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Abstract

Here we present an option to measure the refractive index of materials
by using the ellipsometry technique. In the traditional method a beam of
polarized light is sent, at different angles, to the materials surface where
it is reflected. The state of polarization of this reflected beam is analyzed
(recorded) every time a new angle is given. With these values the Fres-
nel reflectance graphs are obtained and the refractive index is calculated.
Now we propose a method that is based on a high numerical aperture ob-
jective lens. A single recording is done. The process involves the study of
the change of polarization state, associated to an incident illumination field,
when it is reflected from the plane surface of the material. To perform this
study the spatial distribution of light, at the pupil of the objective lens, is
transferred by means of a lens to a CMOS 1280×1024 matrix detector. The
image obtained as a result, contains the reflectance information at multiple
and continuous local planes of incidence with a completed round. Then the
distribution of light is studied with some computer programs, allowing the
measurement of the Brewster angle and the deduction of the value of the
refractive index asociated to the area under study. In this work, the ques-
tion about what kind of polarized light is the more appropriate illumination
source that should be employed to obtain a measurement of the refractive
index, using the technique shown here, is aswered. To give a response, BK7,
MgF2, FS and SF12 glasses were excited with conventional and unconven-
tional polarization fields, and the experimental results were compared with
synthetic images computed through the Fresnel theory. Results show the
use of unconventional polarization provides the most complete information
and allows the spatial identification of anisotropies within spot diameters
around 721 nm.
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Chapter 1

Introduction

Quantify how many light if reflected by a surface and how is its spatial
distribution, is a problem that impacts areas like optoelectronics[5, 14], the
material’s characterization[7] and healht sciences[2]. The relevance of them
is based in that reflected light contains information about the interaction
between the medium properties and the incidence illumination field. Par-
ticularly, properties like refraction index and Brewster’s angle, conjugated
with experimental parameters like the incidence angle and rugosity, controls
the amount of reflected light. From physics, this problem is approached by
means of the Fresnel coefficients theory[10]. At the direct problem, if the
incident electric field is known (it is, its magnitude, the polarization state
and its phase) and the mathematical model that transforms this vectorial
field into reflected, the amount of reflected light by the surface can be cal-
culated. At the inverse problem, knowing the reflected and incident fields,
the parameters of the system transference function can be calculated and
hence some optical properties of the medium.

From the experimental point of view, several ideas looking for synthe-
size an instrument, that provides more details about the reflected light field
given by a surface has been implemented. An interesting example about
that is the Murray-Coleman and Smith proposal[16], in which reflected light
distribution is obtained by means of automatic data measurements on a sys-
tem pc-controlled. There making a discrete swept of angular positions of the
illumination source as well as the detector, and rotating the sample at also
discrete steps, is possible to get information about the surface reflectance
inside of a spherical section accesible by the equipment (figure 1.1a).

Another proposal reported by Ward[25], uses a hemisphere half-silvered
and a CCD camera with a fish-eye lens (figure 1.1b). In this setup, the
reflected field is collected by the hemisphere and reflected back to the CCD
detector. Similarly to the Murray-Coleman’ system, different incident angles

1
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a)                                                                           b)

Figure 1.1: Opto-mechanical setup to measure reflectance light distribution from
a sample. a) Murray-Coleman proposal[16]. b) Ward’s idea[25].
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                            a)                                                                                      b)
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Figure 1.2: Scheme of the goniometric experiment to get reflectance curves at
CIO’s graduate laboratory. a) opto-mechanical setup. b) typical experimental
curve obtained.

are swept automatically, controlling the zenithal height and the azimuthal
orientation of the illumination source, achieving an image composition of
the reflected field from each independent discrete measurements.

At CIO’s graduate laboratory, an equipment with similary characteris-
tics, but manually operated, is used to check the Fresnel coefficient theory
(figure 1.2). There, a laser system aligned with a linear polarizer allow the
reproduction of the reflectance values vs the incidence angle. With this
method, if a light beam with a horizontal polarization is used as illumina-
tion source, the curve should reach an absolute minimum whose abscissa
is known as the Brewsters angle. However, unlike to Murray-Coleman and
Ward equipments, the optomechanical setup of the CIO’s device, allow only
the surface’s reflectance studies at only one plane of incidence.

The common framework associated to the shown devices, as well as an-
other similar equipments (like the used at NIST[17], for example), is that
they can be classificated as goniometric type. Those proposal are char-
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acterized because its reflectance measurements are done sequentially (it is
point by point) and because its operation principle implies the use of mobile
pieces. The approach of the present work is about how to avoid the mobile
pieces and how to get the same reflectance information but using just one
step. One of the main question that the author and the advisors are looking
for, is to get information, at least in qualitative form, about the isotropy
of a sample. Looking for the answer, the goniometer system idea was re-
placed by a microscope objetive lens, and the powermeter detector, used to
measure the intensity at each measurement point, has been replaced by a
camera obtaining hence an experimental image as result. The main idea,
if polar coordinates are used to identify each pixel, is that the radial and
angular position asociated to any image’s point, will be informing about the
incidence angle and the plane of incidence respectively, whereas the pixel
intensity could be interpreted as the point’s reflectance.

On the other hand, Fresnel reflectance curves obtained for instance by
means of a CIO’s goniometer system, are usually measured exciting the
sample with linearly polarized illumination fields oriented with the plane of
incidence or perpendicular to it. However, it is interesting to explore the
behavior of the reflectance curves when the sample is excited with another
kind of polarization, like circular (right hand or left hand) polarization states
or radial and azimuthal polarization modes. Those last kind of polarization,
have been playing an important role in the applications with polarized light
like the engineering of optical fields[24], through which there are some ideas
to generate optical needles experimentally. Our group has been working
recently in this area, particularly has been reported how to generate this
kind of polarization with passive elements like scattering on a thin metallic
cylinder[21]. So, the present work is contributing into two ways: proposing
a new experimental setup to find reflectance distribution associated to a
sample, and a new application of the unconventional polarization modes.

The text is organized in five Chapters of which this introduction is the
first. Later, in the Chapter 2, a brief background about the polarized light,
the polarization states and a description of the polarization modes are done,
to document the mathematical formalism employed in the Chapter 3, where
the computational codes and the experimental arrays are shown. Chapters
4 and 5 are dedicated to show and discuss the results and the conclusions. A
previous work, in which the mechanical design of optical pieces to make the
optical system with laboratory pieces is documented, as well as the complete
computational codes used and the documentation of optical problems and
solutions that were presented along the experiment implementation.
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Chapter 2

Fundamentals: Polarization
and Ellipsometry

2.1 Conventional polarization

Conventional polarization states are based in the direction of the electric
field oscillation and its spatial homogeneous distribution. Because the most
outstanding part of an electromagnetic wave is the electrical component,
electric field is usually enough to describe the polarization state of light.
Suppose that the electric field associated to a plane wave, can be seen as a
linear combination of the base elements,

V = {E1,E2} (2.1)

with
E1 = E1e

i((k·r)−ωt+δ1)ε̂1 (2.2)

E2 = E2e
i((k·r)−ωt+δ2)ε̂2 (2.3)

Particularly, it has been assumed that fields are propagating in the same
direction. δ1 and δ2 are the initial field phases, ω the field frequency, and ê1,2
are the unitary vectors along the x, y directions, respectively. An element
of the V’s generated space is,

E =
(
E1e

iδ1 ε̂1 + E2e
iδ2 ε̂2

)
ei(k·r−ωt) (2.4)

Introducing the phase difference factor δ ≡ δ2 − δ1, equation (2.4) can be
restated as,

E =
(
E1ε̂1 + E2e

iδ ε̂2

)
ei(k·r−ωt+δ1) (2.5)

The last expression contains the main elements associated with a conven-
tional polarization state: field amplitudes {E1, E2} and phase difference
between fields {δ}; usually, δ1 is considered as a phase constant. Setting
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          P : E1 ≠ 0, E2 = 0                                   S : E1 = 0, E2 ≠ 0                                    +45° : E1 = E2 ≠ 0, d=0

          -45° : E1 = E2 ≠ 0, d= p                       R : E1 = E2 ≠ 0, d= p/2                             L : E1 = E2 ≠ 0, d= -p/2

Figure 2.1: Drawing path of electric field (Eq. 2.5) when time evolution is allowed.
To learn how to make its own drawings, visit author personal simulations web
page[20].

the parameters {E1, E2, δ} and allowing the time evolution, a conventional
polarization state is drew by the electric field. Six of that states and its
corresponding parameters and shown in figure 2.1.

Some interesting aspects about the parameters {E1, E2, δ} are:

• The kind of conventional polarization {linear, circular, elliptical} is
defined mainly by δ parameter. It can be controlled experimentally
with optical devices named retarder waveplates[9].

• Ratio between E1 and E2 (and δ = 0) also defines the kind of polar-
ization, for example:

∗ E1/E2 ≈ 0→ linear P polarization.

∗ E1/E2 ≈ ∞→ linear S polarization.

∗ E1/E2 = 1→ linear +45◦ polarization.

∗ E1/E2 = −1→ linear -45◦ polarization.

However, due that the electric field is not a physical observable, intensity
calculus, which are observable parameters, are preferred. In that orden, the
expression (2.5) is transformed to,

I = E ·E∗ = |E1|2 + |E2|2 + E1E
∗
2e
−iδ ε̂1 · ε̂2 + E2E

∗
1e
iδ ε̂1 · ε̂2 (2.6)

Considering only real field amplitudes and not necessarily orthogonal fields,
then

I = E ·E∗ = |E1|2 + |E2|2 + 2E1E2 cos(Θ) cos(δ) (2.7)
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Table 2.1: Polarization states (normalized) and its corresponding field parameters.
T denotes the transposed operation.

|Ex| |Ey| δ S Pol. Type

1 0 0
(
1 1 0 0

)T
P

0 1 0
(
1 −1 0 0

)T
S

1 1 0
(
1 0 1 0

)T
+45◦

1 1 -π
(
1 0 −1 0

)T
-45◦

1 1 π/2
(
1 0 0 1

)T
R

1 1 -π/2
(
1 0 0 −1

)T
L

where Θ is the angle between ε̂1 and ε̂2 unitary vectors.

2.1.1 Stokes vector and Poincarè sphere

Usually, any conventional polarization state asociated to a monochromatic
plane wave, is represented by means of a given Stokes vector which is defined
as [6],

S =


S0

S1

S2

S3

 =


|Ex|2 + |Ey|2
|Ex|2 − |Ey|2

2|Ex||Ey| cos(δ)
2|Ex||Ey| sin(δ)

 (2.8)

Here, field directions have been set as the cannonical vectors {êx, êy}. The
meaning of each matrix element is,

• S0: total intensity associated to the polarization state.

• S1: intensity associated to the linear P (> 0) or S (< 0) polarization
state.

• S2: intensity associated to the linear +45◦ (> 0) or -45◦ (< 0) polar-
ization state.

• S3: intensity associated to the circular R (> 0) or L(< 0) polarization
state.

The six polarization states shown in figure 2.1 are described in table 2.1.
Normalized matrix elements {S1, S2, S3} are plotted as coordinate points on
the Poincarè sphere, where the normalized intensity represents the unitary
radius. That plot allows to show graphically the polarization state:

• Points on equator represents linear polarization states.

• Points on sphere poles defines circular polarization states.
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Linear P

Linear S

Linear +45°

Circular L

Circular RLinear -45°

Figure 2.2: Poincarè sphere and representation of the main polarization states.

• Points out of equator and sphere poles define elliptical polarization
states.

Poincaré sphere and polarization states described in table 2.1, are shown in
figure 2.2. Two special polarization states not represented in figure 2.2 are:

Sun =
(
1 0 0 0

)T
and Snull =

(
0 0 0 0

)T
. They are named unpo-

larized and null polarization states, respectively. It means that ilumination
field represented by them, does not has a defined polarization state (in the
first case) and there is not an illumination field present (in the other one)[6].

2.1.2 Polarization effects in materials:
Mueller matrices

In nature, there are materials that change the polarization states linearly.
Analitically these materials act as operators on the polarization state and
are represented by the called Mueller Matrices, which have a 4×4 dimension.
The interaction of an illumination field with a material that transforms its
polarization state, can be expressed mathematically as,

So = M̂Si (2.9)

Where So and Si represent the output and input polarization state respec-
tively, and M̂ is the Mueller matrix asociated with the material’s linear ef-
fect. Mueller matrices associated to some special optical devices are shown
in table 2.2.

2.1.3 Making polarization sources and analyzers

With the Mueller matrices described in table 2.2, it is possible (analytical
and experimentally) to develop equipment enabled to make and to analyze
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Table 2.2: Ideal Mueller matrices asociated to special optical devices[6, 9]. θ
indicates the angle of device’s principal axis respect to a horizontal line, and δ is
the phase difference or retarder factor between waves traveling along the slow and
fast axis.

Device Mueller matrix

Linear
horizontal
polarizer

1
2


1 cos(2θ) sin(2θ) 0

cos(2θ) cos2(2θ) sin(2θ) cos(2θ) 0
sin(2θ) sin(2θ) cos(2θ) sin2(2θ) 0

0 0 0 0


General
retarder


1 0 0 0

0 cos2(2θ) + cos(δ) sin2(2θ) 1
2

(
1 − cos(δ)

)
sin(4θ) − sin(δ) sin(2θ)

0 1
2

(
1 − cos(δ)

)
sin(4θ) sin2(2θ) + cos(δ) cos2(2θ) sin(δ) cos(2θ)

0 sin(δ) sin(2θ) − sin(δ) cos(2θ) cos(δ)


Half wave-
plate


1 0 0 0
0 cos(4θ) sin(4θ) 0
0 sin(4θ) − cos(4θ) 0
0 0 0 −1


Quarter
waveplate


1 0 0 0
0 cos2(2θ) sin(2θ) cos(2θ) − sin(2θ)
0 sin(2θ) cos(2θ) sin2(2θ) cos(2θ)
0 sin(2θ) − cos(2θ) 0



polarization states. That can be achieved by smart setups that involve the
use of linear polarizers and waveplates or phase retarders and hence opera-
tions with Mueller matrices. The use of a polarimetric setup on axis, implies
Mueller matrix multiplication, whereas a parallel polarimetric setup leads
to a Mueller matrix sum.
Particularly using just a non polarized light source and a linear polarizer,
makes posible to generate any linear polarization state setting the polarizer
to an specific azimuthal angle (figure 2.3a and 2.3d). Otherwise, elliptical,
circular right-hand, circular left-hand, and linear P polarization states, can
be generated adding a quarter waveplate (QWP) in series and after to a
linear polarizer (figure 2.3b and 2.3e). On the other hand, if a linear polar-
ized light source (for example a typical illumination field originated from a
linear polarized laser) should be rotated, the use of a single half waveplate
is enough to perform that transformation (figure 2.3c and 2.3f).

The most general setup to generate any conventional polarization state,
is by means of a linear polarizer, a half waveplate and a quarter waveplate
in on axis setup, which is called a Polarization State Generator (PSG)[8]. A
PSG is shown in figure 2.4, the arrangement consist of the following optical
devices, properly mounted into azimuthally rotating mechanical mounts:
linear polarizer + half waveplate+quarter waveplate. Linear polarizer +
half waveplate, define a linear polarized state rotated at an angle defined
by the orientation of the half waveplate’s fast axis. The function of the
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             d)                                                                        e)                                                                       f)

Sun Sun
LP LP QWP

SP
HWP

             a)                                                                        b)                                                                      c)

Figure 2.3: Generation of conventional polarization states. Schematic diagrams
for: a) linear polarization using non polarized light source; the device represented
is a linear polarizer, b) elliptical polarization using non polarized light source: the
black device is a linear polarizer whereas the blue element is a quarter waveplate,
c) linear polarization using a linearly polarized light source; the device represented
is a half waveplate. Curves described on the Poincarè sphere when is turned on: d)
the linear polarizer of the array a), e) quarter waveplate of the array b), and f) the
half waveplate of the array c).

quarter waveplate is to transform linear to elliptical polarization state. Then
chosing an apropiated angle’s set for half waveplate and quarter waveplate,
it is possible transform, for instance unpolarized light to any conventional
polarization state (figure 2.3). It can be seen on the Poincarè sphere, like
the “eight” figure, which is drew by rotation of the quarter waveplate and
its position (azimuthal angle on equator) is controlled by the half waveplate.

On the other hand, the most general setup to analyze any conventional
polarization state, is using a quarter waveplate, a half waveplate and a linear
polarizer (in that order). That array is named Polarization State Analyzer
(PSA) and sample light travels from quarter waveplate to linear polarizer
(figure 2.5). With a PSA is possible the determination of each element
of a Mueller matrix by means of total light intensity given by the term
So0 (equations 2.8 and 2.9). Playing with specific combinations of incident
polarization state and polarization state analyzers, their elements can be
calculated via linear equations system[9].
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Sun
LP

LP
HWP

QWP

             a)                                                                             b)

Figure 2.4: Polarization state generator (PSG). a) Experimental setup. b) Path
on Poincaré sphere when optical devices (marked by arrows on setup) are rotated.

Ssample
LP

QWP
HWPLP

Figure 2.5: Setup for a polarizer state analyzer (PSA).

2.2 Polarization at reflected and transmitted illu-
mination fields

Another way to generate polarized light (probably the easier according to
the equipment required) is by means of reflection phenomena. According to
Fresnel theory, the interaction of an illumination field with a surface sep-
arating two optical media, generates elliptically polarized light both under
reflection and refraction field[10]. The polarization state made in this form,
is highly dependent on the physical properties of the media involved and the
incidence angle. In the case of dielectrics, where refractive index is a real
quantity, it is described by the following set of exact equations,

ΓP =
(tan(θi − θt)

tan(θi + θt)

)2
(2.10)

ΓS =
(sin(θi − θt)

sin(θi + θt)

)2
(2.11)

TP =
sin(2θi) sin(2θt)

sin2(θi + θt) cos2(θi − θt)
(2.12)

TS =
sin(2θi) sin(2θt)

sin2(θi + θt)
(2.13)
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where Γ and T symbols represents reflectance and transmittance quantities,
P and S sub-index the kind of polarization asociated to each term, θi the
incidence angle and θt the refracted angle. Due to refracted angle follows
the Snell’s law (θt = sin−1(nt/ni sin(θi))), these expressions have a depen-
dency with the refractive index, so the interaction of incident light with
characteristic optical medium properties, make slight1 changes detectable in
the mathematical plot used to describe this situation. Figure 2.6 shows the
behavior of equations (2.10) to (2.13) to some specific refractive index. It
should be noted that with a real refractive index, light is not extinguished
whereas travels into the material and a conservative system behavior is gott-
ten. As a result of the energy conservation principle, each reflectance curve
is complementary with its correspondent transmittance plot, which involves
that the amount of energy missing from a curve to reach the unity can be
found in the other curve of the same polarization nature. On the other hand,
the incidence angle where ΓP plot goes to zero (see zoom insert), is named
Brewster’s angle.

In the case of metals, a complex refractive index (ñ = n + iκ) and
therefore an extinction coefficient (κ) should not be neglected. In that case,
reflectance quantities are described by the following set of equations[9, 6],

ΓP ≈

(
n− 1/ cos(θi)

)2
+
(
nκ
)2

(
n+ 1/ cos(θi)

)2
+
(
nκ
)2 (2.14)

ΓS ≈

(
n− cos(θi)

)2
+
(
nκ
)2

(
n+ cos(θi)

)2
+
(
nκ
)2 (2.15)

Here an approximation symbol has been used due to the condition ñ2 �
sin2(θi) is employed in its derivation[9]. Figure 2.7 shows the behavior of
equations (2.14) and (2.15) to some specific complex refractive indexes. Sim-
ilarly, in this case reflectance curve reaches a minimum value, but in contrast
with the dielectric case, it does not achieve to be zero. That incidence angle
is called pseudo-Brewster’s angle.

2.3 Quick revision about ellipsometry

The analysis of polarization states generated via reflection of an illumina-
tion field at a surface is known as ellipsometry [13]. By definition, equations
(2.10) to (2.13) describe how the intensity of an illumination field changes

1slight word is used in this context due to Γ and T plots at different refractive index,
differ only in 5% or less. Plots at Figure 2.6, has intentional zoom to do more explicit
such effects.
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Figure 2.6: Reflectance (Γ) and transmitance (T ) curves for parallel (sub-index P )
and perpendicular (sub-index S) polarization states at different refractive index.
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under reflection and transmission at each P and S polarization states; the
ΓP term for example, that is the ratio between P polarized reflected and
incident intensities. However, as shown by equation (2.8), a polarization
state instead of its intensity, can be defined in terms of amplitudes and
phase diference between two orthogonal electric field components, and the
equation set (2.10) to (2.13) does not provide explicitly information about
that. In the reflection case, it can be interesting to know not only what is
going on with reflectance at P and S polarization state separately, but how
a reflectance (ΓP for example) affects the other (ΓS) and how is the phase
relationship at different linear polarization states. Ellipsometry deals with
it.

To illustrate how ellipsometry works, let the incident field amplitudes be
represented as,

EP = E(0P )e
iαp (2.16)

ES = E(0S)e
iαs (2.17)

and the reflected fields,

RP = R(0P )e
iβp (2.18)

RS = R(0S)e
iβs (2.19)

Here, α and β are symbols used to indicate the phase of each field, which
are not equal in the most general case. That yields to a not usual form of
Fresnel coefficients, in which reflection terms are given by,

ρm ≡
Rm
Em

=
R(0m)

E(0m)
ei(βm−αm) m = {P, S} (2.20)

A ratio between P and S reflection terms allows to obtain a special expres-
sion that has, in a single equation, amplitudes and phase factors. It is known
as relative amplitude attenuation(ρ) and is given by[1],

ρ ≡ ρP
ρS

=
R(0P )E(0S)

R(0S)E(0P )
ei(β−α) (2.21)

where β ≡ βP − βS and α ≡ αP − αS .
Usually due the P and S polarization states are referred to orthogonal elec-
tric fields, quotient of amplitudes preceeding Euler symbol can be inter-
preted as rate of change or a tangent of an angle denoted ψ; furthermore
which value given by β−α means the net phase difference between incident
and reflected fields, usually that difference is replaced by ∆. Then, equation
(2.21) is rewritten as,

ρ = tan(ψ)ei∆ (2.22)
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Last expression is known as the fundamental equation of ellipsometry [9].
The main goal in this area is at the experimental side: to measure ψ and
∆ parameters, and at the theoretical side: to find a functional relationship
of these parameters with the optical properties (mainly refractive index n,
absortion coefficient k and thin film thickness d) of the sample where the
incident illumination field is reflected.

2.3.1 Multiple angle-of-incidence ellipsometry

Curves shown in figures 2.6 and 2.7 can be obtained point to point analyzing
the intensity of a reflected light beam with a linear polarizer, and measuring
its value with a powermeter to different angles at P and S polarization direc-
tions. However, obtaining experimental reflectance curves via this method
can be a long procedure, time delays and measurements accuracy could not
be ensured, mainly because each measured point is registered at different
times and stability of optical parameters and illumination source in some
systems can be hard to guarantee. To solve that, instead of a single ilumina-
tion beam, excitation with a multiple and continuous angle-of-incidence (or
MAI) can be performed and a measurement’s image is obtained as result.
To achieve the multiple angle of incidence, usually a focused beam is guided
to the sample under study so that in a single step, the sample is irradiated
at different angles. Choosing a particular beam convergence (or numerical
aperture, NA), an angle range between θ = 0 and θ = sin−1(NA) is swept.
To focus the illumination field, a high numerical aperture objetive lens is
typically employed. High numerical aperture is a key characteristic to ensure
that Brewster’s angle (minimum value in ΓP plot at figure 2.6) is cover-up.
To collect the image of the reflected field, experimental setups similar to
the sketch of the figure 2.8a are usually employed[27, 22]. A non-polarizing
beam splitter is used here to split the incident from the reflected beams of
light. In the special case when only linear P and homogeneous polarization
is used to irradiate (figure 2.8b), different kind of polarization orientation
are experimented by the sample; it is an effect of the focussing field, in which
the direction of the incidence plane varies with the azimuthal angle at the
objective lens, while linear polarization direction of irradiation field stays
constant. It implies that not always the irradiation field is contained into
the local plane of incidence and so, reflectance and transmittance phenomena
should be exposed. Where the sample experiences linear P polarization illu-
mination field at Brewster’s angle, as is predicted by the Fresnel coefficients
(equations (2.10) and (2.11)), the reflected field should be extinguished and
black zones at reflected image will appear (figure 2.8c).
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Figure 2.8: a) Sketch of a typical microellipsometry setup; a non-polarizing beam
splitter is employed to splits the irradiation field of the reflected. b) Behavior
of P polarized illumination field when is focused into a objective lens; due that
the direction of the incidence plane changes with the azimuthal angle and the
linear polarization direction stays constant, to some azimuthal angles the incident
polarizacion field is in the incidence plane (P polarization state) and to others do
not. c) Theoretical image that should be obtained as reflected field. Black zones
corresponds to angles where linear P polarized light is extinguished because the
linearly P-polarized wave incides at the Brewster angle asociated to the surface
under study.

2.3.2 Measurement at Brewster’s angle

Ellipsometry allows to get a quick measurement of Brewster’s angle of a
sample, identifying the position of extinguished light zones. According to
the idea presented in figure 2.8, each radii-vector traced from the center until
any image’s point, is associated to an angle of incident and a combination
of P and S reflectance values. To illustrate it, in figure 2.9a the effect
of focusing the irradiation field until the sample is shown; the objective
lens employed is represented here through θmax (parameter that depends of
numerical aperture NA). Knowing the pupil radii R of the reflected (and
collimated) field, focal distance can be calculated using trigonometry,

f =
R

tan(θmax)
=

R

tan
(

sin−1(NAna
)
) (2.23)

Here, na is the refractive index of the media between objective lens and the
sample.
In the same way, the relation between an arbitrary distance of image’s center
(the radii r, r < R) and the incidence angle (θ) can be calculated as,

θ(r) = tan−1
( r
f

)
(2.24)

so, in an image like figure 2.8c, radii measurements indicates -through the
last equation- the incidence angle. To plot the entire image, just the vectorial
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Figure 2.9: a) Side view of a collimated illumination field focused into a sample
material; ña and ñs denote environmental and sample complex refractive indices
respectively. b) Transversal cut of reflected field; each image’s point has associated
P and S reflectance values that depend of its azimuthal angle.

sum of ΓP and ΓS is developed to each position (figure 2.9b). Using image
processing, Brewster’s angle can be calculated identifing the position of light
extinguished zones.

2.3.3 Measurement of complex refractive index

To measure the complex refractive index from the image obtained as a re-
flected field (figure 2.8c), there are at least two ways:

1. By means of Brewster’s angle and the refractive index relation: tan(θB) =
ns/na; measuring θB and knowing na, ns is inmediately found.

2. By means of ellipsometric parameters ψ and ∆.

The first method implies a quick and easy calculation of the Brewster’s angle
measurement, however as is shown, just the real part of the refractive index
(ñ = n+ ik) can be calculated.
The second option has been marked as more accurate[13], but it involves the
use of polarimetric devices to analyze the polarization state of the reflected
field. To perform it, there are several methods[13, 1], one of them named
principal angle method is as follows:
Let a linear +45◦ polarized light be illuminating, in the most general case,
a metallic surface at an angle θ (figure 2.10). As an effect of the reflection,
there are a phase factor between the P and S components of the reflected
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Figure 2.10: General setup and main idea of the principal angle of incidence
method. Finding θ̄i and ψ̄ angles, complex refractive indexes can be measured.

field that have a dependence with the incidence angle2. Particularly, exists
an angle of incidence that will be denoted as θ̄i, where the phase differ-
ence is π/2 and then the polarization state generated is of the kind circular
right hand. That angle is named Principal Angle of Incidence and the po-
larization state generated is denoted as standard [9]. The reflected field is
passed through a quarter wave plate and a linear polarization state is ob-
tained, however its polarization angle is unknown. To get it, reflected field
is passed through a linear polarizer and rotated until the illumination field is
extiguished. The angle where that condition is achieved is named Principal
Azimuthal Angle and will be denoted as ψ̄.
Measuring θ̄i and ψ̄ the complex refractive parameters can be determined
by means of the following equations[6]:

n = − sin(θ̄i) tan(θ̄i) cos(2ψ̄) (2.25)

κ = tan(2ψ̄) (2.26)

2.4 Non conventional polarization

In contrast with conventional polarization where the electric field follows
a spatially homogeneous distribution, the polarization state is (ideally) the
same at any point of the illumination field, non conventional polarization
is described via distributions of spatially non homogeneous electric field
and the meaning of polarization state migrates to polarization modes. To
show how mathematically it works, the electric field component associated

2it is the main goal of ellipsometry. A brief explanation to this phenomena, is that on
the one hand, one part of the incident linear +45◦ polarized light (the normal component
of the P polarized illumination field), tries to excite charges displacement at the direction
where the symmetry is broken, and on the other hand if exist material anisotropy charges,
displacement are not necessarily equal along each direction.
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Figure 2.11: Representation of radial (a) and azimuthal (b) polarization modes.
um,n(x, y, z) controls the field amplitude distribution. The modes presented here
(and other modes) can be obtained by assigning a polarization direction (P or S )
to each distribution and adding them together.

to an illumination field, can be shown as composed by an amplitude’s field
distribution u(x, y, z), a propagator term, and a field direction, it is,

E = u(x, y, z)ei(wt−k·r)êj (2.27)

Depending of the reference coordiante system employed, the amplitude field
distribution can be an expression that involves, for rectangular coordinates,
the Hermite-Gauss polynomials (Hi)[29],

um,n(x, y, z) = AHm

(√
2

x

w(z)

)
Hn

(√
2

y

w(z)

) w0

w(z)
e−iφmn(z)e

− k
2q(z)

(x2+y2)

(2.28)
and for cylindrical coordinates the Laguerre-Gauss polynomials (equation
2.29), where (Llp) or the Bessel of the first kind polynomial (J0) when rota-
tional symmetry is considered (equation 2.30)[29],

u(r, φ, z)l,p = A
(√

2
r

ω

)l
Llp

(
2
r2

ω2

) w0

w(z)
e−iϕ(z)lp(z)e

− k
2q(z)

r2
(2.29)

u(r, z) = A
w0

w(z)
e−iϕ(z)e

− k
2q(z)

r2
J0

( βr

1 + iz/z0

)
(2.30)

In these equations, A is a field amplitude constant, ω(z) is the beam size,
ω0 is the beam size at beam waist, φmn(z) = (m + n + 1) tan−1(z/z0) (for
rectangular coordinates) and ϕ(z) = (2p+ l+ 1) tan−1(z/z0) (for cilindrical
coordinates) are the Gouy phase shift, k the wavevector, q(z) is the complex
beam parameter, β is a scaling parameter, J0 is the 0th order Bessel function
of the first kind and i =

√
−1.

Playing with the order of the polynomials ({m,n} for rectangular coordi-
nates or {l, p} for cylindrical coordinates), a lot of amplitude’s field dis-
tribution can be obtained[28], however just the most lower modes of the
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Hermite-Gauss polynomials are particularly interesting in this work, that is,
the modes {m,n} = {(0, 1), (1, 0)}.
It can be shown that superposing the Hermite-Gauss amplitude’s field dis-
tribution u1,0(x, y, z) and u0,1(x, y, z), two special orthogonally polarized
modes called radial polarization mode (equation 2.31 and figure 2.11a) and
azimuthal polarization mode 2.32 and figure 2.11b) are obtained[29]. The
graphical illustration of these modes are shown in the figure 2.11.

Er = u1,0êx + u0,1êy (2.31)

Eϕ = u0,1êx + u1,0êy (2.32)



Chapter 3

Experiment: getting
information of optical
properties at micrometric
areas

3.1 Experimental approach

To get optical properties of materials like complex refractive index and its
characteristic Brewster’s angle, a multiple angle of incidence microellipsome-
ter was set. The schematic diagram of the optical assembly is shown on figure
3.1. The array is similar to a confocal microscope, in the sense that employs
an objective lens to focus a plane of interest and a beam splitter to redirect
reflected light to a detector (a camera), however a pin hole (key piece for
confocal microscopes) is not used here[26]. The foundation of this setup,
is to get in just one step the reflected light observed at different angles of
incidence from an object under study and hence to obtain information about
its optical properties. To analyze how an illumination field travels in this
array, consider that a collimated and polarized light beam reaches the non-
polarizing beam splitter (NPBS). There, the illumination field is partially
reflected to an objective lens; the transmitted portion is spread to a region
where that light is not used. With an appropiate linear displacement, the
beam reflected by the NPBS is focused into the sample under study, and
as an effect of the reflection, the illumination field is returned by the same
path but in the opposed direction of the beam splitter; this effect is shown
with more detail in figure 3.1b. Then the NPBS reflects one portion of the
returned field in direction to the illumination source, and the other one is
transmitted to the camera detector. Between the NPBS and the objective

21
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Figure 3.1: a) Schematic diagram for the experimental setup: SF spatial filter, L1

collimating lens, PSG polarization state generator, SWP s-waveplate, NPBS non
polarizing beam splitter, L2 image forming lens. b) Effect of the objective lens
when a collimated light is focused into a sample material; the returned illumination
field travels in the same path of the incident beam but in opposite direcction.

lens as well as the NPBS and the illumination source, probably1 an interfer-
ence effect (of the type standing waves) occurrs, but due that it is local, that
effect is neglected. To ensure collimation, a Petzval objective formed by the
lenses L1 and L2 is employed. A lens L3 is furthermore employed to form an
image of the returned field into the camera sensor. A polarization state gen-
erator (PSG) formed by the set of a linear polarizer (LP), a half waveplate
(HWP) and a quarter waveplate (QWP) is employed to excite the sample
with different kind of conventional polarization states. In the same way a
polarization state analyzer (PSA) formed by the set of a QWP, a HWP and
a LP is used to analyze the polarization of the returned illumination field.
A special device called a S-waveplate allows to transform linear to radial
or azimuthal polarization[19] and hence enable the experimental setup to
evaluate the behavior of the sample when is excited with non conventional
polarization. To ensure collimation, a collimation test was done using the
shearing interferometer Thorlabs SI254[23]. The test was done before cap-
turing experimental images. The shearing interferometer was located in the
camera beam arm.

1It is depending of the light polarization. To obtain interference is needed that waves
have the same polarization state.
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3.2 Sample excitation

The illumination at multiple angles of incidence is achieved by means of an
objective lens, which focuses a light field into an interest region. As was
described at 2.3.1, using a high numerical aperture objective lens, could
ensure that the Brewster’s angle of the sample is cover-up and hence dark
zones appear in the image registered by the detector. The role of the PSG in
the experimental array, is allow to set diferent kind of polarization states as
illumination source. Experimentally it is reached fitting the three PSG’s de-
vices (LP, HWP, and QWP) at specific orientations. As was shown at figure
2.8, exciting with linearly polarized light, appear symmetrical dark zones
at specific positions where the Γ2

P coefficients gets the minimum value. On
the other hand, if linear polarization is rotated, the Γ2

P coefficient achieves
the minimum value at other position and therefore, the observed effect is
that dark zones are rotated too. Finally, as circular polarization is just a
linear polarization superposition that changes its orientation with the time,
it should be expected that instead of two symmetrical dark zones, a smooth
dark ring appears arround the center of the image. This ring is expected as
smooth darkness and not as strongest, due to for each azimuthal angle, the
darkness appear in just one position whereas for other azimuthal angles, the
same position will be illuminated.

3.2.1 Polarization mode converter

To excite the sample with unconventional polarization modes, a linear to
radial/azimuthal polarization converter (S-waveplate) has been employed.
This device has a femtosecond laser machined nanostructure that vary spa-
tially the phase to produce radial and azimuthal distributions of electric field
as well as polarization vortex[4]. Due that the effective working area of the
S-waveplate is 6 mm[19], the beam overall setup’s path has been defined to
be close to this diameter. The manual given by the manufacturer of the S
Waveplate indicates that to produce radial polarization, the S-waveplate’s
alignment mark should be oriented paralell to an incident linear polarization
and for azimuthal polarization the mark should be oriented perpendicular.
However, an experimental evaluation of that condition revealed that it is
necessary to get an angle of 45◦ between the alignment mark and the inci-
dent linear polarization to obtain the right mode.

3.2.2 Samples under study

To choose appropiate samples, two main criteria have been applied:

• Sample’s Brewster’s angle should be less than the angle covered by
the objective lens. It can be calculated via numerical aperture (NA):
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Figure 3.2: Reflectivity curves for: a) some extinction coefficient (κ) values keeping
the real part of the complex refractive index fixed. b) some refractive index (n)
values keeping the imaginary part of the complex refractive index fixed

θmax = sin−1(NAna
), where na is the refractive index of the medium

between the objective lens and the sample.

• For non dielectric samples, the contrast between reflected intensity
at angles far from the pseudo-Brewster’s angle and the intensity at
pseudo-Brewster’s angle was stronger, to ensure that it was solved by
the camera sensor. This corresponds to materials with the complex
part (the extintion coefficient) bigger as well as the real part (the
refractive index)2.

Dielectric samples could be the most easiest to evaluate due that in di-
electrics at the Brewster’s angle the intensity reaches zero values. However
for non dielectric samples at that angle, the intensity reaches just a mini-
mum (but not zero) value and for some materials (like gold for example) the
contrast between reflectivity near and far of the Brewster’s angle is poor.
This analysis is shown in figure 3.2 where the real and imaginary part of
the complex refractive index is adjusted to simulate the behavior of the
materials with these parameters3.

According to the criteria discussed before and the list of optical proper-
ties of materials shown in the table 3.1, samples like NaF , MgO, CaF2 or
Al2O3 results are adequated if an objective lens with a numerical aperture
of 0.9 is used. The consolidated material’s list of the table 3.1 has been se-
lected due that they are not exotic materials and furthermore because they
have a complex refractive index reported at a wavelength near to 532 nm,
the central wavelength of the laser employed in this work.

2It would be a material with an exotic dispersion curve, where taking the Brewster’s
angle as reference, the reflectivity is high before and after that angle but small closer to
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Table 3.1: Complex refractive index values and its characteristic Brewster’s angle.
n and κ have been taken from [18]. Brewster’s angle (θB) has been calculated by
means of tan−1(n).

Material’s name Chem. Formula n κ λ(nm) θB
Sodium Flouride NaF 1.32684 530.0 53.0
Magnesium oxide MgO 1.74390 6.55 514.5 60.2
Magnesium oxide MgO 1.74077 546.1 60.1
Calcium fluoride CaF2 1.43575 520.0 55.1
Calcium fluoride CaF2 1.43512 540.0 55.1
Aluminium oxide Al2O3 1.77300 516.7 60.6
Aluminium oxide Al2O3 1.77100 539.1 60.5
Hexagonal cobalt Co 2.05000 3.82 548.6 64.0

Berylium Be 3.30000 3.18 516.6 73.1
Berylium Be 3.39000 3.17 563.5 73.6
Tantalum Ta 2.68000 1.92 516.6 69.5
Tantalum Ta 2.56000 1.86 563.5 68.7
Chromium Cr 2.98000 4.45 532.1 71.4
Potassium K 0.04600 1.28 506.1 2.6
Potassium K 0.04900 1.43 546.2 2.8

Sodium Na 0.06300 2.07 506.1 3.6
Sodium Na 0.05900 2.23 546.2 3.4

3.3 Image detection

To record an image of the returned illumination field, a CMOS camera
has been employed. To ensure that all of the information present at the
illumination field is impinging at the camera sensor, a convergent lens has
been employed too. To perform the image’s polarization analysis, a PSA can
be used. Essentially, recording the P -reflectance (ΓP ) and the S-reflectance
(ΓS), an image of the ρ parameter (equation 2.21) can be obtained, and
hence the refractive index map of the sample’s illuminated area. According
to the objective lens manufacturer[11], the spot diameter at focal distance
is given by following equation:

φf = 1.22
λ

NA
(3.1)

With NA = 0.9 and λ = 532 nm, the spot diameter is φf ≈ 721 nm.

it.
3This simulation can be accessed at[20]
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Figure 3.3: a) Schematic diagram of experimental setup finally implemented. b)
Setup at GIPyS laboratory. SF: spatial filter, L1 and L2: convergent lenses, PBS:
polarized beam-splitter, HWP: half waveplate, QWP: quarter waveplate, SWP:
s-waveplate, NPBS: non polarizing beam-splitter, OL: objective lens.

3.4 Final experimental implementation

At laboratory, the multiple angle-of-incidence microellipsometer was imple-
mented as is shown in the figure 3.3. To optimize the use of laboratory
equipment, a non polarized laser source was splitted in two polarized beams.
To achieve that, the beam is spatially filtered and a polarized beam splitter
(PBS) was employed, being the vertical (or type S ) polarization assigned
to the array here discussed. Once the beam is polarized, the first device of
the PSG (the linear polarizer) was removed and then the PSG is composed
just by the linear retarders (HWP and QWP) decreasing the experimental
degree of freedom of the light source from three until two.
To facilitate alignment and allowing the exploration of several sample’s ar-

eas, the sample was ensambled on a x, y, z micrometric translational stage.
That element is a key piece to ensure that the first surface of the sample is
focused by the objetive lens (OL). When focusing is perfomed and if the in-
cident beam is collimated, the returned illumination field is collimated too.
Table 3.2 shows the final list of equipment employed and its main charac-
teristics.

3.5 Computational codes

To get information from the experimental image observed at laboratory and
compare it with the equivalent image expected, a set of MatLAB compu-
tational codes was wrote. The most general program is a graphical user
interface that invoque subrutines for the development of specific calculus.
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Table 3.2: List of optical devices employed at the implementation of the multiple
angle-of-incidence microellipsometer.

Item Brand Reference Description

1 Thorlabs CPS532 Laser diode module (532 nm, Div=0.5 mrad)

2 Newport 910A Compact Five-Axis Spatial Filter (40x− 10µm)

3 Thorlabs CM1-PBS251 Polarized beam splitter (420 nm - 680 nm)

4 Thorlabs AHWP05M-600 Half waveplate

5 Thorlabs AQWP05M-600 Quarter waveplate

6 Altechna any S-waveplate

7 Thorlabs CM1-BS013 Non polarized beam splitter, 50:50

8 Nikon any Objective lens (TU Plan Fluor 100x/NA=0.9)

9 Thorlabs AHWP05M-600 Half waveplate

10 Thorlabs AHWP05M-600 Quarter waveplate

11 CIO any achrom. doubl. for camera, f = +20 cm

12 CIO any collimating lens, f = +5 cm

13 Thorlabs DCC3240C CMOS camera, 1280× 1024 pixels, Sensor size

Those subrutines, were written in the MatLAB version R2009a, and are com-
piled as numerical functions. The first step to use the program, is to load
through the graphical user interface, an experimental image obtained with
the microellipsometer of multiple angle-of-incidence (figure 3.3). Then, the
image is processed digitally and based in its size, a theoretical (or synthetic)
image is calculated. The engineering below of these codes, its explanation
and how to execute them are shown in the following sections.

3.5.1 Cropping the experimental image to an effective area
(cropImage.m)

Due that the most probably experimental situation is that the image cap-
tured at laboratory is not centered at the camera sensor, and the useful
information is just a fraction of the entire file given the vision system, an im-
age cropping algorithm, named cropImage.m, was wrote. Figure 3.4 shows a
comparison between an experimental image observed at laboratory and the
cropped image delivered by the computational code. Its operation principle
is shown below.
The input parameters for this program are,

• image: the matrix associated to the experimental image captured at
laboratory. This matrix should be monocromatic (at one color, is to
say: just one matrix).

• contrast : sensibility for the border detection.

• xCroppingError: manual adjustment for horizontal cropping.
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        a)                                                              c)                                        d)

Figure 3.4: Documentation of the operation principle for cropImage.m: a) Experi-
mental image example without cropping processing. b) identification of neighboring
pixels with high contrast (above) and identification of the interest area. c) Experi-
mental image example with cropping processing.

• yCroppingError: manual adjustment for vertical cropping.

As execution result, the computational code gives a square matrix for the
image cropped, so that the interest illumination field covers most of the im-
age.

The code begins calculating the numerical derivate for the image. Due
that the experimental image matrix has numbers in the range [0, 1023]4,
neighboring pixels with a higher intensity difference, shows higher values in
its derivate5, allowing the border identification. Pixels where the derivate is
bigger than the parameter contrast are marked, and the coordinates for
those pixels are captured. It is shown in the following code lines:

1 dAdx=diff(sourceImage’); % image derivate

2 xBorder=dAdx>contrast ; % higher contrast ident.

3 [x,y]=find(xBorder); %

Due that a lot of neighboring pixels satisfy the condition set at line 2, but
all of these points are inside of the intererest area, the center of the image
can be calculated as the mean position of the points with higher contrast,

4 x bar=mean(x); % x-average position

5 y bar=mean(y); % y-average position

To determine the points where the image will be cropped, a circle with
center (x bar,y bar) is calculated. The circle’s radii is calculated by means
of the extremes position of the high contrast points.

4the experimental images were taken with a camera sensor working at 10 bit.
5In this context, the derivate operator is reduced to a simple difference between neigh-

boring pixels. Mathematically, the derivate is defined as df
dx

= lim
h→0

f(x+h)−f(x)
h

. In this

case h =1 pixel, then df
dx

= f(x+ 1) − f(x).
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6 theta=0:2*pi/100:2*pi; %

7 r=max((y bar-min(y)),x bar-min(x)); %

8 xC=r*cos(theta)+x bar+xCroppingError; %

9 yC=r*sin(theta)+y bar+yCroppingError; %
then, the image cropped at the circle’s cardinal points. The matrix croppedImage

is the element exported when the code is invoqued.

10 croppedImage=double(imcrop(sourceImage,[min(xC),...

11 min(yC),2*r,2*r]));

3.5.2 Calculation of the reflectance at multiple-angle-of-incidence
(reflectanceAtMAI.m)

To produce the image expected with the microellipsometer of multiple angle-
of-incidence for a sample with particular optical properties, a calculation
based on the Fresnel coefficients was done. To make the calculus, matri-
ces for the sample’s refractive index map and the incident electric field are
prepared previously to the application of the Fresnel coefficients. This ma-
trices are squared and have the same resolution of the experimental image
loaded. For the sample under study, a customizable refractive index value
with a tolerance range, is supplied as a scale factor of a homogeneous matrix
preloaded with a 1 at each element, namely:

ns = (n± δn)

1 · · · 1
...

. . .
...

1 · · · 1

 (3.2)

For the incident electric field, matrices for its horizontal and vertical compo-
nents are calculated. When the sample is excited with conventional polariza-
tion, the Jones parameters Ex, Ey and δ set by the user, scale a homogeneous
matrix preloaded with a 1 at each element as follows:

Eix = Ex

1 · · · 1
...

. . .
...

1 · · · 1

 eiδ, Eiy = Ey

1 · · · 1
...

. . .
...

1 · · · 1

 (3.3)

On the other hand, when the sample is excited with unconventional polar-
ization, the matrices Eix and Eiy are loaded with the Hermite-Gauss distri-
butions (equation 2.28). Those matrices are calculated through the program
rAndAV2.m. The program begins by calculating the maximum incidence an-
gle swept by the objective lens and its focal distance (equation 2.23). Then
a coordinate matrix and the distance from each point of them at the coor-
dinate origin is calculated.
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          a)                                                                                    b)

Figure 3.5: Azimuthal angle for the objective lens. a) without quadrant comple-
ment calculation. b) with quadrant complement calculation

1 rho=300; % image radii

2 thetaMax=asin(NA); %

3 f=rho/tan(thetaMax); % focal distance

4 pixelsVector=linspace(-rho,rho,2*rho); %

5 [x,y]=meshgrid(pixelsVector); % coordinate matrix

6 r=sqrt(x.∧2+y.∧2); % distance matrix

Later, the angle (ϕ) of each point of the coordinate matrix respect to the
horizontal axis is calculated via ϕ = tan−1(y/x). This calculation show a
technical problem when it is performed directly, due that the coordinates x
and y are defined in the interval −rho ≤ (x, y) ≤ rho, (rho > 0), and arc-
tangent function makes a jump from π/2 to −π/2 or viceversa when there
is a change of sign in any coordinate (x or y), which causes a discontinuos
azimuthal angle matrix for the objective lens. To solve that, the angle cal-
culation is complemented to each quadrant. Figure 3.5 show the images of
the azimuthal angle with and without the quadrant complementation, re-
spectively.

7 cuadrantI=(x>=0)&(y>=0); %

8 cuadrantII=(x<0)&(y>=0); %

9 cuadrantIII=(x<0)&(y<0); %

10 cuadrantIV=(x>=0)&(y<0); %

11 phyI=atan(y./x).*cuadrantI; %

12 phyII=(atan(y./x)+pi).*cuadrantII; %

13 phyIII=(atan(y./x)+pi).*cuadrantIII; %

14 phyIV=(atan(y./x)+2*pi).*quadrantIV; %

15 phy=phyI+phyII+phyIII+phyIV; %

Later, depending of the type of polarization employed (conventional or
unconventional), the horizontal and vertical electric field matrices are cal-
culated.
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16 switch polType %

17 case ’conv’ %

18 Ex=E x*ones(length(x),length(y))*exp(1i*delta); %

19 Ey=E y*ones(length(x),length(y)); %

20 case ’unconv’ %

21 [Ex,Ey]=rAndAV2(’r’,632E-9,12,0,1.6); %

22 end %

In the same form, the angle (α) associated to the electric field at each point
of the coordinate matrix is calculated as α = tan−1(Ey/Ex). As before, to
avoid discontinuities in this matrix, the angle calculation is complemented
again to each quadrant but usign as a cuadrant reference the place where
the horizontal and vertical components of the electric field takes positive
and negative values.

23 ExPositive=Ex>0; %

24 ExNegative=Ex<0; %

25 EyPositive=Ey>0; %

26 EyNegative=Ey<0; %

27 alphaI=atan(Ey./Ex).*ExPositive.*EyPositive; %

28 alphaII=(atan(Ey./Ex)+pi).*ExNegative.*EyPositive; %

29 alphaIII=(atan(Ey./Ex)+pi).*ExNegative.*EyNegative; %

30 alphaIV=(atan(Ey./Ex)+2*pi).*ExPositive.*EyNegative; %

31 alpha=alphaI+alphaII+alphaIII+alphaIV; %

32 alpha=alpha’; %

At this point, the magnitude of the incident electric field is calculated.

33 E=sqrt(Ex.*conj(Ex)+Ey.*conj(Ey)); %

Due that for a given incident electric field, the more general situation is
that a piece of it is on the incidence plane and the other piece is perpen-
dicular to that plane, it is necessary to decompose the incident electric field
(Ei = Eixêx + Eiyêy) into its parallel (Eip) and perpendicular (Eis) com-
ponents to the plane of incidence (figure 3.6). The parallel electric field
component is calculated by the inner product of the incident electric field
with the unitary vector pointing from the coordinate origin to point where
the incident electric field is analyzed. It can be expressed mathematically
as,

Eip = Ei · r̂ = Ei cos(ϕ− α) (3.4)

Once the parallel component has been determinated, the perpendicular
electric field component can be calculated as the module of the vectorial
substraction between the incident electric field and its parallel component,
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Figure 3.6: Incident electric field and its decomposition into parallel and perpen-
dicular fields to the plane of incidence. a) 3D view. b) frontal view: if the incident
electric field has an orientation angle α respect to the x axis, then it is forming an
angle ϕ− α with the plane of incidence.

it is:
Eis = ||Ei − Eipr̂|| (3.5)

Due that Ei = Ei
(

cos(α)êx + sin(α)êy

)
and r̂ = cos(ϕ)êx + sin(ϕ)êy, then:

Eis =

√(
Ei cos(α)− Eip cos(ϕ)

)2
+
(
Ei sin(α)− Eip sin(ϕ)

)2
(3.6)

The respective computational lines are then,

34 Ep i=E.*cos((phy-alpha)); %

35 Es i=sqrt((E.*cos(alpha)-Ep i.*cos(phy)).∧2+... %

36 (E.*sin(alpha)-Ep i.*sin(phy)).∧2); %

Next, the refractive index map is calculated. As it was discussed before,
this image is calculated as a homogeneous matrix with a little variation
around the central value.

37 theta i=atan(r/f); % incidence angle

38 n=n s*ones(size(theta i)); % Refractive index map

39 n=n+tol*rand(size(theta i))-tol*rand(size(theta i)); %

With all the previous information, the Fresnel coefficients as well as the
reflected fields are calculated.
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40 theta t=asin(1./n.*sin(theta i)); %

42 r p=(tan(theta i-theta t)./tan(theta i+theta t)); %

43 r s=-(sin(theta i-theta t)./sin(theta i+theta t)); %

44 r p(isnan(r p))=((n(1)-1)/(n(1)+1)); %

45 r s(isnan(r s))=((n(1)-1)/(n(1)+1)); %

46 Ep r=r p.*Ep i; %

47 Es r=r s.*Es i; %

The program shown in this item, has the Jones parameters {Ex, Ey and δ}
as well as the central refractive index value, its tolerance, the polarization
type and the numerical aperture value as input parameters. The program
gives as output parameters the matrices for the reflected fields: Erp and Ers .
The execution syntax is given by:
[Ep r,Es r]=reflectanceAtMAI(E x,E y,delta,polType,n s,NA,tol)

An execution example is,

[Ep r,Es r]=reflectanceAtMAI(1,1,0,’unconv’,1.6,0.7,0.1);

Figure 3.7 shows some reflectance images generated by means of the pro-
gram. It can be observed that the null zones are not significatively visible
when the sample is excited with a circular polarization source. It is an ex-
pected result given that for circular polarization, the electric field is rotating
and the null zones that appear for an instant t, are overlaped with the im-
ages generated at other times, when the null zones appear in other positions.
On the other hand, due that images made with MatLAB grows the matrix
index from top to bottom (for the vertical index) and from left to right (for
the horizontal index), the first quadrant is located at the bottom right of the
image and the angles are increased in the clockwise sense. Hence, the +45◦

linear polarization is shown here as making an angle below of the horizontal
axis, or like the polarization state is observed from the source.

3.5.3 Calculation of the incident electric field matrices for
radial and azimuthal polarization modes (rAndAV2.m)

To simulate the profile image for unconventional polarization modes (line
21 at reflectanceAtMAI.m), was wrote the computational code rAndAV2.m.
The input parameters for this code are:

• polType: a string that redirects the algorithm to calculate a specific
kind of polarization mode and supporting only the values ’r’ for the
radial case and ’a’ for azimuthal case.

• lambda: the wavelength of the radiation source.

• w0: the width at the beam waist.

• z: the axial position where the illumination field will be drawn.
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a)                                                                     b)

c)                                                                      d)

e)                                                                     f)

g)                                                                     h)

Figure 3.7: Synthetic images generated through the program
reflectanceAtMAI.m. The images were calculated for the following param-
eters: NA = 0.9, n = 1.6 ± 0.1 and an incident electric field with polatization:
a) linear horizontal, b) linear vertical, c) linear +45◦, d) linear −45◦, e) circular
right-hand, f) circular left-hand, g) radial mode and h) azimuthal mode.



CHAPTER 3. EXPERIMENT: GETTING INFORMATION OF
OPTICAL PROPERTIES AT MICROMETRIC AREAS 35

• E0: the scale factor for the amplitude of the electric field.

As output parameters, the program gives the horizontal and vertical electric
field distributions. These distributions are shown as squared matrices.
The program begins by making a grid for the horizontal and vertical coor-
dinates and calculates: the wave vector (k), the beam width (wz), the radii
associated to the wavefront (Rz) at the position indicated by the user, the
complex beam parameter (qz) and the Gouy phase (phy).

1 rho=300; %

2 pixelsVector=linspace(-1,1,2*rho); %

3 [x,y]=meshgrid(pixelsVector*2E7*lambda); %

4 k=2*pi/lambda; % Wavevector

5 z0=(k*w0∧2)/2; % Rayleight length

6 wz=w0*sqrt(1+(z/z0)∧2); % Beam width

7 Rz=z*(1+(z0/z)∧2); % Radii of wavefront

8 Rz(isnan(Rz))=1E10; % NaN removal for z=0

9 qz=z+1i*z0; % Complex beam parameter

10 m=0; % Hermite-Gauss order

11 n=1; % Hermite-Gauss order

12 phy=(1+m+n)*atan(z/z0); % Gouy phase

Due that the unconventional polarization uses the Hermite-Gauss polyno-
mials, but the main interest for this work is the study with the lowest energy
modes, only the polynomials H0(ξ) and H1(ξ) are calculated. These poly-
nomials are defined as[3]:

H0(ξ) = 1 (3.7)

H1(ξ) = 2ξ (3.8)

According to the equation (2.28) this polynomials are evaluated, depending
of the polarization mode used, into the

√
2x and y coordinates. Then, the

Hermite-Gauss polynomials are reduced in this case to the following code
lines:

13 h0=1; % Hermite polynomial h0

14 h1 y=2*sqrt(2)*y/wz; % Hermite polynomial h1(y)

15 h1 x=2*sqrt(2)*x/wz; % Hermite polynomial h1(x)

Finally, the horizontal and vertical electric field distribution are calculated.
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16 E01=E0*w0/wz*h1 y.*exp(-1i*phy).*exp(-(x.∧2+y.∧2)*k/(2*qz)); %

17 E10=E0*w0/wz*h1 x.*exp(-1i*phy).*exp(-(x.∧2+y.∧2)*k/(2*qz)); %

18 switch polType %

19 case ’r’ %

20 Ex=E01; %

21 Ey=E10; %

22 case ’a’ %

23 Ex=-E10; %

24 Ey=E01; %

25 end %

3.5.4 Experimental image processing and comparison between
expected and theoretical images (MAIguiV2.m, findMinimum2.m)
and findMinimumExp.m

The theoretical image generated by the program reflectanceAtMAI.m and
the experimental image obtained after being cut (program cropImage.m),
are used by the graphical user interface (program MAIguiV3.m) to identify
the position of the Brewster’s angle for the sample. In both cases, the search
of the absolute minimum value at the interest illumination area, allows the
calculation of the characteristic Brewster’s angle and hence its refractive
index. For the synthetic image, the minimum values are found through
computational code findMinimum2.m, that is given by the following lines:

1 rho=imageDiameter/2; %

2 pixelsVector=linspace(-rho,rho,imageDiameter); %

3 [x,y]=meshgrid(pixelsVector); % posit. matrix

4 r=sqrt(x.∧2+y.∧2); % dist. matrix

5 minValue=min(min(A(r<rho))); %

6 idx=find(A==minValue); %

7 [ix,iy]=ind2sub(size(A),idx); %

A and imageDiameter are input parameters that mean the synthetic image’s
distribution and the diameter of the interest illumination area respectively.
At line 5, the absolute mimimum value is found inside of the interest circular
area, and at lines 6 and 7 its position coordinates are calculate. Althrough
the Brewster’s angle for the synthetic image can be calculated through the
refractive index value, was preferred to use a minimum finder algorithm to
ensure that the absoulte minimum position match with an existing pixel.
As output parameters, the program gives the coordinates ([ix,iy]) of the
absolute minimum values.

For the experimental image, the position of the absolute mimimum values
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        a)                                                                                    b)                                                                                   c) 

Figure 3.8: Program findMinimumExp.m working for an experimental image with
a minimum intensity tolerance of: a) 1 pixel, b) 10 pixels, c) 20 pixels.

are calculated following the same idea, but considering a tolerance range in
minimum intensity value. The computational code for it (findMinimumExp.m),
is as follows,

1 rho=imageDiameter/2; %

2 pixelsVector=linspace(-rho,rho,imageDiameter); %

3 [x,y]=meshgrid(pixelsVector); % posit. matrix

4 r=sqrt(x.∧2+y.∧2); % dist. matrix

5 minValue=min(min(A(r<rho))); %

6 lowerLimit=(r<rho)& image>=minValue; %

7 upperLimit=(r<rho)& image<(minValue+epsilon); %

8 idx=find(lowerLimit & upperLimit); %

9 [ix,iy]=ind2sub(size(A),idx); %

As before, A and imageDiameter are input parameters. Here, epsilon is an
extra input parameter that is defined through the graphical user interface.
In the same form, as output parameters, the program gives the coordi-
nates ([ix,iy]) of the absolute minimum values. Figure 3.8 shows program
findMinimumExp.m working for some different tolerance conditions.

As was commented before, synthetic and experimental images and its
processing job, are meet at a graphical user interface that allows to control
for the synthetic image, the simulation conditions (illumination field param-
eters and refractive index of the sample) and for the experimental image
the tolerance of minimum finding and cropping properties. With that in-
formation the squared error surface between experimental and theoretical
results, as well as the matching parameter (χ2) and the Brewster’s angle
and refractive index found are shown. A characteristic to allow exportation
of synthetic images has been provided to further works. A screenshot of the
graphical user interface is shown at figure 3.9. The original MatLAB codes
for the programs shown before as well as the code for the graphical user
interface are attached at sections 6.2 to 6.6. The following table sumarizes
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Figure 3.9: MAIguiV2 (Multiple angle-of-incidence graphical user interface)
screenshot.

the programs written. palabra

Table 3.3: Programs developed and their general description.

Program’s name Description

cropImage.m Crop the image where there are interesting information

reflectanceAtMAI.m Evaluates the equations (2.14) and (2.15)

rAndAV2.m Generates radial and azimuthal distributions of electric field

findMinimum2.m Localizes the absolute minimum of the syntethic image

findMinimumExp.m Localizes the absolute minimum of the experimental image

MAIguiV2.m Sets the GUI behavior

palabra
palabra
palabra
palabra
palabra
palabra
palabra
palabra
palabra



Chapter 4

Results and discussions

The computational codes and the experimental setup described at chapter 3,
were used to measure the refractive index and the characteristic Brewster’s
angle for two kind of samples: a set of different optical glasses, and a thin
film sample deposited over a microscope slide plain. For the Brewster’s
angle, the experimental results were compared with the theoretical angle
given by the refractive index. With the experimental Brewster’s angle, the
experimental refractive index was calculated and its value was compared
with the theoretical result given by the dispersion formula at each sample
(4.1)

Table 4.1: Theoretical and experimental calculations for results comparison
Theory Experiment

n
θB=tan−1(n)−−−−−−−−→ θB θB

n=tan(θB)−−−−−−−→ n

4.1 System calibration

To calibrate the system, the experimental image obtained from a reference
sample (a BK7 glass), was used to determine the effective numerical aperture
of the system. According to the manufacturer, the numerical aperture for
the objective lens used is 0.9. However, the effective experimental value
can be near to that number, mainly because the complete optical system
can contribute with a pupil that limits the observation area. Due that the
dispersion formula for BK7[12] is given by,

n2 = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
(4.1)

B1 = 1.03961212, C1 = 0.00600069867,

B2 = 0.231792344, C2 = 0.0200179144,

B3 = 1.01046945, C3 = 103.560653

39
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Table 4.2: Samples used at the multiple angle-of-incidence experiment and
its theoretical Brewster’s angle and refractive index

Type Material θB n(532 nm)

Glass BK7 56.6502 1.519472*
Glass FS 55.6043 1.4607**
Glass SF12 58.8531 1.654658*

Thin film MgF2 54.1732 1.385170***

source

*Shott[12]. **Malitson[15]. ***Palik[18]

at λ = 532 nm the refractive index is n(532 nm) = 1.519472 ± 0.000005.
Setting that value as the refractive index of the theoretical image at the
graphical user interface (MAIguiV2.m), the effective numerical aperture was
found adjusting its value until the experimental Brewster’s angle was near to
θB = tan−1(1.519472) ≈ 56.6502◦. The effective numerical aperture found
for the objective lens was then 0.85.

4.2 Measurement of optical properties: Brewster’s
angle and refractive index

With the system calibrated, the Brewster’s angle and the refractive index for
dielectric samples were measured. The samples used and its theoretical op-
tical properties are shown at table 4.2. Each sample was excited with the six
conventional polarization states (P,S,+,-,r,l) and with radial and azimuthal
unconventional polarization modes. The images for the experimental results,
the theoretical images, and its difference surfaces are shown at figures 4.1,
4.2, 4.3, respectively. The experimental Brewster’s angle and the refractive
index measured for the samples, for each polarization as well as the relative
measurements errors respect to the theoretical values, are shown at figure
4.4. A graphical summary of the results given in the figure 4.4, are shown in
the figure 4.5. There, an identity curve has been plotted to show which ex-
perimental refractive index points are below or above of the expected value.
The distance from each point to the line is a quantification of the absolute
error. To ensure a better measurement and avoid false minimum detection
due to the experimental speckle, a tolerance of 5 gray levels was taken and
the average of the Brewster’s angle and refractive index found is shown as
result. The position of the null points inside of the tolerance gray values are
shown at the experimental images with white marks. The sum of squared
error (χ2) between the theoretical and experimental images are shown too
at the same table. To evaluate what kind of polarization source give the
better agreement between expected and measured values, a metric based
on the squared error sum asociated to each plot of the figure 4.5 has been
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calculated. That results are shown in the figure 4.6. A color cell backgroud
has been associated to each χ2 value.

4.3 Discussions

To measure how similar are the experimental and the theoretical images, the
metric χ2 has been calculated. This metric is defined as the intensities sum
of the squared error image (figure 4.3). Due that the intensities of the image
are normalized and in this work the processed images have a typical size of
approximately 600×600 pixeles, the largest difference that could be quanti-
fied by this metric is χ2 = 360000. That value corresponds to a hypothetical
scenary where one image (the experimental, for example) is fully saturated
and the other (the theoretical, for example) is fully nulled. According to this
reasoning, the closest result between the experimental and theoretical im-
ages, has been found for the sample MgF2 excited with S polarization. The
value of the metric χ2 found by this experiment, implies that the expected
and observed images differ in aproximately 1.60%. On the other hand, the
farthest result has been found for sample MgF2 excited with azimuthal po-
larization. The value of the metric χ2 found for this experiment, implies that
the expected and observed images differ in aproximately 26.33%. There are
several experimental factors that are necessary to control, to ensure that
the theoretical and the experimental images be closest. Some of them are
itemized below:

• The exposition time: a long exposition time saturates the image and
a short exposition time trouble the null zones identification. However
only if the minimum position is required (it is, neglecting information
about the light distribution), a saturated image is preferred.

• The refractive index distribution: samples with a non-homogeneus re-
fractive index distribution, could show, when are excited with linear
polarization for example, a set of local minima instead of a well defined
absolute null zones, however in the theoretical images only a homoge-
neous refractive index map with a little tolerance has been simulated.

• The speckle contribution: although the speckle observed at experi-
mental images can be attributted to the sample’s rugosity, the toler-
ance in the sample’s refractive index value contributes to that effect.
This situation was simulated at figure 3.7, where a random tolerance
of 0.1 for the refractive index map was considered at each pixel. With
this condition, the theoretical image shows speckle.

• The sample’s isotropy: for isotropic samples, two well defined and di-
ametrically opposed null zones should appear when a linear and ho-
mogeneous polarized light is used as an illumination source. However,
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Figure 4.1: Images of experimental results obtained with the microellipsometer at
multiple angle-of-incidence. The images were taken at 532 nm. The exposure time
was: for BK7: 0.6 ms, for FS and SF12: 1.45 ms, and for MgF2: 5ms. The minima
obtained, are represented by white marks.
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Figure 4.2: Expected images for the samples used. A tolerance of 0.1 for the
refractive index value was simulated. The minima obtained, are represented by
white circles.
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Figure 4.3: Error squared surfaces between the theoretical and experimental im-
ages.
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Figure 4.4: Experimental Brewster’s angle and refractive index measured for the
samples at each polarization source
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Figure 4.5: Graphs of expected and measured refractive values. The identity curve
has been plotted to show which experimental refractive index points, are below or
above of the expected value
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Figure 4.6: Error calcs results for each polarization test.

for anisotropic samples, the null zones can lost symmetry. This effect
can be quantifyed by means of the excitation with radial polarization,
where the isotropy can be assumed if an exact circle for null zones is
drawn.

• The quality of the illumination field and its polarization: although the
phenomena could be observed using as illumination source the spot of
a laser, the use of beam expander and a spatial filtering to ensure
the best homogeneous illumination allow stand out the interested null
zones and its distribution better than a laser spot or similar sources
where a typical Gaussian profile can be overhead into the interest re-
flected image. In the case of poor polarization, the effect will be a slight
null zones similarly to the images obtained when they are excited with
circular polarization.

A careful analysis of the intensity distribution for experimental images, show
that although there are symmetry in position of the null zones at north and
south poles when the BK7 sample is excited with linear polarization, the
null intensities are not equal. That is, one null zone is more near to zero
than the other one. This effect is shown in the figure 4.7. For the sample
BK7, an intensity difference between the two null zones observed was 50
gray levels1. This value can be interpreted as a relative intensity difference
of 4.88%. For that condition, it is necessary to count 2203 minimum points
at the north null zone before to identify the first minimum point at the
south null zone. This effect can be interpreted as a metric for the sample’s
isotropy always that good alignment of the system is guaranteed. Similar
conditions was observed for the other samples.

For excitation with radial polarization, an open ring of null zones was
observed where a closed was expected in the experimental results. That re-
sult can be understood as a systematic error due that for different samples
the nulled zones are cutted at the same position. However, later to try with
several alignements, they are the best found experimental results. palabra
palabra
palabra

1the intensity levels are in the range 0 to 1023.
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a)                                                        b)                                                           c)

In
te
ns
ity

Figure 4.7: Intensity null distribution inside of the condition
Intensity<min(Intensity)+50. a) minimum detection given by the computa-
tional code. b) Line where the profile analysis is performed. c) intensity profile at
the line shown in b).

palabra
palabra
palabra
palabra
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palabra
palabra



Chapter 5

Conclusions and perspectives

Zones where the illumination field is extinguished (the named here null
zones) are relatively easy to watch if an appropiate set of objective lens and
samples under study are employed to focus the light beam. For a quick
identification of the characteristic Brewster’s angle, a long exposure time
at the camera should be used. For a carefully sensing of the reflected light
distribution, a short exposure time (but long enough to excite the camera
sensor) should be employed.

The most complete results to evaluate the refractive index and Brew-
ster’s angle, are obtained exciting the sample with radially polarized light.
This affirmation is based in the fact that radially polarized light is always
into the incidence plane, and testing with this kind of polarization is similar
to excite the sample, in a single shot, with linear polarization at all accesible
azimuthal orientations, allowing an experiment with multiple repetitions if
the sample is isotropic. On the other hand, excitation with azimuthal polar-
ized light does not give relevant information respect to the Brewster’s angle
and the refractive index. It is due that azimuthal polarized light is always
perpendicular to the incidence plane. It explains furthermore the high rel-
ative errors at the column AZM of the figure 4.1. In that case, the null
zone is identificated in a random position, even at the singular point located
at the central of the azimuthal polarization source. It can be checked by
comparing the experimental and theoretical images (figures 4.1 and 4.2.

Excitation with radially polarized light, has the goodness that allow to
get information about the sample’s isotropy. A fully symmetric sample will
show a circular ring for nulling zones whereas an anisotropic sample should
show a non circular ring.

According to the results shown in the table 4.6, excitation with linear
polarization states at P , S and +45◦ orientations, can give as good results

49
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as excitation with radial polarization. In contrast, despite that illumination
with circular polarization seems to show low relative errors (figure 4.4), this
kind of polarization is not a good illumination source because, although a
very weak null ring is expected theoreticaly 4.2, it does not was observed
experimentally. The low relative errors with excitation with circular polar-
ization, occur because the illumination on the experimental image was less
intense at the second quadrant of the circle, than in the remaining quadrants.
(figure 4.1) and the image processing found the null zones just there. The
experimental limitations related with the non-uniformly distributed incident
intensities, which were out from our control, generated non-symmetrical im-
ages. It explains why the experimental images appear non simmetrical.

The refractive index measurements performed by means of the method
shown in this work, is highly sensitive to the image cutting procedure, due
that the computational codes assign a field of view (maximum angle) to the
squared image size. If a bad cutting is done (that is, if the circle of the
illumination does not touch the images limits), the position associated to
the null zones is wrong and hence the estimate of the refractive index value.

The matrices strategy to generate synthetic images, proved a suitable
tool to make comparisons between expected and measured reflectance fields.
Particularly, the use of a refractive index map as an input parameter, spread
the simulation to the study of either hypothetical or experimental conditions
do not implemented in this work. An example case, could be the study of re-
flected fields for materials with some specific refractive index’s distributions.

The accuraccy of the experimental results, depends largely on the camera
resolution and the accuracy in refractive index and flatness associated to the
calibration sample. With a refractive index deviation less than 5%, the mea-
surement results can be considered right for the purpose of the present work.

According to the experimental results (figure 4.4), is thought that prob-
ably the sample SF12, that was supplied by the CIO’s optical workshop,
is incorrectely labeled. This affirmation is supported by the fact that the
excitation with different kind of polarization provided a repetible refractive
index value of approximately 1.53 instead of the expected value of 1.65. An-
other probably reason of the high error between the expected and observed
refractive index and Brewster’s angle values, is that the SF12 is currently
an obsolete Shott glass. It could explains furthermore why the equivalente
experimental point at the figure 4.6 is persistently out of the identity line.

As a future work, some tasks could be done to improve the program
to generate synthetic images by means of multiple angle-of-incidence mi-
croellipsometry. On the one hand, an expansion of the program to generate
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unconventional polarization distributions can be done adding another po-
larization modes. Some examples can be adjust the program for accessing
to Hermite-Gauss orders different to H01 and H10, allowing theoretical eval-
uation of reflectance for vortices or spiral polarization modes.

A question that was not answered in this work is the multilayer effect
over the reflectance image. In principle, when the objective lens is adjusted
to focus the sample’s surface, the effect of the transmitted radiation and
its contribution for internal reflections (the Bragg’s problem) has been ne-
glected and not mentioned because they should introduce noise in a region
outside of the angle swept by the objective lens. However, for samples with
very low refractive index (for metals for example), this phenomena should
be considered.

Another question that was not answered is the experimental relationship
between the speckle introduced by the surface rugosity and the refractive
index tolerance. Theoretically, the amount of speckle can be controlled in-
creasing the tolerance for the refractive index, but experimentally in addition
to this parameter, there are speckle contribution originated by the surface
rugosity, the optical device’s reflection, as well as the speckle contribution
of the illumination source.
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Chapter 6

Appendix

6.1 Design of mechanical pieces

As a previous work, a set of mechanical pieces for optical components was
designed as initial task. This job was done trying to supply the mechanical
needs found before to have the complete experimental setup. These pieces
were inspired in the Thorlabs catalog, and its intention is to provide some
ideas that can be materialized in a mechanical workshop to reproduce the
experimental array presented here. The draws help furthermore to document
how the experimental array was finally ensambled.
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6.2 MatLab code for cropImage.m

1 % CROPIMAGE crop the lowest rectangle that contains an

2 % experimental illumination field.

3 % By, Victor-Manuel Rico-Botero,

4 % 2016-Apr-16th

5 %

6 % sourceImage: monochromatic image matrix to crop

7 % contrast : sensibility for the border detection.

8 % xCroppingError: manual adjustment for horizontal cropping.

9 % yCroppingError: manual adjustment for vertical cropping.

10 %

11 % Execution example: [A]=cropImage(’name.tif’,20,0,0)

12 function [croppedImage]=cropImage(sourceImage,contrast ,...

13 xCroppingError,yCroppingError)

14 dAdx=diff(sourceImage’);

15 xBorder=dAdx>contrast ;

16 [x,y]=find(xBorder);

17 x bar=mean(x);

18 y bar=mean(y);

19 theta=0:2*pi/100:2*pi;

20 r=max((y bar-min(y)),x bar-min(x));

21 xC=r*cos(theta)+x bar+xCroppingError;

22 yC=r*sin(theta)+y bar+yCroppingError;

23 croppedImage=double(imcrop(sourceImage,[min(xC),...

24 min(yC),2*r,2*r]));
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6.3 MatLAB code for reflectanceAtMAI.m

1 % REFLECTANCEATMAI Reflectance at multiple angle-of-incidence

2 % for any polarization field.

3 % by: Victor-Manuel Rico-Botero

4 % May 01, 2016

5 %

6 % Calculate the reflectance image for a given polarization

7 % field, using the Jones formulism.

8 % E x : horizontal Jones component for the incident electric field

9 % E y : vertical Jones component for the incident electric field

10 % delta: retardance between horizontal and vertical electric fields

11 % polType: ’conv’ for conventional polarization; ’unconv’ for

12 % unconventional polarization modes

13 % n s: Average refractive index for the sample

14 % NA: Numerical aperture for the objective lens

15 % tol: tolerance around the central refractive index value

16 %

17 % example: [Ex,Ey]=reflectanceAtMAI(1,1,0,’unconv’,1.6,0.7,0.1);

18 function [Ep r,Es r]=reflectanceAtMAI(E x,E y,delta,...

19 polType,n s,NA,tol)

20 rho=300;

21 thetaMax=asin(NA);

22 f=rho/tan(thetaMax);

23 pixelsVector=linspace(-rho,rho,2*rho);

24 [x,y]=meshgrid(pixelsVector);

25 r=sqrt(x.∧2+y.∧2);
26 cuadrantI=(x>=0)&(y>=0);

27 cuadrantII=(x<0)&(y>=0);

28 cuadrantIII=(x<0)&(y<0);

29 cuadrantIV=(x>=0)&(y<0);

30 phyI=atan(y./x).*cuadrantI;

31 phyII=(atan(y./x)+pi).*cuadrantII;

32 phyIII=(atan(y./x)+pi).*cuadrantIII;

33 phyIV=(atan(y./x)+2*pi).*quadrantIV;

34 phy=phyI+phyII+phyIII+phyIV;

35 switch polType

36 case ’conv’

37 Ex=E x*ones(length(x),length(y))*exp(1i*delta);

38 Ey=E y*ones(length(x),length(y));

39 case ’unconv’

40 [Ex,Ey]=rAndAV2(’r’,632E-9,12,0,1.6);
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41 end

42 ExPositive=Ex>0;

43 ExNegative=Ex<0;

44 EyPositive=Ey>0;

45 EyNegative=Ey<0;

46 alphaI=atan(Ey./Ex).*ExPositive.*EyPositive;

47 alphaII=(atan(Ey./Ex)+pi).*ExNegative.*EyPositive;

48 alphaIII=(atan(Ey./Ex)+pi).*ExNegative.*EyNegative;

49 alphaIV=(atan(Ey./Ex)+2*pi).*ExPositive.*EyNegative;

50 alpha=alphaI+alphaII+alphaIII+alphaIV;

51 alpha=alpha’;

52 E=sqrt(Ex.*conj(Ex)+Ey.*conj(Ey));

53 Ep i=E.*cos((phy-alpha));

54 Es i=sqrt((E.*cos(alpha)-Ep i.*cos(phy)).∧2+...
55 (E.*sin(alpha)-Ep i.*sin(phy)).∧2);
56 theta i=atan(r/f); % incidence angle

57 n=n s*ones(size(theta i)); % Refractive index map

58 n=n+tol*rand(size(theta i))-tol*rand(size(theta i));

59 theta t=asin(1./n.*sin(theta i));

60 r p=(tan(theta i-theta t)./tan(theta i+theta t));

61 r s=-(sin(theta i-theta t)./sin(theta i+theta t));

62 r p(isnan(r p))=((n(1)-1)/(n(1)+1));

63 r s(isnan(r s))=((n(1)-1)/(n(1)+1));

64 Ep r=r p.*Ep i;

65 Es r=r s.*Es i;
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6.4 MatLAB code for rAndAV2.m

1 % RANDAV2 generates radial and azimuthal distribution matrices.

2 % by, Victor-Manuel Rico-Botero

3 % 2016-Apr-28th

4 % lambda: wavelenght

5 % w0: width of the beam waist

6 % z: beam position at the propagation axis

7 % E0: field amplitude

8 % example: [Ex,Ey]=rAndAV2(’r’,632E-9,6,0,1.6)

9

10 function [Ex,Ey]=rAndAV2(polType,lambda,w0,z,E0)

11 rho=300;

12 pixelsVector=linspace(-1,1,2*rho);

13 [x,y]=meshgrid(pixelsVector*2E7*lambda);

14 k=2*pi/lambda;

15 z0=(k*w0∧2)/2;
16 wz=w0*sqrt(1+(z/z0)∧2);
17 qz=z+1i*z0;

18 m=0;

19 n=1;

20 phy=(1+m+n)*atan(z/z0);

21 h0=1;

22 h1 y=2*sqrt(2)*y/wz;

23 h1 x=2*sqrt(2)*x/wz;

24 % ------------------Modes calculation----------------------

25 E01=E0*w0/wz*h1 y.*exp(-1i*phy).*exp(-(x.∧2+y.∧2)*k/(2*qz));
26 E10=E0*w0/wz*h1 x.*exp(-1i*phy).*exp(-(x.∧2+y.∧2)*k/(2*qz));
27 switch polType

28 case ’r’

29 Ex=E01;

30 Ey=E10;

31 case ’a’

32 Ex=-E10;

33 Ey=E01;

34 end
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6.5 MatLab code for findMinimum2.m

1 % FINDMINIMUM2 find the coordinates for the absolute minimum

2 % values at multiple angle-of-incidence

3 % microellipsometry of synthetic images.

4 % By, Victor-Manuel Rico-Botero

5 % 2015-dec-28th

6 %

7 % A: synthetic monochromatic and squared matrix image

8 % imageDiameter: diameter of the interest area

9 %

10 % Execution example: [ix,iy]=findMinimum2(A,300)

11

12 function [ix,iy]=findMinimum2(A,imageDiameter)

13 rho=imageDiameter/2;

14 pixelsVector=linspace(-rho,rho,imageDiameter);

15 [x,y]=meshgrid(pixelsVector);

16 r=sqrt(x.∧2+y.∧2);
17 minValue=min(min(A(r<rho)));

18 idx=find(A==minValue);

19 [ix,iy]=ind2sub(size(A),idx);
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6.6 MatLab code for findMinimumExp.m

1 % FINDMINIMUMEXP found the coordinates for the absolute minimum

2 % values at multiple angle-of-incidence

3 % microellipsometry of experimental images.

4 % By, Victor-Manuel Rico-Botero

5 % 2016-Apr-02nd

6 %

7 % A: synthetic monochromatic and squared matrix image

8 % imageDiameter: diameter of the interest area

9 % epsilon: tolerance in the absolute minimum value

10 %

11 % Execution example: [ix,iy]=findMinimum2(A,300,10)

12

13 function [ix,iy]=findMinimumExp(A,imageDiameter,epsilon)

14 rho=imageDiameter/2;

15 pixelsVector=linspace(-rho,rho,imageDiameter);

16 [x,y]=meshgrid(pixelsVector);

17 r=sqrt(x.∧2+y.∧2);
18 minValue=min(min(A(r<rho)));

19 lowerLimit=(r<rho)& image>=minValue;

20 upperLimit=(r<rho)& image<(minValue+epsilon);

21 idx=find(lowerLimit & upperLimit);

22 [ix,iy]=ind2sub(size(A),idx);
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6.7 Technical problems and solutions

The process of image recording in the implementation of the microellipsome-
ter of multiple angle-of-incidence, can show some technical problems that
were solved in this work. Particularly the image saturation, generated by
the use of a laser source, usually saturates the camera and good image for
processing can be hard to obtain. It was solved by means of two methods:

• Attenuating the illumination field with a set of neutral density filters.
This filters were located between the output of the laser source and
the begining of the optical setup.

• Controlling the time exposition at the camera sensor.

On the other hand, the first setup idea was to illuminate the sample us-
ing only the laser spot as light source, but then expanding that beam and
performing it through a spatial filter, allowed to control the illumination ho-
mogeneity directly on the sample when a conventional polarization is used,
and before to the s-waveplate when a non-conventional polarization experi-
ments was done.

Another problem is that using a non polarizing beam splitter (NPBS)
to redirect the illumination field from the PSG to objective lens, makes
interference fringes in the image recorded by the camera sensor, and that
fringes are an undesirable effect for the purpose that is followed in this work.
To solve that, a slight misalignement of the NPBS can be performed splitting
the interest image of the interference fringes for some axial camera’s position.
The problem of the interference fringes is show at figure 6.1. Another way
to remove the interference fringe, is by means of digital spatial filtering;
it can be developed performing a Fourier transform to the experimental
image, removing the spatial frequencies corresponding to interference fringes
and performing an inverse Fourier transform to retrieve the experimental
image but without the interference fringes. This procedure was executed
but further to remove fringes, interest information was lossed too. Finally,
fringes removed by NPBS misalignement was convincing for the authors.
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Figure 6.1: Undesirable interference fringes seen by the camera when a geometrical
alignment of the NPBS is done.

palabra
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