no contribution from the
intraband transitions. Then,

ρ̃(1)
nm(k; t) = ie

h̄
fmnr

b
nm(k)Eb

∫ t

−∞
dt′ei(ω

Σ
nm−ω̃)t′

= e

h̄
fmnr

b
nm(k)Eb e

i(ωΣ
nm−ω̃)t

ωΣ
nm − ω̃

= ei(ω
Σ
nm−ω̃)tBb

mn(k)Eb(t)

= eiω
Σ
nmtρ(1)

nm(k; t), (2.52)

with

Bb
nm(k, ω) = e

h̄

fmnr
b
nm(k)

ωΣ
nm − ω̃

, (2.53)

and
ρ(1)
nm(k; t) = Bb

mn(k, ω)Eb(ω)e−iω̃t. (2.54)

Now, we calculate the second-order response. Then, from Eq. (2.47)

Rb(1)
e (k; t) =

∑
q

(
rb
nq(k)ρ(1)

qm(k; t)− ρ(1)
nq (k; t)rb

qm(k)
)

=
∑
q

(
rb
nq(k)Bc

qm(k, ω)−Bc
nq(k, ω)rb

qm(k)
)
Ec(t), (2.55)

and from Eq. (2.48)

R
b(1)
i (k; t) = i(ρ(1)

nm(t));kb = iEc(t)(Bc
nm(k, ω));kb . (2.56)
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Using Eqs. (2.55) and (2.56) in Eq. (2.49), we obtain

ρ̃(2)
nm(k; t) = e

ih̄

[
i
∑
q

(
rb
nq(k)Bc

qm(k, ω)−Bc
nq(k, ω)rb

qm(k)
)

−
(
Bc
nm(k, ω)

)
;kb

]
Eb(ω)Ec(ω)

∫ t

−∞
ei(ω

Σ
nm−2ω̃)t′ dt′

= e

ih̄

1
ωΣ
nm − 2ω̃

[
i
∑
q

(
rb
nq(k)Bc

qm(k, ω)−Bc
nq(k, ω)rb

qm(k)
)

−
(
Bc
nm(k, ω)

)
;kb

]
Eb(ω)Ec(ω)ei(ωΣ

nm−2ω̃)t

= eiω
Σ
nmtρ(2)

nm(k; t). (2.57)

Now, we write ρ(2)
nm(k; t) = ρ

(2)
nm(k; 2ω)e−i2ω̃t, with

ρ(2)
nm(k; 2ω) = e

ih̄

1
ωΣ
nm − 2ω̃

[
i
∑
q

(
rb
nqB

c
qm(k, ω)−Bc

nq(k, ω)rb
qm

)
−
(
Bc
nm(k, ω)

)
;kb

]
Eb(ω)Ec(ω) (2.58)

where Ba
qm(k, ω) are given by Eq. (2.53). We remark that rnm(k) are the same whether calculated

with the LDA or the scissored Hamiltonian (see Eq. (2.45)). We chose the former in this thesis.
We have used the fact that for a cold semiconductor ∂fn/∂k = 0 and thus the intraband

contribution to the linear term vanishes identically. Note that the indices in Eq. (2.57) are all
different from each other. This is due to the fnm factor in Eq. (2.53), and therefore Ba

nn = 0. The
dependence on k of all quantities is implicitly understood from this point forward.

2.4 Layered Current Density

The approach we use to study the surface of a semi-infinite semiconductor crystal is as follows.
Instead of using a semi-infinite system, we replace it by a super-cell that consists of a finite slab of
atomic layers and a vacuum region (see Fig. 2.2). This super-cell is repeated to form a full three
dimensional crystalline structure. The slab itself consists of front, back, and sub-surface regions,
and a region that is equivalent to the bulk of the system in between these. In general the surface
of a crystal reconstructs or relaxes as the atoms move to find equilibrium positions. This is due to
the fact that the otherwise balanced forces are disrupted when the surface atoms do not find their
partner atoms that are now absent at the slab surface. To take the reconstruction or relaxation into
account, we take “surface” to mean the true surface of the first layer of atoms and some of the atomic
sub-layers adjacent to it. Since the front and the back surfaces of the slab are usually identical the
total slab is centrosymmetric. This would imply that χabc

slab = 0 so we must find a scheme in order
to have a finite χabc representative of the surface. Even if the front and back surfaces of the slab
are different, breaking the centrosymmetry and therefore giving an overall χabc

slab 6= 0; we still need a
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2. The Nonlinear Surface Susceptibility

procedure to extract the front surface χabc
front and the back surface χabc

back from the slab susceptibility.
We have omitted the frequency dependence of χabc for convenience of notation.

A convenient way to accomplish the separation of the SH signal of either surface is to introduce
a “cut function”, C(z), which is usually taken to be unity over one half of the slab and zero over the
other half. [82] In this case C(z) will give the contribution of the side of the slab for which C(z) = 1.
As was done for the linear response, [124] we can generalize this simple choice for C(z) by a top-hat
cut function C`(z) that selects a given layer,

C`(z) = Θ(z − z` + ∆b
`)Θ(z` − z + ∆f

` ), (2.59)

where Θ is the Heaviside function. Here, ∆f/b
` is the distance that the `-th layer extends towards

the front (f) or back (b) from its z` position. We take z` to be at the center of an atom that belongs
to layer `, so the previous equation would give the `-th atomic-layer contribution to the nonlinear
optical response. ∆f

` + ∆b
` is the thickness of layer ` (see Fig. 2.2).

To introduce the cut function C(z) in the calculation of χabc, we start from the operator for the
electron current, j(r) = e

2

(
vΣ|r〉〈r|+ |r〉〈r|vΣ

)
, that leads to

j(N)(r, t) = Tr(j(r)ρ(N)(t)) =
∫
d3k

8π3

∑
nm

ρ(N)
nm (k; t)jmn(k; r). (2.60)

We can derive the jmn(k; r) matrix elements as follows. The operator for the electron current is

j(r) = e

2
(
vΣ|r〉〈r|+ |r〉〈r|vΣ

)
, (2.61)

Vacuum Region

Surface Region ∼ d

Bulk Region

Front Surface

∆f
`z`

∆b
`

`th Layer

z

R

Figure 2.2: A sketch of the super-cell. The atomic slab corresponds to the circles
representing the atoms of the system.
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where vΣ is the electron’s velocity operator to be dealt with below. We define µ̂ ≡ |r〉〈r| and use
the cyclic invariance of the trace to write

Tr
(
j(r)ρ̃(t)

)
= Tr

(
ρ̃(t)̂j(r)

)
= e

2
(
Tr
(
ρ̃v̂Σµ̂

)
+ Tr

(
ρ̃µ̂v̂Σ

))
= e

2
∑
nk

(
〈nk|ρ̃vΣµ̂|nk〉+ 〈nk|ρ̃µ̂vΣ|nk〉

)
= e

2
∑
nm

〈nk|ρ̃|mk〉
(
〈mk|vΣ|r〉〈r|nk〉+ 〈mk|r〉〈r|vΣ|nk〉

)
j(r, t) =

∑
nm

ρnm(k; t)jmn(k; r), (2.62)

where
jmn(k; r) = e

2
(
〈mk|vΣ|r〉〈r|nk〉+ 〈mk|r〉〈r|vΣ|nk〉

)
, (2.63)

are the matrix elements of the microscopic current operator, and we have used the fact that the
matrix elements between states |nk〉 are diagonal in k, i.e. proportional to δ(k − k′). Integrating
the microscopic current j(r, t) over the entire slab gives the averaged microscopic current density,
J(t). If we want the contribution from only one region of the unit cell towards the total current,
we can integrate j(r, t) over the desired region. Then the contribution to the current density from
the chosen region of the slab is given by

1
A

∫
d3r C(z) J(N)(r, t) ≡ J (N)(t),

where J (N)(t) is the N -th order current induced in the region specified by C(z). Therefore we
define

eVΣ
mn(k) ≡

∫
d3r C(z) jmn(k; r), (2.64)

to write the Fourier transform of Eq. (2.60) as

J (N)(2ω) = e

A

∫
d3k

8π3

∑
mn

VΣ
mn(k)ρ(N)

nm (k; 2ω), (2.65)

that gives the induced microscopic current of the chosen region, to order N in the external pertur-
bation. From Eqs. (2.64) and (2.63) we obtain

VΣ,`
mn(k) = 1

2

∫
d3r C(z)

[
〈mk|vΣ|r〉〈r|nk〉+ 〈mk|r〉〈r|vΣ|nk〉

]
, (2.66)

and using the following property

〈r|vΣ(r, r′)|nk〉 =
∫
d3r′′〈r|vΣ(r, r′)|r′′〉〈r′′|nk〉

= vΣ(r, r′′)
∫
d3r′′〈r|r′′〉〈r′′|nk〉

= vΣ(r, r′)ψnk(r), (2.67)
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2. The Nonlinear Surface Susceptibility

that stems from the fact that the operator vΣ(r, r′) does not act on r′′, we can write

VΣ,`
mn(k) = 1

2

∫
C(z)

[
ψnk(r)vΣ∗ψ∗mk(r) + ψ∗mk(r)vΣψnk(r)

]
d3r

=
∫
ψ∗mk(r)

[
C(z)vΣ + vΣC(z)

2

]
ψnk(r) d3r

=
∫
ψ∗mk(r)VΣψnk(r) d3r, (2.68)

where we used the hermitian property of vΣ and defined

VΣ = C(z)vΣ + vΣC(z)
2 , (2.69)

We see that the replacement
V→ V = C(z)V + VC(z)

2 , (2.70)

is all that is needed to change any of the electron velocity operators V to the new velocity operator
V that implicitly takes into account the contribution of the region of the slab given by C(z). We
note that this modified operator is hermitian as it should. [125] The operator V could be any of
those given by Eq. (2.40), thus

VΣ = VLDA + VS

VLDA = V + Vnl. (2.71)

As shown in Appendix A.9, Eq. (2.43) is generalized to VΣ
nm = (ωΣ

nm/ω
LDA
nm )VLDA

nm from which VΣ
nm

can be readily calculated. As a consistency test we have calculated the matrix elements of VLDA

and VS separately, according to the derivation presented in Appendix A.4 and A.3, and confirm
that both approaches yield identical results for χabc

surface. If not stated differently, calligraphic letters
correspond to layer quantities.

To limit the SHG response to one surface, Eq. (2.70) for V was proposed in Ref. [82] and later
used in Refs. [54], [68], [70], and [71] also in the context of SHG. The layer-by-layer analysis of
Refs. [126] and [127] used Eq. (2.59), limiting the current response to a particular layer of the
slab and used to obtain the anisotropic linear optical response of semiconductor surfaces. However,
the first formal derivation of this scheme is presented in Ref. [124] for the linear response. In
this thesis we formally introduce the cut function C(z) for the second-harmonic optical response of
semiconductor surfaces, from an average of the second order polarization over the region of interest.

2.5 Microscopic Surface Susceptibility

In this section we obtain the expressions for the surface susceptibility tensor χabc
surface. Using J =

dP/dt and Eq. (2.65) we obtain the SH polarization of a given region as

P(2)(2ω) = ie

2Aω̃

∫
d3k

8π3

∑
mn

VΣ
mn(k)ρ(2)

nm(k; 2ω), (2.72)
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and using Eqs. (2.23) and (2.57) leads to

χabc(−2ω;ω, ω) = e2

2Ah̄ω̃

∫
d3k

8π3

∑
mn

VΣ,a
mn(k)

ωΣ
nmk − 2ω̃

[
i
∑
q

(
rb
nqB

c
qm(k, ω)−Bc

nq(k, ω)rb
qm

)
−
(
Bc
nm(k, ω)

)
;kb

]
, (2.73)

which gives the susceptibility χabc(−2ω;ω, ω) of the layers of the slab specified by C(z). We mention
that the units of χabc(−2ω;ω, ω) are m2/V, as they should be for a surface SH susceptibility. Using
Eq. (2.53) we split this equation into two contributions from the first and second terms on the right
hand side of Eq. (2.73):

χabc
i (−2ω;ω, ω) = − e3

Ah̄22ω̃

∫
d3k

8π3

∑
mn

VΣ,a
mn

ωΣ
nm − 2ω̃

(
fmnr

b
nm

ωΣ
nm − ω̃

)
;kc

, (2.74)

related to intraband transitions, and

χabc
e (−2ω;ω, ω) = ie3

Ah̄22ω̃

∫
d3k

8π3

∑
qmn

VΣ,a
mn

ωΣ
nm − 2ω̃

(
rc
nqr

b
qmfmq

ωΣ
qm − ω̃

−
rb
nqr

c
qmfqn

ωΣ
nq − ω̃

)
, (2.75)

related to interband transitions. The generalized derivative in Eq. (2.74) is dealt with by the chain
rule (

fmnr
b
nm

ωΣ
nm − ω̃

)
;kc

= fmn
ωΣ
nm − ω̃

(
rb
nm

)
;kc
− fmnr

b
nm∆c

nm

(ωΣ
nm − ω̃)2 , (2.76)

where substituting HΣ
0 into Eq. (2.38) and then Eq. (2.45) we obtain(

ωΣ
nm

)
;ka

=
(
ωLDA
nm

)
;ka

= vLDA,a
nn − vLDA,a

mm ≡ ∆a
nm. (2.77)

The apparent divergence as ω̃ → 0 in Eqs. (2.74) and (2.75), is removed by a partial fraction
expansion over ω̃. Using time-reversal symmetry, an integration by parts to remove the square in
the denominator of the second term of Eq. (2.76), and taking the limit of η → 0, we obtain the
following expressions for the imaginary parts of Eqs. (2.74) and (2.75),

Im[χabc
e,ω ] = π|e|3

2h̄2

∫
d3k

8π3

∑
vc

∑
q 6=(v,c)

1
ωΣ
cv

[
Im[VΣ,a

qc {rb
cvr

c
vq}]

(2ωΣ
cv − ωΣ

cq)
−

Im[VΣ,a
vq {rc

qcr
b
cv}]

(2ωΣ
cv − ωΣ

qv)

]
δ(ωΣ

cv − ω),

Im[χabc
i,ω ] = π|e|3

2h̄2

∫
d3k

8π3

∑
cv

1
(ωΣ
cv)2

Re
[{
rb
cv

(
VΣ,a
vc

)
;kc

}]
+

Re
[
VΣ,a
vc

{
rb
cv∆c

cv

}]
ωΣ
cv

 δ(ωΣ
cv − ω),

Im[χabc
e,2ω] = −π|e|

3

2h̄2

∫
d3k

8π3

∑
vc

4
ωΣ
cv

∑
v′ 6=v

Im[VΣ,a
vc {rb

cv′rc
v′v}]

2ωΣ
cv′ − ωΣ

cv

−
∑
c′ 6=c

Im[VΣ,a
vc {rc

cc′rb
c′v}]

2ωΣ
c′v − ωΣ

cv

 δ(ωΣ
cv − 2ω),

Im[χabc
i,2ω] = π|e|3

2h̄2

∫
d3k

8π3

∑
vc

4
(ωΣ
cv)2

Re
[
VΣ,a
vc

{(
rb
cv

)
;kc

}]
−

2Re
[
VΣ,a
vc

{
rb
cv∆c

cv

}]
ωΣ
cv

 δ(ωΣ
cv − 2ω),

(2.78)
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2. The Nonlinear Surface Susceptibility

where we have split the interband and intraband 1ω and 2ω contributions and suppressed the ω
arguments for convenience of notation. The factor of 2 for spin degeneracy is not included in Eq.
(2.78). The real part of each contribution can be obtained through a Kramers-Kronig transformation
[128] and χabc = χabc

e,ω +χabc
e,2ω +χabc

i,ω +χabc
i,2ω. To fulfill the required intrinsic permutation symmetry,

the {} notation symmetrizes the bc Cartesian indices, i.e. {ubsc} = (ubsc + ucsb)/2, and thus
χabc = χacb. The full expressions for χabc(−2ω;ω, ω), along with the various quantities involved in
Eq. (2.78) are given in the Appendix A.6. We mention that if we take C(z) = 1 through out, the
layered matrix elements VΣ

nm become standard bulk-like vΣ
nm matrix elements. We mention that

in this case, Eq. (2.78) is equivalent to the expressions of Ref. [81], valid for bulk semiconductors.
Finally, we could also calculate the nonlinear surface susceptibility as

χsurface(−2ω;ω, ω) =
∑
{`}

χ`(−2ω;ω, ω), (2.79)

where ` would denote a particular layer chosen through C`(z) of Eq. (2.59) and {`} is meant to
be a chosen set of layers. For instance, one can take a single layer encompassing half of the slab,
or take each atomic layer individually to the middle of the slab. For the first case there is a single
summand in Eq. (2.79). For the second case there is a sum from ` = 1, denoting the first layer
right at the surface, to ` = N , denoting the layer at the middle of the slab that behaves like a bulk
layer. We remark that the value of N is not universal and the slab needs to have enough atomic
layers in order to give converged results for χsurface(−2ω;ω, ω). We can use Eq. (2.79) for either
the front or the back surface.

In Appendices A.7 and A.4 we demonstrate how to calculate the generalized derivatives of
(rnm);k and

(
VΣ,a
nm

)
;k

. From Appendix A.7 we find that T ab
nm, given by

T ab
nm = h̄

me
δabδnm − h̄Lab

nm, (2.80)

where

Lab
nm = i

h̄

[
rb, vnl,a

]
nm

, (2.81)

is the contribution to the generalized derivatives (rnm);k, and
(
VΣ,a,`
nm

)
;k

coming from the nonlocal
part of the pseudopotential, vnl. In Appendix A.8 we calculate Lab

nm. It is shown in Ref. [117]
that this term has a very small numerical value, and a computational time of at least one order of
magnitude larger than for all the other terms involved in the expressions for χabc. Therefore, we
neglect it throughout this thesis and take

T ab
nm ≈

h̄

me
δabδnm. (2.82)

2.6 About the Code

The TINIBA code is a suite of scripts that works with the popular ABINIT [129] package to run
and calculate optical properties of crystalline semiconductors by parallelizing the computation of
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the different quantities involved in the procedure. It is written primarily in FORTRAN with Bash
wrapper scripts. It is capable of calculating the following optical responses:

1. chi1: linear optical response,

2. calChi1: layered linear optical response,

3. eta2: bulk optical current injection,

4. calEta2: layered optical current injection,

5. zeta: bulk optical spin injection,

6. calZeta: layered optical spin injection,

7. shg1L: bulk SHG derived in the length gauge,

8. shg1V: bulk SHG derived in the velocity gauge,

9. shg1C: layerd SHG derived in the length gauge (described in this work),

amongst others. It makes good use of the open-source MPI libraries, that allows it to be parallelized
across any number of machines. Integrating the framework developed in this chapter consisted of
integrating the new elements into the length gauge derived SHG response. More details about this
can be found in Refs. [81] and [85]. See Fig. 2.3 for a sample of the code required for calculating
Im[χabc

2ω ]. It is designed to streamline the entire calculation by using a single file to control ABINIT
(for producing the LDA wave functions and the electron density), and for producing the matrix
elements listed in the previous sections of this chapter. Then, the SHG responses can be calculated
using the generated matrix elements.

These calculations are quite complex and time consuming. Each matrix can have millions of
entries occupying tens of GB of RAM. Our FORTRAN code is all compiled using the latest Intel
compilers, purpose build for processors in our computer cluster, Medusa. We now have nodes that
have 3 TB of RAM available, which will allow us to take these calculations to unprecedent levels.
These calculations are also quite processor intensive, so we parallelize every calculation over as
many nodes as possible. The results listed in Chapter 4 took around 1 day to produce, from the
calculation of the matrix elements all the way to the generation of the final spectra. On average,
we used around 60 cores to produce the wavefunction and matrix elements, and then parallelized
all 18 components of χabc on a single machine over 12 cores. Producing the matrix elements that
include the nonlocal part of the pseudopotentials is particularly time consuming. That part of the
calculation invokes the DP code [130] which produces the necessary matrix elements that are then
used in TINIBA. This usually takes up to 3-4 times the amount of time that the normal matrix
elements take.

We have created a Github repository with the user manual for the TINIBA code, along with a
detailed manuscript on how we coded the expressions derived in this chapter.
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2. The Nonlinear Surface Susceptibility

2.7 Conclusions

We have presented a formulation to calculate the surface second-harmonic (SSH) susceptibility ten-
sor χsurface(−2ω;ω, ω), using the length gauge formalism and within the IPA. It includes on equal
footing: (i) the scissors correction, (ii) the contribution of the non-local part of the pseudopoten-
tials, and (iii) the cut function. We have neglected local field and excitonic effects. Although these
are important factors in the optical response of a semiconductor, their efficient calculation is theo-
retically and numerically challenging and still under debate [66]. This merits further study but is
beyond the scope of this thesis. Nevertheless, the inclusion of aforementioned contributions in our
scheme opens the unprecedented possibility to study surface SHG with more versatility and more
accurate results.
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1 DO v = 1, nVal
2 DO c = nVal+1, nMax
3 omegacv=band(c) - band(v)
4 tmp = 0.d0
5 DO da=1,3
6 DO db=1,3
7 DO dc=1,3
8 !!! this is for interband 2w contributions
9 !!! virtual-hole

10 do vp=1,nVal
11 if((vp.ne.v).and.(vp.ne.c))then
12 omegacvp=band(c) - band(vp)
13 omegacvpcv=(2.*omegacvp-omegacv)
14 IF ((omegacvpcv.ge.0.d0).and.(omegacvpcv.le.tol))
15 omegacvpcv=omegacvpcv+tol
16 IF ((omegacvpcv.le.0.d0).and.(omegacvpcv.ge.(-tol)))
17 omegacvpcv=omegacvpcv-tol
18 psym=(posMatElem(db,c,vp)*posMatElem(dc,vp,v)&
19 +posMatElem(dc,c,vp)*posMatElem(db,vp,v))/2.
20 tmp=tmp-4.*T3(da,db,dc)*aimag(calVsig(da,v,c)*psym)&
21 /(omegacv*omegacvpcv)
22 end if
23 end do
24 !!!! virtual-electron
25 do cp=nVal+1,nMax
26 if((cp.ne.v).and.(cp.ne.c))then
27 omegacpv=band(cp) - band(v)
28 omegacpvcv=(2.*omegacpv-omegacv)
29 IF ((omegacpvcv.ge.0.d0).and.(omegacpvcv.le.tol))
30 omegacpvcv=omegacpvcv+tol
31 IF ((omegacpvcv.le.0.d0).and.(omegacpvcv.ge.(-tol)))
32 omegacpvcv=omegacpvcv-tol
33 psym=(posMatElem(db,c,cp)*posMatElem(dc,cp,v)&
34 +posMatElem(dc,c,cp)*posMatElem(db,cp,v))/2.
35 tmp=tmp+4.*T3(da,db,dc)*aimag(calVsig(da,v,c)*psym)&
36 /(omegacv*omegacpvcv)
37 end if
38 end do
39 !!! this is for intraband 2w contributions
40 psym=(derMatElem(db,dc,c,v)+derMatElem(dc,db,c,v))/2.
41 psym1=(posMatElem(db,c,v)*delta(dc,c,v)&
42 +posMatElem(dc,c,v)*delta(db,c,v))/2.
43 tmp=tmp+4.*(T3(da,db,dc)/(omegacv)**2)&
44 *(real(calVsig(da,v,c)*psym) &
45 -2.*real(calVsig(da,v,c)*psym1)/omegacv)
46 END DO
47 END DO
48 END DO

Figure 2.3: A portion of the FORTRAN code for calculating Im[χabc
2ω ].
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In Chapter 2 we derived the expressions for the nonlinear surface susceptibility tensor including
three features not previously found in a single formulation: (i) the scissors correction, (ii) the con-
tribution of the nonlocal part of the pseudopotentials, and (iii) the cut function used to extract the
surface response, all within the independent particle approximation. There are, of course, several
other theoretical formalisms that describe the SHG process for surfaces with different approxima-
tions and varying levels of difficulty [54,63,67–72]. However, we consider that this newly developed
framework, with the inclusion of these three contributions opens the possibility to study SSHG with
more versatility and accuracy than was previously available at this level of approximation.
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3. The Surface Second-Harmonic Generation Yield

In this chapter, we will walk through the considerations for developing the three layer (3-layer)
model for the SSHG yield, which considers that the SH conversion takes place in a thin layer just
below the surface that lies under the vacuum region and above the bulk of the material. We will
then derive explicit expressions for each of the four polarization configurations for the incoming and
outgoing fields. These expressions will be simplified by taking into account the symmetry relations
for the (111), (110), and (001) surfaces. The reader can also consult Appendix B, that contains a
wealth of supplementary derivations for all the work contained in this chapter.

3.1 The Three Layer Model for the SSHG Yield

In this section, we will derive the formulas required for the calculation of the SSHG yield, defined
by

R(ω) = I(2ω)
I2(ω) , (3.1)

with the intensity given by [131,132]

I(ω) =


c

2πn(ω)|E(ω)|2 (CGS units)

2ε0c n(ω)|E(ω)|2 (MKS units)
, (3.2)

where n(ω) =
√
ε(ω) is the index of refraction (ε(ω) is the dielectric function), ε0 is the vacuum

permittivity, and c the speed of light in vacuum.
There are several ways to calculate R(ω), one of which is the procedure followed by Cini [133].

This approach calculates the nonlinear susceptibility and at the same time the radiated fields.
However, we present an alternative derivation based on the work of Mizrahi and Sipe [134], since
the derivation of the 3-layer model is straightforward. In this scheme, the surface is represented
by three regions or layers. The first layer is the vacuum region (denoted by v) with a dielectric
function εv(ω) = 1 from where the fundamental electric field Ev(ω) impinges on the material. The
second layer is a thin layer (denoted by `) of thickness d characterized by a dielectric function ε`(ω).
It is in this layer where the SHG takes place. The third layer is the bulk region denoted by b and
characterized by εb(ω). Both the vacuum and bulk layers are semi-infinite (see Fig. 3.1).

To model the electromagnetic response of the 3-layer model, we follow Ref. [134] and assume a
polarization sheet located at zβ, of the form

P(r, t) = Peiκ·Re−iωtδ(z − zβ) + c.c., (3.3)

where R = (x, y), κ is the component of the wave vector νβ parallel to the surface, and zβ is the
position of the sheet within medium β, and P is the position-independent polarization. Ref. [135]
demonstrates that the solution of the Maxwell equations for the radiated fields Eβ,p±, and Eβ,s with
P(r, t) as a source at points z 6= 0, can be written as

(Eβ,p±, Eβ,s) = (γiω̃
2

w̃β
p̂β± ·P ,

γiω̃2

w̃β
ŝ ·P), (3.4)
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θ0νv−

z

ŝ κ̂

L1

L6

L6

∆ϕ0

∆ϕ1

∆ϕ2

P̂`− P̂`+P(2ω)

L2

L3

L4 L5 L5 L5 L5

d1

d2
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Vacuum

z = 0

Surface
Layer

ε`

z = −d
Bulk εb

Figure 3.1: Sketch of the three layer model for SHG. The vacuum region (v) is
on top with εv = 1; the layer ` of thickness d = d1 +d2, is characterized by ε`(ω),
and it is where the SH polarization sheet P`(2ω) is located at z` = d1. The bulk
b is described by εb(ω). The arrows point along the direction of propagation, and
the p-polarization unit vector, P̂`−(+), along the downward (upward) direction
is denoted with a thick arrow. The s-polarization unit vector ŝ, points out
of the page. The fundamental field Ev(ω) is incident from the vacuum side
along the κ̂z-plane, with θ0 its angle of incidence and νv− its wave vector. ∆ϕi
denotes the phase difference between the multiple reflected beams and the first
layer-vacuum transmitted beam, denoted by the dashed-red arrow (of length
L2) followed by the solid black arrow (of length L1). The dotted lines in the
vacuum region are perpendicular to the beam extended from the solid black
arrow (denoted by solid blue arrows of length L6).

where γ = 2π in CGS units or γ = 1/2ε0 in MKS units, and ω̃ = ω/c. Also, ŝ and p̂β± are
the unit vectors for the s and p polarizations of the radiated field, respectively. The ± refers to
upward (+) or downward (−) direction of propagation within medium β, as shown in Fig. 3.1.
Also, w̃β(ω) = ω̃wβ, where

p̂β±(ω) =
κ(ω)ẑ∓ w̃β (ω)κ̂

ω̃nβ (ω)
=

sin θ0ẑ∓ wβ (ω)κ̂
nβ (ω)

, (3.5)

with
wβ(ω) =

(
εβ(ω)− sin2 θ0

)1/2
, (3.6)

θ0 is the angle of incidence of Ev(ω), κ(ω) = |κ| = ω̃ sin θ0, nβ (ω) =
√
εβ (ω) is the index of

refraction of medium β, and z is the direction perpendicular to the surface that points towards the
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vacuum. If we consider the plane of incidence along the κz plane, then

κ̂ = cosφx̂ + sinφŷ, (3.7)

and
ŝ = − sinφx̂ + cosφŷ, (3.8)

where φ is the azimuthal angle with respect to the x axis.
In the 3-layer model the nonlinear polarization responsible for the SHG is immersed in the thin

layer (β = `), and is given by

Pa
` (2ω) =


χabc

surface(−2ω;ω, ω)Eb(ω)Ec(ω) (CGS units)

ε0χ
abc
surface(−2ω;ω, ω)Eb(ω)Ec(ω) (MKS units)

, (3.9)

where χsurface(−2ω;ω, ω) is the dipolar surface nonlinear susceptibility tensor that we derived in
Chapter 2, and the Cartesian indices a, b, c are summed over if repeated. As we mentioned before,
χabc(−2ω;ω, ω) = χacb(−2ω;ω, ω) is the intrinsic permutation symmetry due to the fact that SHG
is degenerate in Eb(ω) and Ec(ω). As in Ref. [134], we consider the polarization sheet (Eq. (3.3))
to be oscillating at some frequency ω in order to properly express Eqs. (3.4)-(3.8). However, in the
following we find it convenient to use ω exclusively to denote the fundamental frequency and κ to
denote the component of the incident wave vector parallel to the surface. The generated nonlinear
polarization is oscillating at Ω = 2ω and will be characterized by a wave vector parallel to the
surface K = 2κ. We can carry over Eqs. (3.3)-(3.8) simply by replacing the lowercase symbols
(ω, ω̃,κ, nβ , w̃β , wβ , p̂β±, ŝ) with uppercase symbols (Ω, Ω̃,K, Nβ , W̃β ,Wβ , P̂β±, Ŝ), all evaluated
at 2ω. Of course, we always have that Ŝ = ŝ.

From Fig. 3.1, we observe the propagation of the SH field as it is refracted at the layer-vacuum
interface (`v), and reflected multiple times from the layer-bulk (`b) and layer-vacuum (`v) interfaces.
Thus, we can define

T`v = ŝT `vs ŝ + P̂v+T
`v
p P̂`+, (3.10)

as the transmission tensor for the `v interface,

R`b = ŝR`bs ŝ + P̂`+R
`b
p P̂`−, (3.11)

as the reflection tensor for the `b interface, and

R`v = ŝR`vs ŝ + P̂`−R
`v
p P̂`+, (3.12)

as the reflection tensor for the `v interface. The Fresnel factors in uppercase letters, T ijs,p and Rijs,p,
are evaluated at 2ω from the following well known formulas [24]

tijs (ω) = 2wi(ω)
wi(ω) + wj(ω) , tijp (ω) =

2wi(ω)
√
εi(ω)εj(ω)

wi(ω)εj(ω) + wj(ω)εi(ω) ,

rijs (ω) = wi(ω)− wj(ω)
wi(ω) + wj(ω) , rijp (ω) = wi(ω)εj(ω)− wjεi(ω)

wi(ω)εj(ω) + wj(ω)εi(ω) .
(3.13)
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3.1. The Three Layer Model for the SSHG Yield

With these expressions we easily derive the following useful relations,

1 + r`bs = t`bs ,

1 + r`bp = nb
n`
t`bp ,

1− r`bp = n`
nb

wb
w`
t`bp ,

t`vp = w`
wv
tv`p ,

t`vs = w`
wv
tv`s .

(3.14)

3.1.1 Multiple SHG Reflections

The SH field E(2ω) radiated by the SH polarization P`(2ω) will radiate directly into the vacuum
and the bulk, where it will be reflected back at the layer-bulk interface into the thin layer. This
beam will be transmitted and reflected multiple times, as shown in Fig. 3.1. As the two beams
propagate, a phase difference will develop between them according to

∆ϕm = Ω̃
(
(L3 + L4 + 2mL5)N` −

(
L2N` + (L1 +mL6)Nv

))
= δ0 +mδ, m = 0, 1, 2, . . . ,

(3.15)

where
δ0 = 8π

(
d2
λ0

)
W`, (3.16)

and
δ = 8π

(
d

λ0

)
W`, (3.17)

where λ0 is the wavelength of the fundamental field in the vacuum, W` is described in Eq. (3.6),
d is the thickness of layer `, and d2 is the distance between P`(2ω) and the `b interface (see Fig.
3.1). We see that δ0 is the phase difference of the first and second transmitted beams, and mδ
that of the first and third (m = 1), first and fourth (m = 2), and so on. Note that the thickness d
of the layer ` enters through the phase δ, and the position d2 of the nonlinear polarization P(r, t)
(Eq. (3.3)) enters through δ0. In particular, d2 could be used as a variable to study the effects of
multiple reflections on the SSHG yield R(2ω).

To take into account the multiple reflections of the generated SH field in the layer `, we proceed
as follows. I include the algebra for the p-polarized SH field, and the s-polarized field could be
worked out along the same steps. The p-polarized E`,p(2ω) field reflected multiple times is given by

E`,p(2ω) = E`,p+(2ω)T`v · P̂`+ + E`,p−(2ω)T`v ·R`b · P̂`−e
i∆ϕ0

+ E`,p−(2ω)T`v ·R`b ·R`v ·R`b · P̂`−e
i∆ϕ1

+ E`,p−(2ω)T`v ·R`b ·R`v ·R`b ·R`v ·R`b · P̂`−e
i∆ϕ2 + · · ·

= E`,p+(2ω)T`v · P̂`+ + E`,p−(2ω)T`v ·
∞∑
m=0

(
R`b ·R`veiδ

)m
·R`b · P̂`−e

iδ0 .

(3.18)
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3. The Surface Second-Harmonic Generation Yield

From Eqs. (3.10) - (3.12) it is easy to show that

T`v ·
(
R`b ·R`v

)n
·R`b = ŝT `vs

(
R`bs R

`v
s

)n
R`bs ŝ + P̂v+T

`v
p

(
R`bp R

`v
p

)n
R`bp P̂`−,

then,

E`,p(2ω) = P̂`+T
`v
p

(
E`,p+(2ω) +

R`bp e
iδ0

1 +Rv`p R
`b
p e

iδ
E`,p−(2ω)

)
, (3.19)

where we used Rijs,p = −Rjis,p. Using Eq. (3.4) and (3.14), we can readily write

E`,p(2ω) = γiΩ̃
W`

H` ·P`(2ω), (3.20)

where
H` = W`

Wv

[
ŝT v`s

(
1 +RMs

)
ŝ + P̂v+T

v`
p

(
P̂`+ +RMp P̂`−

)]
, (3.21)

and

RMi ≡
R`bi e

iδ0

1 +Rv`i R
`b
i e

iδ
, i = s, p, (3.22)

is defined as the multiple (M) reflection coefficient. This coefficient depends on the thickness d of
layer `, and most importantly on the position d2 of P`(2ω) within this layer. The final results will
depend on both d and d2. However, using Eq. (3.16) we can also define an average R̄Mi as

R̄Mi ≡
1
d

∫ d

0

R`bi e
i(8πW`/λ0)x

1 +Rv`i R
`b
i e

iδ
dx = R`bi e

iδ/2

1 +Rv`i R
`b
i e

iδ
sinc(δ/2), (3.23)

that only depends on d through the δ term from Eq. (3.17).
To connect with the work in Ref. [134], where P(2ω) is located on top of the vacuum-surface

interface and only the vacuum radiated beam and the first (and only) reflected beam need be
considered, we take ` = v and d2 = 0, then T `v = 1, Rv` = 0 and δ0 = 0, with which RMi = Rvbi .
Thus, Eq. (3.21) coincides with Eq. (3.8) of Ref. [134].

3.1.2 Multiple Reflections for the Linear Field

For a more complete formulation, we must also consider the multiple reflections of the fundamental
field E`(ω) inside the thin ` layer. In Fig. 3.2 we present the situation where Ev(ω) impinges from
the vacuum side with an angle of incidence θ0. As the first transmitted beam is multiply reflected
from the `b and the `v interfaces, it accumulates a phase difference of nϕ (with n = 1, 2, 3, . . .), and
ϕ is given by

ϕ = ω

c
(2L1n` − L2nv)

= 4π
(
d

λ0

)
w`,

(3.24)
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3.1. The Three Layer Model for the SSHG Yield

where nv = 1. We need Eqs. (3.11) and (3.12) for 1ω, and also need

tv` = ŝtv`s ŝ + p̂`−tv`p p̂v−, (3.25)

to write

E`(ω) = E0
[
tv` + r`b · tv`eiϕ + r`b · r`v · r`b · tv`ei2ϕ + r`b · r`v · r`b · r`v · r`b · tv`ei3ϕ + · · ·

]
· êi

= E0
[
1 +

(
1 + r`b · r`veiϕ + (r`b · r`v)2ei2ϕ + · · ·

)
· r`beiϕ

]
· tv` · êi

= E0
[
ŝtv`s (1 + rMs )ŝ + tv`p

(
p̂`− + p̂`+rMp

)
p̂v−

]
· êi, (3.26)

where E0 is the intensity of the fundamental field, and êi is the unit vector of the incoming polar-
ization, with i = s, p, and then, ês = ŝ and êp = p̂v−. Also,

rMi ≡
r`bi e

iϕ

1 + rv`i r
`b
i e

iϕ
, i = s, p. (3.27)

rMi is defined as the multiple (M) reflection coefficient for the fundamental field. We define Ei
`(ω) ≡

E0eω,i` (i = s, p), where

eω,i` =
[
ŝtv`s (1 + rMs )ŝ + tv`p

(
p̂`− + p̂`+rMp

)
p̂v−

]
· êi, (3.28)

and using Eq. (3.5) we obtain that

eω,p` =
tv`p
n`

(
rM+
p sin θ0ẑ + rM−p w`κ̂

)
, (3.29)

for p-input polarization with êi = p̂v−, and

eω,s` = tv`s r
M+
s ŝ, (3.30)

for s-input polarization with êi = ŝ, where

rM±i = 1± rMi , i = s, p. (3.31)

3.1.3 The SSHG Yield

The magnitude of the radiated field is given by E(2ω) = êF · E`(2ω), where êF is the unit vector
of the final, S or P SH polarization with F = S, P , where êS = ŝ and êP = P̂v+. We expand the
rightmost term in parenthesis of Eq. (3.21) as

P̂`+ +RMp P̂`− = sin θ0ẑ−W`κ̂

N`
+RMp

sin θ0ẑ +W`κ̂

N`

= 1
N`

(
sin θ0R

M+
p ẑ−W`R

M−
p κ̂

)
,

(3.32)
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θ0νv−

z

ŝ κ̂

L2

2L2

3L2

p̂v−

ϕ 2ϕ 3ϕ

p̂`− p̂`+

L1

εv = 1
Vacuum

z = 0

Surface
Layer

ε`

z = −d
Bulk εb

Figure 3.2: Sketch for the multiple reflected fundamental field E`(ω), which
impinges from the vacuum side along the κ̂z-plane. θ0 and νv− are the angle of
incidence and wave vector, respectively. The arrows point along the direction
of propagation. The p-polarization unit vectors p̂β±, point along the downward
(−) or upward (+) directions and are denoted with thick arrows, where β = v or
`. The s-polarization unit vector ŝ points out of the page. (1, 2, 3, . . .)ϕ denotes
the phase difference for the multiple reflected beams with respect to the incident
field, where the dotted line is perpendicular to this beam.

where
RM±i ≡ 1±RMi , i = s, p. (3.33)

Using Eq. (3.14) we write Eq. (3.20) as

E`(2ω) = 2γiω
cW`

êF ·H` ·P`(2ω) = 2γiω
cWv

e 2ω,F
` ·P`(2ω), (3.34)

where

e2ω,F
` = êF ·

[
ŝT v`s RM+

s ŝ + P̂v+
T v`p
N`

(
sin θ0R

M+
p ẑ−W`R

M−
p κ̂

) ]
. (3.35)

Replacing E`(ω)→ E0eω,i` , in Eq. (3.9), we obtain that

P`(2ω) =


E2

0 χsurface : eω,i` eω,i` (CGS units)

ε0E
2
0 χsurface : eω,i` eω,i` (MKS units)

, (3.36)
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3.1. The Three Layer Model for the SSHG Yield

where eω,i` is given by Eq. (3.28), and thus Eq. (3.34) reduces to (Wv = cos θ0)

E`(2ω) = 2ηiω
c cos θ0

e2ω,F
` · χsurface : eω,i` eω,i` , (3.37)

where η = 2π in CGS units and η = 1/2 in MKS units. For ease of notation, we define

ΥiF ≡ e2ω,F
` · χsurface : eω,i` eω,i` , (3.38)

where i stands for the incoming polarization of the fundamental electric field given by êi in Eq.
(3.28), and F for the outgoing polarization of the SH electric field given by êF in Eq. (3.35). I
purposely omitted the full χ(−2ω;ω, ω) notation, and will do so from this point on.

From Eqs. (3.1) and (3.2) we obtain that in CGS units (η = 2π),

|E(2ω)|2 = |E0|4
16π2ω2

c2W 2
v

|ΥiF|2

c

2π |
√
NvE(2ω)|2 = 32π3ω2

c3 cos2 θ0

∣∣∣∣∣
√
Nv

n2
`

ΥiF

∣∣∣∣∣
2 (

c

2π |
√
n`E0|2

)2

I(2ω) = 32π3ω2

c3 cos2 θ0

∣∣∣∣∣
√
Nv

n2
`

ΥiF

∣∣∣∣∣
2

I2(ω)

RiF(2ω) = 32π3ω2

c3 cos2 θ0

∣∣∣∣ 1
n`

ΥiF

∣∣∣∣2 , (3.39)

and in MKS units (η = 1/2),

|E(2ω)|2 = |E0|4
ω2

c2W 2
v

2ε0c|
√
NvE(2ω)|2 = 2ε0ω2

c cos2 θ0

∣∣∣∣∣
√
Nv

n2
`

ΥiF

∣∣∣∣∣
2 1

4ε20c2

(
2ε0c|

√
n`E0|2

)2

I(2ω) = ω2

2ε0c3 cos2 θ0

∣∣∣∣∣
√
Nv

n2
`

ΥiF

∣∣∣∣∣
2

I2(ω)

RiF(2ω) = ω2

2ε0c3 cos2 θ0

∣∣∣∣ 1
n`

ΥiF

∣∣∣∣2 . (3.40)

Finally, we condense these results and establish the SSHG yield as

RiF(2ω)


32π3ω2

c3 cos2 θ0

∣∣∣ 1
n`

ΥiF
∣∣∣2 (CGS units)

ω2

2ε0c3 cos2 θ0

∣∣∣ 1
n`

ΥiF
∣∣∣2 (MKS units)

, (3.41)

where Nv = 1 and Wv = cos θ0. As mentioned in Chapter (2), χsurface is given in m2/V in the MKS
unit system, since it is a surface second order nonlinear susceptibility, and RiF is given in m2/W.
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3. The Surface Second-Harmonic Generation Yield

3.2 RiF for Different Polarization Cases

We now have everything we need to derive explicit expressions for RiF, Eq. (3.41), for the most
commonly used polarizations of incoming and outgoing fields (iF=pP , pS, sP , and sS). For this,
we must expand ΥiF from Eq. (3.38) for each case. By substituting Eqs. (3.7) and (3.8) into Eq.
(3.35), we obtain

e2ω,P
` =

T v`p
N`

(
sin θ0R

M+
p ẑ−W`R

M−
p cosφx̂−W`R

M−
p sinφŷ

)
, (3.42)

for P (êF = P̂v+) outgoing polarization, and

e2ω,S
` = T v`s R

M+
s (− sinφx̂ + cosφŷ) . (3.43)

for S (êF = ŝ) outgoing polarization.
Following a similar procedure, we use Eqs. (3.7) and (3.8) with Eq. (3.29), and obtain

eω,p` eω,p` =
(
tv`p
n`

)2 ((
rM−p

)2
w2
` cos2 φx̂x̂ + 2

(
rM−p

)2
w2
` sinφ cosφx̂ŷ

+2rM+
p rM−p w` sin θ0 cosφx̂ẑ +

(
rM−p

)2
w2
` sin2 φŷŷ

+2rM+
p rM−p w` sin θ0 sinφŷẑ +

(
rM+
p

)2 sin2 θ0ẑẑ
)
,

(3.44)

for p incoming polarization (êi = p̂v−), and with Eq. (3.30),

eω,s` eω,s` =
(
tv`s r

M+
s

)2 (
sin2 φx̂x̂ + cos2 φŷŷ− 2 sinφ cosφx̂ŷ

)
. (3.45)

for s incoming polarization (êi = ŝ).
We summarize the combination of equations needed to derive the expressions for all four polar-

ization cases of RiF in Table 3.1. In the following subsections we will derive the explicit expressions
for ΥiF for the most general case where the surface has no symmetry. We will then develop these
expressions for particular cases of the most commonly investigated surfaces, the (111), (001), and
(110) crystallographic faces. For ease of writing we split ΥiF as

ΥiF = ΓiF riF. (3.46)

Lastly, the list of nonzero components of χsurface for each surface symmetry [29, 136] are listed in
Table 3.2. From this point on, we will omit the “surface” subscript for the χabc components for ease
of notation. I have provided the full, step-by-step derivation for all of these expressions in Appendix
B, with and without the effects of multiple reflections. The avid reader should refer to that chapter
if interested in deriving any of the expressions listed below.
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3.2. RiF for Different Polarization Cases

Table 3.1: Polarization unit vectors for êF and êi, and equations describing
e2ω,F
` and eω,i` eω,i` for each polarization case.

Case êF êi e2ω,F
` eω,i` eω,i`

RpP P̂v+ p̂v− Eq. (3.42) Eq. (3.44)
RpS Ŝ p̂v− Eq. (3.43) Eq. (3.44)
RsP P̂v+ ŝ Eq. (3.42) Eq. (3.45)
RsS Ŝ ŝ Eq. (3.43) Eq. (3.45)

Table 3.2: Nonzero components of χ for the (111), (110) and (001) crystallo-
graphic faces, that belong to the C3v, C2v, and C4v symmetry groups, respec-
tively. For the (111) surface, we choose the x and y axes along the [112̄] and [11̄0]
directions, respectively. For the (110) and (001) surfaces, we consider the y axis
perpendicular to the plane of symmetry [29]. In general χ(111) 6= χ(110) 6= χ(001).

(111)-C3v (110)-C2v (001)-C4v
χzzz χzzz χzzz

χzxx = χzyy χzxx 6= χzyy χzxx = χzyy

χxxz = χyyz χxxz 6= χyyz χxxz = χyyz

χxxx = −χxyy = −χyyx

3.2.1 RpP (p-in, P -out)

Per Table 3.1, RpP requires Eqs. (3.42) and (3.44). After some algebra, we obtain that

ΓpP =
T v`p
N`

(
tv`p
n`

)2

, (3.47)

and

rpP =−RM−p

(
rM−p

)2
w2
`W` cos3 φχxxx − 2RM−p

(
rM−p

)2
w2
`W` sinφ cos2 φχxxy

− 2RM−p rM+
p rM−p w`W` sin θ0 cos2 φχxxz −RM−p

(
rM−p

)2
w2
`W` sin2 φ cosφχxyy

− 2RM−p rM+
p rM−p w`W` sin θ0 sinφ cosφχxyz −RM−p

(
rM+
p

)2
W` sin2 θ0 cosφχxzz

−RM−p

(
rM−p

)2
w2
`W` sinφ cos2 φχyxx − 2RM−p

(
rM−p

)2
w2
`W` sin2 φ cosφχyxy

− 2RM−p rM+
p rM−p w`W` sin θ0 sinφ cosφχyxz −RM−p

(
rM−p

)2
w2
`W` sin3 φχyyy

− 2RM−p rM+
p rM−p w`W` sin θ0 sin2 φχyyz −RM−p

(
rM+
p

)2
W` sin2 θ0 sinφχyzz

+RM+
p

(
rM−p

)2
w2
` sin θ0 cos2 φχzxx + 2RM+

p rM+
p rM−p w` sin2 θ0 cosφχzxz

+ 2RM+
p

(
rM−p

)2
w2
` sin θ0 sinφ cosφχzxy +RM+

p

(
rM−p

)2
w2
` sin θ0 sin2 φχzyy

+ 2RM+
p rM+

p rM−p w` sin2 θ0 sinφχzzy +RM+
p

(
rM+
p

)2
sin3 θ0χ

zzz,

(3.48)
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where all 18 independent components of χ for a surface with no symmetries, contribute to RpP .
Recall that χabc = χacb. We will derive the expressions for each of the three surfaces being considered
here, referring to Table 3.2. For the (111) surface we obtain

r
(111)
pP = RM+

p sin θ0
[ (
rM+
p

)2
sin2 θ0χ

zzz +
(
rM−p

)2
w2
`χ

zxx
]

−RM−p w`W`

[
2rM+
p rM−p sin θ0χ

xxz +
(
rM−p

)2
w`χ

xxx cos 3φ
]
,

(3.49)

where the three-fold azimuthal symmetry of the SHG signal that is typical of the C3v symmetry
group, is seen in the 3φ argument of the cosine function. For the (110) surface, we have that

r
(110)
pP = RM+

p sin θ0

[ (
rM+
p

)2
sin2 θ0χ

zzz +
(
rM−p

)2
w2
`

(
χzyy + χzxx

2 + χzyy − χzxx

2 cos 2φ
)]

− 2RM−p rM+
p rM−p w`W` sin θ0

(
χyyz + χxxz

2 + χyyz − χxxz

2 cos 2φ
)
.

(3.50)

The two-fold azimuthal symmetry of the SHG signal that is typical of the C2v symmetry group, is
seen in the 2φ argument of the cosine function. For the (001) surface we simply make χzxx = χzyy

and χxxz = χyyz as seen in Table 3.2, and the previous expression reduces to

r
(001)
pP = RM+

p sin θ0

[ (
rM+
p

)2
sin2 θ0χ

zzz +
(
rM−p

)2
w2
`χ

zxx
]

− 2RM−p rM+
p rM−p w`W` sin θ0χ

xxz.

(3.51)

This time, the azimuthal 4φ symmetry for the C4v group of the (001) surface is absent in this
expression since this contribution is only related to the bulk nonlinear quadrupolar SH term, Eq.
(2.7) [29], that we neglect in this work.

3.2.2 RsP (s-in, P -out)

Per Table 3.1, RsP requires Eqs. (3.42) and (3.45). After some algebra, we obtain that

ΓsP =
T v`p
N`

(
tv`s r

M+
s

)2
, (3.52)

and

rsP =RM−p W`

(
− sin2 φ cosφχxxx + 2 sinφ cos2 φχxxy − cos3 φχxyy

)
RM−p W`

(
− sin3 φχyxx + 2 sin2 φ cosφχyxy − sinφ cos2 φχyyy

)
RM+
p sin θ0

(
sin2 φχzxx − 2 sinφ cosφχzxy + cos2 φχzyy

)
.

(3.53)

In this case, 9 out of the 18 components of χ for a surface with no symmetries, contribute to RsP .
This is because there is no Ezv (ω) component, as the incoming polarization is s. From Table 3.2 we
get,

r
(111)
sP = RM+

p sin θ0χ
zxx +RM−p W`χ

xxx cos 3φ, (3.54)
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for the (111) surface,

r
(110)
sP = RM+

p sin θ0

(
χzxx + χzyy

2 + χzyy − χzxx

2 cos 2φ
)
, (3.55)

for the (110) surface, and
r

(001)
sP = RM+

p sin θ0χ
zxx, (3.56)

for the (001) surface.

3.2.3 RpS (p-in, S-out)

Per Table 3.1, RpS requires Eqs. (3.43) and (3.44). After some algebra, we obtain that

ΓpS = T v`s R
M+
s

(
tv`p
n`

)2

, (3.57)

and

rpS =−
(
rM−p

)2
w2
` sinφ cos2 φχxxx − 2

(
rM−p

)2
w2
` sin2 φ cosφχxxy

− 2rM+
p rM−p w` sin θ0 sinφ cosφχxxz −

(
rM−p

)2
w2
` sin3 φχxyy

− 2rM+
p rM−p w` sin θ0 sin2 φχxzy −

(
rM+
p

)2
sin2 θ0 sinφχxzz

+
(
rM−p

)2
w2
` cos3 φχyxx + 2

(
rM−p

)2
w2
` sinφ cos2 φχyxy

+ 2rM+
p rM−p w` sin θ0 cos2 φχyxz +

(
rM−p

)2
w2
` sin2 φ cosφχyyy

+ 2rM+
p rM−p w` sin θ0 sinφ cosφχyzy +

(
rM+
p

)2
sin2 θ0 cosφχyzz.

(3.58)

In this case, 12 out of the 18 components of χ for a surface with no symmetries, contribute to RpS .
This is because there is no Pz(2ω) component, as the outgoing polarization is S. From Table 3.2
we obtain,

r
(111)
pS = −

(
rM−p

)2
w2
`χ

xxx sin 3φ, (3.59)

for the (111) surface,
r

(110)
pS = rM+

p rM−p w` sin θ0(χyyz − χxxz) sin 2φ, (3.60)

for the (110) surface, finally,
r

(001)
pS = 0, (3.61)

for the (001) surface, where the zero value is only surface related as we neglect the bulk nonlinear
quadrupolar contribution [29].
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3.2.4 RsS (s-in, S-out)

Per Table 3.1, RsS requires Eqs. (3.43) and (3.45). After some algebra, we obtain that

ΓsS = T v`s R
M+
s

(
tv`s r

M+
s

)2
, (3.62)

and

rsS =− sin3 φχxxx + 2 sin2 φ cosφχxxy − sinφ cos2 φχxyy

+ sin2 φ cosφχyxx + cos3 φχyyy − 2 sinφ cos2 φχyxy.
(3.63)

In this case, only 6 out of the 18 components of χ for a surface with no symmetries, contribute to
RsS . This is because there is neither an Ezv (ω) component as the incoming polarization is s, nor a
Pz(2ω) component as the outgoing polarization is S. From Table 3.2, we get

r
(111)
sS = χxxx sin 3φ, (3.64)

for the (111) surface,
r

(110)
sS = 0, (3.65)

and
r

(001)
sS = 0, (3.66)

for the (110) and (001) surfaces, respectively, both being zero as the bulk nonlinear quadrupolar
contribution is not considered here [29].

3.3 Some Scenarios of Interest

In this section we present five different scenarios for placing the nonlinear polarization P(2ω) and the
fundamental electric field E(ω), which are alternatives to the three-layer model presented above.
In what follows, we confine ourselves only to the (111) surface and the p-in P -out combination
polarizations. This is the case where the proposed scenarios differ the most as the SSHG yield
depends on all the finite χabc components for this surface. However, the other pS, sP , and sS
polarization cases, or the (110) or (001) surfaces could be worked out along the same lines described
below. For all the scenarios we omit the multiple SH reflections by taking RM±p → 1 ± R`bp (Eq.
(3.33)) and the linear multiple reflections by taking rM±p → 1 ± r`bp (Eq. (3.31)). Using the
expressions in Eq. (3.14), we obtain the following useful relationships

rM+
p → nb

n`
t`bp

rM−p → n`
nb

wb
w`
t`bp ,

(3.67)

which will come in handy for expressing ΓpP and r
(111)
pP in the forms presented below. Recall

that these expressions are valid for the 2ω terms by simply capitalizing the relevant quantities as
explained in Sec. 3.1. We summarize these scenarios in Table 3.3 for quick reference.
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3.3.1 The 3-layer Model Without Multiple Reflections

Using Eq. (3.67) in Eq. (3.49) with Eq. (3.47), we obtain

ΓpP =
T `vp T

`b
p

N2
`Nb

(
tv`p t

`b
p

n2
`nb

)2

, (3.68)

and

r
(111)
pP = N2

b sin θ0
(
n4
b sin2 θ0χ

zzz + n4
`w

2
bχ

zxx
)

−N2
` n

2
`wbWb

(
2n2

b sin θ0χ
xxz + n2

`wbχ
xxx cos(3φ)

)
.

(3.69)

Now that we have neglected multiple SH reflections, we can use these two expressions for ΓpP and
rpP to obtain the next four scenarios by using the choices described in each subsection below. Note
that by neglecting the multiple reflections, the thickness d of layer ` disappears from the formulation,
and the location of the nonlinear polarization sheet at d2 (see Fig. 3.1) is immaterial.

3.3.2 The Two Layer, or Fresnel (2-layer-fresnel) Model

Historically, this is the model most used in the literature. In Chap. 4, we will see how the 3-layer
model, presented in the previous sections, offers a significant improvement over this model.

In the 2-layer-fresnel model, we consider that P(2ω) is evaluated in the vacuum region, while
the fundamental fields are evaluated in the bulk region [29, 134]. To do this, we evaluate the 2ω
radiations factors in the vacuum by taking ` = v, thus ε`(2ω) = 1, T `vp = 1, and T `bp = T vbp . We also
evaluate the fundamental field inside medium b by taking ` = b, thus ε`(ω) = εb(ω), tv`p = tvbp , and

Label P(2ω) E(ω)
3-layer ` `
3-layer-hybrid ` b
2-layer-bulk b b
2-layer-fresnel v b
2-layer-vacuum v v

Table 3.3: Summary of the SSHG yield models used throughout this thesis.
“Label” is the name used in subsequent figures, while the remaining columns
show in which medium we will consider the specified quantity. ` is the thin
layer below the surface of the material, v is the vacuum region, and b is the
bulk region of the material. We use the following convention for the labels.
Models with “3-layer” consider the presence of the thin layer `, while “2-layer”
models do not. The “fresnel”, “bulk”, “vacuum”, and “hybrid” tags refers to
the configuration in which we evaluate the specific quantities. For instance, the
3-layer-hybrid model evaluates P(2ω) in the thin layer `, while the fundamental
fields are evaluated in the bulk region b.
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3. The Surface Second-Harmonic Generation Yield

t`bp = 1. With these choices, Eqs. (3.68) and (3.69) reduce to

ΓpP =
T vbp (tvbp )2

n2
bNb

, (3.70)

and

r
(111)
pP = N2

b sin θ0
(

sin2 θ0χ
zzz + w2

bχ
zxx
)
− wbWb

(
2 sin θ0χ

xxz + wbχ
xxx cos(3φ)

)
. (3.71)

These expressions are in perfect agreement with Refs. [29] and [134].

3.3.3 The 2-layer-bulk Model: Evaluating P(2ω) and E(ω) in the Bulk

We follow the same procedure as above considering that both the 2ω and 1ω terms will be evaluated
in the bulk, by taking ` = b. Thus, ε`(2ω) = εb(2ω), T v`p = T vbp , T `bp = 1, and ε`(ω) = εb(ω), tv`p = tvbp ,
and t`bp = 1. With these choices Eqs. (3.68) and (3.69) reduce to

ΓpP =
T vbp

(
tvbp

)2

n2
bNb

, (3.72)

and
r

(111)
pP = sin3 θ0χ

zzz + w2
b sin θ0χ

zxx − 2wbWb sin θ0χ
xxz − w2

bWbχ
xxx cos 3φ. (3.73)

3.3.4 The 2-layer-vacuum Model: Evaluating P(2ω) and E(ω) in the Vacuum

We consider both P(2ω) and the fundamental fields to be evaluated in the vacuum. We take ` = v,
thus ε`(2ω) = 1, T `vp = 1, T `bp = T vbp , and ε`(ω) = 1, tv`p = 1, and t`bp = tvbp . With these choices Eqs.
(3.68) and (3.69) reduce to

ΓpP =
T vbp

(
tvbp

)2

n2
bNb

, (3.74)

and

r
(111)
pP = n4

bN
2
b sin3 θ0χ

zzz +N2
bw

2
b sin θ0χ

zxx − 2n2
bwbWb sin θ0χ

xxz − w2
bWbχ

xxx cos 3φ. (3.75)

3.3.5 The 3-layer-hybrid Model: Evaluating P(2ω) in ` and E(ω) in the Bulk

Again, we follow the same procedure as above considering that 2ω terms are evaluated in the thin
layer `, and the 1ω terms will be evaluated in the bulk by taking ` = b, thus ε`(ω) = εb(ω), tv`p = tvbp ,
and t`bp = 1. With these choices Eqs. (3.68) and (3.69) reduce to

Γ`bpP =
T v`p T

`b
p

(
tvbp

)2

N2
` n

2
bNb

, (3.76)

and

r
(111)
pP = N2

b sin3 θ0χ
zzz +N2

b k
2
b sin θ0χ

zxx − 2N2
` wbWb sin θ0χ

xxz −N2
` w

2
bWbχ

xxx cos 3φ. (3.77)
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3.4. About the Code

3.4 About the Code

SHGyield is a python script designed to calculate the nonlinear reflection coefficient for semicon-
ductor surfaces. It works in conjunction with the matrix elements calculated with ABINIT and
TINIBA, our in-house optical calculation software. I have created a Github respository with the
code. Like all free and open-source software, it can be freely downloaded, modified, and shared. The
script reads an input file that specifies all the necessary filenames, angles, broadening, and other
variables. It allows the user to include the effects of multiple reflections if desired, and select several
parameters for calculating these effects. It will automatically try to read all 18 independent com-
ponents of the nonlinear susceptibility (for SHG), but the user can easily limit which components
it will attempt to read if the total number can be reduced due to symmetry relations.

3.5 Conclusions

In this chapter, we derived the complete expressions for the SSHG radiation using the three layer
model to describe the radiating system. Our derivation yields the full expressions for the radiation
that include all required components of χabc, regardless of symmetry considerations. Thus, these
expressions can be applied to any surface symmetry. We also reduce them according to the most
commonly used surface symmetries, the (111), (110), and (100) cases.

In the next chapter, I will present the results obtained from using the theory developed here
and in Chapter 2 applied to the Si(001)(2×1) and the Si(111)(1×1):H surfaces. In particular, we
will compare the theoretical SSHG yield for the latter surface with experimental data from several
sources. This is an excellent way to test the validity of this approach, and will provide a benchmark
for future calculations using the theory developed here.
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In this chapter, We present the results for the calculation of the nonlinear susceptibility, χsurface,
and the SSHG yield, RiF, for the Si(001)(2×1) and the Si(111)(1×1):H surfaces. These results are
the direct product of all the theory derived in Chapters 2 and 3. These example surfaces provide
the perfect testbed for the theory developed in this work, and the resulting spectra yield insight
into the various key aspects of the theory.

The first part focuses on using the Si(001)(2×1) surface to review and compare the enhancements
that we have added to the framework for calculating χ. This surface is presented in a special
configuration that allows us to test each improvement made on the theory; namely, the use of the
cut function for extracting the surface susceptibility, the effect of the scissors operator, and the
addition of vnl. We will also present a very brief overview of the calculated SSHG yield, but with
no comparison to experimental data as there are few reported results available for this surface.
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The second part features the Si(111)(1×1):H, which is experimentally well-characterized, and
thus provides an excellent platform with which to test our robust formulation for the SSHG yield.
We will first compare the calculated χxxx component with experimental data from Ref. [44]. This
will provide a nice confirmation of everything we learned from the Si(001)(2×1) surface. We will
then review the calculated spectra for different polarization cases of the incoming fields, and compare
them to experimental data from Refs. [49, 69, 87], over a wide energy range covering both the E1
and E2 critical point transitions for bulk Si. We will find that this new formalism, that is developed
from the 3-layer model and includes the effect of multiple reflections in the material, compares quite
favorably with the experimental data. The quality of these calculations affords us some insight into
how the SSHG spectrum can be affected by several physical factors.

4.1 Results for the Si(001)(2×1) Surface

In this section, let us review the characteristics of the Si(001)(2×1) surface we will be using for the
subsequent calculations. This surface provides an excellent test case to check the consistency of our
approach for calculating χ with the new elements described in Chap. 2. For this, we have selected
a clean Si(001) surface with a 2×1 surface reconstruction. The slab for such a surface could be
made centrosymmetric by creating the front and back surfaces with the same 2×1 reconstruction.
However, this particular slab has the lower surface terminated with hydrogen, producing a termi-
nated, “ideal” bulk Si surface. The H atoms saturate the dangling bonds of the bulk-like Si atoms
at the surface, as seen in Fig. 4.1. Consider the z coordinate pointing out of the surface with the
x coordinate along the crystallographic [011] direction, parallel to the dimers.

The self-consistent ground state and the Kohn-Sham states were calculated in the DFT-LDA
framework using the plane-wave ABINIT code [129, 137], with Troullier-Martins pseudopotentials
[138] that are fully separable nonlocal pseudopotentials in the Kleinman-Bylander form [122]. The
contribution of vnl and Vnl to Eq. (2.78) was carried out using the DP code [130], which was
implemented in the TINIBA code [139] developed at the Centro de Investigaciones en Óptica, A.C.
The surface was studied with the experimental lattice constant of 5.43 Å. Structural optimizations
were also performed with the ABINIT code. The geometry optimization was carried out in slabs of
12 atomic layers, where the central four layers where fixed at the bulk positions. The structures were
relaxed until the Cartesian force components were less than 5 meV/Å. The geometry optimization
for the clean surface gives a dimer buckling of 0.721 Å, and a dimer length of 2.301 Å. For the
dihydride surface, the obtained Si-H bond distance was 1.48 Å. These results are in good agreement
with previous theoretical studies [124, 140]. The vacuum size is equivalent to one quarter the size
of the slab, avoiding the effects produced by possible wave-function tunneling from the contiguous
surfaces of the full crystal formed by the repeated super-cell scheme [124]. Note that all spectra for
χxxx presented in this section were calculated with a Gaussian broadening of 0.15 eV.

Spin-orbit, local field, and electron-hole attraction [66] effects on the SHG process are all ne-
glected. Although these are important factors in the optical response of a semiconductor, their
efficient calculation is still theoretically and numerically challenging and under debate. This merits
further study but is beyond the scope of this thesis. For a given slab size, we found the converged
spectra to obtain the relevant parameters. The most important of these are: an energy cutoff of 10
Hartrees for the 16, 24, and 32 layered slabs and 13 Hartrees for the 40 layer slab, an equal number
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4.1. Results for the Si(001)(2×1) Surface

(a) Front view. (b) Side view. (c) Top view.

Figure 4.1: Several views of the slab used to represent the Si(001)(2×1) surface.
This particular slab has 16 Si atomic layers with one H atomic layer.

of conduction and valence bands, and a set of 244 k points in the irreducible Brillouin zone, which
are equivalent to 1058 k points when disregarding symmetry relations. The k points are used for
the linear analytic tetrahedron method for evaluating the 3D Brillouin Zone (BZ) integrals, where
special care was taken to examine the double resonances of Eq. (2.78) [80]. Note that the Brillouin
zone for the slab geometry collapses to a 2D-zone, with only one k-point along the z-axis.

4.1.1 Calculating χxxxsurface(−2ω;ω, ω)

The idea behind the special slab configuration, pictured in Fig. 4.2, is that the crystalline symmetry
of the H terminated surface (the lower half of the slab) imposes that χxxxH ≈ 0. The 2×1 surface (the
upper half of the slab) has no such restrictions, so naturally χxxx2×1 6= 0. This is due to the fact that
along the y direction there is a mirror plane for the H-saturated surface (causing centrosymmetry),
whereas for the 2×1 surface this mirror is lost as the dimers are asymmetric along x. Thus,
calculating χxxx for the full-slab (the entire slab comprising both the upper 2×1 and lower H-
terminated surface), or for the upper half-slab (containing the 2×1 surface) [141] should yield the
same result, since the contribution from the H saturated surface is zero either way. The following
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relationship must be satisfied for this particular slab,

χxxxhalf−slab = χxxxfull−slab,

where χxxxhalf−slab is calculated using C(z) = 1 for the upper half containing the 2×1 surface recon-
struction (see Fig. 4.2), and χxxxfull−slab is calculated using C(z) = 1 for the entire slab. Again, the
dihydride surface on the lower half of the slab must have χxxxH ≈ 0.

2×1 reconstruction ⇒ χxxx
2×1 6= 0

C(z) =
1

C(z) =
0

H-terminated ⇒ χxxx
H ≈ 0

Figure 4.2: The slab for the Si(001)(2×1) surface. The front (upper) surface is
in a 2×1, clean reconstruction, and the rear (lower) surfaces is H-terminated,
with “ideal” bulk-like atomic positions. The dangling bonds are H-saturated.

4.1.1.1 Full-slab Results

Fig. 4.3 shows |χxxxfull−slab| for the slab with 16, 24, 32, and 40 Si atomic layers, without the contribu-
tion of vnl, and with no scissors correction. Since the clean Si(001) surface is in a 2×1 reconstruction
there are two atoms per atomic layer. Thus, the total number of atoms per slab is twice the number
of atomic layers of the slab. The slabs were extended in the z directions in steps of 8 layers of
bulk-like atomic positions. Note that the response differs substantially for 16 and 24 layers but is
quite similar for 32 and 40 layers. As explained above, the calculation of the vnl contribution is
computationally expensive, so it is crucial to minimize the number of atoms in the calculation. We
consider a slab with 32 Si atomic layers as a good compromise between the convergence of χxxxfull−slab
as a function of the number of layers in the slab, and the computational expense.
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Figure 4.3: |χxxxfull−slab| vs h̄ω for the slab with 16, 24, 32, and 40 atomic Si layers.
Adequate convergence is achieved after 32 layers. The spectra presented here
use a scissors value of h̄∆ = 0 eV, and do not include the contribution from vnl.

4.1.1.2 Half-slab vs Full-slab

Now that we have established an adequate number of layers to attain convergence, we can proceed
to study the spectra produced from the slab with 32 atomic layers. Fig. 4.4 presents a comparison
between χxxxhalf−slab and χxxxfull−slab for four different scenarios: with and without the effects of vnl, and
with two values for the scissors correction, h̄∆. We have chosen a scissors value of h̄∆ = 0.5 eV,
that is the GW correction reported in Refs. [142,143]. This is justified by the fact that the surface
states from the clean 2×1 surface are rigidly shifted and maintain their dispersion relation with
respect to the LDA value, according to the GW calculations of Ref. [142].

We can appreciate that the difference between the half-slab and full-slab responses is quite small
for all four scenarios. Of course, the difference between the two would decrease as the number of
atomic layers increases. Note how 32 layers in the slab is more than enough to confirm that the
extraction of the surface second-harmonic susceptibility from the 2×1 surface is readily possible
using the formalism contained in Eq. (2.78). Calculating the response from the lower half of the
slab substantiates that |χxxxH | ≈ 0 for the dihydride surface, shown in Fig. 4.5.

This confirms the validity of the theory developed in Chapter 2 and is an important result of this
work. Through the proposed layer formalism, we can calculate the surface χabc component including
the contribution from the nonlocal part of the pseudopotentials, and part of the many-body effects
through the scissors correction. Therefore, this scheme is robust and versatile and should work for
any crystalline surface.

4.1.1.3 Half-slab Results

We proceed to explain some of the features seen in |χxxxhalf−slab| that is obtained when setting C(z) = 1
for the upper half containing the 2×1 surface reconstruction, as seen in Fig. 4.2. From Fig. 4.4, we
note a series of resonances that derive from the 1ω and 2ω terms in Eq. (2.78). Notice that the 2ω
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Figure 4.4: χxxxhalf−slab and χxxxfull−slab vs h̄ω for four different combinations: with
and without the effects of vnl, and with two values for the scissors correction,
h̄∆.

resonances start below Eg/2, where Eg is the band gap (0.53 eV for LDA, and 1.03 eV if the scissor
is used with h̄∆ = 0.5 eV). These resonances come from the electronic states of the 2×1 surface,
that lie inside the bulk band gap of Si and are the well known electronic surface states [142].

Fig. 4.6 shows that the inclusion of vnl reduces the value of |χxxxhalf−slab| by around 15-20%. This
demonstrates the importance of this contribution for a fully correct SSHG calculation. This is in
agreement with the analysis for bulk semiconductors [84]. However, the inclusion of vnl does not
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Figure 4.5: χxxxhalf−slab vs h̄ω for the clean 2×1 and H-terminated surfaces, with
h̄∆ = 0.5 eV and without the effects of vnl.
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change the spectral shape of |χxxxhalf−slab|. We can confirm that this is not unique for this specific
scissors shift, as we can appreciate from the upper two panels of Fig. 4.4, with h̄∆ = 0 eV.

To demonstrate the effect of the scissors correction, we considered two different finite values for
h̄∆. The first, with a value of h̄∆ = 0.5 eV that is used in the previous results, is the “average” GW
correction taken from Ref. [142] that is in agreement with Ref. [143]. The second, with a value of
h̄∆ = 0.63 eV is the “average” correction taken from Ref. [144], where more k points in the Brillouin
zone were used to calculate the GW value. Fig. 4.7 shows that the scissors correction shifts the
spectra from its LDA value to higher energies, as expected. However, contrary to the case of linear
optics [81], the shift introduced by the scissors correction is not rigid, which is consistent with the
work of Ref. [80]. This is because the second-harmonic optical response mixes 1ω and 2ω transitions
(see Eq. (2.78)), and accounts for the non-rigid shift. The reduction of the spectral strength is in
agreement with previous calculations for bulk systems [80, 145, 146]. When comparing |χxxxhalf−slab|
for the two finite values of h̄∆, it is clear that the first two peaks are almost rigidly shifted with
a small difference in height while the rest of the peaks are modified substantially. This behavior
comes from the fact that the first two peaks are almost exclusively related to the 2ω resonances of
Eq. (2.78). The other peaks are a combination of 1ω and 2ω resonances and yield a more varied
spectrum. Note that for large-gap materials the 1ω and 2ω resonances would be split, producing a
small interference effect. The 2ω resonances would still strongly depend on the surface states. Thus,
small changes in the scissors shift can affect the SSH susceptibility spectrum quite dramatically.
In Ref. [147], the authors already noted that the nonlinear optical response of bulk materials is
more influenced by the electronic structure of the material than the linear case. For the case of
semiconductor surfaces, the problem is even more intricate due to the presence of electronic surface
states.

The high sensitivity of SSHG to the energy position of surface states, as seen in Fig. 4.7, makes
SSHG a good benchmark tool for spectroscopically testing the validity of the inclusion of many-body
effects, and in particular the quasi-particle correction to the electronic states. Although local fields
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for three different values of the scissors correction, h̄∆.

are neglected, in principle they should be quite small parallel to the interface as the electric field is
continuous. χxxx should have a relatively small influence from these local fields. Excitonic effects
should also be explored, but their efficient calculation is theoretically and numerically challenging
[66] and far beyond the scope of this work. Unfortunately the experimental measurement of the
χxxx component is difficult as the SH radiated intensity would be proportional not only to this
component but also to the other components of χ. However, we will present this comparison later
on in Sec. 4.2.1 for the Si(111)(1×1):H surface.

4.1.2 Overview of the Calculated R Spectra

In Figs. 4.8 and 4.9, we present the results for the calculation of the SSHG yield for our test surface.
The 2×1 surface reconstruction yields a Class 1, primitive triclinic system with all 18 components
independent from each other [136]. We cannot take advantage of any symmetry relations for this
surface. However, this is no problem for the robust formulation we derived in Chapter 3 that can ac-
commodate all 18 components disregarding any surface symmetries. Calculating all 18 components
is obviously more time consuming, but this calculation can be parallelized in order to calculate all
components at once.

Fig. 4.8 presents the results for the SSHG yield with outgoing P polarization. We set a fixed
azimuthal angle of φ = 45◦ and then varied the incoming angle θ0 from −90◦ to 90◦. We can clearly
see that the surface states associated with the 2×1 reconstruction produce significant intensity
between 1-2 eV in the two-photon energy range. This is consistent with the findings presented in
the previous section and in Ref. [85]. The intensity of the peak related to the surface states is
significantly lower than that of the peaks produced in the 2.5-4 eV two-photon energy range. The
spectrum for RpP is very consistent with other calculations of this type [148], and even with some
limited experimental data [42].

Fig. 4.9 presents the results for the SSHG yield with outgoing S polarization. They are quite

58



4.2. Results for the Si(111)(1×1):H Surface

similar to what we observed in Fig. 4.8, with a peak related to the surface states between 1-2 eV,
and a larger set of peaks between 2.4-4 eV in the two-photon energy range. These spectra have a
clear maxima around θ0 = 0◦. These plots are presented for mainly illustrative purposes, as there is
little experimental data to compare with the theoretical spectrum. However, this kind of plot will
be quite useful to the experimentalist interested in this kind of spectroscopy. Excellent intensity for
all polarization cases can be obtained for small beam angles, such as θ0 = 30◦.

4.2 Results for the Si(111)(1×1):H Surface

We will now focus our attention on the Si(111)(1×1):H surface. This surface is a C3v, primitive
hexagonal system with only 4 nonzero components independent from each other, as shown in Table
3.2 [29,134,136]. It is composed of stacked layers with one Si atom each, with one H atom terminating
each surface. The added H saturates the surface Si dangling bonds and eliminates any surface-related
electronic states in the band gap. Here, the top and bottom surfaces are mirror images (see Fig.
4.10); this provides the centrosymmetry that necessitates the use of the cut function to extract the
nonzero surface response. In Sec. 4.2.1 we will compare the spectrum produced by using relaxed
and unrelaxed coordinates, so it is worth reviewing this concept here. The specifics of this process
are as follows.

The relaxation process was done by our colleague, Nicolas Tancogne-Dejean [148]. The structure
was initially constructed with the experimental lattice constant of 5.43 Å, and then performed
structural optimizations with the ABINIT [129, 137] code. It was then relaxed until the Cartesian
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Figure 4.8: R for outgoing P polarization, versus the angle of incidence (θ0) for
the Si(001)(2×1) surface. The scissor shift used was h̄∆ = 0.5 eV. Both figures
consider an azimuthal angle of φ = 45◦.
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Figure 4.9: R for outgoing S polarized fields, versus the angle of incidence (θ0)
for the Si(001)(2×1) surface. The scissor shift used was h̄∆ = 0.5 eV. Both
figures consider an azimuthal angle of φ = 45◦.

force components were less than 5 meV/Å, yielding a final Si-H bond distance of 1.50 Å. The energy
cutoff used was 20 Ha, and Troullier-Martin LDA pseudopotentials were used [138]. The resulting
atomic positions are in good agreement with previous theoretical studies [69, 149–152], as well as
the experimental value for the Si-H distance [153].

We also evaluated the number of layers required for convergence (like Sec. 4.1.1.1) and settled
on a slab with 48 atomic Si planes. The geometric optimizations mentioned above are therefore
carried out on slabs of 48 atomic layers without fixing any atoms to the bulk positions. Fig. 4.10
depicts a sample slab with 16 layers of Si. The surface susceptibilities must be extracted from only
half of the slab. This encompasses 24 layers of Si and the single layer of H that terminates the
top surface. The vacuum size is equivalent to one quarter the size of the slab, avoiding the effects
produced by possible wave-function tunneling from the contiguous surfaces of the full crystal formed
by the repeated super-cell scheme [124].

The electronic wave-functions, ψnk(r), were also calculated with the ABINIT code using a
planewave basis set with an energy cutoff of 15 Hartrees. χabcsurface was properly converged with 576
k points in the irreducible Brillouin zone, which are equivalent to 1250 k points when disregarding
symmetry relations. The contribution of vnl in Eq. (2.78) was carried out using the DP [130] code
implemented in TINIBA [139], with a basis set of 3000 planewaves. Convergence for the number
of bands was achieved at 200, which includes 97 occupied bands and 103 unoccupied bands. All
spectra were produced using a scissors value of 0.7 eV in the χabcsurface and ε`(ω) calculations. This
value was obtained from Ref. [154], in which the authors carry out a G0W0 calculation on this
surface for increasing numbers of layers. They calculated the LDA and G0W0 band gaps, and found
that the difference between the two tends towards ∼ 0.7 eV as more layers are added, culminating
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(a) Front view. (b) Side view. (c) Top view.

Figure 4.10: Several views of the slab used to represent the Si(111)(1×1):H
surface. This particular slab has 16 Si atomic layers (large blue balls) with two
H atomic layers (small red balls).

in a value of 0.68 eV for bulk Si. This calculation is completely ab-initio, so we consider 0.7 eV to
be a very reasonable value for the scissors correction.

It is important to mention that we must also calculate the bulk and surface dielectric functions,
εb(ω) and ε`(ω). For this, we follow the method presented in Ref. [124]. For the bulk, the tensor
components are equal in all three directions due to the cubic symmetry,

εb(ω) = εxxb (ω) = εyyb (ω) = εzzb (ω).

For the purpose of this calculation, we introduce the average value for the surface dielectric function,
ε`(ω). This entails that εxx` (ω) = εyy` (ω) ≈ εzz` (ω), since symmetry is broken in the zz direction
because of the surface. We find the average in the conventional way,

ε`(ω) = εxx` (ω) + εyy` (ω) + εzz` (ω)
3 ,

and use that quantity in the equations for the SSHG yield. In order to obtain a result which
does not depend on the size of the vacuum region [155], we have normalized the surface dielectric
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function to the volume of the slab, instead of the volume of the super-cell. We remark that we could
calculate εab

half−slab(ω) using C(z) = 1 for the upper half of our slab and normalize to the volume of
the half-slab. Nevertheless, εab

` (ω) and εab
half−slab(ω) give the same result [126,127,155].

4.2.1 Calculating χxxxsurface(−2ω;ω, ω)
The work presented in Ref. [69] showed the effect of artificially moving the atomic position on the
resulting SSHG spectra. In this section, we will address the more practical and relevant case of
atomic relaxation. More precisely, we compare the fully relaxed structure described above with an
unrelaxed structure where all the Si atoms are at the ideal bulk positions. Note that in both cases,
the Si-H bond distance is the same 1.5 Å. The unrelaxed coordinates use the same parameters men-
tioned above. Fortunately, there exists experimental data that can be compared to the calculated
χxxxsurface for this surface, taken from Ref. [44]. This data provides an excellent point of comparison
as it was presented in absolute units and was measured at a very low temperature of 80 K.

Fig. 4.11 depicts the spectra of the Si(111)(1×1):H surface, produced from the relaxed and
unrelaxed coordinates. The theoretical curves were calculated with a scissors shift of h̄∆ = 0.7 eV,
as mentioned in the previous section. The relaxed coordinates produce a spectrum with a peak
position that is very slightly blueshifted with respect to the experimental peak near 3.4 eV. In
contrast, the unrelaxed coordinates have a peak that is redshifted close to 0.07 eV from experiment.
There is also a feature between 3.0 eV and 3.2 eV that appears in the relaxed spectrum that
coincides partially with the experimental data. It is important to note that this data was taken
at low temperature (80 K); this further favors the comparison, as the theory neglects the effects
of temperature. As is shown in Ref. [44], the peaks in the spectrum redshift as the temperature
increases. Intensity for both the relaxed and unrelaxed curves are roughly half the intensity of the
experimental spectrum. We have converted the units of the experimental data from CGS to MKS
units for easier comparison.

We can conclude that the most accurate theoretical results are produced by using relaxed atomic
positions for the calculation of χsurface. Although this process can be very time consuming for large
numbers of atoms, this should be considered a crucial step. This also further demonstrates that
SSHG is very sensitive to the surface atomic positions. In particular, these results show that a
correct value of the Si-H bond length is not enough to obtain the most accurate SSHG spectra,
and that a full relaxation of the structure is required. Additionally, it seems that the theory may
coincide better with experiments that are conducted under very low temperature conditions.

4.2.2 Comparing the Theoretical R to Experiment

All calculations presented from this point on were done using the relaxed atomic positions described
in the the previous section. We will now present the theoretical SSHG yield for the Si(111)(1×1):H
surface compared to experiments from Refs. [49, 69, 87]. These comparisons are good benchmarks
to test the complete formalism for calculating the SSHG yield.

The method of calculation is as follows. We first calculated εb(ω), ε`(ω), and then χabc
surface from

Eq. (2.78). We used these for the Fresnel factors and in Eqs. (3.49), (3.59), and (3.54), and finally,
those into Eq. (3.41) to obtain the theoretical SSHG yield for different polarizations that can then
be compared with the experimental data. Remember that a scissors shift of h̄∆ = 0.7 eV is used for
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Figure 4.11: Spectra for χxxxsurface of the Si(111)(1×1):H surface calculated using
relaxed and unrelaxed atomic positions, compared to the experimental data
presented in Ref. [44]. The theoretical curves were calculated with a scissors
shift of h̄∆ = 0.7 eV, and are broadened with σ = 0.075 eV. Experimental data
was taken at 80 K.

all the χabc
surface components. These components and the calculated R spectra were also broadened

with a Gaussian broadening of σ = 0.075 eV. These values were selected so that the theoretical
calculation best represents the lineshape of the experimental spectrum.

4.2.2.1 Overview of the calculated R spectra

We will carefully explain and compare the calculated R for each different polarization case in the
following sections. However, we first want to present a general overview of the theoretical SSHG
yield, as we did in Sec. 4.1.2. In Figs. 4.12 and 4.13, we present these results over a two-photon
energy range of 2.5-5 eV. This range corresponds to the experimental measurements featured in
Refs. [69] and [87]. Note that the SSHG yield drops to zero very rapidly for energy values under 3
eV. This is because of the lack of surface states due to the surface H-saturation.

We include some helpful markers in these figures. First, the solid black line represents an angle
of incidence θ0 = 65◦. This is one of two angles that we will consider for the remainder of this
chapter; in particular, this is the angle used in the experiment from Ref. [69]. It is clear that they
chose this particular angle to maximize the RpP output. Second, the dashed black lines represent
the E1 = 3.4 eV and E2 = 4.3 eV critical points of bulk Si [156]. For the outgoing P polarization in
Fig. 4.12, we can see that the calculated SSHG yield does have peaks around those energy values.
We will review this in much further detail below. We see similar characteristics, for Fig. 4.13 with
the outgoing S polarization cases. Indeed, the theoretical peak values seem to match quite well
with the critical points. Again, we will review these findings in much more detail below. Note that
we will omit RsS from this point forward, as we do not have any experimental data to compare it
with.
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Figure 4.12: R for outgoing P polarization, versus the angle of incidence (θ0)
for the Si(111)(1×1):H surface. A scissors shift of h̄∆ = 0.7 eV is applied. The
solid line represents θ0 = 65◦, and the dotted lines represent the E1 and E2 Si
critical points. Both figures consider an azimuthal angle of φ = 30◦.
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Figure 4.13: R for outgoing S polarized fields, versus the angle of incidence (θ0)
for the Si(111)(1×1):H surface. A scissors shift of h̄∆ = 0.7 eV is applied. The
solid line represents θ0 = 65◦, and the dotted lines represent the E1 and E2 Si
critical points. Both figures consider an azimuthal angle of φ = 30◦.
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4.2.2.2 RpP (p-in, P -out) Compared to Experiment

We first analyze how the inclusion of multiple reflections affects the calculated SSHG yield. We will
conduct this study for RpP as it is typically associated with the strongest signal output. It is also
by far the most involved calculation out of the four different polarization cases, since it includes
all four nonzero components. We are interested in finding the thickness of the thin layer ` where
χabc

surface 6= 0. As mentioned above, we found reasonable converged results for this surface using a
slab of 48 atomic layers. This corresponds to a thickness of ∼ 5 nm, that is equivalent to the 24
atomic sheets of Si along the (111) direction, corresponding to the half-slab. As this represents only
the upper half of the slab, we find it reasonable to choose the thickness of the layer ` to be between
d ∼ 5− 10 nm, as in this range of values χabc

surface will be well converged.
We begin our comparisons in Fig. 4.14, in which we compare the theoretical results for the

SHG radiation with the experimental results from Ref. [69]. First, we note that the experimental
spectrum shows two very well defined resonances which come from electronic transitions from the
valence to the conduction bands around the well known E1 ∼ 3.4 eV and E2 ∼ 4.3 eV critical points
of Si [156]. We mention that the experimental results where produced with an angle of incidence
of θ = 65◦, and an azimuthal angle of φ = 30◦, which eliminates the contribution from χxxxsurface
from Eq. (3.49). The theoretical curves that include multiple reflections are featured with the
average value R̄Mp , Eq. (3.23), with two values for the total thickness, d, and Eqs. (3.47) and (3.49).
We contrast these with the standard three layer model excluding the effects of multiple reflections
from Sec. 3.3.1. We see that the E2 peak is blueshifted by around 0.3 eV, and the yield does not
go to zero after 4.75 eV. We can attribute these shortcomings to the fact that both χzzzsurface and
χxxzsurface include out-of-plane incoming fields. These are affected by local field effects that can change
both intensity and peak position [148]. Including these effects is computationally very expensive
and is beyond the scope of this work. We speculate that the components of χabcsurface necessary for
RpP require the proper inclusion of these effects in order to accurately describe the experimental
peaks. Additionally, Ref. [45] shows that low temperature measurements of RpP will blueshift the
spectrum away from room temperature measurements such as those shown in Figs. 4.17 and 4.19,
and towards the theoretical results.

We can see that including the effects of multiple reflections enhances the E2 peak, and that
the enhancement increases with the thickness d of the thin layer `. This should be quite obvious
from Fig. 3.1; as the layer thickness increases, so does the total contribution from the multiple
reflections. Since we have already established that using a layer thickness of 10 nm is reasonable
for this surface, we will use this value from this point on.

In Fig. 4.15, we present the results from calculating the spectra with and without the multiple
reflections from the 1ω fields. The difference between the two lines is almost negligible for energies
below 4 eV. After 4 eV, the spectrum without the 1ω multiple reflections is less intense. The
difference in intensity between the two curves is most noticeable at E2. We can conclude that the
1ω multiple reflections contribute only slightly to the region around E2, and are almost negligible
elsewhere. This is clear since the phase shift of Eq. (3.24) is not only a factor of 2 smaller than that
of Eqs. (3.16) and (3.17), but also w` < W`. However, including them is indeed necessary in order
to have the most complete formulation, and calculating rMp comes at no additional computational
expense.
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Figure 4.14: RpP of the Si(111)(1×1):H surface for two different values of the
total layer thickness d, the three layer model without the effects of multiple
reflections, and the experimental data from Ref. [69]. We take θ = 65◦, φ = 30◦,
and a scissors value of h̄∆ = 0.7 eV.
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Figure 4.15: RpP of the Si(111)(1×1):H surface, comparing between including
or neglecting the effects of multiple reflections for the fundamental fields. The
theoretical spectra were produced for a layer thickness of d = 10 nm using
the average value of R̄Mp . We take θ = 65◦, φ = 30◦, and a scissors value of
h̄∆ = 0.7 eV.

We can analyze the effects of moving the polarization sheet to different depths within the layer
` in Fig. 4.16. As mentioned above, we consider a layer thickness of d = 10 nm. We compare the
theoretical SSHG yield for d2 = 0 nm and d2 = 10 nm, with the SSHG yield that neglects multiple
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Figure 4.16: RpP of the Si(111)(1×1):H surface, comparing between the three
layer model with the effects of multiple reflections for two different values of d2,
and the average value R̄Mp . All curves that include multiple reflections consider
a layer ` thickness of d = 10 nm. We take θ = 65◦, φ = 30◦, and a scissors value
of h̄∆ = 0.7 eV.

reflections. When d2 = 0 nm, we have placed the polarization sheet at the bottom of the layer
region. This minimizes the effect of the multiple reflections, and thus the curve is very similar to
the three layer model that neglects multiple reflections entirely. When d2 = 10 nm, the polarization
sheet is placed at the top of the layer region. This maximizes the effect of the multiple reflections
and therefore leads to the largest yield. We also notice that the average value obtained by using
R̄Mp (Eq. (3.23)) is intermediate between d2 = 0 and d2 = 10 nm, as expected. This is very similar
to selecting d2 = d/2, which can be interpreted as placing the nonlinear polarization sheet P(r, t)
at the middle of the thin layer `.

As before, these enhancements are larger for E2 than for E1. This can be understood from the
fact that the corresponding λ0 for E1 is larger than that of E2. From Eqs. (3.16), (3.17), and
(3.24), we see that the phase shifts are larger for E2 than for E1, producing a larger enhancement
of the SSHG yield at E2 from the multiple reflections. As the phase shifts grow with d, so does
the enhancement caused by the multiple reflections. From this figure, it becomes evident that the
inclusion of multiple reflections is crucial to obtain a better agreement between the theoretical SSHG
yield and the experimental spectrum. This is particularly true for larger energies, such as E2, as
λ0 becomes smaller and the multiple reflection effects become more noticeable. The selected value
for d << λ0, that comes naturally from the ab initio calculation of χabc

surface is thus very reasonable
in order to model a thin surface layer below the vacuum region where the nonlinear SH conversion
takes place. From this point on, we will always include the effects of multiple reflections in the
3-layer model, with a layer thickness of d = 10 nm and the average value of R̄Mp .

We will now present an overview of the different models from Sec. 3.3, and summarized in
Table 3.3. Namely, we will compare the 3-layer model with multiple reflections, the 2-layer-fresnel,

67



4. A SSHG Spectroscopic Study of Si Surfaces

2-layer-bulk, 2-layer-vacuum, and 3-layer hybrid models. In Fig. 4.17, we present a comparison
between the 3-layer, 3-layer-hybrid, and 2-layer-bulk models with experiment. The peak position
for the 3-layer model compares quite nicely to the experimental peaks, with an overall intensity
that is only two times larger. The 2-layer-bulk model is almost identical in lineshape to the 3-layer
model, but with four times less intensity than the experiment. The 3-layer-hybrid model is also
similar in lineshape with a less pronounced E2 peak, and is half as intense as the experiment. All
these observations are consistent as εb and ε` differ mostly in intensity; each model is screened
with either εb (2-layer-bulk), ε` (3-layer), or a combination of the two (3-layer-hybrid). Ultimately,
the 3-layer model has better peak proportions and good intensity, but the other two models are
interesting alternatives.

The two remaining models from Sec. 3.3 are presented in Fig. 4.18. The 2-layer-fresnel model
produces a spectrum with peak positions that are close to the experiment, but are around 40 times
more intense. The calculated E2 peak is similar, but the E1 peak lacks the sharpness present in the
experiment, with similar intensity between the peaks. On the other hand, the 2-layer-vacuum model
has the most extreme intensity difference with the experiment, over 5 orders of magnitude higher.
The lineshape reproduces the E2 peak quite well, but lacks a sharp E1 peak with that is shifted
compared to experiment. Clearly, the screening provided by εb and ε` are necessary for accurate
results. From Eq. (3.49), it is clear that RpP has several 2ω terms that will change between models;
this will have a deep effect on the lineshape. Additionally, Γ`pP also has ε`(2ω) in the denominator,
and so we have a significant difference in both lineshape and intensity between these models and
the rest.

From this point forward, we will only consider the 3-layer (with multiple reflections), the 2-
layer-fresnel (the historically popular model), and the 2-layer bulk models. These three models give
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Figure 4.17: RpP of the Si(111)(1×1):H surface, comparing between theoretical
models (see Table 3.3) and experiment, for θ = 65◦ and φ = 30◦, and a scissors
value of h̄∆ = 0.7 eV. Experimental data taken from Ref. [69], measured at
room temperature.
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Figure 4.18: RpP of the Si(111)(1×1):H surface, comparing between the 2-layer-
fresnel and 2-layer-vacuum models (see Table 3.3) and experiment, for θ = 65◦,
φ = 30◦, and a scissors value of h̄∆ = 0.7 eV. Experimental data taken from
Ref. [69], measured at room temperature.

an interesting overview of the different possibilities available and add some insight into the physics
behind the SSHG yield.

In Fig. 4.19, we compare the theoretical spectra to results from Ref. [49]. The spectrum produced
using the 3-layer model is, as before, closest to the experiment in both peak position and intensity.
Intensity is almost the same as the experimental value. This provides a more compelling argument
against the 2-layer-fresnel model than Fig. 4.17. The 2-layer-fresnel model is 20 times more intense
and blueshifted by around 0.1 eV. As mentioned above, this surface is of very high quality with
measurements taken shortly after surface preparation. The 2-layer-bulk model produces a spectrum
that is intermediate between the other two in both intensity and lineshape. Under these conditions,
the 3-layer model very accurately reproduces the E1 peak over the 2-layer-fresnel and 2-layer-bulk
models.

4.2.2.3 RsP (s-in, P -out) Compared to Experiment

Next, we will compare the calculated RsP spectra with experimental data from Ref. [69]. The
calculation adheres to the experimental setup by taking an angle of incidence θ = 65◦ and an
azimuthal angle φ = 30◦. As seen in Fig. 4.20, the overall intensity of RsP is one order of
magnitude lower than RpS . The experimental data is far noisier than in the other cases but the
E1 and E2 peaks are still discernible. As with the previous comparisons, the 3-layer model is the
closest match in both intensity and lineshape to the experimental spectrum. It produces a curve
that is very close to the experimental intensity with good proportional heights for the calculated E1
and E2 peaks. In contrast, the 2-layer-fresnel model produces a spectrum 100 times more intense
than experiment and produces an enlarged E2 peak. The 2-layer-bulk model yields an intensity
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Figure 4.19: RpP of the Si(111)(1×1):H surface, comparing between theoretical
models (see Table 3.3) and experiment, for θ = 45◦, φ = 30◦, and a scissors
value of h̄∆ = 0.7 eV. Experimental data taken from Ref. [49], measured at
room temperature.

that is ten times smaller with a very similar lineshape to the 3-layer model.
The differences between the 2-layer-fresnel and 2-layer-bulk models are not derived from Eq.

(3.54), as the εb(2ω) does not change and the second term vanishes for this azimuthal angle of
φ = 30. However, Γ`sP does cause a significant change in the intensity as there is an ε`(2ω) term in
the denominator. This will become εv(2ω) = 1 for the 2-layer-fresnel model, and εb(2ω) in the bulk
model. This accounts for the significant difference between the intensity of the two models, while
the lineshape remains mostly consistent. At higher energies, the theoretical curve is blueshifted as
compared to the experiment. The best explanation for this is the inclusion of the scissor operator,
which does not adequately correct the transitions occurring at these higher energies. A full GW
calculation would be well suited for this task, but is well beyond the scope of this work.

4.2.2.4 RpS (p-in, S-out) Compared to Experiment

We will now compare the RpS spectra with room temperature experimental data from Ref. [69].
Adhering to the experimental setup, we set an angle of incidence θ = 65◦ and an azimuthal angle
of φ = 30◦ with respect to the x-axis. This azimuthal angle maximizes rpS , as shown in Eq. (3.59).
Fig. 4.21, shows that all three models reproduce the lineshape of the experimental spectrum which
includes the peaks corresponding to both the E1 and E2 critical points of bulk silicon, and a smaller
feature at around 3.8 eV. The calculated E1 and E2 peaks are redshifted by 0.1 eV and 0.06 eV,
respectively, compared with the experimental peaks. The proportional peak intensity is quite good
and compares favorably with the experimental peaks. Any minor discrepancy in the peak intensity
could be due to the effects of oxidation on the surface. Ref. [87] features similar data to those of
Ref. [69] but focuses on the effects of surface oxidation. From Ref. [87] it is clear that as time passes
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Figure 4.20: RsP of the Si(111)(1×1):H surface, comparing different theoretical
models (see Table 3.3) and the experiment, for θ = 65◦, φ = 30◦, and a scissors
value of h̄∆ = 0.7 eV. Experimental data taken from Ref. [69], measured at
room temperature.

during the experiment, the surface becomes more oxidized and the E1 peak diminishes substantially,
as shown by the experimental data taken 5 hours after initial H-termination. This may be enough
time to slightly reduce the E1 peak intensity in the experimental data.

In Fig. 4.22, we compare the theoretical RpS with experimental data from Ref. [49]. This
calculation uses an angle of incidence θ = 45◦ and an azimuthal angle φ = 30◦ to match the
experimental conditions. As in the previous comparison, the E1 peak is slightly redshifted compared
to experiment. The intensity of the theoretical yield is smaller than the experimental yield for all
three models. The measurements presented in Ref. [49] were taken very shortly after the surface had
been prepared, and the surface itself was prepared with a high degree of quality and measured at
room temperature. Peak position compared to theory is slightly improved under these conditions.
As before, the 3-layer model is closer in intensity to the experimental spectrum.

From Fig. 4.11, we presented that our calculation for χxxxsurface coincides with the measurement
taken at a low temperature of 80 K. It is well known that temperature causes shifting in the peak
position of SSHG spectra [45]. As RpS only depends on this component (see Eq. (3.59)), the
position of the theoretical peak should be correct in Figs. 4.21 and 4.22. Thus, the difference in
peak position should stem from the higher temperature at which the experiments were measured.

Both the 2-layer-fresnel and 2-layer-bulk models are identical and roughly three times smaller
than the experiment. It is clear from Eq. (3.59) that RpS only has 1ω terms (ε`(ω) and kb). For
both of these models, the fundamental fields are evaluated in the bulk, which means that the only
change to Eq. (3.59) is that ε`(ω) → εb(ω). Additionally, Γ`pS also remains identical between the
two models and has no 2ω terms in the denominator. Therefore, rpS is identical between these two
models. Ultimately, the intensity of the 3-layer model is the closest to the experiment.

Per Eq. (3.59), the intensity of RpS depends only on χxxxsurface, which is not affected by local field
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Figure 4.21: RpS of the Si(111)(1×1):H surface, comparing between theoretical
models (see Table 3.3) and experiment, for θ = 65◦, φ = 30◦, and a scissors
value of h̄∆ = 0.7 eV. Experimental data taken from Ref. [69], measured at
room temperature.

effects [148]. These effects are neglected in this calculation, butRpS maintains an accurate lineshape
and provides a good quantitative description of the experimental SSHG yield. Note that both the
calculated and experimental spectra show two-photon resonances at the energies corresponding to
the critical point transitions of bulk Si. Note also that the SSHG yield drops rapidly to zero below
E1, which is consistent with the absence of surface states due to the H saturation on the surface.
This observation holds true for all three polarization cases studied for this surface.

In Fig. 4.23 We provide an overview of the different levels of approximation proposed in this
article. All curves here were calculated using the 3-layer model. The dash-dotted line depicts the
effect of excluding the contribution from the nonlocal part of the pseduopotentials. This is consistent
with the results reported in Ref. [85], where the exclusion of this term increases the intensity of the
components of χsurface by approximately 15% to 20%. Note that the E1 peak is larger than the
E2 peak, contrasting with the experiment, where the E1 peak is smaller than E2. The thin green
dashed line depicts the full calculation with a scissors value of h̄∆ = 0. The spectrum is almost
rigidly redshifted as this H-saturated surface has no electronic surface states [85], in contrast to
the Si(001)(2×1) surface presented in the first part of this chapter. Thus, this demonstrates the
importance of including the scissors correction to accurately reproduce the experimental spectrum.
In summary, the inclusion of the contribution from the nonlocal part of the pseudopotentials and
the scissors operator on top of the 3-layer model produces spectra with a lineshape and intensity
that compare favorably with the experimental data.

Lastly, GW transition energies are needed for linear optics and SHG. Doing a Bethe-Salpeter
calculation for SSHG will undoubtedly improve the position and the amplitude of the peaks, but
is far beyond current capabilities [157]. We kept the scissors shift constant throughout these cal-
culations as we want to keep this calculation at the ab initio level. Remember that the choice of
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Figure 4.22: RpS of the Si(111)(1×1):H surface, comparing between theoretical
models (see Table 3.3) and experiment, for θ = 45◦, φ = 30◦. We use a scissors
value of h̄∆ = 0.7 eV. Experimental data taken from Ref. [49], measured at
room temperature.

h̄∆ = 0.7 eV for the scissors shift comes from a GW calculation [154]. We have checked that it
is not possible to have a single scissors value that can reproduce the energy positions of both the
E1 and the E2 peaks. Of course, the experimental temperature at which the spectra is measured
should be taken into account in a more complete formulation. However, these calculations are al-
ways restricted to T = 0 K. As mentioned before, it is important to consider the local field effects
on the components of χabc

surface. For the Si(111)(1×1):H surface in particular, χzzzsurface and χxxzsurface
include out-of-plane incoming fields. These are affected by local field effects [148] that reveal the
inhomogeneities in the material, which are much more prevalent perpendicular to the surface than
in the surface plane. This can be evidenced for Si, as Reflectance Anisotropy Spectroscopy (RAS)
measurements are well described by ab initio calculations neglecting local field effects [158,159]. It
is therefore expected that the out-of-plane components will be more sensitive to the inclusion of
local fields. These will not change the transition energies, only their relative weights of the resonant
peaks [148]. Including these effects is challenging to compute [155], and beyond the scope of this
thesis. These effects would mostly affect RpP since it includes all four nonzero components. We
speculate that RpP requires the proper inclusion of these effects in order to accurately describe the
experimental peaks.

4.3 Conclusions

We have used the formulation to calculate the surface nonlinear susceptibility tensor χsurface, using
the length gauge formalism and within the independent particle approximation (IPA). It includes
(i) the scissors correction, (ii) the contribution of the non-local part of the pseudopotentials, and
(iii) the cut function. We have used a Si(001)2 × 1 surface to confirm that our scheme correctly
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of approximation proposed in this article. All curves were calculated using the
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obtains the surface response as we confirm that χxxxhalf−slab ≈ χxxxfull−slab. Although one can in principle
increase the number of atomic layers, k-points, etc. to improve even further on the similarity of the
half-slab and full-slab results, we have chosen a good compromise between numeric accuracy and the
computaion time. The effects of the independent inclusion of the three effects mentioned above in
the calculation of χ are described as follows. The scissors correction shifts the spectrum to higher
energies though the shifting is not rigid and mixes the 1ω and 2ω resonances, and has a strong
influence in the line-shape, as for the case of bulk semiconductors. [145, 146, 160] The cut function
allows us to extract unequivocally χxxx2×1. The effects of the nonlocal part of the pseudopotentials
keeps the same line-shape of |χxxx2×1|, but reduces the value of by 15-20%. The xxx component of
χ2×1, can not be experimentally isolated, however in a forthcoming publication we will compare
our formulation against experimental results. We have neglected local field and excitonic effects.
Although these are important factors in the optical response of a semiconductor, their efficient
calculation is theoretically and numerically challenging and still under debate [66]. This merits
further study but is beyond the scope of this thesis. Nevertheless, the inclusion of aforementioned
contributions in our scheme opens the unprecedented possibility to study SSHG with more versatility
and more accurate results.

We also revised the 3-layer model for the SSHG yield where the nonlinear polarization, P(2ω),
and the fundamental fields are taken within a small layer ` below the surface of the material. This
model reproduces key spectral features and yields an intensity closer to the experiment for all cases
of RiF. We consider it an upgrade over the much reviewed 2-layer model [134], and it comes with
very little added computational expense. Additionally, we have compared these to other models
that change the placement of P(2ω) and the fundamental fields. Ultimately we consider that the
3-layer model offers the closest comparison to experiment.

This study affords us an interesting view of both the theoretical and experimental aspects of
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SSHG studies. On the theoretical side, we have shown the importance of using relaxed atomic
positions to more accurately calculate the nonlinear susceptibility tensor. The intensity of these
spectra is greatly improved when compared to previous works. [69] We also postulate that the
lack of local field effects in the theory is a shortcoming, but in this case, it only affects two of the
χsurface components. Concerning the experiments, we show that surface preparation and quality are
important for better results. The approach for calculating the SSHG yield presented here finds closer
agreement with surfaces that are freshly prepared with little or no oxidation, and with measurements
taken at low temperatures. Overall, this newly implemented framework for calculating χsurface and
R focused on the Si(001)2 × 1 and Si(111)(1×1):H surfaces provides a compelling benchmark for
SSHG studies. We are confident that this work can be applied directly to many other surfaces of
interest.
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5 Final Remarks

We have presented a formulation to calculate the surface second-harmonic (SSH) susceptibility
tensor χsurface(−2ω;ω, ω), using the length gauge formalism and within the independent particle
approximation (IPA). It includes (i) the scissors correction, (ii) the contribution of the non-local
part of the pseudopotentials, and (iii) the cut function. We also revised the 3-layer model for the
SSHG yield including the effects of multiple reflections from both the SH and fundamental fields. In
this 3-layer model, the nonlinear polarization, P(2ω), and the fundamental fields are taken within
a small layer ` below the surface of the material. This model reproduces key spectral features
and yields an intensity closer to the experiment for all cases of the SSHG yield. We consider it
an improvement over the much reviewed 2-layer model [134], and it comes with very little added
computational expense. Additionally, we have compared these two models with other models where
both P(2ω) and the fundamental fields are evaluated at different regions inside the material.

We have used a Si(001)2 × 1 surface to confirm that our scheme correctly obtains the surface
response as we confirm that the surface susceptibility calculated for the half-slab with the 2×1 recon-
structed surface, is equivalent to the susceptibility calculated for the entire non-centrosymmetric
slab. Although one can in principle increase the number of atomic layers, k-points, etc. to im-
prove even further on the similarity of the half-slab and full-slab results, we have chosen a good
compromise between accuracy and the burden and time of the computations. We describe the
effect of the independent inclusion of the three contributions mentioned above in the calculation
of χsurface(−2ω;ω, ω). The scissors correction shifts the spectrum to higher energies though the
shifting is not rigid and mixes the 1ω and 2ω resonances, and has a strong influence in the line-
shape, as for the case of bulk semiconductors [145, 146, 160]. The cut function allows us to extract
unequivocally χxxx2×1(−2ω;ω, ω). The effects of the nonlocal part of the pseudopotentials keeps the
same line-shape of |χxxx2×1(−2ω;ω, ω)|, but reduces the value of by 15-20%.

We then calculated the SSHG yield for the Si(111)(1×1):H surface, which is experimentally well
characterized. This study affords us an interesting view of both the theoretical and experimental
aspects of SSHG studies. On the theoretical side, we have shown the importance of using relaxed
atomic positions to more accurately calculate the nonlinear susceptibility tensor. The intensity
of these spectra is greatly improved when compared to previous works [69]. Concerning the ex-
periments, we show that surface preparation and quality are important for better results. The
approach for calculating the SSHG yield presented here finds closer agreement with surfaces that
are freshly prepared with little or no oxidation, and with measurements taken at low temperatures.
We have neglected local field and excitonic effects. Although these are important factors in the
optical response of a semiconductor, their efficient calculation is theoretically and numerically chal-
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lenging and still under debate [66]. This merits further study but is beyond the scope of this thesis.
Nevertheless, the inclusion of aforementioned contributions in our scheme opens the unprecedented
possibility to study surface SHG with more versatility and more accurate results. Overall, this
newly implemented framework for calculating χsurface(−2ω;ω, ω) and R focused on the Si(001)2×1
and Si(111)(1×1):H surfaces provides a compelling benchmark for SSHG studies. We are confident
that this work can be applied directly to many other surfaces of interest.
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A.1 re and ri
In this appendix, we derive the expressions for the matrix elements of the electron position operator
r. The r representation of the Bloch states is given by

ψnk(r) = 〈r|nk〉 =

√
Ω

8π3 e
ik·runk(r), (A.1)
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where unk(r) = unk(r + R) is cell periodic, and∫
Ω
u∗nk(r)umk′(r) d3r = δnmδk,k′ , (A.2)

and Ω is the unit cell volume.
The key ingredient in the calculation are the matrix elements of the position operator r. We

start from the basic relation
〈nk|mk′〉 = δnmδ(k− k′), (A.3)

and take its derivative with respect to k as follows. On one hand,

∂

∂k 〈nk|mk′〉 = δnm
∂

∂kδ(k− k′), (A.4)

and on the other,

∂

∂k 〈nk|mk′〉 = ∂

∂k

∫
〈nk|r〉〈r|mk′〉 dr =

∫ (
∂

∂kψ
∗
nk(r)

)
ψmk′(r) dr. (A.5)

The derivative of the wavefunction is simply given by

∂

∂kψ
∗
nk(r) =

√
Ω

8π3

(
∂

∂ku
∗
nk(r)

)
e−ik·r − irψ∗nk(r). (A.6)

Substituting into Eq. (A.5), we obtain

∂

∂k 〈nk|mk′〉 =

√
Ω

8π3

∫ (
∂

∂ku
∗
nk(r)

)
e−ik·rψmk′(r) dr− i

∫
ψ∗nk(r)rψmk′(r) dr

= Ω
8π3

∫
e−i(k−k′)·r

(
∂

∂ku
∗
nk(r)

)
umk′(r) dr− i〈nk|r̂|mk′〉. (A.7)

Restricting k and k′ to the first Brillouin zone, we use the following result that is valid for any
periodic function f(r) = f(r + R),∫

ei(q−k)·rf(r) d3r = 8π3

Ω δ(q − k)
∫

Ω
f(r) d3r, (A.8)

to finally write [119]

∂

∂k 〈nk|mk′〉 = δ(k− k′)
∫

Ω

(
∂

∂ku
∗
nk(r)

)
umk(r) dr− i〈nk|r̂|mk′〉. (A.9)

From ∫
Ω
umku

∗
nk dr = δnm, (A.10)

we easily find that ∫
Ω

(
∂

∂kumk(r)
)
u∗nk(r) dr = −

∫
Ω
umk(r)

(
∂

∂ku
∗
nk(r)

)
dr. (A.11)
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Therefore, we define

ξnm(k) ≡ i
∫

Ω
u∗nk(r)∇kumk(r) dr, (A.12)

with ∇k = ∂/∂k. Now, from Eqs. (A.4), (A.7), and (A.12), we have that the matrix elements of
the position operator of the electron are given by

〈nk|r̂|mk′〉 = δ(k− k′)ξnm(k) + iδnm∇kδ(k− k′), (A.13)

Then, from Eq. (A.13) and writing r̂ = r̂e + r̂i, with r̂e (r̂i) the interband (intraband) part, we
obtain that

〈nk|r̂i〉mk′| = δnm
[
δ(k− k′)ξnn(k) + i∇kδ(k− k′)

]
, (A.14)

〈nk|r̂e〉mk′| = (1− δnm)δ(k− k′)ξnm(k). (A.15)

To proceed, we relate Eq. (A.15) to the matrix elements of the momentum operator as follows.
For the intraband part, we derive the following general result,

〈nk|
[
r̂i, Ô

]
|mk′〉 =

∑
`,k′′

(
〈nk|r̂i|`k′′〉〈`k′′|Ô|mk′〉 − 〈nk|Ô|`k′′〉〈`k′′|r̂i|mk′〉

)
=
∑
`

(
〈nk|r̂i|`k′〉O`m(k′)−On`(k)|`k〉〈`k|r̂i|mk′〉

)
,

(A.16)

where we have taken 〈nk|Ô|`k′′〉 = δ(k− k′′)On`(k). We substitute Eq. (A.14) to obtain∑
`

(
δn`[δ(k− k′)ξnn(k) + i∇kδ(k− k′)]O`m(k′)−On`(k)δ`m

[
δ(k− k′)ξmm(k) + i∇kδ(k− k′)

])
=
([
δ(k− k′)ξnn(k) + i∇kδ(k− k′)

]
Onm(k′)−Onm(k)

[
δ(k− k′)ξmm(k) + i∇kδ(k− k′)

])
= δ(k− k′)Onm(k) (ξnn(k)− ξmm(k)) + iOnm(k′)∇kδ(k− k′)

+ iδ(k− k′)∇kOnm(k)− iOnm(k′)∇kδ(k− k′)
= iδ(k− k′)

(
∇kOnm(k)− iOnm(k) (ξnn(k)− ξmm(k))

)
≡ iδ(k− k′)(Onm);k. (A.17)

Then,
〈nk|[r̂i, Ô]|mk′〉 = iδ(k− k′)(Onm);k, (A.18)

where
(Onm);k = ∇kOnm(k)− iOnm(k) (ξnn(k)− ξmm(k)) , (A.19)

is the generalized derivative ofOnm with respect to k. Note that the highly singular term∇kδ(k−k′)
cancels in Eq. (A.17), thus giving a well defined commutator of the intraband position operator
with any arbitrary operator Ô.
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A.2 Matrix Elements of vnl
nm(k) and Vnl,`

nm(k)
From Eq. (2.41), we have that

vnl
nm(k) = 〈nk|v̂nl|mk′〉 = i

h̄
〈nk|

[
V̂ nl, r̂

]
|mk′〉

= i

h̄

∫
〈nk|r〉〈r|

[
V̂ nl, r̂

]
|r′〉〈r′|mk′〉 dr dr′

= i

h̄
δ(k− k′)

∫
ψ∗nk(r)〈r|

[
V̂ nl, r̂

]
|r′〉ψmk′(r′) dr dr′, (A.20)

where k = k′ due to the fact that the integrand is periodic in real space, and k is restricted to the
Brillouin Zone. Now,

〈r|
[
V̂ nl, r̂

]
|r′〉 = 〈r|V̂ nlr̂− r̂V̂ nl|r′〉 = 〈r|V̂ nlr̂|r′〉 − 〈r|r̂V̂ nl|r′〉

= 〈r|V̂ nlr′|r′〉 − 〈r|rV̂ nl|r′〉 = 〈r|V̂ nl|r′〉(r′ − r) = V nl(r, r′)(r′ − r), (A.21)

where we used r̂〈r| = r〈r|, 〈r′|r̂ = 〈r|r′, and V nl(r, r′) = 〈r|V̂ nl|r′〉 (Eq. (2.26)). Also, we have the
following identity which will be used shortly,

(∇K +∇K′) 1
Ω

∫
e−iK·rV nl(r, r′)eiK′·r′

dr dr′

= −i 1
Ω

∫
e−iK·r

(
rV nl(r, r′)− V nl(r, r′)r′

)
eiK

′·r′
dr dr′

(∇K +∇K′)〈K|V nl|K′〉 = i

Ω

∫
e−iK·rV nl(r, r′)

(
r′ − r

)
eiK

′·r′
dr dr′, (A.22)

where Ω is the volume of the unit cell, and we defined

V nl(K,K′) ≡ 〈K|V nl|K′〉 = 1
Ω

∫
e−iK·rV nl(r, r′)eiK′·r′

dr dr′, (A.23)

where V nl(K′,K) = V nl∗(K,K′), since V nl(r′, r) = V nl∗(r, r′) due to the fact that V̂ nl is a hermitian
operator. Using the plane wave expansion

〈r|nk〉 = ψnk(r) = 1√
Ω
∑
G
Ank(G)eiK·r, (A.24)

with K = k + G, we obtain from Eq. (A.20) and Eq. (A.22), that

vnl
nm(k) = i

h̄
δ(k− k′)

∑
G,G′

A∗nk(G)Amk′(G′) 1
Ω

∫
dr dr′e−iK·r〈r|[V̂ nl, r̂]|r′〉eiK′·r′

= 1
h̄
δ(k− k′)

∑
G,G′

A∗nk(G)Amk′(G′) iΩ

∫
dr dr′e−iK·rV nl(r, r′)

(
r′ − r

)
eiK

′·r′

= 1
h̄
δ(k− k′)

∑
G,G′

A∗nk(G)Amk′(G′)(∇K +∇K′)V nl(K,K′). (A.25)
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For fully separable pseudopotentials in the Kleinman-Bylander (KB) form, [121–123] the matrix
elements 〈K|V nl|K′〉 = V nl(K,K′) can be readily calculated. [121] Indeed, the Fourier representa-
tion assumes the form, [123,161,162]

V nl
KB(K,K′) =

∑
s

ei(K−K′)·τ s

ls∑
l=0

l∑
m=−l

ElF
s
lm(K)F s∗lm(K′)

=
∑
s

ls∑
l=0

l∑
m=−l

Elf
s
lm(K)fs∗lm(K′), (A.26)

with fslm(K) = eiK·τ sF slm(K), and

F slm(K) =
∫
dr e−iK·rδV S

l (r)Φps
lm(r). (A.27)

Here δV S
l (r) is the non-local contribution of the ionic pseudopotential centered at the atomic posi-

tion τ s located in the unit cell, Φps
lm(r) is the pseudo-wavefunction of the corresponding atom, while

El is the so called Kleinman-Bylander energy. Further details can be found in Ref. [162]. From Eq.
(A.26) we find

(∇K +∇K′)V nl
KB(K,K′) =

∑
s

ls∑
l=0

l∑
m=−l

El(∇K +∇K′)fslm(K)f s∗lm(K′)

=
∑
s

ls∑
l=0

l∑
m=−l

El
(
[∇Kf

s
lm(K)] fs∗lm(K′) + f slm(K)

[
∇K′fs∗lm(K′)

])
, (A.28)

and using this in Eq. (A.25) leads to

vnl
nm(k) = 1

h̄

∑
s

ls∑
l=0

l∑
m=−l

El
∑
GG′

A∗
n,~k

(G)A
n′,~k(G

′)× (∇Kf
s
lm(K)fs∗lm(K′) + fslm(K)∇K′fs∗lm(K′))

= 1
h̄

∑
s

ls∑
l=0

l∑
m=−l

El

[(∑
G
A∗
n,~k

(G)∇Kf
s
lm(K)

)(∑
G′

A
n′,~k(G

′)f s∗lm(K′)
)

+
(∑

G
A∗
n,~k

(G)f slm(K)
)(∑

G′

A
n′,~k(G

′)∇K′fs∗lm(K′)
)]
, (A.29)

where there are only single sums over G. The above equation is implemented in the DP code [130].
Now we derive Vnl,`

nm(k). First we prove that∑
G
|k + G〉〈k + G| = 1. (A.30)

Proof:

〈nk|1|n′k〉 = δnn′ , (A.31)
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A. Derivations for the Nonlinear Surface Susceptibility

take∑
G
〈nk||k + G〉〈k + G||n′k〉 =

∫
dr dr′

∑
G
〈nk||r〉〈r||k + G〉〈k + G||r′〉〈r′||n′k〉

=
∫
dr dr′

∑
G
ψ∗nk(r) 1√

Ω
ei(k+G)·r 1√

Ω
e−i(k+G)·r′

ψmk(r′)

=
∫
dr dr′ψ∗nk(r)ψmk(r′) 1

V

∑
G
ei(k+G)·(r−r′)

=
∫
dr dr′ψ∗nk(r)ψmk(r′)δ(r− r′) =

∫
drψ∗nk(r)ψmk(r) = δnn′ ,

(A.32)
and thus Eq. (A.30) follows. We used

〈r|k + G〉 = 1√
Ω
ei(k+G)·r. (A.33)

From Eq. (2.69), we would like to calculate

Vnl,`
nm(k) = 1

2〈nk|C`(z)vnl + vnlC`(z)|mk〉. (A.34)

We work out the first term on the right hand side,
〈nk|C`(z)vnl|mk〉 =

∑
G
〈nk|C`(z)|k + G〉〈k + G|vnl|mk〉

=
∑
G

∫
dr
∫
dr′〈nk||r〉〈r|C`(z)|r′〉〈r′||k + G〉

×
∫
dr′′

∫
dr′′′〈k + G||r′′〉〈r′′|vnl|r′′′〉〈r′′′||mk〉

=
∑
G

∫
dr
∫
dr′〈nk|r〉C`(z)δ(r− r′)〈r′|k + G〉

×
∫
dr′′

∫
dr′′′〈k + G|r′′〉〈r′′|vnl|r′′′〉〈r′′′|mk〉

=
∑
G

∫
dr〈nk|r〉C`(z)〈r|k + G〉

× i

h̄

∫
dr′′

∫
dr′′′〈k + G|r′′〉V nl(r′′, r′′′)(r′′′ − r′′)〈r′′′|mk〉, (A.35)

where we used Eq. (A.21) and (2.41). We use Eq. (A.24), (A.33) and (A.22) to obtain

〈nk|C`(z)vnl|mk〉 =
∑
G

∑
G′

A∗nk(G′) 1
Ω

∫
dre−i(k+G′)·rC`(z)ei(k+G)·r

×
∑
G′′

Amk(G′′) i

h̄Ω

∫
dr′′

∫
dr′′′e−i(k+G)·r′′

V nl(r′′, r′′′)(r′′′ − r′′)ei(k+G′′)·r′′′

= 1
h̄

∑
G

∑
G′

A∗nk(G′)δG‖G′
‖
f`(G⊥ −G′⊥)

∑
G′′

Amk(G′′)(∇K +∇K′′)V nl(K,K′′),

(A.36)
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where

1
Ω

∫
drC`(z)ei(G−G′)·r = δG‖G′

‖
f`(G⊥ −G′⊥), (A.37)

and

f`(g) = 1
L

∫ z`+∆f
`

z`−∆b
`

eigzdz, (A.38)

where f∗(g) = f(−g). We define

F `nk(G) =
∑
G′

Ank(G′)δG‖G′
‖
f`(G′⊥ −G⊥), (A.39)

and

Hnk(G) =
∑
G′

Ank(G′)(∇K +∇K′)V nl(K,K′), (A.40)

thus we can compactly write,

〈nk|C`(z)vnl|mk〉 = 1
h̄

∑
G
F `∗nk(G)Hmk(G). (A.41)

Now, the second term of Eq. (A.34)

〈nk|vnlC`(z)|mk〉 =
∑
G
〈nk|vnl|k + G〉〈k + G|C`(z)|mk〉

=
∑
G

∫
dr′′

∫
dr′′′〈nk||r′′〉〈r′′|vnl|r′′′〉〈r′′′||k + G〉

×
∫
dr
∫
dr′〈k + G||r〉〈r|C`(z)|r′〉〈r′||mk〉

=
∑
G

i

h̄

∫
dr′′

∫
dr′′′〈nk|r′′〉V nl(r′′, r′′′)(r′′′ − r′′)〈r′′′|k + G〉

×
∫
dr〈k + G|r〉C`(z)〈r|mk〉

=
∑
G

∑
G′

A∗nk(G′) i

h̄Ω

∫
dr′′

∫
dr′′′e−i(k+G′)·r′′

V nl(r′′, r′′′)(r′′′ − r′′)ei(k+G)·r′′′

×
∑
G′′

Amk(G′′) 1
Ω

∫
dre−i(k+G)·rC`(z)ei(k+G′′)·r

= 1
h̄

∑
G

∑
G′

A∗nk(G′)(∇K +∇K′)V nl(K′,K)
∑
G′′

Amk(G′′)δG‖G′′
‖
f`(G′′⊥ −G⊥)

= 1
h̄

∑
G
H∗nk(G)F `mk(G). (A.42)
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Therefore Eq. (A.34) is compactly given by

Vnl,`
nm(k) = 1

2h̄
∑
G

(
F `∗nk(G)Hmk(G) +H∗nk(G)F `mk(G)

)
. (A.43)

For fully separable pseudopotentials in the Kleinman-Bylander (KB) form [121–123], we can use Eq.
(A.28) and evaluate above expression, that we have implemented in the DP code [130]. Explicitly,

Vnl,`
nm(k) = 1

2h̄
∑
s

ls∑
l=0

l∑
m=−l

El[(∑
G′′

∇G′′fslm(G′′)
∑
G
A∗nk(G)δG||G′′||f`(Gz −G

′′
z)
)(∑

G′

Amk(G′)fs∗lm(K′)
)

+
(∑

G′′

fslm(G′′)
∑
G
A∗nk(G)δG||G′′||f`(Gz −G

′′
z)
)(∑

G′

Amk(G′)∇K′fs∗lm(K′)
)

+
(∑

G
A∗nk(G)∇Gf

s
lm(G)

)(∑
G′′

fs∗lm(G′′)
∑
G′

Amk(G′)δG′||G′′||f`(G
′′
z −G′z)

)

+
(∑

G
A∗nk(G)fslm(G)

)(∑
G′′

∇G′′fs∗lm(G′′)
∑
G′

Amk(G′)δG′||G′′||f`(G
′′
z −G′z)

)]
.

(A.44)

For a full slab calculation, equivalent to a bulk calculation, C`(z) = 1 and then f`(g) = δg0, and
Eq. (A.44) reduces to Eq. (A.29).

A.3 Va,`nm(k) and C`nm(k)
Expanding the wave function in planewaves, we obtain

ψnk(r) =
∑
G
Ank(G)ei(k+G)·r, (A.45)

where {G} are the reciprocal basis vectors satisfying eR·G = 1, {R} are the translation vectors in
real space, and Ank(G) are the expansion coefficients. Using mev = −ih̄∇ into Eqs. (2.70) and
(2.68) we obtain [124],

V`
nm(k) = h̄

2me

∑
G,G′

A∗nk(G′)Amk(G)(2k + G + G′)δG‖G′
‖
f`(G⊥ −G′⊥), (A.46)

with

f`(g) = 1
L

∫ z`+∆f
`

z`−∆b
`

eigz dz, (A.47)
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where the reciprocal lattice vectors G are decomposed into components parallel to the surface G‖,
and perpendicular to the surface G⊥ẑ, so that G = G‖ +G⊥ẑ. Likewise we obtain that

Cnm(k) =
∫
ψ∗nk(r)f(z)ψmk(r) dr

=
∑

G,G′

A∗nk(G′)Amk(G)
∫
f(z)e−i(G−G′)·r dr

=
∑

G,G′

A∗nk(G′)Amk(G)
∫
e
−i(G‖−G′

‖)·R‖ dR‖︸ ︷︷ ︸
δG‖G′

‖

∫
e−i(g−g

′)zf(z) dz︸ ︷︷ ︸
f`(G⊥−G′

⊥)

,

which we can express compactly as,

C`nm(k) =
∑

G,G′

A∗nk(G′)Amk(G)δG‖G′
‖
f`(G⊥ −G′⊥). (A.48)

The double summation over the G vectors can be efficiently done by creating a pointer array to
identify all the plane-wave coefficients associated with the same G‖. We take z` at the center of an
atom that belongs to layer `, so the equations above give the `-th atomic-layer contribution to the
optical response [124].

If C`(z) = 1 from Eqs. (A.46) and (A.48), we recover the well known results

vnm(k) = h̄

me

∑
G
A∗nk(G)Amk(G)(k + G),

C`nm = δnm, (A.49)

since for this case, f`(g) = δg0.

A.3.1 Time-reversal Relations

The following relations hold for time-reversal symmetry.

A∗nk(G) = An−k(G),

Pn`(−k) = h̄
∑
G
A∗n−k(G)A`−k(G)(−k + G),

(G→ −G) = −h̄
∑
G
Ank(G)A∗`k(G)(k + G) = −P`n(k),

Cnm(L;−k) =
∑

G‖,g,g′

A∗n−k(G‖, g)Am−k(G‖, g′)f`(g − g′)

=
∑

G‖,g,g′

Ank(G‖, g)A∗mk(G‖, g′)f`(g − g′)

= Cmn(L; k).
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A.4 VΣ,a,`
nm and

(
VΣ,a,`
nm

)
;kb

From Eq. (2.71) (
VΣ,a,`
nm

)
;kb

=
(
VLDA,a,`
nm

)
;kb

+
(
VS,a,`nm

)
;kb
. (A.50)

For the LDA term we have

VLDA,a,`
nm = 1

2
(
vLDA,aC` + C`vLDA,a

)
nm

= 1
2
∑
q

(
vLDA,a
nq C`qm + C`nqvLDA,a

qm

)
(A.51)

and(
VLDA,a
nm

)
;kb

= 1
2
∑
q

(
vLDA,a
nq C`qm + C`nqvLDA,a

qm

)
;kb

= 1
2
∑
q

(
(vLDA,a
nq );kbC`qm + vLDA,a

nq (C`qm);kb + (C`nq);kbvLDA,a
qm + C`nq(vLDA,a

qm );kb

)
, (A.52)

where we omit the k argument in all terms. From Eq. (A.25) we know that vnl
nm(k) can be readily

calculated, and from Sec. A.3, both vanm and C`nm are also known quantities. Thus, vLDA
nm (k) is

known, and in turn VLDA,a,`
nm is also known. For the generalized derivative (vLDA

nm (k));k we use Eq.
(2.45) to write

(vLDA,a
nm );kb = ime(ωLDA

nm ra
nm);kb

= ime(ωLDA
nm );kbra

nm + imeω
LDA
nm (ra

nm);kb

= ime∆b
nmr

a
nm + imeω

LDA
nm (ra

nm);kb for n 6= m, (A.53)

where we used Eq (2.77) and (ra
nm);kb , from Eq. (A.103).

Likewise for the scissored term,

VS,a,`nm = 1
2
(
vS,aC` + C`vS,a

)
nm

= 1
2
∑
q

(
vS,anq C`qm + C`nqvS,aqm

)
(A.54)

and (
VS,anm

)
;kb

= 1
2
∑
q

(
vS,anq C`qm + C`nqvS,aqm

)
;kb

= 1
2
∑
q

(
(vS,anq );kbC`qm + vS,anq (C`qm);kb + (C`nq);kbvS,aqm + C`nq(vS,aqm );kb

)
, (A.55)

where vS,anm(k) is given in Eq. (2.42) and (vS,anm);kb is given in Eq. (A6) of Ref. [81] as

(vS,anm);kb = i∆fmn(ra
nm);kb . (A.56)

To evaluate (C`nm);ka , we use the fact that as C`(z) is only a function of the z coordinate, its
commutator with r is zero. Then,

〈nk|
[
ra, C`(z)

]
|mk′〉 = 〈nk|

[
ra
e , C`(z)

]
|mk′〉+ 〈nk|

[
ra
i , C`(z)

]
|mk′〉 = 0. (A.57)
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The interband part reduces to,[
ra
e , C`(z)

]
nm

=
∑
qk′′

(
〈nk|ra

e |qk′′〉〈qk′′|C`(z)|mk′〉 − 〈nk|C`(z)|qk′′〉〈qk′′|ra
e |mk′〉

)
=
∑
qk′′

δ(k− k′′)δ(k′ − k′′)
(
(1− δqn)ξa

nqC`qm − (1− δqm)C`nqξa
qm

)

= δ(k− k′)
(∑

q

(
ξa
nqC`qm − C`nqξa

qm

)
+ C`nm(ξa

mm − ξa
nn)
)
, (A.58)

where we used Eq. (A.15), and the k and z dependence is implicitly understood. From Eq. (A.18)
the intraband part is,

〈nk|
[
r̂i, C`(z)

]
|mk′〉 = iδ(k− k′)(C`nm);k, (A.59)

then from Eq. (A.57)(
(C`nm);k − i

∑
q

(
ξa
nqC`qm − C`nqξa

qm

)
− iC`nm(ξa

mm − ξa
nn)
)
iδ(k− k′) = 0, (A.60)

which we can simplify,(
C`nm

)
;k

= i
∑
q

(
ξa
nqC`qm − C`nqξa

qm

)
+ iC`nm(ξa

mm − ξa
nn)

= i
∑
q 6=nm

(
ξa
nqC`qm − C`nqξa

qm

)
+ i

(
ξa
nnC`nm − C`nnξa

nm

)
q=n

+ i
(
ξa
nmC`mm − C`nmξa

mm

)
q=m

+ iC`nm(ξa
mm − ξa

nn)

= i
∑
q 6=nm

(
ξa
nqC`qm − C`nqξa

qm

)
+ iξa

nm(C`mm − C`nn)

= i
∑
q 6=nm

(
ra
nqC`qm − C`nqra

qm

)
+ ira

nm(C`mm − C`nn)

= i

∑
q 6=n

ra
nqC`qm −

∑
q 6=m
C`nqra

qm

+ ira
nm(C`mm − C`nn), (A.61)

since in ξa
nm we have that n 6= m, and we can replace it with ra

nm. The matrix elements C`nm(k) are
calculated in Sec. A.3.

For the general case of
〈nk|

[
r̂a, Ĝ(r,p)

]
|mk′〉 = Unm(k), (A.62)

we can generalize our result to a more general expression,

(Gnm(k));ka = Unm(k) + i
∑

q 6=(nm)

(
ra
nq(k)Gqm(k)− Gnq(k)ra

qm(k)
)

+ ira
nm(k)(Gmm(k)− Gnn(k)).

(A.63)
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A.5 The Generalized Derivative of ωn(k)
We obtain the generalized derivative (ωn(k));k. We start from

〈nk|ĤΣ
0 |mk′〉 = δnmδ(k− k′)h̄ωΣ

m(k), (A.64)

then for n = m, Eq. (A.19) yields

(HΣ
0,nn);k = ∇kH

Σ
0,nn(k)− iHΣ

0,nn(k) (ξnn(k)− ξnn(k))
= h̄∇kω

Σ
m(k), (A.65)

and from Eq. (A.18),

〈nk|
[
r̂i, Ĥ0

]
|mk〉 = iδnmh̄(ωΣ

m(k));k = iδnmh̄∇kω
Σ
m(k), (A.66)

so (
ωΣ
n (k)

)
;k

= ∇kω
Σ
n (k). (A.67)

From Eq. (2.35),
〈nk|

[
r̂, ĤΣ

0

]
|mk〉 = ih̄vΣ

nm(k), (A.68)

and substituting Eqs. (A.66) and (A.68) into

〈nk|
[
r̂, ĤΣ

0

]
|mk〉 = 〈nk|

[
r̂i, ĤΣ

0

]
|mk〉+ 〈nk|

[
r̂e, ĤΣ

0

]
|mk〉, (A.69)

we get
ih̄vΣ

nm(k) = iδnmh̄∇kω
Σ
m(k) + ωΣ

mnre,nm(k). (A.70)

For m = n, we have that

∇kω
Σ
n (k) = vΣ

nn(k)

∇k(ωLDA
n(k) + Σ

h̄
(1− fn)) = ∇kω

LDA
n(k)

∇kω
LDA

n(k) = vΣ
nn(k), (A.71)

where we use Eq. (2.29). However, from Eq. (2.42), vSnn = 0 so vΣ
nn = vLDA

nn. Thus, from Eq.
(A.67)

(ωΣ
n (k));ka = (ωLDA

n(k));ka = vLDA,a
nn (k), (A.72)

which is the same for the LDA and scissored Hamiltonians; vnnLDA(k) are the LDA velocities of
the electron in state |nk〉.

A.6 Expressions for χabc
surface in terms of VΣ,a,`

mn

The prefactor of Eqs. (2.74) and (2.75) diverges as ω̃ → 0. To remove this apparent divergence of
χ, we perform a partial fraction expansion in ω̃.
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A.6.1 Intraband Contributions

For the intraband term of Eq. (2.74), we obtain

I = C

[
− 1

2(ωΣ
nm)2

1
ωΣ
nm − ω̃

+ 2
(ωΣ
nm)2

1
ωΣ
nm − 2ω̃ + 1

2(ωΣ
nm)2

1
ω̃

]
−D

[
− 3

2(ωΣ
nm)3

1
ωΣ
nm − ω̃

+ 4
(ωΣ
nm)3

1
ωΣ
nm − 2ω̃ + 1

2(ωΣ
nm)3

1
ω̃
− 1

2(ωΣ
nm)2

1
(ωΣ
nm − ω̃)2

]
, (A.73)

where C = fmnVΣ,a
mn (rLDA,b

nm );kc , and D = fmnVΣ,a
mn r

b
nm∆c

nm.
Time-reversal symmetry leads to the following relationships:

rmn(k)|−k = rnm(k)|k,
(rmn);k(k)|−k = (−rnm);k(k)|k,
VΣ,a,`
mn (k)|−k = −VΣ,a,`

nm (k)|k,
(VΣ,a,`
mn );k(k)|−k = (VΣ,a,`

nm );k(k)|k,
ωΣ
mn(k)|−k = ωΣ

mn(k)|k,
∆a
nm(k)|−k = −∆a

nm(k)|k.

(A.74)

For a clean, cold semiconductor, fn = 1 for an occupied or valence (n = v) band, and fn = 0 for
an empty or conduction (n = c) band independent of k, and fnm = −fmn. Using the relationships
above, we can show that the 1/ω terms cancel each other out. Therefore, all the remaining nonzero
terms in expressions (A.73) are simple ω and 2ω resonant denominators that are well behaved at
ω = 0.

To apply time-reversal invariance, we notice that the energy denominators are invariant under
k→ −k, so we only need to review the numerators. So,

C → fmnVΣ,a,`
mn

(
rLDA,b
nm

)
;kc
|k + fmnVΣ,a,`

mn

(
rLDA,b
nm

)
;kc
|−k

= fmn

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc
|k +

(
−VΣ,a,`

nm

) (
−rLDA,b

mn

)
;kc
|k
]

= fmn

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

+ VΣ,a,`
nm

(
rLDA,b
mn

)
;kc

]
= fmn

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

+
(
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

)∗]
= 2fmn Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
, (A.75)

91



A. Derivations for the Nonlinear Surface Susceptibility

and likewise,
D → fmnVΣ,a,`

mn rLDA,b
nm ∆c

nm|k + fmnVΣ,a,`
mn rLDA,b

nm ∆c
nm|−k

= fmn
[
VΣ,a,`
mn rLDA,b

nm ∆c
nm|k +

(
−VΣ,a,`

nm

)
rLDA,b
mn (−∆c

nm) |k
]

= fmn
[
VΣ,a,`
mn rLDA,b

nm + VΣ,a,`
nm rLDA,b

mn

]
∆c
nm

= fmn
[
VΣ,a,`
mn rLDA,b

nm +
(
VΣ,a,`
mn rLDA,b

nm

)∗]
∆c
nm

= 2fmn Re
[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm. (A.76)

The last term in the second line of Eq. (A.73) is dealt with as follows,
D

2(ωΣ
nm)2

1
(ωΣ
nm − ω̃)2 = fmn

2
VΣ,a
mn r

b
nm

(ωΣ
nm)2

∆c
nm

(ωΣ
nm − ω̃)2 = −fmn2

VΣ,a
mn r

b
nm

(ωΣ
nm)2

( 1
ωΣ
nm − ω̃

)
;kc

= fmn
2

(
VΣ,a
mn r

b
nm

(ωΣ
nm)2

)
;kc

1
ωΣ
nm − ω̃

, (A.77)

where we used Eq. (2.77). For the last line, we performed an integration by parts over the Brillouin
zone where the contribution from the edges vanishes [163]. Now, we apply the chain rule, to get(
VΣ,a,`
mn rLDA,b

nm

(ωΣ
nm)2

)
;kc

= rLDA,b
nm

(ωΣ
nm)2

(
VΣ,a,`
mn

)
;kc

+ VΣ,a,`
mn

(ωΣ
nm)2

(
rLDA,b
nm

)
;kc
− 2VΣ,a,`

mn rLDA,b
nm

(ωΣ
nm)3

(
ωΣ
nm

)
;kc
, (A.78)

and work the time-reversal on each term. The first term is reduced to
rLDA,b
nm

(ωΣ
nm)2

(
VΣ,a,`
mn

)
;kc
|k + rLDA,b

nm

(ωΣ
nm)2

(
VΣ,a,`
mn

)
;kc
|−k

= rLDA,b
nm

(ωΣ
nm)2

(
VΣ,a,`
mn

)
;kc
|k + rLDA,b

mn

(ωΣ
nm)2

(
VΣ,a,`
nm

)
;kc
|k

= 1
(ωΣ
nm)2

[
rLDA,b
nm

(
VΣ,a,`
mn

)
;kc

+
(
rLDA,b
nm

(
VΣ,a,`
mn

)
;kc

)∗]
= 2

(ωΣ
nm)2 Re

[
rLDA,b
nm

(
VΣ,a,`
mn

)
;kc

]
, (A.79)

the second term is reduced to
VΣ,a,`
mn

(ωΣ
nm)2

(
rLDA,b
nm

)
;kc
|k + VΣ,a,`

mn

(ωΣ
nm)2

(
rLDA,b
nm

)
;kc
|−k

= VΣ,a,`
mn

(ωΣ
nm)2

(
rLDA,b
nm

)
;kc
|k + VΣ,a,`

nm

(ωΣ
nm)2

(
rLDA,b
mn

)
;kc
|k

= 1
(ωΣ
nm)2

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

+
(
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

)∗]
= 2

(ωΣ
nm)2 Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
, (A.80)
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and by using (2.77), the third term is reduced to

2VΣ,a,`
mn rLDA,b

nm

(ωΣ
nm)3

(
ωΣ
nm

)
;kc
|k + 2VΣ,a,`

mn rLDA,b
nm

(ωΣ
nm)3

(
ωΣ
nm

)
;kc
|−k

= 2VΣ,a,`
mn rLDA,b

nm

(ωΣ
nm)3 ∆c

nm|k + 2VΣ,a,`
mn rLDA,b

nm

(ωΣ
nm)3 ∆c

nm|−k

= 2VΣ,a,`
nm rLDA,b

mn

(ωΣ
nm)3 ∆c

nm|k + 2VΣ,a,`
mn rLDA,b

nm

(ωΣ
nm)3 ∆c

nm|k

= 2
(ωΣ
nm)3

[
VΣ,a,`
nm rLDA,b

mn +
(
VΣ,a,`
nm rLDA,b

mn

)∗]
∆c
nm

= 4
(ωΣ
nm)3 Re

[
VΣ,a,`
nm rLDA,b

mn

]
∆c
nm. (A.81)

Combining the results from (A.79), (A.80), and (A.81) into (A.78),

fmn
2

(VΣ,a,`
mn rLDA,b

nm

(ωΣ
nm)2

)
;kc

|k +
(
VΣ,a,`
mn rLDA,b

nm

(ωΣ
nm)2

)
;kc

|−k

 1
ωΣ
nm − ω̃

= fmn
2(ωΣ

nm)2
1

ωΣ
nm − ω̃

×
(

2 Re
[
rLDA,b
nm

(
VΣ,a,`
mn

)
;kc

]
+ 2 Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
− 4
ωΣ
nm

Re
[
VΣ,a,`
nm rLDA,b

mn

]
∆c
nm

)
. (A.82)

We substitute (A.75), (A.76), and (A.82) in (A.73),

I =

−2fmn Re
[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
2(ωΣ

nm)2
1

ωΣ
nm − ω̃

+
4fmn Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
(ωΣ
nm)2

1
ωΣ
nm − 2ω̃


+

6fmn Re
[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm

2(ωΣ
nm)3

1
ωΣ
nm − ω̃

−
8fmn Re

[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm

(ωΣ
nm)3

1
ωΣ
nm − 2ω̃

+
2fmn Re

[
rLDA,b
nm

(
VΣ,a,`
mn

)
;kc

]
2(ωΣ

nm)2
1

ωΣ
nm − ω̃

+
2fmn Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
2(ωΣ

nm)2
1

ωΣ
nm − ω̃

−
4

ωΣ
nm
fmn Re

[
VΣ,a,`
nm rLDA,b

mn

]
∆c
nm

2(ωΣ
nm)2

1
ωΣ
nm − ω̃

 .
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If we simplify,

I = −
2fmn Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
2(ωΣ

nm)2
1

ωΣ
nm − ω̃

+
4fmn Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
(ωΣ
nm)2

1
ωΣ
nm − 2ω̃

+
6fmn Re

[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm

2(ωΣ
nm)3

1
ωΣ
nm − ω̃

−
8fmn Re

[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm

(ωΣ
nm)3

1
ωΣ
nm − 2ω̃

+
2fmn Re

[
rLDA,b
nm

(
VΣ,a,`
mn

)
;kc

]
2(ωΣ

nm)2
1

ωΣ
nm − ω̃

+
2fmn Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
2(ωΣ

nm)2
1

ωΣ
nm − ω̃

−
4fmnRe

[
VΣ,a,`
nm rLDA,b

mn

]
∆c
nm

2(ωΣ
nm)3

1
ωΣ
nm − ω̃

, (A.83)

we conveniently collect the terms in columns of ω and 2ω. We can now express the susceptibility
in terms of ω and 2ω. Separating the 2ω terms and substituting in the equation above,

I2ω = − e
3

h̄2
∑
mnk

4fmn Re
[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
(ωΣ
nm)2 −

8fmn Re
[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm

(ωΣ
nm)3

 1
ωΣ
nm − 2ω̃

= − e
3

h̄2
∑
mnk

4fmn
(ωΣ
nm)2

Re
[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
−

2 Re
[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm

ωΣ
nm

 1
ωΣ
nm − 2ω̃ . (A.84)

We can express the energies in terms of transitions between bands. Therefore, ωΣ
nm = ωΣ

cv for
transitions between conduction and valence bands. To take the limit η → 0, we use

lim
η→0

1
x± iη

= P
1
x
∓ iπδ(x), (A.85)

and can finally rewrite (A.84) in the desired form,

Im[χs,`i,a,`bc,2ω] = −π|e|
3

2h̄2
∑
vck

4
(ωΣ
cv)2

Re
[
VΣ,a,`
vc

(
rLDA,b
cv

)
;kc

]
−

2 Re
[
VΣ,a,`
vc rLDA,b

cv

]
∆c
cv

ωΣ
cv

 δ(ωΣ
cv − 2ω).

(A.86)
where we added a 1/2 from the sum over k → −k. We do the same for the ω̃ terms in (A.83) to
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obtain

Iω = − e3

2h̄2
∑
nmk

[
−

2fmn Re
[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
(ωΣ
nm)2 +

6fmn Re
[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm

(ωΣ
nm)3

+
2fmn Re

[
VΣ,a,`
mn

(
rLDA,b
nm

)
;kc

]
(ωΣ
nm)2 −

4fmn Re
[
VΣ,a,`
nm rLDA,b

mn

]
∆c
nm

(ωΣ
nm)3

+
2fmn Re

[
rLDA,b
nm

(
VΣ,a,`
mn

)
;kc

]
(ωΣ
nm)2

]
1

ωΣ
nm − ω̃

. (A.87)

We reduce in the same way as (A.84),

Iω = − e3

2h̄2
∑
nmk

fmn
(ωΣ
nm)2

[
2 Re

[
rLDA,b
nm

(
VΣ,a,`
mn

)
;kc

]
+

2 Re
[
VΣ,a,`
mn rLDA,b

nm

]
∆c
nm

ωΣ
nm

]
1

ωΣ
nm − ω̃

, (A.88)

and using (A.85) we obtain our final form,

Im[χs,`i,a,`bc,ω] = −π|e|
3

2h̄2
∑
cv

1
(ωΣ
cv)2

Re
[
rLDA,b
cv

(
VΣ,a,`
vc

)
;kc

]
+

Re
[
VΣ,a,`
vc rLDA,b

cv

]
∆c
cv

ωΣ
cv

 δ(ωΣ
cv − ω),

(A.89)
where again we added a 1/2 from the sum over k→ −k.

A.6.2 Interband Contributions

We follow an equivalent procedure for the interband contribution. From Eq. (2.75) we have

E = A

[
− 1

2ωΣ
lm(2ωΣ

lm − ωΣ
nm)

1
ωΣ
lm − ω̃

+ 2
ωΣ
nm(2ωΣ

lm − ωΣ
nm)

1
ωΣ
nm − 2ω̃ + 1

2ωΣ
lmω

Σ
nm

1
ω̃

]

−B
[
− 1

2ωΣ
nl(2ωΣ

nl − ωΣ
nm)

1
ωΣ
nl − ω̃

+ 2
ωΣ
nm(2ωΣ

nl − ωΣ
nm)

1
ωΣ
nm − 2ω̃ + 1

2ωΣ
nlω

Σ
nm

1
ω̃

]
, (A.90)

where A = fmlVΣ,a
mnr

c
nlr

b
lm and B = flnVΣ,a

mnr
b
nlr

c
lm.

Just as above, the 1
ω̃ terms cancel out. We multiply out the A and B terms,

E =
[
− A

2ωΣ
lm(2ωΣ

lm − ωΣ
nm)

1
ωΣ
lm − ω̃

+ 2A
ωΣ
nm(2ωΣ

lm − ωΣ
nm)

1
ωΣ
nm − 2ω̃

]

+
[

B

2ωΣ
nl(2ωΣ

nl − ωΣ
nm)

1
ωΣ
nl − ω̃

− 2B
ωΣ
nm(2ωΣ

nl − ωΣ
nm)

1
ωΣ
nm − 2ω̃

]
. (A.91)

95



A. Derivations for the Nonlinear Surface Susceptibility

As before, we notice that the energy denominators are invariant under k→ −k so we need only to
review the numerators. Starting with A,

A→ fmlVΣ,a,`
mn rc

nlr
b
lm|k + fmlVΣ,a,`

mn rc
nlr

b
lm|−k

= fml
[
VΣ,a,`
mn rc

nlr
b
lm|k +

(
−VΣ,a,`

nm

)
rc
lnr

b
ml|k

]
= fml

[
VΣ,a,`
mn rc

nlr
b
lm − VΣ,a,`

nm rc
lnr

b
ml

]
= fml

[
VΣ,a,`
mn rc

nlr
b
lm −

(
VΣ,a,`
mn rc

nlr
b
lm

)∗]
= −2fml Im

[
VΣ,a,`
mn rc

nlr
b
lm

]
,

then B,

B → flnVΣ,a,`
mn rb

nlr
c
lm|k + flnVΣ,a,`

mn rb
nlr

c
lm|−k

= fln
[
VΣ,a,`
mn rb

nlr
c
lm|k +

(
−VΣ,a,`

nm

)
rb
lnr

c
ml|k

]
= fln

[
VΣ,a,`
mn rb

nlr
c
lm − VΣ,a,`

nm rb
lnr

c
ml

]
= fln

[
VΣ,a,`
mn rb

nlr
c
lm −

(
VΣ,a,`
mn rb

nlr
c
lm

)∗]
= −2fln Im

[
VΣ,a,`
mn rb

nlr
c
lm

]
.

We then substitute in (A.91),

E =
[2fml Im

[
VΣ,a,`
mn rc

nlr
b
lm

]
2ωΣ

lm(2ωΣ
lm − ωΣ

nm)
1

ωΣ
lm − ω̃

−
4fml Im

[
VΣ,a,`
mn rc

nlr
b
lm

]
ωΣ
nm(2ωΣ

lm − ωΣ
nm)

1
ωΣ
nm − 2ω̃

−
2fln Im

[
VΣ,a,`
mn rb

nlr
c
lm

]
2ωΣ

nl(2ωΣ
nl − ωΣ

nm)
1

ωΣ
nl − ω̃

+
4fln Im

[
VΣ,a,`
mn rb

nlr
c
lm

]
ωΣ
nm(2ωΣ

nl − ωΣ
nm)

1
ωΣ
nm − 2ω̃

]
.

We manipulate indices and simplify,

E =
[
fml Im

[
VΣ,a,`
mn rc

nlr
b
lm

]
ωΣ
lm(2ωΣ

lm − ωΣ
nm)

1
ωΣ
lm − ω̃

−
fln Im

[
VΣ,a,`
mn rb

nlr
c
lm

]
ωΣ
nl(2ωΣ

nl − ωΣ
nm)

1
ωΣ
nl − ω̃

]

+
[
fln Im

[
VΣ,a,`
mn rb

nlr
c
lm

]
2ωΣ

nl − ωΣ
nm

−
fml Im

[
VΣ,a,`
mn rc

nlr
b
lm

]
2ωΣ

lm − ωΣ
nm

]
4

ωΣ
nm

1
ωΣ
nm − 2ω̃

=
[
fmn Im

[
VΣ,a,`
ml rc

lnr
b
nm

]
2ωΣ

nm − ωΣ
lm

−
fmn Im

[
VΣ,a,`
ln rb

nmr
c
ml

]
2ωΣ

nm − ωΣ
nl

]
1

ωΣ
nm

1
ωΣ
nm − ω̃

+
[
fln Im

[
VΣ,a,`
mn rb

nlr
c
lm

]
2ωΣ

nl − ωΣ
nm

−
fml Im

[
VΣ,a,`
mn rc

nlr
b
lm

]
2ωΣ

lm − ωΣ
nm

]
4

ωΣ
nm

1
ωΣ
nm − 2ω̃ ,
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and substitute in (2.75),

I = − e3

2h̄2
∑
nm

1
ωΣ
nm

fmn Im
[
VΣ,a,`
ml {rc

lnr
b
nm}

]
2ωΣ

nm − ωΣ
lm

−
fmn Im

[
VΣ,a,`
ln {rb

nmr
c
ml}

]
2ωΣ

nm − ωΣ
nl

 1
ωΣ
nm − ω̃

+4

fln Im
[
VΣ,a,`
mn {rb

nlr
c
lm}

]
2ωΣ

nl − ωΣ
nm

−
fml Im

[
VΣ,a,`
mn {rc

nlr
b
lm}

]
2ωΣ

lm − ωΣ
nm

 1
ωΣ
nm − 2ω̃ .

Finally, we take n = c, m = v, and l = q and substitute,

I = − e3

2h̄2
∑
cv

1
ωΣ
cv

fvc Im
[
VΣ,a,`
vq {rc

qcr
b
cv}
]

2ωΣ
cv − ωΣ

qv

−
fvc Im

[
VΣ,a,`
qc {rb

cvr
c
vq}
]

2ωΣ
cv − ωΣ

cq

 1
ωΣ
cv − ω̃

+ 4

fqc Im
[
VΣ,a,`
vc {rb

cqr
c
qv}
]

2ωΣ
cq − ωΣ

cv

−
fvq Im

[
VΣ,a,`
vc {rc

cqr
b
qv}
]

2ωΣ
qv − ωΣ

cv

 1
ωΣ
cv − 2ω̃


= e3

2h̄2
∑
cv

1
ωΣ
cv

 Im
[
VΣ,a,`
qc {rb

cvr
c
vq}
]

2ωΣ
cv − ωΣ

cq

−
Im
[
VΣ,a,`
vq {rc

qcr
b
cv}
]

2ωΣ
cv − ωΣ

qv

 1
ωΣ
cv − ω̃

− 4

fqc Im
[
VΣ,a,`
vc {rb

cqr
c
qv}
]

2ωΣ
cq − ωΣ

cv

−
fvq Im

[
VΣ,a,`
vc {rc

cqr
b
qv}
]

2ωΣ
qv − ωΣ

cv

 1
ωΣ
cv − 2ω̃

 .
We use (A.85),

I = π|e3|
2h̄2

∑
cv

1
ωΣ
cv

 Im
[
VΣ,a,`
qc {rb

cvr
c
vq}
]

2ωΣ
cv − ωΣ

cq

−
Im
[
VΣ,a,`
vq {rc

qcr
b
cv}
]

2ωΣ
cv − ωΣ

qv

 δ(ωΣ
cv − ω)

−4

fqc Im
[
VΣ,a,`
vc {rb

cqr
c
qv}
]

2ωΣ
cq − ωΣ

cv

−
fvq Im

[
VΣ,a,`
vc {rc

cqr
b
qv}
]

2ωΣ
qv − ωΣ

cv

 δ(ωΣ
cv − 2ω)

 ,
and recognize that for the 1ω terms, q 6= (v, c), and for the 2ω q can have two distinct values such
that,

I = π|e3|
2h̄2

∑
cv

1
ωΣ
cv

 ∑
q 6=(v,c)

 Im
[
VΣ,a,`
qc {rb

cvr
c
vq}
]

2ωΣ
cv − ωΣ

cq

−
Im
[
VΣ,a,`
vq {rc

qcr
b
cv}
]

2ωΣ
cv − ωΣ

qv

 δ(ωΣ
cv − ω)

−4

∑
v′ 6=v

Im
[
VΣ,a,`
vc {rb

cv′rc
v′v}

]
2ωΣ

cv′ − ωΣ
cv

−
∑
c′ 6=c

Im
[
VΣ,a,`
vc {rc

cc′rb
c′v}

]
2ωΣ

c′v − ωΣ
cv

 δ(ωΣ
cv − 2ω)

 .
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A.7 The Generalized Derivative of rnm(k) for the Nonlocal
Potentials

We will derive the generalized derivative (rnm(k));k for the case of a nonlocal potential in the
Hamiltonian. We start from Eq. (2.41),

[ra, vLDA,b] = [ra, vb] + [ra, vnl,b] = ih̄

me
δab + [ra, vnl,b] ≡ τab, (A.92)

where we used the fact that [ra, pb] = ih̄δab. Then,

〈nk|[ra, vLDA,b]|mk′〉 = 〈nk|τab|mk′〉 = τab
nm(k)δ(k− k′), (A.93)

so

〈nk|[ra
i , v

LDA,b]|mk′〉+ 〈nk|[ra
e , v

LDA,b]|mk′〉 = τab
nm(k)δ(k− k′), (A.94)

where the matrix elements of τab
nm(k) are calculated in Sec. A.8. From Eq. (A.18) and (A.19)

〈nk|[ra
i , v

b
LDA]|mk′〉 = iδ(k− k′)(vLDA,b

nm );ka (A.95)

(vLDA,b
nm );ka = ∇kavLDA,b

nm (k)− ivLDA,b
nm (k) (ξa

nn(k)− ξa
mm(k)) , (A.96)

and

〈nk|[ra
e , v

LDA,b]|mk′〉 =
∑
`k′′

(
〈nk|ra

e |`k′′〉〈`k′′|vLDA,b|mk′〉 − 〈nk|vLDA,b|`k′′〉〈`k′′|ra
e |mk′〉

)

=
∑
`k′′

(
(1− δn`)δ(k− k′′)ξa

n`δ(k′′ − k′)vLDA,b
`m

− δ(k− k′′)vLDA,b
n` (1− δ`m)δ(k′′ − k′)ξa

`m

)
= δ(k− k′)

∑
`

(
(1− δn`)ξa

n`v
LDA,b
`m − (1− δ`m)vLDA,b

n` ξa
`m

)

= δ(k− k′)
(∑

`

(
ξa
n`v

LDA,b
`m − vLDA,b

n` ξa
`m

)
+ vLDA,b

nm (ξa
mm − ξa

nn)
)
. (A.97)

Using Eqs. (A.95) and (A.97) into Eq. (A.94) gives

iδ(k− k′)
(

(vLDA,b
nm );ka − i

∑
`

(
ξa
n`v

LDA,b
`m − vLDA,b

n` ξa
`m

)
− ivLDA,b

nm (ξa
mm − ξa

nn)
)

= τab
nm(k)δ(k− k′),

(A.98)

then

(vLDA,b
nm );ka = −iτab

nm + i
∑
`

(
ξa
n`v

LDA,b
`m − vLDA,b

n` ξa
`m

)
+ ivLDA,b

nm (ξa
mm − ξa

nn), (A.99)
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and from Eq. (A.96),

∇kavLDA,b
nm = −iτab

nm + i
∑
`

(
ξa
n`v

LDA,b
`m − vLDA,b

n` ξa
`m

)
. (A.100)

Now, there are two cases. We use Eq. (2.45).

A.7.1 When n = m

∇kavLDA,b
nn = −iτab

nn + i
∑
`

(
ξa
n`v

LDA,b
`n − vLDA,b

n` ξa
`n

)

= −iτab
nn −

∑
` 6=n

(
ra
n`ω

LDA
`n rb

`n − ωLDA
n` rb

n`r
a
`n

)

= −iτab
nn −

∑
` 6=n

ωLDA
`n

(
ra
n`r

b
`n − rb

n`r
a
`n

)
, (A.101)

since the ` = n cancels out. This would give the generalization for the inverse effective mass tensor
(m−1

n )ab for nonlocal potentials. Indeed, if we neglect the commutator of vnl in Eq. (A.92), we
obtain −iτab

nn = h̄/meδab thus obtaining the familiar expression of (m−1
n )ab [163].

A.7.2 When n 6= m

(vLDA,b
nm );ka = −iτab

nm + i
∑
6̀=m 6=n

(
ξa
n`v

LDA,b
`m − vLDA,b

n` ξa
`m

)
+ i

(
ξa
nmv

LDA,b
mm − vLDA,b

nm ξa
mm

)

+ i

(
ξa
nnv

LDA,b
nm − vLDA,b

nn ξa
nm

)
+ ivLDA,b

nm (ξa
mm − ξa

nn)

= −iτab
nm −

∑
`

(
ωLDA
`m ra

n`r
b
`m − ωLDA

n` rb
n`r

a
`m

)
+ iξa

nm(vLDA,b
mm − vLDA,b

nn )

= −iτab
nm −

∑
`

(
ωLDA
`m ra

n`r
b
`m − ωLDA

n` rb
n`r

a
`m

)
+ ira

nm∆b
mn, (A.102)

where we use ∆a
mn of Eq. (2.77). Now, for n 6= m, Eqs. (2.45), (A.72) and (A.102) and the chain

rule, give

(rb
nm);ka =

(
vLDA,b
nm

iωLDA
nm

)
;ka

= 1
iωLDA
nm

(
vLDA,b
nm

)
;ka
− vLDA,b

nm

i(ωLDA
nm )2

(
ωLDA
nm

)
;ka

= −iτab
nm + i

ωLDA
nm

∑
`

(
ωLDA
`m ra

n`r
b
`m − ωLDA

n` rb
n`r

a
`m

)
+ ra

nm∆b
mn

ωLDA
nm

− rb
nm

ωLDA
nm

(
ωLDA
nm

)
;ka

= −iτab
nm + i

ωLDA
nm

∑
`

(
ωLDA
`m ra

n`r
b
`m − ωLDA

n` rb
n`r

a
`m

)
+ ra

nm∆b
mn

ωLDA
nm

− rb
nm

ωnm

vLDA,a
nn − vLDA,a

mm

me

= −iτab
nm + ra

nm∆b
mn + rb

nm∆a
mn

ωLDA
nm

+ i

ωLDA
nm

∑
`

(
ωLDA
`m ra

n`r
b
`m − ωLDA

n` rb
n`r

a
`m

)
, (A.103)
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where the −iτab
nm term, generalizes the usual expresion of rnm;k for local Hamiltonians, [64,65,80,81]

to the case of a nonlocal potential in the Hamiltonian.

A.7.3 Layered Case

To obtain the generalized derivative expressions for the case of the layered matrix elements ar
required by Eq. (2.69), we could start form Eq. (A.92) again, and replace v̂LDA by VLDA, to obtain
the equivalent of Eqs. (A.101) and (A.102), for which we need to calculate the new τab

nm, that is
given by

T ab
nm = [ra,VLDA,b]nm = [ra,Vb]nm + [ra,Vnl,b]nm

= 1
2[ra, vbC`(z) + C`(z)vb]nm + 1

2[ra, vnl,bC`(z) + C`(z)vnl,b]nm

=
(
[ra, vb]C`(z)

)
nm

+
(
[ra, vnl,b]C`(z)

)
nm

=
∑
p

[ra, vb]npC`pm +
∑
p

[ra, vnl,b]npC`pm

= ih̄

me
δabC

`
nm +

∑
p

[ra, vnl,b]npC`pm. (A.104)

For a full-slab calculation, that would correspond to a bulk calculation as well, C`(z) = 1 and
then, C`nm = δnm, and from above expression T ab

nm → τab
nm. Thus, the layered expression for VLDA,a

nm

becomes

(VLDA,a
nm );kb = h̄

me
δabC

`
nm − i

∑
p

[rb, vnl,a]npC`pm + i
∑
`

(
rb
n`V

LDA,a
`m − VLDA,a

n` rb
`m

)
+ irb

nm∆̃a
mn,

(A.105)

where
∆̃a
mn = VLDA,a

nn − VLDA,a
mm . (A.106)

As mentioned before, the term [rb, vnl,a]nm calculated in Sec. A.8, is small compared to the other
terms, thus we neglect it throughout this work. [117] The expression for C`nm is calculated in Sec.
A.3.

A.8 Matrix Elements of τ ab
nm(k)

To calculate τab
nm, we first need to calculate

Lab
nm(k) = 1

ih̄
〈nk|

[
r̂a, v̂nl,b

]
|mk′〉δ(k− k′) = 1

h̄2 〈nk|
[
r̂a,
[
V̂ nl(r̂, r̂′), r̂b

]]
|mk′〉δ(k− k′), (A.107)

for which we need the following triple commutator[
r̂a,
[
V̂ nl(r̂, r̂′), r̂b

]]
=
[
r̂b,
[
V̂ nl(r̂, r̂′), r̂a

]]
, (A.108)
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nm(k)

where the right hand side follows from the Jacobi identity, since [r̂a, r̂b] = 0. We expand the triple
commutator as[

r̂a,
[
V̂ nl(r̂, r̂′), r̂b

]]
=
[
r̂a, V̂ nl(r̂, r̂′)r̂b

]
−
[
r̂a, r̂bV̂ nl(r̂, r̂′)

]
=
[
r̂a, V̂ nl(r̂, r̂′)

]
r̂b − r̂b

[
r̂a, V̂ nl(r̂, r̂′)

]
= r̂aV̂ nl(r̂, r̂′)r̂b − V̂ nl(r̂, r̂′)r̂ar̂b − r̂br̂aV̂ nl(r̂, r̂′) + r̂bV̂ nl(r̂, r̂′)r̂a. (A.109)

Then,
1
h̄2 〈nk|

[
r̂a,
[
V̂ nl(r̂, r̂′), r̂b

]]
|mk′〉 = 1

h̄2

∫
〈nk||r〉〈r|

[
r̂a,
[
V̂ nl(r̂, r̂′), r̂b

]]
|r′〉〈r′||mk′〉δ(k− k′) dr dr′

= 1
h̄2

∫
ψ∗nk(r)

(
raV nl(r, r′)r′b

− V nl(r, r′)r′ar′b − rbraV nl(r, r′) + rbV nl(r, r′)r′a
)
ψmk(r′)δ(k− k′) dr dr′

= 1
h̄2Ω

∑
K,K′

C∗nk(K)Cmk(K′)
∫
e−iK·r

(
raV nl(r, r′)r′b − V nl(r, r′)r′ar′b

− rbraV nl(r, r′) + rbV nl(r, r′)r′a
)
eiK

′·r′
δ(k− k′) dr dr′. (A.110)

We use the following identity,( ∂2

∂Ka∂K ′b
+ ∂2

∂K ′a∂K ′b
+ ∂2

∂Ka∂Kb + ∂2

∂Kb∂K ′a

) ∫
e−iK·rV nl(r, r′)eiK′·r′

dr dr′

=
∫
e−iK·r

(
raV nl(r, r′)r′b − V nl(r, r′)r′ar′b − rbraV nl(r, r′) + rbV nl(r, r′)r′a

)
eiK

′·r′
dr dr′

=
( ∂2

∂Ka∂K ′b
+ ∂2

∂K ′a∂K ′b
+ ∂2

∂Ka∂Kb + ∂2

∂Kb∂K ′a

)
〈K|V nl|K′〉, (A.111)

to write
Lab
nm(k) (A.112)

= 1
h̄2Ω

∑
K,K′

C∗nk(K)Cmk(K′)
( ∂2

∂Ka∂K ′b
+ ∂2

∂K ′a∂K ′b
+ ∂2

∂Ka∂Kb + ∂2

∂Kb∂K ′a

)
〈K|V nl|K′〉.

(A.113)
The double derivatives with respect to K and K′ can be worked out as shown in Sec. A.2, to
obtain the matrix elements of [V̂ nl(r̂, r̂′), r̂b] [120]. Therefore, we can obtain the value of the matrix
elements of the triple commutator [117].

With above results we can proceed to evaluate the matrix elements τnm(k). From Eq. (A.92)

〈nk|τab|mk′〉 = 〈nk| ih̄
me

δab|mk′〉+ 〈nk| 1
ih̄

[
ra, vnl,b

]
|mk′〉

Lab
nm(k)δ(k− k′) = δ(k− k′)

(
ih̄

me
δabδnm + Lab

nm(k)
)

τab
nm(k) = τba

nm(k) = ih̄

me
δabδnm + Lab

nm(k), (A.114)

which is an explicit expression that can be numerically calculated.
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A.9 Scissors Renormalization for VΣ
nm

We derive the scissors renormalization for VΣ
nm. For the scissors case, we have

〈nk|C(z)r|mk〉(EΣ
m − EΣ

n ) =
∫
drψ∗nk(r)C(z)r(EΣ

m − EΣ
n )ψmk(r)

=
∫
drψ∗nk(r)C(z)[r, HΣ]ψmk(r)

= −i
∫
drψ∗nk(r)C(z)vΣψmk(r) = VΣ

nm

〈nk|C(z)r|mk〉 = VΣ
nm

ωΣ
nm

. (A.115)

For the LDA case, we have

〈nk|C(z)r|mk〉(ELDA
m − ELDA

n ) =
∫
drψ∗nk(r)C(z)r(ELDA

m − ELDA
n )ψmk(r)

=
∫
drψ∗nk(r)C(z)[r, HLDA]ψmk(r)

= −i
∫
drψ∗nk(r)C(z)vLDAψmk(r) = VLDA

nm

〈nk|C(z)r|mk〉 = VLDA
nm

ωLDA
nm

. (A.116)

Then, using the previous two equations, it follows that

VΣ
nm = ωΣ

nm

ωLDA
nm

VLDA
nm . (A.117)
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B. Complete Derivations for the SSHG yield

B.1 The Necessary Equations

We are interested in finding
Υ = e2ω

` · χ : eω` eω`
for each different polarization case. We choose the plane of incidence along the κz plane, and define

κ̂ = cosφx̂ + sinφŷ, (B.1)

and
ŝ = − sinφx̂ + cosφŷ, (B.2)

where φ the angle with respect to the x axis.

B.1.1 2ω Terms

Including multiple reflecions, the e2ω
` term is

e2ω
` = êout ·

[
ŝT v`s RM+

s ŝ + P̂v+
T v`p
N`

(
sin θ0R

M+
p ẑ−W`R

M−
p κ̂

) ]
, (B.3)

and neglecting the multiple reflections reduces this expression to

e2ω
` = êout ·

[
ŝT v`s T `bs ŝ + P̂v+

T v`p T
`b
p

N2
`Nb

(
N2
b sin θ0ẑ−N2

`Wbκ̂
) ]
. (B.4)

We first expand these equations for clarity. Substituting Eqs. (B.1) and (B.2) into Eq. (B.3),

e2ω
` = êout ·

[
ŝT v`s RM+

s (− sinφx̂ + cosφŷ)

+ P̂v+
T v`p
N`

(
sin θ0R

M+
p ẑ−W`R

M−
p cosφx̂−W`R

M−
p sinφŷ

) ]
.

We now have e2ω
` in terms of P̂v+,

e2ω
` =

T v`p
N`

(
sin θ0R

M+
p ẑ−W`R

M−
p cosφx̂−W`R

M−
p sinφŷ

)
, (B.5)

and in terms of ŝ,
e2ω
` = T v`s R

M+
s (− sinφx̂ + cosφŷ) . (B.6)

If we wish to neglect the effects from the multiple reflections, we do the exact same for Eq. (B.4),
and get the following term for P̂v+,

e2ω
` =

T v`p T
`b
p

N2
`Nb

(
N2
b sin θ0ẑ−N2

`Wb cosφx̂−N2
`Wb sinφŷ

)
, (B.7)

and ŝ,
e2ω
` = T v`s T

`b
s [− sinφx̂ + cosφŷ] . (B.8)
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B.1.2 1ω Terms

We have that the eω` term is

eω` =
[
ŝtv`s rM+

s ŝ +
tv`p
n`

(
rM+
p sin θ0ẑ + rM−p w`κ̂

)
p̂v−

]
· êin.

We are interested in finding eω` eω` for both polarizations. For êin = p̂v− we have

eω` =
tv`p
n`

(
rM+
p sin θ0ẑ + rM−p w` cosφx̂ + rM−p w` sinφŷ

)
,

so

eω` eω` =
(
tv`p
n`

)2 ((
rM−p

)2
w2
` cos2 φx̂x̂ + 2

(
rM−p

)2
w2
` sinφ cosφx̂ŷ

+ 2rM+
p rM−p w` sin θ0 cosφx̂ẑ +

(
rM−p

)2
w2
` sin2 φŷŷ

+ 2rM+
p rM−p w` sin θ0 sinφẑŷ +

(
rM+
p

)2
sin2 θ0ẑẑ

)
,

(B.9)

and for êin = ŝ,

eω` eω` =
(
tv`s r

M+
s

)2 (
sin2 φx̂x̂ + cos2 φŷŷ− 2 sinφ cosφx̂ŷ

)
. (B.10)

Neglecting the effects of the multiple reflections for the eω` term yields

eω` =
[
ŝtv`s t`bs ŝ +

tv`p t
`b
p

n2
`nb

(
n2
b sin θ0ẑ + n2

`wbκ̂
)

p̂v−

]
· êin.

For all cases, we require a eω` eω` product. For brevity, we will directly list these terms for both
polarizations. For êin = p̂v−,

eω` eω` =
(
tv`p t

`b
p

n2
`nb

)2 (
n4
`w

2
b cos2 φx̂x̂ + 2n4

`w
2
b sinφ cosφx̂ŷ

+ 2n2
`n

2
bwb sin θ0 cosφx̂ẑ + n4

`w
2
b sin2 φŷŷ

+ 2n2
`n

2
bwb sin θ0 sinφŷẑ + n4

b sin2 θ0ẑẑ
)
,

(B.11)

and for êin = ŝ,
eω` eω` =

(
tv`s t

`b
s

)2 (
sin2 φx̂x̂ + cos2 φŷŷ− 2 sinφ cosφx̂ŷ

)
. (B.12)

We summarize these expressions in Table B.1. In order to derive the equations for a given
polarization case, we refer to the equations listed there. Then it is simply a matter of multiplying
the terms correctly and obtaining the appropriate components of χ(−2ω;ω, ω).
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B. Complete Derivations for the SSHG yield

B.1.3 Nonzero Components of χ(−2ω;ω, ω)

For a (111) surface with C3v symmetry, we have the following nonzero components:

χxxx = −χxyy = −χyyx,
χxxz = χyyz,

χzxx = χzyy,

χzzz.

(B.13)

For a (110) surface with C2v symmetry, we have the following nonzero components:

χxxz, χyyz, χzxx, χzyy, χzzz. (B.14)

Lastly, for a (001) surface with C4v symmetry, we have the following nonzero components:

χxxz = χyyz,

χzxx = χzyy,

χzzz.

(B.15)

Case êout êin e2ω
` eω` eω`

RpP P̂v+ p̂v− Eq. (B.5) or (B.7) Eq. (B.9) or Eq. (B.11)
RpS ŝ p̂v− Eq. (B.6) or (B.8) Eq. (B.9) or Eq. (B.11)
RsP P̂v+ ŝ Eq. (B.5) or (B.7) Eq. (B.10) or Eq. (B.12)
RsS ŝ ŝ Eq. (B.6) or (B.8) Eq. (B.10) or Eq. (B.12)

Table B.1: Polarization unit vectors for êout and êin, and equations describing
e2ω
` and eω` eω` for each polarization case. When there are two equations to

choose from, the former includes the effects of multiple reflections, and the
latter neglects them.
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B.2. RpP (p-in, P-out)

B.2 RpP (p-in, P-out)

Per Table B.1, RpP requires Eqs. (B.5) and (B.9). After some algebra, we obtain that

ΥMR
pP = ΓMR

pP

[
−RM−p

(
rM−p

)2
w2
`W` cos3 φχxxx

− 2RM−p

(
rM−p

)2
w2
`W` sinφ cos2 φχxxy

− 2RM−p rM+
p rM−p w`W` sin θ0 cos2 φχxxz

−RM−p

(
rM−p

)2
w2
`W` sin2 φ cosφχxyy

− 2RM−p rM+
p rM−p w`W` sin θ0 sinφ cosφχxyz

−RM−p

(
rM+
p

)2
W` sin2 θ0 cosφχxzz

−RM−p

(
rM−p

)2
w2
`W` sinφ cos2 φχyxx

− 2RM−p

(
rM−p

)2
w2
`W` sin2 φ cosφχyxy

− 2RM−p rM+
p rM−p w`W` sin θ0 sinφ cosφχyxz

−RM−p

(
rM−p

)2
w2
`W` sin3 φχyyy

− 2RM−p rM+
p rM−p w`W` sin θ0 sin2 φχyyz

−RM−p

(
rM+
p

)2
W` sin2 θ0 sinφχyzz

+RM+
p

(
rM−p

)2
w2
` sin θ0 cos2 φχzxx

+ 2RM+
p rM+

p rM−p w` sin2 θ0 cosφχzxz

+ 2RM+
p

(
rM−p

)2
w2
` sin θ0 sinφ cosφχzxy

+RM+
p

(
rM−p

)2
w2
` sin θ0 sin2 φχzyy

+ 2RM+
p rM+

p rM−p w` sin2 θ0 sinφχzzy

+RM+
p

(
rM+
p

)2
sin3 θ0χ

zzz
]
,

(B.16)

We take this opportunity to introduce a quantity that will be repeated throughout this section,

ΓMR
pP =

T v`p
N`

(
tv`p
n`

)2

. (B.17)
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B. Complete Derivations for the SSHG yield

If we neglect the multiple reflections, as described in the manuscript, we have that

ΥpP = ΓpP
[
−N2

`Wb

(
+ n4

`w
2
b cos3 φχxxx + 2n4

`w
2
b sinφ cos2 φχxxy

+ 2n2
bn

2
`wb sin θ0 cos2 φχxxz + n4

`w
2
b sin2 φ cosφχxyy

+ 2n2
bn

2
`wb sin θ0 sinφ cosφχxyz + n4

b sin2 θ0 cosφχxzz
)

−N2
`Wb

(
+ n4

`w
2
b sinφ cos2 φχyxx + 2n4

`w
2
b sin2 φ cosφχyxy

+ 2n2
bn

2
`wb sin θ0 sinφ cosφχyxz + n4

`w
2
b sin3 φχyyy

+ 2n2
bn

2
`wb sin θ0 sin2 φχyyz + n4

b sin2 θ0 sinφχyzz
)

+N2
b sin θ0

(
+ n4

`w
2
b cos2 φχzxx + 2n4

`w
2
b sinφ cosφχzxy

+ n4
`w

2
b sin2 φχzyy + 2n2

`n
2
bwb sin θ0 cosφχzzx

+ 2n2
`n

2
bwb sin θ0 sinφχzzy + n4

b sin2 θ0χ
zzz)],

(B.18)

and again we introduce a quantity that will be repeated throughout this section,

ΓpP =
T v`p T

`b
p

N2
`Nb

(
tv`p t

`b
p

n2
`nb

)2

. (B.19)

B.2.1 For the (111) Surface

We take Eqs. (B.16) and (B.13), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(111)
pP = ΓMR

pP

[
−RM−p

(
rM−p

)2
w2
`W` cos3 φχxxx

+RM−p

(
rM−p

)2
w2
`W` sin2 φ cosφχxxx

+ 2RM−p

(
rM−p

)2
w2
`W` sin2 φ cosφχxxx

− 2RM−p rM+
p rM−p w`W` sin θ0 cos2 φχxxz

− 2RM−p rM+
p rM−p w`W` sin θ0 sin2 φχxxz

+RM+
p

(
rM−p

)2
w2
` sin θ0 cos2 φχzxx

+RM+
p

(
rM−p

)2
w2
` sin θ0 sin2 φχzxx

+RM+
p

(
rM+
p

)2
sin3 θ0χ

zzz
]
.
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B.2. RpP (p-in, P-out)

We reduce terms,

ΥMR,(111)
pP = ΓMR

pP

[
RM−p

(
rM−p

)2
w2
`W`(3 sin2 φ cosφ− cos3 φ)χxxx

− 2RM−p rM+
p rM−p w`W` sin θ0(sin2 φ+ cos2 φ)χxxz

+RM+
p

(
rM−p

)2
w2
` sin θ0(sin2 φ+ cos2 φ)χzxx

+RM+
p

(
rM+
p

)2
sin3 θ0χ

zzz]

= ΓMR
pP

[
RM+
p sin θ0

( (
rM+
p

)2
sin2 θ0χ

zzz +
(
rM−p

)2
w2
`χ

zxx
)

−RM−p w`W`

(
2rM+
p rM−p sin θ0χ

xxz +
(
rM−p

)2
w`χ

xxx cos 3φ
)]

= ΓMR
pP r

MR,(111)
pP ,

where

r
MR,(111)
pP = RM+

p sin θ0
( (
rM+
p

)2
sin2 θ0χ

zzz +
(
rM−p

)2
w2
`χ

zxx
)

−RM−p w`W`

(
2rM+
p rM−p sin θ0χ

xxz +
(
rM−p

)2
w`χ

xxx cos 3φ
)
.

(B.20)

If we wish to neglect the effects of the multiple reflections, we follow the exact same procedure
but starting with Eq. (B.18),

Υ(111)
pP = ΓpP

[
+ n4

bN
2
b sin3 θ0χ

zzz

+ n4
`N

2
bw

2
b sin θ0 cos2 φχzxx

+ n4
`N

2
bw

2
b sin θ0 sin2 φχzxx

− 2n2
bn

2
`N

2
` wbWb sin θ0 cos2 φχxxz

− 2n2
bn

2
`N

2
` wbWb sin θ0 sin2 φχxxz

− n4
`N

2
` w

2
bWb cos3 φχxxx

+ n4
`N

2
` w

2
bWb sin2 φ cosφχxxx

+ 2n4
`N

2
` w

2
bWb sin2 φ cosφχxxx

]
,
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B. Complete Derivations for the SSHG yield

and reduce,

Υ(111)
pP = ΓpP

[
+ n4

bN
2
b sin3 θ0χ

zzz

+ n4
`N

2
bw

2
b sin θ0(sin2 φ+ cos2 φ)χzxx

− 2n2
bn

2
`N

2
` wbWb sin θ0(sin2 φ+ cos2 φ)φχxxz

+ n4
`N

2
` w

2
bWb(3 sin2 φ cosφ− cos3 φ)χxxx

]
= ΓpP

[
N2
b sin θ0(n4

b sin2 θ0χ
zzz + n4

`w
2
bχ

zxx)
− n2

`N
2
` wbWb(2n2

b sin θ0χ
xxz + n2

`wbχ
xxx cos 3φ)

]
= ΓpP r(111)

pP ,

where

r
(111)
pP =N2

b sin θ0(n4
b sin2 θ0χ

zzz + n4
`w

2
bχ

zxx)
− n2

`N
2
` wbWb(2n2

b sin θ0χ
xxz + n2

`wbχ
xxx cos 3φ).

(B.21)
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B.2. RpP (p-in, P-out)

B.2.2 For the (110) Surface

We take Eqs. (B.16) and (B.14), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(110)
pP = ΓMR

pP

[
RM+
p

(
rM+
p

)2
sin3 θ0χ

zzz

+RM+
p

(
rM−p

)2
w2
` sin θ0 sin2 φχzyy

+RM+
p

(
rM−p

)2
w2
` sin θ0 cos2 φχzxx

− 2RM−p rM+
p rM−p w`W` sin θ0 sin2 φχyyz

− 2RM−p rM+
p rM−p w`W` sin θ0 cos2 φχxxz

]

= ΓMR
pP

[
RM+
p sin θ0

((
rM+
p

)2
sin2 θ0χ

zzz

+
(
rM−p

)2
w2
`

(1
2(1− cos 2φ)χzyy + 1

2(cos 2φ+ 1)χzxx
))

− 2RM−p rM+
p rM−p w`W` sin θ0

(1
2(1− cos 2φ)χyyz

+ 1
2(cos 2φ+ 1)χxxz

)]

= ΓMR
pP

[
RM+
p sin θ0

((
rM+
p

)2
sin2 θ0χ

zzz

+
(
rM−p

)2
w2
`

(
χzyy + χzxx

2 + χzyy − χzxx

2 cos 2φ
))

− 2RM−p rM+
p rM−p w`W` sin θ0

(
χyyz + χxxz

2 + χyyz − χxxz

2 cos 2φ
)]

= ΓMR
pP r

MR,(110)
pP ,

where

r
MR,(110)
pP = RM+

p sin θ0

((
rM+
p

)2
sin2 θ0χ

zzz

+
(
rM−p

)2
w2
`

(
χzyy + χzxx

2 + χzyy − χzxx

2 cos 2φ
))

− 2RM−p rM+
p rM−p w`W` sin θ0

(
χyyz + χxxz

2 + χyyz − χxxz

2 cos 2φ
)
.

(B.22)
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B. Complete Derivations for the SSHG yield

If we wish to neglect the effects of the multiple reflections, we follow the exact same procedure
but starting with Eq. (B.18),

Υ(110)
pP = ΓpP

[
N2
b sin θ0

(
n4
b sin2 θ0χ

zzz + n4
`w

2
b (sin2 φχzyy + cos2 φχzxx)

)
− 2n2

bn
2
`N

2
` wbWb sin θ0

(
sin2 φχyyz + cos2 φχxxz

)]

= ΓpP
[
N2
b sin θ0

(
n4
b sin2 θ0χ

zzz

+ n4
`w

2
b

(
χzyy + χzxx

2 + χzyy − χzxx

2 cos 2φ
))

− 2n2
bn

2
`N

2
` wbWb sin θ0

(
χyyz + χxxz

2 + χyyz − χxxz

2 cos 2φ
)]

= ΓpP r(110)
pP ,

where

r
(110)
pP = N2

b sin θ0

[
n4
b sin2 θ0χ

zzz + n4
`w

2
b

(
χzyy + χzxx

2 + χzyy − χzxx

2 cos 2φ
)]

− 2n2
bn

2
`N

2
` wbWb sin θ0

(
χyyz + χxxz

2 + χyyz − χxxz

2 cos 2φ
)
.

(B.23)

B.2.3 For the (001) Surface

We take Eqs. (B.16) and (B.14), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(001)
pP = ΓMR

pP

[
RM+
p

(
rM+
p

)2
sin3 θ0χ

zzz

+RM+
p

(
rM−p

)2
w2
` sin θ0 sin2 φχzxx

+RM+
p

(
rM−p

)2
w2
` sin θ0 cos2 φχzxx

− 2RM−p rM+
p rM−p w`W` sin θ0 sin2 φχxxz

− 2RM−p rM+
p rM−p w`W` sin θ0 cos2 φχxxz

]

= ΓMR
pP

[
RM+
p sin θ0

((
rM+
p

)2
sin2 θ0χ

zzz +
(
rM−p

)2
w2
`χ

zxx
)

− 2RM−p rM+
p rM−p w`W` sin θ0χ

xxz]
= ΓMR

pP r
MR,(001)
pP ,
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B.3. RpS (p-in, S-out)

where

r
MR,(001)
pP =RM+

p sin θ0

((
rM+
p

)2
sin2 θ0χ

zzz +
(
rM−p

)2
w2
`χ

zxx
)

− 2RM−p rM+
p rM−p w`W` sin θ0χ

xxz,

(B.24)

If we wish to neglect the effects of the multiple reflections, we follow the exact same procedure
but starting with Eq. (B.18),

Υ(001)
pP = ΓpP

[
N2
b sin θ0(n4

b sin2 θ0χ
zzz + n4

`w
2
bχ

zxx)
− 2n2

bn
2
`N

2
` wbWb sin θ0χ

xxz]
= ΓpP r(001)

pp ,

where

r
(001)
pP =N2

b sin θ0(n4
b sin2 θ0χ

zzz + n4
`w

2
bχ

zxx)
− 2n2

bn
2
`N

2
` wbWb sin θ0χ

xxz.
(B.25)

B.3 RpS (p-in, S-out)

Per Table B.1, RpS requires Eqs. (B.6) and (B.9). After some algebra, we obtain that

ΥMR
pS = ΓMR

pS

[
−
(
rM−p

)2
w2
` sinφ cos2 φχxxx − 2

(
rM−p

)2
w2
` sin2 φ cosφχxxy

− 2rM+
p rM−p w` sin θ0 sinφ cosφχxxz −

(
rM−p

)2
w2
` sin3 φχxyy

− 2rM+
p rM−p w` sin θ0 sin2 φχxzy −

(
rM+
p

)2
sin2 θ0 sinφχxzz

+
(
rM−p

)2
w2
` cos3 φχyxx + 2

(
rM−p

)2
w2
` sinφ cos2 φχyxy

+ 2rM+
p rM−p w` sin θ0 cos2 φχyxz +

(
rM−p

)2
w2
` sin2 φ cosφχyyy

+ 2rM+
p rM−p w` sin θ0 sinφ cosφχyzy +

(
rM+
p

)2
sin2 θ0 cosφχyzz

]
.

(B.26)

We take this opportunity to introduce a quantity that will be repeated throughout this section,

ΓMR
pS = T v`s R

M+
s

(
tv`p
n`

)2

(B.27)

If we neglect the multiple reflections, as described in the manuscript, we have that

ΥpS = ΓpS
[
− n4

`w
2
b sinφ cos2 φχxxx − 2n4

`w
2
b sin2 φ cosφχxxy

− 2n2
`n

2
bwb sin θ0 sinφ cosφχxxz − n4

`w
2
b sin3 φχxyy

− 2n2
`n

2
bwb sin θ0 sin2 φχxyz − n4

b sin2 θ0 sinφχxzz

+ n4
`w

2
b cos3 φχyxx + 2n4

`w
2
b sinφ cos2 φχyxy

+ 2n2
`n

2
bwb sin θ0 cos2 φχyxz + n4

`w
2
b sin2 φ cosφχyyy

+ 2n2
`n

2
bwb sin θ0 sinφ cosφχyyz + n4

b sin2 θ0 cosφχyzz
]
,

(B.28)
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B. Complete Derivations for the SSHG yield

and again we introduce a quantity that will be repeated throughout this section,

ΓpS = T v`s T
`b
s

(
tv`p t

`b
p

n2
`nb

)2

. (B.29)

B.3.1 For the (111) Surface

We take Eqs. (B.26) and (B.13), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(111)
pS = ΓMR

pS

[
2rM+
p rM−p w` sin θ0 sinφ cosφχxxz

− 2rM+
p rM−p w` sin θ0 sinφ cosφχxxz

−
(
rM−p

)2
w2
` sinφ cos2 φχxxx

− 2
(
rM−p

)2
w2
` sinφ cos2 φχxxx

+
(
rM−p

)2
w2
` sin3 φχxxx

]
.

We reduce terms,

ΥMR,(111)
pS = ΓMR

pS

[ (
rM−p

)2
w2
` (sin3 φ− 3 sinφ cos2 φ)χxxx

]

= ΓMR
pS

[
−
(
rM−p

)2
w2
`χ

xxx sin 3φ
]

= ΓMR
pS r

MR,(111)
pS ,

where
r

MR,(111)
pS = −

(
rM−p

)2
w2
`χ

xxx sin 3φ. (B.30)

If we wish to neglect the effects of the multiple reflections, we follow the exact same procedure but
starting with Eq. (B.28),

ΥpS = ΓpS
[
n4
`w

2
b (sin3 φ− 3 sinφ cos2 φ)χxxx

]
= ΓpS

[
− n4

`w
2
bχ

xxx sin 3φ
]

= ΓpS r(111)
pS ,

(B.31)

where
r

(111)
pS = −n4

`w
2
bχ

xxx sin 3φ, (B.32)

and we use ΓpS instead of ΓMR
pS .

114



B.4. RsP (s-in, P-out)

B.3.2 For the (110) Surface

We take Eqs. (B.26) and (B.14), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(110)
pS = ΓMR

pS

[
2rM+
p rM−p w` sin θ0 sinφ cosφ(χyyz − χxxz)

]
= ΓMR

pS

[
rM+
p rM−p w` sin θ0(χyyz − χxxz) sin 2φ

]
= ΓMR

pS r
MR,(110)
pS .

where
r

MR,(110)
pS = rM+

p rM−p w` sin θ0(χyyz − χxxz) sin 2φ. (B.33)
If we neglect the effects of the multiple reflections as mentioned above, we have

r
(110)
pS = n2

`n
2
bwb sin θ0(χyyz − χxxz) sin 2φ, (B.34)

and we use ΓpS instead of ΓMR
pS .

B.3.3 For the (001) Surface

We take Eqs. (B.26) and (B.14), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(001)
pS = ΓMR

pS

[
− 2rM+

p rM−p w` sin θ0 sinφ cosφχxxz

+ 2rM+
p rM−p w` sin θ0 sinφ cosφχxxz

]
= 0.

Neglecting the effects of multiple reflections will obviously yield the same result, thus

ΥMR,(001)
pS = Υ(001)

pS = 0. (B.35)

B.4 RsP (s-in, P-out)

Per Table B.1, RsP requires Eqs. (B.5) and (B.10). After some algebra, we obtain that

ΥMR
sP = ΓMR

sP

[
RM−p W`

(
− sin2 φ cosφχxxx + 2 sinφ cos2 φχxxy − cos3 φχxyy

)
+RM−p W`

(
− sin3 φχyxx + 2 sin2 φ cosφχyyx − sinφ cos2 φχyyy

)
+RM+

p sin θ0
(

sin2 φχzxx − 2 sinφ cosφχzxy + cos2 φχzyy
)]
.

(B.36)

We take this opportunity to introduce a quantity that will be repeated throughout this section,

ΓMR
sP =

T v`p
N`

(
tv`s r

M+
s

)2
(B.37)
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B. Complete Derivations for the SSHG yield

If we neglect the multiple reflections, as described in the manuscript, we have that

ΥsP = ΓsP
[
N2
`Wb

(
− sin2 φ cosφχxxx + 2 sinφ cos2 φχxxy − cos3 φχxyy

)
+N2

`Wb

(
− sin3 φχyxx + 2 sin2 φ cosφχyxy − sinφ cos2 φχyyy

)
+N2

b sin θ0
(

+ sin2 φχzxx − 2 sinφ cosφχzxy + cos2 φχzyy
)]
,

(B.38)

and again we introduce a quantity that will be repeated throughout this section,

ΓsP =
T v`p T

`b
p

N2
`Nb

(
tv`s t

`b
s

)2
. (B.39)

B.4.1 For the (111) Surface

We take Eqs. (B.36) and (B.13), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(111)
sP = ΓMR

sP

[
+RM−p W` cos3 φχxxx

−RM−p W` sin2 φ cosφχxxx

− 2RM−p W` sin2 φ cosφχxxx

+RM+
p sin θ0 sin2 φχzxx

+RM+
p sin θ0 cos2 φχzxx

]
.

We reduce terms,

ΥMR,(111)
sP = ΓMR

sP

[
RM−p W`(cos3 φ− 3 sin2 φ cosφ)χxxx

+RM+
p sin θ0(sin2 φ+ cos2 φ)χzxx

]
= ΓMR

sP

[
RM−p W`χ

xxx cos 3φ+RM+
p sin θ0χ

zxx]
= ΓMR

sP r
MR,(111)
sP ,

where
r

MR,(111)
sP = RM+

p sin θ0χ
zxx +RM−p W`χ

xxx cos 3φ. (B.40)
If we wish to neglect the effects of the multiple reflections, we follow the exact same procedure

but starting with Eq. (B.38),

Υ(111)
sP = ΓsP

[
−N2

`Wb sin2 φ cosφχxxx

+N2
`Wb cos3 φχxxx

− 2N2
`Wb sin2 φ cosφχyyx

+N2
b sin θ0 sin2 φχzxx

+N2
b sin θ0 cos2 φχzxx

]
,
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B.4. RsP (s-in, P-out)

and reduce,

Υ(111)
sP = ΓsP

[
N2
`Wb(cos3 φ− 3 sin2 φ cosφ)χxxx

+N2
b sin θ0(sin2 φ+ cos2 φ)χzxx

]
= ΓsP

[
N2
`Wbχ

xxx cos 3φ+N2
b sin θ0χ

zxx]
= ΓsP r(111)

sP ,

where
r

(111)
sP = N2

b sin θ0χ
zxx +N2

`Wbχ
xxx cos 3φ. (B.41)

B.4.2 For the (110) Surface

We take Eqs. (B.36) and (B.14), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(110)
sP = ΓMR

sP

[
RM+
p sin θ0(sin2 φχzxx + cos2 φχzyy)

]

= ΓMR
sP

[
RM+
p sin θ0

(1
2(1− cos 2φ)χzxx + 1

2(cos 2φ+ 1)χzyy
)]

= ΓMR
sP

[
RM+
p sin θ0

(
χzyy + χzxx

2 + χzyy − χzxx

2 cos 2φ
)]

= ΓMR
sP r

MR,(110)
sP ,

where
r

MR,(110)
sP = RM+

p sin θ0

(
χzxx + χzyy

2 + χzyy − χzxx

2 cos 2φ
)
. (B.42)

If we wish to neglect the effects of the multiple reflections, we follow the exact same procedure
but starting with Eq. (B.38),

Υ(110)
sP = ΓsP

[
N2
b sin θ0(sin2 φχzxx + cos2 φχzyy)

]

= ΓsP
[
N2
b sin θ0

(1
2(1− cos 2φ)χzxx + 1

2(cos 2φ+ 1)χzyy
)]

= ΓsP
[
N2
b sin θ0

(
χzxx + χzyy

2 + χzyy − χzxx

2 cos 2φ
)]

= ΓsP r(110)
sP ,
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B. Complete Derivations for the SSHG yield

where
r

(110)
sP = N2

b sin θ0

(
χzxx + χzyy

2 + χzyy − χzxx

2 cos 2φ
)
. (B.43)

B.4.3 For the (001) Surface

We take Eqs. (B.36) and (B.14), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR,(001)
sP = ΓMR

sP

[
RM+
p sin θ0(sin2 φ+ cos2 φ)χzxx

]
= ΓMR

sP

[
RM+
p sin θ0χ

zxx]
= ΓMR

sP r
MR,(001)
sP .

where
r

MR,(001)
sP = RM+

p sin θ0χ
zxx. (B.44)

If we wish to neglect the effects of the multiple reflections, we follow the exact same procedure
but starting with Eq. (B.38),

Υ(001)
sP = ΓsP

[
N2
b sin θ0(sin2 φ+ cos2 φ)χzxx

]
= ΓsP

[
N2
b sin θ0χ

zxx]
= ΓsP r(001)

sP ,

where
r

(001)
sP = N2

b sin θ0χ
zxx. (B.45)

B.5 RsS (s-in, S-out)

Per Table B.1, RsS requires Eqs. (B.6) and (B.10). After some algebra, we obtain that

ΥMR
sS = ΓMR

sS

[
− sin3 φχxxx + 2 sin2 φ cosφχxxy − sinφ cos2 φχxyy

+ sin2 φ cosφχyxx − 2 sinφ cos2 φχyxy + cos3 φχyyy
]
.

(B.46)

We take this opportunity to introduce a quantity that will be repeated throughout this section,

ΓMR
sS = T v`s R

M+
s

(
tv`s r

M+
s

)2
. (B.47)

If we neglect the multiple reflections, as described in the manuscript, we have that

ΥsS = ΓsS
[
− sin3 φχxxx + 2 sin2 φ cosφχxxy − sinφ cos2 φχxyy

+ sin2 φ cosφχyxx − 2 sinφ cos2 φχyxy + cos3 φχyyy
]
,

(B.48)
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B.5. RsS (s-in, S-out)

and again we introduce a quantity that will be repeated throughout this section,

ΓsS = T v`s T
`b
s

(
tv`s t

`b
s

)2
. (B.49)

We note that both Eqs. (B.46) and (B.48) are identical save for the different ΓsS terms. Therefore,
we can safely derive the equations only once, and then use ΓMR

sS when we wish to include multiple
reflections, or ΓsS when we do not.

B.5.1 For the (111) Surface

We take Eqs. (B.46) and (B.13), eliminate the components that do not contribute, and apply the
the symmetry relations as follows,

ΥMR
sS = ΓMR

sS

[
(3 sinφ cos2 φ− sin3 φ)χxxx

]
= ΓMR

sS

[
χxxx sin 3φ

]
= ΓMR

sS r
MR,(111)
sS ,

where
r

MR,(111)
sS = χxxx sin 3φ. (B.50)

As mentioned above,
r

(111)
sS = r

MR,(111)
sS , (B.51)

so if we wish to neglect the effects of the multiple reflections, we simply use ΓsS instead of ΓMR
sS .

B.5.2 For the (110) Surface

When considering Eqs. (B.46) and (B.14), we see that there are no nonzero components that
contribute. Therefore,

ΥMR,(110)
pS = Υ(110)

pS = 0. (B.52)

B.5.3 For the (001) Surface

When considering Eqs. (B.46) and (B.14), we see that there are no nonzero components that
contribute. Therefore,

ΥMR,(001)
sS = Υ(001)

sS = 0. (B.53)
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