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Abstract

Act as if what you do makes a di�erence. It does.

William James

The study of the polarization of light nowadays is conceived within two main branches: con-
ventional and unconventional polarization. Conventional polarization is the term assigned to the
spatially homogeneous amplitude and phase associated to the electric �eld distributions. On the
other hand, the spatially non-homogeneous amplitude and phase electric �eld distributions are
termed as unconventional polarization. From all the possible unconventional polarization states,
there exist a very special kind of states which can not be expressed as a single product of a spatial
and a polarization distribution. Such kind of polarization states are nonseparable or entangled,
because the electric �eld can be represented only by the use of two coordinate-independent Jones
vectors and two independent scalar �elds. This type of entanglement is denoted as classical en-
tanglement, because occurs in a single light beam (intra-system), contrary to the case of quantum
entanglement, which occurs between two separated photons (inter-system entanglement). Two
of the main unconventional polarization states, radial and azimuthal, are classically entangled.

The Mueller matrix represents the linear responses associated to optical materials and it
contains all the available polarimetric information. Usually, it can be determined by using at
least 4 incident conventional polarization states. In this work, a single incident polarization is
employed: an azimuthal polarization state is generated and used as a classical entangled beam
for the experimental determination of the Mueller matrix associated to birefringent, transparent
samples. The procedure developed here shows the way the entangled degrees of freedom of the
beam (the spatial or mode distributions, represented as Hermite-Gauss and Laguerre-Gauss
modes, and the polarization states) can be analyzed independently. Based in two previous works
(Töppel et al. (2014) and Aguilar (2017)) an experimental setup is proposed and improved.
The experimental setup consists of a complex set of modules: a polarization state generator,
an unconventional or entangled polarization state generator, the sample under study, a mode
converter, a modi�ed Mach-Zehnder interferometer, a conventional polarization state analyzer,
and a spatially-resolved detection system. An analysis of each module is realized, in order to test
the optical alignment and expected functionality.

The Mueller matrices associated to air, to a half-wave plate and to a quarter-wave plate
retarders, are determined by applying the relationships reported by Töppel et al. (2014) and the
relationships obtained by the ideal polarimetric arrangement (IPA), reported by Atondo-Rubio
et al. (2005).

Results are reported by using both, images and the spatial average symmetry (SAS), which
show to be consistent with the expected responses. To our knowledge, this is the �rst study
associated to the experimental determination of the Mueller matrix of transparent objects under
open space conditions, using the classical entangled azimuthal polarization state as a single
incident polarization state.
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Chapter 1

Introduction

There's a way to do it better � �nd it.

Thomas A. Edison

Summary: In this Chapter, we give a brief introduction to the key concept on which this

thesis work is based. We expose the general and particular objectives that we have proposed

and �nally, we give an overview on the organization of this thesis document.

1.1. Introduction

Unconventional polarization is a term used to refer to a very special kind of beams that are
characterized by having non homogeneous distributions of intensity and phase along the cross
section of the beam (Zhan, 2009). These non homogeneous distributions lead to the need of using
2 degrees of freedom in order to be able to describe them: One for the spatial distribution, which
we will call �the mode� and can be described through a Hermite-Gauss, Laguerre-Gauss or any
other function that satis�es the wave equation; and the other used to deal with the polarization
of the mode, which can be horizontal, vertical, at ±45◦, circular right handed, circular left
handed or any other of the known �conventional� polarization states. We refer to them as beams
with unconventional polarization because we have di�erent electric �eld vectors (associated to
di�erent conventional polarizations) depending on which part of the beam cross section we are.
Furthermore, it is said that these beams are �classically entangled� because �one needs two
coordinate independent Jones vectors and two independent scalar �elds (modes) to represent
the electric �eld�, as stated by Töppel et al. (2014). This classical entanglement fundamentally
di�ers from the quantum entanglement because it occurs between two degrees of freedom in
the same beam (intra-system entanglement) and not between two separate beams (inter-system
entanglement) as is the case for quantum entanglement. This inherent relationship between modes
and polarization opens the possibility to many applications for which the entangled feature of the
beam can be exploited and for which the use of the non locality feature can be omitted (Töppel
et al., 2014).

1.2. Background

Unconventional polarization is a new �eld which has generated an increasing scienti�c and
technological interest around the world. According to Zhan (2009), the early works in this topic

1



2 Chapter 1. Introduction

started with the studies of optical imaging such as optimal concentration of electromagnetic
radiation in the focal region, in 1997. Ever since, there have been several proposals that range
among the methods and techniques to generate, manipulate, detect them and also their potential
application to high resolution imaging, plasmonic, and nanoparticle manipulation (Zhan, 2014).
However, to the best of our knowledge, none experimental work on the use of unconventional
polarization for determining the Mueller matrix of a sample has been reported, being the only
existing one of purely theoretical character (Töppel et al., 2014).

1.3. Justi�cation

The peculiar characteristics of the unconventional polarization have led to propose its imple-
mentation in polarimetric arrangements with the objective of presenting a measurement scheme
faster and alternative to the existing one (conventional polarimetry). Nevertheless, for being a
too recent �eld of study, the unconventional polarization concept is little known. For this reason
there exists too little reported work on the study and characterization of beams of light with
this type of polarization, being the most of them of theoretical character. This is why, the design
and implementation of an optical arrangement that allows to handle with this kind of beams
and to probe that they can be of great utility in important and well-established areas such as
polarimetry, is a promising work in this emergent area.

1.4. Scope and objectives of this work

1.4.1. General objective

In this thesis work we aim to exploit the classical entanglement property of an azimuthally
polarized beam of light to extract useful information of transparent, non depolarizing samples.
The study is made by numerical, image processing and experimental methods.
The optical arrangement, even though based on an already existing purely theoretical proposal
[Töppel et al. (2014)], will be adapted to the GIPYS lab materials and modi�ed to be experi-
mentally more robust and hence easier to work with.

1.4.2. Particular objectives

To modify and set up the theoretical optical arrangement to be used in the GIPYS lab
with azimuthally polarized light.

To obtain the Mueller matrix of a transparent, non depolarizing sample by means of an
image based analysis.

1.5. Outline

The thesis document is disposed as follows: In Chapter 2 it is presented the theoretical
framework needed to understand the concepts, optical phenomena and methods addressed here.
In Chapter 3 it is shown the experimental arrangement, its characteristics and implementation.
In Chapter 4, the computational and experimental results are exhibited, together with their
analysis and corresponding discussion.
In Chapter 5 the Conclusions and future work are exposed.
Finally, the developed algorithms are included in the Appendix section.



Chapter 2

Theoretical Framework

Nothing in life is to be feared, it is only to be

understood. Now is the time to understand more, so

that we may fear less.

Marie Curie

Summary: In this Chapter we give a brief resume about the theoretical framework on

which this thesis work is based. We start with the generalities of conventional polarization,

the mathematical tools used to describe it and the way to produce it and detect it. Then,

the unconventional polarization is introduced along with the main stages of the experimental

arrangement. Finally, we explain how each individual stage is handled in order to have the

complete arrangement working as a unity.

2.1. Conventional polarization

Polarization is one of the 4 needed parameters to fully describe a light beam. So that, it is
necessary to take it into account if we want to understand what happens when a beam of light
interacts with matter. In fact, the change in polarization can bring su�cient data to fully deter-
mine the polarization characteristics of a sample. This is known as polarimetry. In polarimetry
we can be interested in knowing the polarization characteristics of the beam of light (Stokes
polarimetry) or on how a sample changes the polarization of the incident light (Mueller polari-
metry). In this way, we can design and implement optical arrangements which allow us to make
useful observations about an optical phenomena, only analyzing how the state of polarization of
a light beam has changed after the interaction.
We can say that polarization is the term used to describe how the electric �eld of a beam of
light (electromagnetic wave) is oscillating in both, space and time, while the propagation occurs.
The electric �eld is mathematically described by an oscillating function, like a cosine or sine
function, an amplitude (dependent on time and space, generally), an angular frequency, and an
exponential term that describes how the beam is propagating in time. Taking into account that,
in order to describe a physically realizable wave, it has to be described by a real quantity, what
was said above can be expressed as *:

*This equations comes up from solving the wave equation at vacuum without sources or currents, in Cartesian

coordinates ∇2E = 1
c2
∂2E
∂t2

.

3



4 Chapter 2. Theoretical Framework

Re{E(r, t) = A(r, t) exp(i(ωt− k · r + φ))} (2.1)

Where Re means the real part of the expression, r is the position vector, t is time, A is the
amplitude of the wave, i is the imaginary number, k is the wavevector, ω is the angular fre-
quency (related with the period, T , by ω = 2π/T ) and φ is a phase term used to stablish how
many radians has travelled the wave from the origin of our reference system (of course it can be
arbitrarily settled to zero by the proper election of a reference system and time of observation).
If we could put a marker at the end of the electric �eld vector, the �gure described by the marker
at the end of a cycle (one spatial or temporal period) could be a set of points randomly disposed
or could be a well known geometric �gure (ellipse, circle or line). In the �rst case we would say
that the beam is non polarized, because the electric �eld does not has an speci�c orientation
preference. The Sun is a source of non polarized light, where the amplitude, phase and orienta-
tion of the electric �eld associated to each emitted wavelength change randomly.
In the opposite case, when the electric �eld vector has a preference to vibrate in an speci�c orien-
tation, thus describing one of the previously cited �gures, we say that the light is completely

polarized (elliptically, circularly or linearly, respectively).
Of course the intermediate case is also possible, which could be thought as the combination of
polarized and non polarized light. Then we would say the light is partially polarized and hence
we can start to think in a way to know �how much� of the beam is polarized and �how much� is
not. For this, we use the Degree of Polarization (DoP), de�ned as:

DoP =
Ipol
Itot

(2.2)

Where Ipol is the intensity of the polarized light and Itot is the total intensity of the beam of
light. Here we take the intensity of the beam de�ned as [Goldstein (2011)] I = E · E∗. With ∗

indicating the complex conjugate operation.

2.1.1. Polarization ellipse

The fact that the light can or can not be polarized is related with the amplitude and phase
of the constituent waves. We know that any vector can be expressed as a linear combination of
two orthogonal vectors, say Ex and Ey, which propagate along the same direction. In our case
these two vectors represent two monochromatic plane waves and will form our base. In general,
these two plane waves will have di�erent amplitudes, frequencies and phases. But, in the case
that some of these characteristics are related, then we can obtain the mathematical expression
of the mentioned �gures.
Now we will investigate the resultant wave formed by the superposition of two plane monochro-
matic waves travelling in the z direction (in this way r = z and k · r = kz) and same frequency.
Such as:

E(z, t) = Ex(z, t)êx + Ey(z, t)êy (2.3)

With êx, êy being the unitary vectors in the x, y directions and

Ex = E0x cos(wt− kz + φx) = E0x cos(θ + φx) (2.4)

and
Ey = E0y cos(wt− kz + φy) = E0y cos(θ + φy) (2.5)

Where we have taken the convention Re{exp(iθ)} = cos(θ), with θ = ωt− kz. E0x, E0y are the
amplitudes of the x, y components of the electric �eld.



2.1. Conventional polarization 5

Our objective now is to obtain a function that is not dependent on space and time, i.e. we want
to get rid of the term θ = ωt − kz. We begin dividing the equation 2.4 by E0x, which results
in an expression for cos θ that we can substitute in the equation 2.5 divided by E0y once we
have used the trigonometric identity cos(θ+φ) = cos(θ) cos(φ)− sin(θ) sin(φ). Subtracting both
results and rearranging terms we obtain [Cywiak (2016)]:

Ey
E0y

− Ex
E0x

cos(φ) = − sin(θ) sin(φ) (2.6)

Note that we have set the phase relative to φx such that φy − φx = φ.
Squaring the expression 2.6, changing sin2(θ) = 1 − cos2(θ) in the right hand side of the result
in order to substitute again cos(θ) = Ex

E0x
, we can group common terms and reduce factors using

again the trigonometrical identity cos2(θ) + sin2(θ) = 1. Multiplying by E2
0yE

2
0x to get rid of the

denominator and rearranging we obtain [Cywiak (2016)]:

E2
0yE

2
x − 2E0xE0yExEy cos(φ) + E2

0xE
2
y = E2

0xE
2
0y sin2(φ) (2.7)

Which is easier to interpret if we adopt the following notation [Cywiak (2016)]:

A ≡ E2
0y

B ≡ −E0xE0y cos(φ)

C ≡ E2
0x

D ≡ E2
0xE

2
0y sin2(φ)

Hence expression 2.7 rewrites as [Cywiak (2016)]:

AE2
x + 2BExEy + CE2

y = D (2.8)

Which remind us of the general equation of a conic. We notice that, from our de�nitions, A 6= C,
AC > 0 and B2 − 4AC < 0 then we are dealing with the equation of an ellipse; rotated since
B 6= 0. This is known as the polarization ellipse and a schematic diagram of it is shown in �gure
2.1. It is characterized by the two angular parameters [Goldstein (2011)] Ψ, the orientation angle,
and χ, the ellipticity angle. These two parameters are related with the electric �eld amplitudes
by [Cywiak (2016)]:

tan 2Ψ =
2E0xE0y cosφ

E2
0x − E2

0y

(0 ≤ Ψ ≤ π) (2.9)

sin 2χ =
2E0xE0y sinφ

E2
0x + E2

0y

(
−π
4
≤ χ ≤ π

4
) (2.10)

From the above derivation we conclude that the most general form of a completely polarized
beam of light is an ellipse. Now we can make some other considerations in order to obtain the
particular cases of circularly and linearly polarized light.For example, when E0x = E0y = E0 and
±φ = π/2, then equation 2.7 reads:

E2
x + E2

y = E2
0 (2.11)

Which is the equation for a circle. Note that from this expression we can not tell if the phase
di�erence was −π/2 or π/2. Knowing the phase di�erence value is important because it tell us
if the electric �eld is rotating in time in the clockwise sense or in the counter-clockwise sense. In
the �rst case we say that the light is right-handed polarized and we say that it is left-handed
polarized in the opposite case. This convention applies also for elliptically polarized light. The
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Figure 2.1: Polarization ellipse. Ψ corresponds to the orientation angle and χ to the ellipticity
angle.

way to know the sense of rotation of the electric �eld is evaluating the corresponding expression,
say 2.11 for this case, for several times at speci�c position (say z=0 for example). Doing this
analysis we arrive to we have right-hand circular polarization when φ = π/2 and left-hand circular
polarization when φ = −π/2. This holds for the �looking to the source� convention adopted here.
Now for E0x = E0y = E0 and φ = 0 or φ = π then we arrive to

Ey = ±E0y

E0x
Ex (2.12)

Which corresponds to the equation of the straight line with slope ±E0y

E0x
.

2.1.2. Mathematical representations for polarized light

As we can notice, to represent a beam of light by an expression like equation 2.4 would not
be a practical way of working if we have to consider the superposition of several waves. For
this reason it was seek the way to express the same wave as a column vector, in order to work
with matrix algebra. Here we introduce the Jones formalism, which consists in represent the
monochromatic plane wave at a particular instant t as:

E =

[
Ex
Ey

]
=

[
E0x exp(iφx)
E0y exp(iφy)

]
(2.13)

A beam of light expressed as in equation 2.13 is known to be in the form of a Jones vector.
This representation is useful only for work with completely polarized light, since there is not a
representation for non- polarized or partially-polarized light. It is a common practice to consider
a system where φx = 0, φy = φ or to de�ne φ = φy − φx. In addition, the vector is �normalized�
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with respect of the �rst term and the normalization factor is not taken into account. In this
form we can easily determine if the obtained Jones vector corresponds to linearly, circularly or
elliptically polarized beam of light and also the sense of rotation of the electric �eld.
Another formalism that does not su�er of this limitation is the Stokes formalism, which describes
the polarization of a beam of light by means of 4 quantities, known as the Stokes parameters,
which, when disposed in a column vector form, constitute the so-called Stokes vector (Goldstein,
2011).

S =


ExE

∗
x + EyE

∗
y

ExE
∗
x − EyE∗y

ExE
∗
y + E∗xEy

i(ExE
∗
y − E∗xEy)

 =


< E2

0x + E2
0y >

< E2
0x − E2

0y >

2 < E0xE0y cos(φ) >
2 < E0xE0y sin (φ) >

 (2.14)

The Stokes vector can also be expressed in terms of the orientation and ellipticity angles as
(Goldstein, 2011): 

S0
S1
S2
S3

 = S0


1

cos(2χ) cos(2Ψ)
cos(2χ) sin(2Ψ)

sin(2χ)

 (2.15)

The normalization factor S0 is usually not taken into account when doing calculations. A set of
Jones and Stokes representations for the most used polarization states of light in polarimetry is
given in Table 2.1.

2.1.3. Generation and detection of polarized light

Now that we have a mathematical representation for polarized light, we will focus our at-
tention on the tools needed to generate it. These tools are polarizing optical elements, such as
polarizers and phase retarders, which are described by matrices. These matrices act over the in-
put �elds expressed as vectors. According to the formalism in which the electric �elds are written,
the corresponding representations for the polarizing elements can be stated as Jones matrices
(for the Jones formalism) or as Mueller matrices (for the Stokes formalism).
In this work we will be specially interested in generate and detect 6 speci�c polarization states,
since their detection will allow us to determine the Stokes vector of any input beam of light, as
we will see later in this section. These polarization states are: Linear horizontal (H or p) *, linear
vertical (V or s)*, linear at +45◦ (+45 or +), linear at −45◦ or equivalently at 135◦ (135 or −),
circular right (R or r) and circular left (L or l), respectively.
The way to generate and detect the linear states is through a linear polarizer. This is a de-
vice that only allows the transmission of the light whose polarization direction coincides with
the direction of the transmission axis of the polarizer. Any other component of the beam with
di�erent polarization is rejected (absorbed or deviated). Therefore, we can generate any linear
polarization just rotating the transmission axis of the polarizer to the desired orientation.
Equations 2.16 and 2.17 show the Jones and the Mueller matrices, respectively, for the ideal
linear polarizer with its transmission axis rotated to an angle θ with respect to the horizontal
orientation, when the source is associated to unpolarized light.(Goldstein, 2011).

JP(θ) =

[
cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

]
(2.16)

*The letter p is used to represent the component of the electric �eld which is parallel to the plane of incidence
and s is used for the perpendicular one. In this work, when generating and detecting states of polarization, the
parallel component,p, will coincide with the horizontal, and the perpendicular,s, with the vertical.
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Polarization State Stokes Vector Jones Vector

Linear horizontal


1
1
0
0

 [
1
0

]

Linear vertical


1
−1
0
0

 [
0
1

]

Linear +45◦


1
0
1
0

 1√
2

[
1
1

]

Linear −45◦


1
0
−1
0

 1√
2

[
1
−1

]

Right circular


1
0
0
1

 1√
2

[
1

+i

]

Left circular


1
0
0
−1

 1√
2

[
1
−i

]

Unpolarized light


1
0
0
0

 -

Table 2.1: Stokes and Jones vectors for most common used polarization states in conventional
polarimetry. For the complete derivation of these expressions see for example, Goldstein (2011).

MP(θ) =
1

2


1 cos(2θ) sin(2θ) 0

cos(2θ) cos2(2θ) cos(2θ) sin(2θ) 0
sin(2θ) cos(2θ) sin(2θ) sin2(2θ) 0

0 0 0 0

 (2.17)

The next element to consider is the linear retarder. Usually, it is made from a birefringent
element whose fast and slow axis are made to be orthogonal. The direction of the fast axis is
marked in the plate and is taken as the reference from where the angle of rotation θ of the device,
with respect to the horizontal, is measured. When settled to 0, the fast axis will coincide with
our x direction. The polarization direction of the incident beam is decomposed with respect to
the fast and slow directions of the plate, causing a delay in the fraction of the beam that travels
through the slow axis and an advance in the part that travels through the fast axis. The emergent
beam, thus, acquires a total phase retardation δ between its orthogonal components. The Jones
and Mueller matrices for a linear retarder with fast axis at an angle θ and retardation of δ are
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(Goldstein, 2011):

JR(δ, θ) =

[
eiδ cos2(θ) + sin2(θ) (eiδ − 1) sin(θ) cos(θ)

(eiδ − 1) sin(θ) cos(θ) eiδ sin2(θ) + cos2(θ)

]
(2.18)

MR(δ, θ) =
1

2


1 0 0 0
0 cos2(2θ) + sin2(2θ) cos(δ) (1− cos(δ)) sin(2θ) cos(2θ) − sin(2θ) sin(δ)
0 (1− cos(δ)) sin(2θ) cos(2θ) sin2(2θ) + cos2(2θ) cos(δ) cos(2θ) sin(δ)
0 sin(2θ) sin(δ) − cos(2θ) sin(δ) cos(δ)


(2.19)

There are two linear retarders that are of special interest: The half wave-plate (HWP) and the
quarter wave-plate (QWP). The �rst introduces a phase of π (which is half the spatial period,
λ = 2π, of the wave, hence its name. This device is also represented as λ/2 WP) between the
orthogonal components of the electric �eld. When applied to a linearly polarized �eld, the HWP
rotates the direction of polarization by twice the angle between the direction of polarization and
the fast axis of the wave-plate. The sense of rotation occurs towards the direction of the fast axis
of the plate. The matrices for the half wave-plate with fast axis rotated an angle θ are obtained
from equations 2.18 and 2.19 when substituting δ = π:

JR(
λ

2
, θ) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
(2.20)

MR(
λ

2
, θ) =

1

2


1 0 0 0
0 cos(4θ) sin(4θ) 0
0 sin(4θ) − cos(4θ) 0
0 0 0 −1

 (2.21)

Where a− sign was factored out from equation 2.20 and the trigonometric identities 2 sin(θ) cos(θ) =
sin(2θ) and cos2(θ)− sin2(θ) = cos(2θ) were used to simplify the �nal expressions.
From here, we can obtain the Jones and Mueller matrices of the HWP when its fast axis is at 0◦:

JR(
λ

2
, 0◦) =

[
1 0
0 −1

]
(2.22)

MR(
λ

2
, 0◦) =

1

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (2.23)

From the properties of rotation of the HWP explained above, it is possible to see that the rotated
linear states can also be generated with a horizontal polarizer (polarizer with its transmission
axis at 0◦) followed by a half wave-plate with its fast axis at θ/2, being θ the angle of the desired
polarization direction. The matrices for the horizontal linear polarizer are obtained when doing
θ = 0 on equations 2.16 and 2.17, (Goldstein, 2011):

JP(0◦) =

[
1 0
0 0

]
(2.24)

MP(0◦) =
1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (2.25)
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The other special case of linear retarder that we will be interested in, is the quarter wave-plate
(QWP). The quarter wave-plate is an element that introduces a retardation of π/2 (which is
a quarter of the spatial period of the wave, hence its name. This device is also represented as
λ/4 WP) between the orthogonal components of the electric �eld. When we use a polarizer
with its transmission axis at 0◦ followed by a quarter wave-plate with its fast axis at ±45◦,
we can generate circular right and left polarizations, respectively (in the �looking to the source
convention�). The Jones and Mueller matrix for this speci�c orientation of the QWP can be
obtained from equations 2.18 and 2.19 when placing δ = π/2 and θ = ±45◦:

JR(
λ

4
,±45◦) =

[
1 ±i
±i 1

]
(2.26)

MR(
λ

4
,±45◦) =


1 0 0 0
0 0 0 ∓1
0 0 1 0
0 ±1 0 0

 (2.27)

While the corresponding matrices for the QWP with its fast axis at 0◦ are:

JR(
λ

4
, 0◦) =

[
i 0
0 1

]
(2.28)

MR(
λ

4
, 0◦) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 (2.29)

At this stage, we can see that any of the desired states can be generated just with a linear polari-
zer and a quarter wave-plate. These two elements conform what we call the �Polarization State

Generator� (PSG) and placed in the mirrored con�guration (�rst the quarter wave plate, then
the linear polarizer), they give rise to the �Polarization State Analyzer� (PSA). The latter
needing also a detector, which is a camera in our case. Notice when analyzing linear polarization
we use only the polarizer and when analyzing circular polarizations we use the QWP at ±45◦

followed by the horizontal polarizer to analyze circular left and right polarizations, respectively.

2.1.3.1. Determination of the Stokes vector

Earlier we said that the generation and detection of 6 speci�c polarization states ({horizontal,
vertical, ±45◦, circular right and circular left}, respectively), would allow us to determine
the polarization of any beam of light. In order to achieve this, we use the ideal polarimetric
arrangement (IPA) method (Espinosa-Luna and Zhan, to be published in 2017) which consists
of measuring the intensity of the beam when the transmission axis of the polarizer is horizontal
(measurement registered as I0), vertical (registered as I90), at +45◦ (registered as I+45), at 135◦

(registered as I135), at 0 again when preceded by a quarter wave plate with fast axis at ±45◦

(the measured intensity will be called IL and IR, respectively).
When having all these measurements, the Stokes vector of the analyzed beam will be given by
(Espinosa-Luna and Zhan, to be published in 2017):

S =


I0 + I90
I0 − I90
I45 − I135
IR − IL

 (2.30)
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The determination of the Stokes vector of the beam at di�erent stages on the experimental setup
is needed in this work in order to assure that we are working with the desired polarizations and
also as a way of checking that our experimental arrangements work as expected.

2.1.3.2. Determination of the Mueller matrix

Going further, it is possible to determine all the Mueller matrix elements following a procedure
similar to the one described in the previous section. In this case, the sample under study is
illuminated with one of the polarizations of the set {horizontal, vertical, +45◦, circular right}
and then, the intensity of the emerging beam is registered when it is analyzed for each of the 4
polarization states. In this case, we use two index to label each intensity: The �rst one corresponds
to the polarization of the incident beam over the sample,(p→horizontal, s→ vertical, +→ +45◦,
r→circular right) and the second one to the polarization state being analyzed. For example, the
intensity registered when the beam is illuminated with horizontal polarization and analyzed by
circular right, will be labelled as Ipr. Finally, we can compute each element of the Mueller matrix
with the next expressions (Atondo-Rubio et al., 2005):

m00 =
1

2
(Ipp + Ips + Isp + Iss)

m01 =
1

2
(Ipp + Ips − Isp − Iss)

m02 = I+p + I+s −
1

2
(Ipp + Ips + Isp + Iss)

m03 = Irp + Irs −
1

2
(Ipp + Ips + Isp + Iss)

m10 =
1

2
(Ipp − Ips + Isp − Iss)

m11 =
1

2
(Ipp − Ips − Isp + Iss)

m12 = I+p − I+s −
1

2
(Ipp − Ips + Isp − Iss)

m13 = Irp − Irs −
1

2
(Ipp − Ips + Isp − Iss)

m20 = Ip+ + Is+ −
1

2
(Ipp + Ips + Isp + Iss)

m21 = Ip+ − Is+ −
1

2
(Ipp + Ips − Isp − Iss)

m22 = 2I++ − I+p − I+s − Ip+ − Is+ +
1

2
(Ipp + Ips + Isp + Iss)

m23 = 2Ir+ − Irp − Irs − Ip+ − Is+ +
1

2
(Ipp + Ips + Isp + Iss)

m30 = Ipr + Isr −
1

2
(Ipp + Ips + Isp + Iss)

m31 = Ipr − Isr −
1

2
(Ipp + Ips − Isp − Iss)

m32 = 2I+r − I+p − I+s − Ipr − Isr +
1

2
(Ipp + Ips + Isp + Iss)

m33 = 2Irr − Irp − Irs − Ipr − Isr +
1

2
(Ipp + Ips + Isp + Iss)

(2.31)
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Figure 2.2: Radial and azimuthal polarization modes graphically expressed as the linear combi-
nation of two orthogonally polarized HG modes, where the arrows represent electric �eld com-
ponents. Taken from Zhan (2009).

2.2. Unconventional polarization

The unconventional polarization is distinguished from the conventional one for the fact that
it has a non uniform spatial and phase distribution across the beam transversal section (Zhan,
2014). This means that each point on the transverse section has associated its own electric �eld
vector with di�erent orientation one from another, in contrast with the conventional polarized
beam, where all the electric �eld vectors associated to each point are identical among them. The
orientation and phase of these electric �eld vectors along with its localization at the transverse
section of the beam leads to di�erent modes of polarization, say radial (Er), azimuthal (Eφ)
or a combination of them.
The geometries of radially and azimuthally polarized beams are shown in �gure 2.2. The radial
and azimuthal modes can be obtained through a combination of the 1st order horizontal and
vertical Hermite-Gaussian beams, (Ψ10 and Ψ01, respectively, that also will be represented indis-
tinctly throughout this work as HG10 and HG01, respectively) with the appropriate polarization
distribution,Töppel et al. (2014):

Er =
1√
2

(Ψ10êx + Ψ01êy) (2.32)

Eφ =
1√
2

(−Ψ01êx + Ψ10êy) (2.33)

With êx and êy being the unitary vectors in the x and y directions, respectively. The Ψ10 and
Ψ01 (or HG10 and HG01) modes are the �rst order solutions in Cartesian coordinates for the
scalar Helmholtz equation, (Zhan, 2009):

(∇2 + k2)E = 0 (2.34)

With ∇2 being the Laplace operator, k = 2π/λ the wave number and E the amplitude of the
electric �eld.
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Mathematically, the Hermite-Gauss solution HGmn modes have the following form (Zhan, 2009):

u(x, y, z) = E0Hm(
√

2
x

w(z)
)Hn(

√
2

y

w(z)
)
w0

w(z)
exp[−iφmn(z)]exp[i

k

r

2

2q(z)] (2.35)

Where Hm(x) denotes the Hermite polynomials, E0 is a constant electric �eld amplitude, w(z) is
the beam size, w0 is the beam size at beam waist, z0 = πw2

0/λ is the Rayleigh range, q(z) = z−iz0
is the complex beam parameter and φmn(z) = (m+ n+ 1)tan−1(z/z0) is the Gouy phase shift.
Of course other representations for the azimuthal and radial polarizations are also possible. For
example, choosing a base constituted by the HG diagonal modes (represented here by Ψ±) with
±45◦ linear polarization(Töppel et al., 2014)*:

Er =
1√
2

(Ψ+ê+ + Ψ−ê−) (2.36)

Eφ =
1√
2

(Ψ−ê+ −Ψ+ê−) (2.37)

With Ψ± = (Ψ10 ±Ψ01)/
√

2 and ê± = (êx ± êy)/
√

2.
Another representation is obtained when choosing the Laguerre-Gaussian (LG) modes, (that are
the solutions in cylindrical coordinates to the equation 2.34 and will be represented also as ΨR

and ΨL) with circular polarizations (Töppel et al., 2014):

Er =
1√
2

(ΨLêR + ΨRêL) (2.38)

Eφ =
i√
2

(ΨLêR −ΨRêL) (2.39)

With ΨR = (Ψ10−iΨ01)/
√

2, ΨL = (Ψ10+iΨ01)/
√

2, êR = (êx−iêy)/
√

2 and êL = (êx+iêy)/
√

2.
The Laguerre-Gauss solution LGpl modes are given by(Zhan, 2009):

u(r, φ, z) = E0(
√

2
r

ω
)lLlp(2

r2

ω2
)
w0

w(z)
exp[−iφpl(z)]exp[i

k

2q(z)
r2]exp(ilφ) (2.40)

Where φpl(z) = (2p+ l+ 1)tan−1(z/z0) is the Gouy phase shift and ω the angular frequency of
the wave.
An image with these 3 di�erent representations for the radial polarization is shown in Figure 2.3.
Equations (2.32, 2.33, 2.36-2.39) are a special kind of unconventional polarization: they represent
classical entangled polarization states (Töppel et al., 2014). In this case, the entangled degrees
of freedom are the polarization states and the spatial distributions (Hermite-Gauss or Laguerre-
Gauss modes). As pointed out clearly by Töppel,et al., they are nonseparable or clasically entan-
gled, because �one needs two coordinate-independent Jones vectors and two independent scalar
�elds (modes) to represent the electric �eld�. This is an intra-system or classical entanglement,
because occurs at a single beam of light; contrary to the inter-system or quantum entanglement,
which occurs between two di�erent beams.
There are several ways to generate unconventional polarization. They can be grouped in active
and passive methods. In the active methods the generation is made inside the laser cavity, while
in the passive methods the generation is obtained outside of it (Zhan, 2009). In this thesis work,
we use a passive method to obtain azimuthal polarization.

*Notice that from here, all the equations corresponding to azimuthal polarization were obtained following the
convention presented by (Töppel et al., 2014), since they are not explicitly stated in their article.
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Figure 2.3: a) Radial polarization and its representation as the linear combination of two ort-
hogonally polarized modes in 3 di�erent basis: b) horizontal and vertical HG modes (Ψ10 and
Ψ01), c) diagonal HG modes (Ψ+ and Ψ−), d) Laguerre-Gaussian modes (ΨR and ΨL). Taken
from Töppel et al. (2014).

2.3. Description of the main stages of the experimental arrange-
ment

2.3.1. Generation of azimuthally polarized light: The S-waveplate

In order to generate an azimuthally polarized beam of light, it is used a commercial, passive
plate converter, known as S-waveplate (Altechna (2013)). This device was developed at the group
of Optoelectronics Research Centre at Southampton University, by Prof. Peter G. Kazansky. It
is a single optical element, produced by direct laser writing technique that uses ultra-short
(femto-second) pulses of light to form birefringence self-assembled nano gratings in a transparent
material (BK7). The period of the grating is smaller than the wavelength of a visible light. The
con�guration of nano gratings occupies a space of 6 mm and its distribution is shown in �gure
2.4a.
The device we have employed operates at 532.8 nm and converts horizontally linear polarized
light into azimuthally polarized light when the mark in the plate is oriented at −45◦ with respect
to the horizontal. A radially polarized beam is obtained when the mark is oriented at 45◦ for the
same incident polarization. These facts di�er from the manual�s speci�cations and were observed
and experimentally determined for several of our group members (see for example Aguilar (2017)).
A photograph of the S-waveplate between crossed polarizers can be found in Altechna web page:
[http://www.altechna.com/product_details.php?id=1048] and is shown in Figure 2.4b.

2.3.2. Mode converter

We use here the proposal by Beijersbegen et al. (1992) to construct a mode converter by the
use of two identical cylindrical lenses of focal length of fcyl, separated a distance of 2fcyl (π mode

http://www.altechna.com/product_details.php?id=1048
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(a) (b)

Figure 2.4: a)Geometrical disposition of the nano gratings in the s-wave converter. Taken from
Beresna and Kazansky (2014). b) Photograph of the S-waveplate between crossed polarizers.
Taken from the web-page of Altechna.

converter, which transforms HG45◦ and HG−45◦ into HG10 and HG01, respectively) or fcyl
√

2
(π/2 converter which transforms LG10 and LG01 modes into HG10 and HG01, respectively).
They begin by showing that a conversion is possible from the fact that a LG mode and a HG
mode whose principal axes make an angle of 45◦ with the (x,y) axes, can be both decomposed
in the same constituent set (Beijersbegen et al., 1992):

uLGnm(x, y, z) =
N∑
k=0

ikb(n,m, k)uN−k,kHG(x, y, z) (2.41)

with real coe�cients (Beijersbegen et al., 1992)

b(n,m, k) =

(
(N − k)! k!

2Nn!m!

1/2
)

1

k!

dk

dtk
[(1− t)n(1 + t)m]t=0 (2.42)

The factor in equation 2.41 corresponds to a π/2 relative phase di�erence between successive
components. While for the HG mode described before:

uHGnm

(
x+ y√

2
,
x− y√

2
, z

)
=

N∑
k=0

b(n,m, k)uHGN−k,k(x, y, z) (2.43)

With the same real coe�cients b(n,m,k) as above. In this expansion, however, the successive
components are in phase. The authors point out that a conversion between these two modes
is possible by adding the adequate phase and they propose to use the Gouy phase ψ(z) of
a Gaussian mode, i.e. �the phase shift that the beam undergoes when going through a waist
compared to that of a plane wave� (Beijersbegen et al., 1992). Therefore, the idea is just to make
astigmatic a beam in a con�ned region only and isotropic outside that region. In this way, the
HG components oriented along the axes of astigmatism will gain a phase di�erence while passing
through this region. If a cylindrical lens is placed at the position where the two transverse radii
of astigmatic beam are equal, the radii of curvature can be matched such that the beam outside
the lens is no longer astigmatic. Going further, if an identical cylindrical lens is also placed on
the other side of the waist and the beam is properly mode-matched, the beam is astigmatic only
between the two lenses.
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When doing the corresponding analysis, it is seen that, in order to obtain the desired phase, the
distance between the lenses is 2fcyl for the π converter and fcyl

√
2 for the π/2 converter.

Notice that the π converter (Uπ) acts as a HWP for modes and as such, it can be expressed
through the Jones matrix for a HWP rotated an angle θ = π

8 (Töppel et al., 2014)*:

Uπ(π/8) =
−i√

2

[
1 1
1 −1

]
(2.44)

While the π/2 converter (Uπ
2
) acts as a QWP for modes and as such, can be expressed through

the Jones matrix for a QWP rotated an angle θ = π
4 , (Töppel et al., 2014)*:

Uπ
2
(π/4) =

1√
2

[
1 −i
−i 1

]
(2.45)

Notice that Töppel et al. (2014) describe the polarization along the propagation direction.
The π/2 converter has another restriction: the input beam must have a Rayleigh range, zR, given
by (Beijersbegen et al. (1992)):

zR = (1 + 1/
√

2)fcyl (2.46)

in order to full�ll the mode-matching condition, which corresponds to a beamwaist, ω02, between
the cylindrical lenses of (Padgett et al., 1996)

ω02 =
√
λzR/π (2.47)

From here we know that, experimentally, we can achieve the mode-matching condition using a
lens of focal length f ≥ f0, with (Marcuse, 1982)

f0 =
π

λ
ω01ω02 (2.48)

Where ω01 is the beamwaist of the incident available beam of light and ω02 is the desired beam-
waist. The mode-matching lens will be placed at a distance, (Marcuse, 1982):

d1 = f ± ω01

ω02

√
f2 − f20 (2.49)

from the incident beamwaist and the desired beamwaist will be at a distance d2 of the mode-
matching lens, (Marcuse, 1982):

d2 = f ± ω02

ω01

√
f2 − f20 (2.50)

So, choosing the minimum required focal length of the mode-matching lens, f = f0 we will put
such a lens at a distance f0 from the incident beamwaist and we will place the mode converter at
a distance f0 from the mode-matching lens, where the desired beamwaist is generated. All these
quantities are represented in the Figure 2.5.

*These expressions were obtained following the Töppel et al. (2014) convention, since they are not explicitly
stated in their article.
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Figure 2.5: Mode-matching of a Gaussian beam by means of a lens. Taken from Marcuse (1982).

Figure 2.6: Physical im-
plementation of the mo-
de beam splitter. Ta-
ken from Töppel et al.
(2014).

2.3.3. Mode beam splitter

The mode beam splitter is an ingenious arrangement capable of divide any incident beam
into its HG10 and HG01 components. It was �rst proposed by (Sasada and Okamoto, 2003) and
consisted of a Mach-Zehnder interferometer with an extra mirror in one of its arms. The inclusion
of this mirror allows to distinguish between the HG10 and the HG01 modes, taking advantage of
its symmetry: the HG01 mode is symmetric under re�ection through the y axis while the HG10

mode is anti-symmetric, thus after re�ection the anti-symmetric modes get an extra-phase of
π while the symmetric-modes continue una�ected. This setup worked as transverse mode-beam
splitter when the input beam was linearly x or y polarized and acted as a polarizing beam splitter
when the input beam was a HG10 or HG01 mode. (Sasada and Okamoto, 2003). However, for any
other combination (say a diagonal HG10 mode with linear polarization at 45◦), the output beam
was an hybrid state, because the interferometer was not capable of distinguish between modes
with the same parity, (Sasada and Okamoto, 2003). This means that, if we send an azimuthal
beam, because its orthogonal components are odd bases, they would be sent to the same port.
This arrangement was latter modi�ed by (Töppel et al., 2014), who added 2 half wave plates
with their fast axes horizontal in the other arm, as shown in the Figure 2.6. The outputs of this
new arrangement are the orthogonal HG10 and HG01 modes that will appear in one or anot-
her port depending on the polarization of the constitute basis associated to the unconventional
polarization state under study. Thus allowing to decompose the azimuthal beam into its HG01

x polarized and HG10 y polarized basis. In order that the modi�ed Mach-Zehnder interferome-
ter (MMZI) exhibits this behavior (acts as a mode-beam splitter), several conditions must be
satis�ed, (Töppel et al., 2014):

The beam splitters used in the arrangement must be such that the phase acquired between
the x and y polarization components in re�ection through any of the input ports is π, (the
same caused by the mirrors) and nothing in transmission.
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Figure 2.7: Schematic diagram of the experimental process.

The phase di�erence between the arms must be of π (this includes the phase caused by the
di�erence in geometrical paths).

This setup has important implications because it allows to sorter the beam depending on its mode
symmetry and polarization, thus having direct applications in quantum cryptography (Luda et
al., 2014).

2.4. Assembly of all components

Once we had reviewed each of the main components of the complete arrangement, we are
now in position to explain how they are assembled in order to work as a whole. The process is ex-
plained in the schematic diagram of Figure 2.7. We follow a sequential process: The azimuthally
polarized beam is generated and made to pass through the sample, then the beam (that we will
call the sample beam) is redirected to mode converter A (MCA) and passed through the modi�ed
Mach-Zehnder interferometer (MMZI). Later, the resultant interferograms at each output port
are analyzed using a polarization state analyzer (PSA) and registered as images using a camera.
Once we have the information for MCA, we proceed to adequate MCA to obtain MCB, redirect
the sample beam to pass through the MCB and repeat the steps from here. Once the data is
collected, we redirect the light to pass through MCC and follow the previous procedure in order
to obtain the images for this mode converter. Once we have all the necessary information, we
process them using the algorithms shown in Appendix C.2 in order to obtain the Mueller matrix
of the sample.
We point out here that our experimental process considerably di�ers from the original one (Töp-
pel et al., 2014), which considers the use of 26 identical photodetectors (that could be reduced
to a minimum of 16), for the Mueller matrix determination at a single shot. Taking into account
our critical economical situation, the experimental implementation of the original proposal is
outside of our possibilities. Instead, we have proposed to work with images (which provide us
with spatially resolved intensity) and a single CMOS camera to detect the 16 measurements that
will allow us to �nd the Mueller matrix of our samples.
In order to correctly identify which image provides which intensity data,i.e. in order to know
which image will be our Iµν data source, we present a diagram following the process that the
beam undergoes when passing through the complete optical arrangement. This process is shown
in Figure 2.8. The basic idea is as follows: We have a classically entangled beam of light; the
azimuthal beam, which can be represented as a linear combination of the appropriate modes
and polarizations (as was explained in Section 2.2). We work with 3 di�erent basis: Linear hori-
zontal/vertical, linear at ±45◦ and circular right/left. After passing through a transparent, non
depolarizing sample, (in the case shown in diagram of Figure 2.8, this sample is air), the origi-
nal polarization is altered while the modes keep unchanged. Then, we make a change of mode
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basis without altering the polarization through an appropriate mode converter: MCA for circu-
lar basis, which transforms Laguerre-Gaussian modes in Hermite-Gaussian modes; MCB which
converts diagonal Hermite-Gaussian modes in horizontal and vertical Hermite-Gaussian modes
and MCC which leaves the modes unaltered. Finally, a mode beam splitter (Modi�ed Mach-
Zehnder interferometer) is used in order to separate the beam into its horizontal and vertical
Hermite-Gaussian mode components without changing the polarization of the beam. In this way,
we are able to independently identify how each of our conventional polarization basis elements
have been altered by the sample using a polarization state analyzer and a camera. The Mueller
matrix of the sample is obtained through an algorithm that processes the images following the
expressions derived by Töppel, which are shown in Appendix A.
With this diagram, it is very easy and instructive to compute the resultant Mueller matrix for
air, just taking into account that the normalized theoretical intensity measured at the output
ports of the interferometer will be 1 if the state of polarization being analyzed coincides with
the polarization of the output mode (for example I01 which is the intensity obtained when we
place a horizontal polarizer to measure the Ψ01êx mode); 0 if we are measuring the orthogonal
polarization (for example I11, which is the intensity obtained when we place a linear polarizer
with its transmission axis at 90◦ with respect to the horizontal to analyze the Ψ01êx mode) and
1/2 if the tested polarization can be decomposed in the analyzed polarization basis (for example
I21, which is the intensity obtained when we place the linear polarizer at 45◦ to analyze the
Ψ01êx mode).
Another remark has to be done: The relationships presented by Töppel et al. (2014) are obtained
following a di�erent ordering (quantum ordering) for the Pauli matrices, which lead to di�erent
ordering to the Stokes vectors and to the Mueller matrices. However, Töppel Mueller matrix and
the Mueller matrix we are used to (the matrices presented in Subsection 2.1.3 and which Aiello
refers to be in the Born-Wolf convention), are related through the simple expression(Aiello and
Woerdman, 2006):

MBW = Q−1BWMQBW (2.51)

With (Aiello and Woerdman, 2006)

QBW =


1 0 0 0
0 0 1 0
0 0 0 −1
0 1 0 0

 (2.52)

and

Q−1BW =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 −1 0

 (2.53)

Where MBW is the Mueller matrix as de�ned by Born and Wolf, QBW is the transformation
matrix between Born-Wolf and Töppel et. al. conventions, Q−1BW is the inverse matrix of the
matrix transformation QBW and M is the Mueller matrix as obtained by Töppel.
We added the equations 2.51-2.53 at the end of our code when obtaining the experimental Mueller
matrices of our samples when using azimuthal polarization in order to obtain the resultant
Mueller matrix in the optical convention.
When taking this into account, the reader can verify that the obtained and converted theoretical
Mueller matrices for a λ/2 WP @0◦ and a λ/4 WP @0◦ are the same as the ones presented in
equations 2.23 and 2.29, respectively. These procedures are explicitly shown in the corresponding
Results Section.
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Also, for the diagram presented here, we can see that the Mueller matrix for air is the identity
matrix, as can be veri�ed following the preceding procedure.
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Figure 2.8: Diagram of the changes in polarization and spatial degrees of freedom that the
azimuthal beam undergoes when passing through the experimental arrangement.





Chapter 3

Experimental Setup

Success is going from failure to failure without

losing your enthusiasm.

Winston Churchill.

Summary: This Chapter will cover the methodological procedure that was followed during

the experiments in order to properly handle each step of the complete arrangement. During

the process, we found several challenges to solve in order to get each individual part working

properly. We mention these challenges and how they were solved. Finally, we describe how

the system was used as a whole in order to obtain the images from which the Mueller matrix

of air and 2 waveplates samples were derived.

3.1. Generation of the azimuthally polarized beam of light

The �rst step in the experimental setup consisted in generate the best azimuthal polarization
that can be provided by the S-waveplate. For this, it was necessary to �lter and collimate the
beam provided by the Thorlabs CPS532 laser diode that was used as a light source, since it was
experimentally noticed that the cross-section intensity of this beam was not uniform; a key fact
to be take care of if we wish to achieve the characteristic symmetry of the azimuthal polarization
and of the modes that compose it.
For the spatial �ltering process, we used the Newport 910A Spatial Filter, together with its
suggested M-10x Microscope Objective and 910PH-25 Pinhole. In order to collimate the beam
we used a biconvex lens of 50 mm focal length which provided us with a collimated beam of 5
mm in diameter.
For the linear polarization required by the S-waveplate, we used the CM1-PBS251 polarizing
beam splitter from Thorlabs, since we also wanted to split the beam in order to use it in other
experiments. Once the beam got linear horizontal polarization, it was sent to the S-waveplate
passing through an iris diaphragm in order to control the beam size. This is important for the
mode-matching process, as we will see later. The reference mark on the S-waveplate was oriented
to -45◦ with respect to the horizontal plane (parallel to the optical table) in order to generate
azimuthal polarization.
A schematic diagram of the elements needed for the generation of the azimuthally polarized
beam, is shown in Figure 3.1.
In order to test the quality of the unconventional polarization generated, it was used a program

23
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Figure 3.1: Schematic diagram showing the needed elements and its disposition in order to prepare
the azimuthally polarized beam.

developed by our group (GIPYS at CIO, Mexico) that follows the Spatial Average Symmetry
(SAS) metric, proposed by the head of our group (Espinosa-Luna et al., 2017). Basically, the SAS
measures the spatial average values associated to each Stokes vector. If the beam has associated
axially-symmetric polarization components, then the SAS associated to the beam provides a
Stokes vector with values corresponding to the unpolarized light. On the other hand, if there is
not axial-symmetry, the SAS numerical value indicates which polarization is predominant within
the beam under analysis.
The computational algorithm, that was developed using the Matlab program, can be seen in
Appendix C.3 and provide us the Stokes parameters in form of images and also as spatially
averaged numerical values.
Once the Stokes parameters in images and numerical values were checked and considered the
best we can obtain with our experimental resources, we proceed to the next step: the mode con-
verters. The modes associated with each mentioned polarization for the azimuthally polarized
beam generated can be seen in Figure 4.1 in Chapter 4. The corresponding Stokes parameters
in images are shown in Figure 4.2 in the same Chapter.

3.2. Implementation of the mode converters

As was explained in Chapter 2, besides the mode converter C (MMC), which is air, the
system employs another two mode converters: one called π mode converter (which acts similar
to a half-waveplate, rotating the HG±45◦ modes to HG10,01 modes) and one named π/2 mode
converter (which acts similar to a quarter-waveplate, transforming LG modes to HG modes and
vice versa). The three con�gurations a�ect only the spatial distribution of the mode, leaving the
polarization unchanged. From these later two con�gurations, the one that is more troublesome
is the π/2 con�guration, since it also requires the beam to be mode-matched to the converter,
unlike the π con�guration, which works with a collimated beam of light.
For the mode-matching process, it was used a f = 500 mm doublet lens, which was the one that
best matched our conditions. According to the theory presented in Chapter 2, when doing the
calculations for our optical components, we needed a lens of focal length of about 1250 mm when
the diameter of the input collimated beam was 5 mm (ω01 =2.5mm), but, when the beamwaist
of the beam is reduced, the focal length of the needed mode-matching lens also decreases, as can
be clearly seen from Equation 2.48 in Chapter 2.
For our optical components speci�cations, we found a perfect theoretical agreement between the
minimum focal length of the mode-matching lens needed and the lens we had available when the
beamwaist of the input collimated beam was 1 mm. The calculation of this parameter is shown in
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Rayleigh Range, zR zR = (1 + 1/
√

2)fcyl = (1 + 1/
√

2)24,93mm =
42,56mm

Beamwaist produced at the π/2 mode con-
verter, ω02

ω02 =
√
λzR/π =

√
532E−9(42,558E−3)/π =

84,893µm

Minimum focal length required for the
mode-matching lens, f0

f0 = π
λω01ω02 = π

532E−9 (1E−3)(84,90E−6) =
500mm

Table 3.1: Mode-matching related parameters for our optical system

Table 3.1, which also shows the Rayleigh range (zR) and the beamwaist generated at the center
of the π/2 converter (ω02). The inclusion of the diaphragm help us to correct any small deviation
in the theoretical values of the optical components by experimentally adjusting the radius of the
input beam (the ω01 parameter) until we observe the best mode conversion.
The procedure to set the π/2 converter was the following:

We placed and aligned the f = 500 mm doublet (mode-matching lens) after the S-
waveplate, leaving a considerable space in order to be able to place temporal optical ele-
ments, like polarization state generators/analyzers and the camera. We need this space also
to place the sample under test later on.

Since we ran out of space in the optical table, we redirected the light with 2 auxiliary
mirrors, as it is shown in the Figure 3.3.

With the help of the camera, we determined experimentally the position of the focal length
of the doublet.

We measured the distance from the second auxiliary mirror to the camera sensor. At this
distance will be positioned the center of the π/2 converter.

We made a reference screen tool with millimeter paper taped on a cage plate. We used this
very often in the alignment of the components of the system.

The cylindrical lenses were placed in their rotatory mountings. Before securing them, we
looked at our screen through the lens in order to align the plano axis vertically in the
mounting (see Figure 3.2 for plano axis reference). The lens was then �xed. We did the
same for both lenses.

The mountings were placed into a post and then into a post holder. Then, 4 engraved bars
were �xed to the mounting.

The mounting was placed momentarily after the laser, which sends a collimated beam.
We slide our screen through the engraved rods in order to �nd experimentally the focal
distance of each lens. We established in a more precise way the direction of the plano axis
of each lens also.

Once we had �xed our references, we kept just one lens in its post holder and attached the
other through the engraved rods.

We adjusted the rotatory mountings at the desired distance (f
√

2) and the desired angle
(45◦) for this con�guration.

We placed the lenses so that the focal point of the doublet was at the center of the system.
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Figure 3.2: Reference �gure for the cy-
linder lens. Taken from Edmund optics
page: [https://www.edmundoptics.com/
resources/application-notes/optics/

considerations-when-using-cylinder-lenses/]

Figure 3.3: Schematic diagram showing the needed elements and its disposition in order to mount
the π/2 mode converter. The preparation of the beam refers to Figure 3.1

Carefully, we aligned the system so that the beam after the second mirror was impinging in
and propagating through the center of the cylinder lens system. This step is very important
and must be done precisely since any misalignment can cause, not only deviation of the
beam but also important errors in the mode conversion.

In order to probe the correct operation of the mode converter, we sent a Laguerre-Gaussian
mode to the converter. To do this, we placed a λ/4 waveplate with its fast axis at ±45◦ with
respect to the horizontal right after the S-waveplate and then a Glan-Thompson polarizer
with its transmission axis at 0◦ with respect to the same reference. Notice the beam then
had a donut shape and was horizontally polarized.

If the process was correctly done, anHG10 or anHG01 mode can be seen after the converter.

Finally, the converted beam was collimated with the use of a 10x Microscope Objective
and a f = 100 mm doublet.

A schematic diagram showing the components for this stage is shown in Figure 3.3.
As previously discussed, this con�guration of the mode converter is more di�cult to assemble
than the π con�guration, since it requires more optical elements to work correctly. Any misalign-
ment or error in any parameter selected can lead to an incorrect conversion or a non-conversion

https://www.edmundoptics.com/resources/application-notes/optics/considerations-when-using-cylinder-lenses/
https://www.edmundoptics.com/resources/application-notes/optics/considerations-when-using-cylinder-lenses/
https://www.edmundoptics.com/resources/application-notes/optics/considerations-when-using-cylinder-lenses/
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Figure 3.4: Schematic diagram showing the needed elements and their disposition in order to
mount the π mode converter. The preparation of the beam refers to Figure 3.1

at all. Our best results are shown in Figure 4.3, Chapter 4 and our observations and conclusions
about this process are discussed in Chapter 5.
For the π con�guration, it is su�cient to take out the doublet (since this converter works with
collimated light), change the distance between cylinder lenses to 2f and set their angles to 22,5◦.
Since the system of lenses now is in the 2f con�guration, the emerging beam is collimated and
there is no need for a collimation system, so we take out these components also leaving the rest
of the components in their previous positions, as shown in Figure 3.4.
To check the correct performance of the π converter, we sent a HG diagonal beam with ±45◦

polarization to the system. When properly set, an HG10 or HG01 mode can be seen after the
collimating system.
Notice neither the π/2 nor the π converter a�ect polarization; they just a�ect spatial distribution.
So, another way to check for correct performance without the use of a polarization state selector
after the s-waveplate, is to use a polarization state analyzer after the converter. We originally
sent a donut-shape beam with azimuthal polarization, which has associated a Hermite-Gaussian
shape horizontally and vertically oriented for vertical and horizontal polarizations, respectively,
Hermite-Gaussian shape with ±45◦ orientation for ∓45◦ polarization and Laguerre-Gaussian
(donut) shape for circular right and left polarizations, (as can be seen in the experimental ima-
ges of Figure 4.1). So, after the π converter, we expect to see HG modes oriented at ±45◦ for
horizontal and vertical polarization; HG modes horizontally and vertically oriented for the ±45◦

polarization and donut-shape for circular right and left polarizations.
When using the π/2 converter, we expect to see donut-shape for horizontal and vertical pola-
rizations, the original Hermite-Gauss at ±45◦ for ∓45◦ and Hermite-Gaussian horizontally and
vertically oriented for circular right and left polarizations.
These expected experimental results can be seen in Figure 4.3, Chapter 4.

3.3. Implementation of the mode beam splitter

As explained in Chapter 2, in order to have the Modi�ed Mach-Zehnder Interferometer (MM-
ZI)working as mode-beam splitter, it is required to have a phase di�erence of π between the arms.
Due to the low coherence of our laser source, (about 1.8 mm according to estimations of the Thor-
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Figure 3.5: Schematic diagram
of the mounted modi�ed Mach-
Zehnder interferometer (MMZI).
BS≡Beam Splitter, M≡Mirror,
AM≡Auxiliary Mirror, HWP≡Half
waveplate, P≡Port.

labs technical support), it was necessary to compensate the geometrical path di�erence between
paths. This was done displacing the single mirror from the 1rst beam splitter. This change made
necessary to slightly rotate the 2nd beam splitter, in order to have both beams interfering. A
schematic diagram of the mounted MMZI is shown in Figure 3.5.
As can be intuited, this con�guration is even more complicated to assemble than the conventio-
nal one, because of the break of symmetry and the use of additional optical elements. So, in the
process of its assembly, several things must be taken into account:

The cube beam splitters (BS) introduce a slight deviation in height of the transmitted
and re�ected beams, being bigger the di�erence as more deviated is the entrance beam
(say, it is tilted in any direction), even if the beam is entering at the center of the BS. In
order to minimize this deviation, 2 auxiliary mirrors were placed at the entrance of the
interferometer in order to assure a well aligned entrance beam.

The position of the third mirror was �xed taken as reference the geometrical path of the
arm with the two mirrors (Path 1), so we have approximately equal geometrical paths.

Once the mirrors were placed and centered, the tilt of the single mirror was adjusted to
conserve the height of the re�ected beam constant. By tilting the 2 mirrors in the other
arm, the height of the corresponding beam was adjusted to be the same. This helps to have
beams without tilt between them; a necessary condition to have interferograms without
fringes (thanks to Dr. Zacarías Malacara Hernández for his scienti�c support with technical
aspects concerning the interferometer).

The second beam splitter was centered and rotated in order to have the two beams inter-
fering. The di�erence in height in the interfering beams was corrected with a tilt of the
BS. Notice that, in order to have interferograms without fringes, the BS has to be placed
accurately so both beams enter at the center of each side of the BS.

Depending on the available mountings for each element, it can be easier to slightly displace
and rotate the 3rd mirror in order to have no fringes. Once we have reached this condition,
the two half wave-plates (HWP) are placed and aligned. In order to properly set the
direction of their fast axis, a Glan-Thompson polarizer with its transmission axis at 0◦ was
placed at the entrance of the interferometer and an identical Glan-Thompson polarizer was
placed at one output port with its transmission axis at 90◦. The HWP of that port was
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rotated in order to have a minimum transmission. The procedure was repeated at the other
port. This step help us to compensate minor changes in polarization caused by re�ection
in the mirrors, thus producing a better visibility of the interferograms.

When doing all this steps correctly, the orthogonal modes HG10 and HG01 can be seen at
the output ports when an azimuthal beam is entering the interferometer. Notice, because
the split of the modes is done according to the phase di�erence between the paths, the
modes can be seen in one or the other port and vary according to change in pressure,
temperature or air �ow in the interferometer. Even though, the outputs are stable enough
in laboratory conditions, which make measurements possible when being careful not to
cause variations during data collection.

Experimental images of the outputs obtained when sending an azimuthal beam to the interfe-
rometer, can be seen in Chapter 4 along with their Stokes parameters displayed as images and
spatially averaged numerical values.





Chapter 4

Results, Analysis and Discussion

I was taught that the way of progress is neither swift

nor easy.

Marie Curie

Summary: We present the images obtained in each stage of the arrangement and their

corresponding Stokes parameters, both in image and numerical representations, provided by

the spatial average symmetry (SAS) code. Each set of images is analyzed in order to present

the brief discussions that led us to the conclusions shown in Chapter 5.

4.1. Results for the generation process of the azimuthal beam

As mentioned in Chapter 3, the �rst big step in our experimental setup was to generate the
best azimuthally polarized beam, since it will be our main tool to test our sample. Once the out-
put from the laser diode was spatially �ltered, collimated, horizontally polarized, passed trough
the iris diaphragm and sent to the S-waveplate, we checked for its polarization. For this purpose,
we employed a polarization state analyzer (described in Chapter 2) to obtain the polarimetric
analysis of the azimuthally polarized beam of light, which is shown in Figure 4.1. The images
correspond to a beam of 2 mm in diameter. We used 3 neutral density �lters at the laser output
and set the exposure time in the camera to 0.31 ms in order to avoid overexposure.
Observe the images obtained in Figure 4.1 when the polarization state analyzer (PSA) is used
as a linear polarizer �lter (Figures 4.1a-4.1d), it allows the transmission of the intensity distri-
bution along its transmission axis and obstructs it along its extinction axis. For example, Figure
4.1a shows total attenuation occurs at the horizontal direction, where the incident electric �eld
components are perpendicular to the analyzer�s transmission axis, while a maximum intensity
is appreciated at the vertical direction, where the electric �eld components are parallel to the
transmission axis. The previous reasoning explain why the Figure 4.1b is orthogonal to Figure
4.1a and also why Figures 4.1c and 4.1d are also orthogonal each to the other. The sense of
the azimuthal polarization is determined through the analysis of both, circular right- and left-
handed polarizations, respectively; in this case, Figures 4.1e and 4.1f show there exist a similar
contribution from both polarizations.

31
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Modes obtained from the azimuthal beam when only a speci�c type of conventional
polarization is selected. a)Linear Horizontal. b) Linear Vertical. c)Linear at 45◦. d)Linear at
−45◦. e)Circular right and f)Circular left polarization states.
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It is very important to take into account that the experimental images �ltered with the
polarization state analyzer (PSA) provide information of the type and spatial distribution of
the polarization contained within the beam under study, where a complete analysis through the
Stokes vector is required in order to determine the polarimetric and spatial behavior. In this
sense, the application of the intensity measurements according to Equation 2.30 provides the
most complete information, where I0 is associated to Figure 4.1a, I90 to Figure 4.1b, I45 to
Figure 4.1c, I135 to Figure 4.1d, IR to Figure 4.1e, and IL to Figure 4.1f. The images shown in
Figure 4.2 are depicted by using varying color tabs, where the red is associated to positive values
and the blue is associated to negative values. Even when Figure 4.2 provides spatially-resolved
information of the Stokes parameters, it lacks from information related with the global or total
tendency associated to the polarization state, as a whole. This means, in practice, Figure 4.2
provides only qualitative information. Fortunately, there exist a very simple and logic procedure
to become quantitative the information provided by the image Stokes vector (Figure 4.2). The
spatial average symmetry (SAS) metric, is a recently published proposal by our GIPYS Group,
which provides a numerical value associated to each Stokes image (Espinosa-Luna et al., 2017);
it is obtained by computing the spatial average value associated to each Stokes image. In this
case, Figure 4.2 is associated to the best azimuthal beam generated in this work, and even when
it is very close to the ideal expected result for a perfectly generated azimuthal beam (spatial
average Stokes numerically equivalent to an unpolarized state)*, the results obtained:[1 0.0455
0.0360 0.1187]ᵀ, show a slightly tendency to a global behavior similar to an elliptical right-handed
polarization state.
After a lot of times trying to improve the quality of the beam generated, we have arrived at the
conclusion this is the best result obtainable from the experimental conditions employed, including
the own capability of the S-waveplate device.

*Due to the fact that the azimuthal polarization globally does not have a tendency for a speci�c conventional
polarization, we expect the same Stokes vector as the one for unpolarized light: [1 0 0 0]ᵀ. Here ᵀ means transpose.
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(a) (b)

(c) (d)

Figure 4.2: Stokes parameters in images for the azimuthally polarized generated beam. The
Spatial Average Symmetry (SAS) provides the numerical values: [1 0.0455 0.0360 0.1187]ᵀ.
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4.2. Results for the mode converters

As explained in the Theoretical Section (2), the complete arrangement makes use of 3 mode
converters:

Mode converter A (MCA). π/2 converter. Cylinder lenses separated fcyl
√

2, with their
axis rotated at 45◦.

Mode converter B (MCB). π converter. Cylinder lenses separated a distance of 2fcyl with
their axis rotated at 22,5◦.

Mode converter C (MCC). Air.

We will show here the results obtained when the mode converters A and B are implemented and
tested for our azimuthal beam, which is the second big step in our experimental procedure.
One helpful idea when mounting the mode converter A or B, is to select one speci�c mode from
the azimuthal beam in order to directly check for the resultant conversion, this allows to make
some �ne adjustments if needed. For example, when placing the MCA, we select a LG mode from
our probe beam and see if we obtain the corresponding HG mode. We can do this by placing a
QWP with its fast axis at ±45◦ followed by a horizontal polarizer right after the S-waveplate.
When placing the MCB, we send a diagonal HG mode by placing a polarizer with its transmis-
sion axis at ±45◦ after the S-waveplate and then we verify the obtention of the HG horizontal
or vertical modes at the output of the converter.
Once we have the best conversion, we remove the auxiliary polarizing elements and test the
converters for the azimuthal beam. For this, we compute the Stokes parameters using the SAS
method, employing the PSA explained before. The modes obtained when doing the polarimetric
analysis are shown in Figure 4.3 for the π/2 converter and in Figure 4.5 for the π converter. The
Stokes parameters in images are also shown in Figures 4.4 for the π/2 converter and in Figure
4.6 for the π converter.

4.2.1. Results for the MCA: π/2 converter

From Figure 4.3, we can see clearly that, after passing through the π/2 converter, the modes
originally associated with horizontal/vertical polarizations and the ones originally associated
with circular right and circular left polarizations, are now interchanged, in complete concordance
with the expected functioning of this converter. Even more, when computing the Stokes vector
(Figure 4.4), we can see that the azimuthal polarization is maintained; since the beam still does
not show a tendency to any speci�c polarization. In this way, we have managed to work with the
spatial degree of freedom without change the polarization distribution of the beam.
Even though in Figure 4.3 it can be seen a markable degradation in the symmetry of the modes
as compared with the original ones, from all our tested con�gurations (di�erent mode-matching
lenses, diaphragm apertures and tons of alignments), we consider these as our best results. In
any other cases the geometry of the Hermite-Gaussian modes were departing too much from the
lobes geometry and showed very distorted and rotated forms. In the worst cases the shape of the
beam as seen right at the output of the converter was too far from the donut-shape, tending more
to a prolate shape and getting more �attened with the propagation of the beam. This change
in shape with beam propagation caught our attention and led us to investigate more about its
possible causes. We found that any mistake in the mode-matching process can led to a mixing
of modes of zero and 1rst order, as is shown in Anderson (1984). The resulting mixed beams are
in general unstable, which causes the continuous change in shape.
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Anderson in his article makes a separate analysis for 4 possible tiny maladjustments in the
process: Transverse displacement in the x direction (i.e. the beam does not propagate through
the center of the system but laterally displaced from it), tilt through an angle (i.e. the beam
does not propagate parallel to the axis of the system, but it forms an angle with it), waist
size mismatch (the input beam waist is a little bit larger than the system beam waist) and
axial waist displacement (the input beam is not focused at the center of the system). In each
of these cases, the result is a beam with coupled zero and �rst order modes. That is why we
emphasize that this process must be done very carefully in order to achieve the searched results.
Certainly, there are a lot of factors to take care to achieve proper mode-matching, and thus, the
correct implementation of the π/2 converter. Aside from this fact, we can see from Figures 4.3
and 4.4 that we successfully converted a Hermite-Gaussian distribution to a Laguerre-Gaussian
distribution (and vice versa) without altering its polarization state.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Modes obtained with a polarization state analyzer for the azimuthal beam after
passing through the π/2 mode converter and the collimation system. The polarization states
shown are: a)Linear Horizontal. b) Linear Vertical. c)Linear at 45◦. d)Linear at −45◦. e)Circular
right and f)Circular left polarization states. Exposure time of 1ms.
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(a) (b)

(c) (d)

Figure 4.4: Stokes parameters in images for the azimuthally polarized beam after passing trough
the π/2 converter and the collimation system. The Spatial Average Symmetry (SAS) provides
the numerical values: [1 0.0259 -0.0542 0.0853]ᵀ.



4.2. Results for the mode converters 39

4.2.2. Results for the MCB: π converter

The results obtained for the π mode converter when using an azimuthal beam as an entran-
ce, are shown in Figure 4.5. From these images, we can see that the spatial distribution for the
horizontal/vertical and ±45◦ polarizations is now interchanged with respect to the original dis-
tribution (the one for the incident azimuthally polarized beam, see Figure 4.1), while the circular
polarizations maintain their Laguerre-Gaussian shape. This is exactly what we want from this
converter. Notice also from the spatially averaged numerical values provided by the SAS code for
this case, (at the description of Figure 4.6) that the beam globally still does not show a tendency
to any conventional polarization, i.e. again we have worked with the spatial degree of freedom of
the beam without alter its polarization state.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Modes obtained with a polarization state analyzer for the azimuthal beam after
passing through the π mode converter. The polarization states shown are: a)Linear Horizontal. b)
Linear Vertical. c)Linear at 45◦. d)Linear at−45◦. e)Circular right and f)Circular left polarization
states. Exposure time of 0.5 ms.
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(a) (b)

(c) (d)

Figure 4.6: Stokes parameters in images for the azimuthally polarized beam after passing trough
the π converter. The Spatial Average Symmetry (SAS) provides the numerical values: [1 0.0198
-0.0196 0.0975]ᵀ.
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4.2.3. Results for MCC: Empty space (air)

The results for this mode converter correspond to the analysis of the azimuthal polarization
generated, explained at Section 4.1 and Figures 4.1 and 4.2.

4.3. Results for the mode beam splitter

The next step for the probe beam after passing through a mode converter, is to pass through
the mode beam splitter (which is the modi�ed Mach-Zehnder interferometer) in order to be
separated in its horizontal and vertical mode components with orthogonal polarization.
This step is the most di�cult part to achieve from all the stages in the arrangement and that
is because the mode decomposition completely depends on the phase di�erence between the
interfering beams, which has to be of π. As explained in Chapter 3, several things have to be
taken into account in order to have the mode decomposition behavior of the interferometer. The
main ones are:

No fringes at all. This means that the orientation of the mirrors is the same among them and
that we have the interferometer working with almost parallel beams (non localized fringes
con�guration). Any misalignment between the interfering beams will cause the occurrence
of the fringes, so we can use them as an indicator to know when the beams are well aligned
and when they are not.

The visibility of the fringes has to be as clear as possible. In order to check this, we can
place a microscope objective at the entrance of the interferometer in order to illuminate it
with a divergent beam. In this case we will see circular fringes (personal communication
with Dr. Zacarías Malacara Hernández). Because of the low coherence of our laser, some
times this fringes are not very clear. We displace the third mirror with the micrometer screw
until we reach the best visibility and then remove the microscope objective and re-align
the interferometer for this new con�guration.

The phase di�erence between the arms of the interferometer must be of π. In order to
check this, we use again the microscope objective and adjust the mirror in order to have
a completely dark fringe at the center of one output and a completely bright fringe at the
center of the other one.

When all these conditions are ful�lled, we will see an HG10 mode in one output port and an
HG01 mode in the other.
Another thing to take care about is the polarizing behavior of the interferometer, this means
that, depending on which mode converter the beam had passed through before, the output modes
of the interferometer can exhibit:

Horizontal/Vertical polarization for MCC (Air).

Linear at ±45◦ for MCB (π converter).

Circular right/left for MCA (π/2 converter).

In order to check for this, once the interferometer is aligned and working as mode beam splitter,
we select an HG10 or HG01 mode with a desired polarization and send it to the interferometer.
If we observe a strong attenuation of one of the output beams with respect to the other, then we
proceed to make the measurements.
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4.4. Data polarimetric analysis

The �nal step in order to obtain the images from which the Mueller matrix is computed, is
to place a PSA at each of the output ports of the interferometer. The PSAs are identical and
are disposed in order to analyze the same state of polarization at each time. A CMOS camera is
used to register the resultant beam of each port.
Notice that due to the extreme sensitivity of the interferometer to any change in the environ-
mental conditions, it is necessary to check on a screen at one output port, the maintenance of
the mode while taking measurements in the other.
We follow here the relationships proposed by Töppel et al. (2014) in order to �nd the Mueller
matrix of our samples. These relationships, that are shown in Appendix A, make use of 4 speci�c
analyzed states: {Linear horizontal, vertical, at +45◦ and circular left}, which correspond to
{Linear horizontal, vertical,at +45◦ and circular right} in our convention used to describe
polarization. Once the images had been taken, we proceed to process them using the code shown
in the Appendix C.2 section.
We tested our system for 3 samples: Air, a commercial λ/2 waveplate and a commercial λ/4 wa-
veplate. The interferometer was aligned for each mode converter and then used to measure each
sample. The organization of results will be divided by blocks (results from the interferometer for
each mode converter) for each sample and will be labelled indicating output port of the interfero-
meter (P1 or P2), mode converter (MCA,MCB or MCC) and sample (1≡Air,2 ≡ λ/2, 3 ≡ λ/4).
Of course, before testing the samples with our experimental arrangement, we �rst measured their
phase retardation and determined the direction of their principal axis in order to have the ap-
propriate reference when mounting them (we aligned them in order to have their fast axis at 0◦

so we have a simpler and familiar result when obtaining their Mueller matrices). The procedure
followed in order to achieve this is explained in Appendix B.
Our results show a phase retardation of 161◦ for the case of the λ/2 WP (the ideal value for a
HWP is 180◦) and of 95,2◦ for the case of the λ/4 WP (the ideal theoretical value for a QWP is
90◦), both results for a wavelength of λ = 532nm.
Once the retardation and the direction of the fast axis of the waveplates was established, we
proceed to measure their Mueller matrices using the traditional ideal polarimetric arrangement
(IPA) method, (see Section 2.1.3.2). These results are presented at the beginning of each corres-
ponding Subsection.

4.4.1. Results for sample 1: Air

First we present the conventional results obtained for air when applying the IPA method.
The resultant Mueller matrix for this case is shown in Figure 4.7. The numerical elements of the
Mueller matrix were obtained averaging the corresponding image and normalizing to the average
value of the M00 image element.
As can be seen from equation 4.1 and Figure 4.7, the obtained results are in perfect concordance
with the theoretical ones, since they resemble to the identity matrix.

MAir
IPA =


1,0000 −0,0045 0,0198 −0,0078
−0,0035 0,7926 0,0087 −0,0447
0,0045 −0,0093 0,7626 −0,0049
−0,0097 −0,1264 0,0269 0,7755

 (4.1)

One thing to take into account for the correct interpretation of these results (equation 4.1), is
that the IPA method, as its name indicates, works considering ideal polarizing optical responses,
i.e. waveplates that produce exactly a phase retardation of 180◦ for the HWP and 90◦ for the
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QWP, and total transmission (attenuation) along the transmission (extinction) axis of the linear
polarizers. We have measured the retardation of the waveplates that conform our PSA and PSG,
at the wavelength we are working (λ = 532 nm), using the procedure explained in Appendix B,
and we have found the values shown in Table 4.1.
The linear polarizers used are of the Glan-Thompson type, with extinction coe�cients close to
100,000:1, which are some of the most reliable devices employed in polarimetric applications. We
have veri�ed they ful�ll the null condition under the crossed condition, at the intensity values
employed here.

Waveplate λ/2 (1) λ/2(2) λ/4(1) λ/4(2)

Retardance 166,48◦ 167,58◦ 100◦ 92,81◦

Table 4.1: Phase retardation measurements for the waveplates that conform our PSG and PSA.
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Figure 4.7: Experimental Mueller matrix for air using the IPA method
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On the other hand, for unconventional polarization, we start by showing the images obtained
from the MMZI for air, once that the beam has passed through the MCA,Figure 4.8. Using these
images, we also analyzed the polarization of each output beam from the interferometer using the
SAS code, the corresponding results for MCA, sample 1 (air) are shown in Figure 4.9.
The results for the MMZI MCB air are shown in Figures 4.10 and 4.11.
The results for the MMZI MCC air are shown in Figures 4.12 and 4.13.
Notice from the Stokes images and vectors given in Figure 4.9, that the beam at port 1 has

a left handed polarization (the S3 parameter has a negative value), while the beam at port 2
has a right handed polarization (the S3 parameter is positive). The S2 parameter has also the
opposite sign for each beam, indicating a tendency to −45◦ linear polarization for the case when
S2 is negative (beam at port 1) and to 45◦ linear polarization for the case when S2 is positive
(beam at port 2). The S1 parameter indicate us the tendency of the polarization to be linear
vertical for a - sign (beam at port 1) and to linear horizontal for a + sign (beam at port 2). From
these results we can associate an elliptical left handed polarization for the beam at port 1 and
an elliptical right handed polarization for the beam at port 2, showing that indeed, they have a
tendency to be orthogonal. An important remark is that, in this case, the images show us that
the vertical modes at port 1 have a more dominant presence for all Stokes parameters while the
opposite case (horizontal modes) is true for the beam at port 2. This is the main di�erence with
our original azimuthal polarized beam, who show a more balanced contribution of horizontal and
vertical modes for each Stokes parameter (see Figure 4.2).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k) (l)

(m) (n)

Figure 4.8: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 1 (air). The entrance beam to the interferometer has passed �rst through the MCA. (a),(b)
interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical, (e),(f); +45◦

(g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 1 (air), MCA.
(a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 -0.0581 -0.0746
-0.0642]ᵀ for port 1 and [1 0.0011 0.1385 0.0427]ᵀ for port 2. Exposure time of t=2ms.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k) (l)

(m) (n)

Figure 4.10: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 1 (air). The entrance beam to the interferometer has passed �rst through the MCB. (a),(b)
interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical, (e),(f); +45◦

(g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 1 (air), MCB.
(a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 -0.1009 -0.2316
0.2854]ᵀ for port 1 and [1 -0.0982 0.3036 -0.2053]ᵀ for port 2. Exposure time of t=2ms.
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Notice from the description of the Figure 4.11 that, for the interferograms at the output
ports of the MMZI, when the beams have passed �rst through the MCB, the corresponding
Stokes vectors have the opposite sign in the S2 parameter, the one that indicates the tendency
to ±45◦ polarization and that it is related to the Ψ± mode. Due to the polarizing beam splitter
behavior of the MMZI and the previous manipulation of the diagonal modes carried out by the
MCB, we expect a Ψ01 mode with ê+ polarization and a Ψ10 mode with ê− polarization at the
output ports. From the obtained Stokes vector, we can see a tendency to these polarizations (S2
parameter has a high value) but also we �nd an important contribution from the S3 parameter,
which implies a circular right or left handed tendency for the polarization also. This results in an
elliptical right and left handed polarizations for the beams at port 1 and 2, respectively, instead
of the searched linear at ±45◦, when the Stokes images are spatially averaged.
On the other hand, the results for MMZI MCC air are the best experimental demonstration of
the polarizing beam splitter behavior of the modi�ed Mach-Zehnder interferometer. This fact
can be clearly seen from Figure 4.13, where a Ψ01 mode with êx polarization and a Ψ10 with
êy polarization are obtained for ports 1 and 2 respectively. The spatially averaged intensities
that the SAS code provide us, also show this tendency to linear horizontal and linear vertical
polarizations, respectively. So, through this con�guration, we have successfully decomposed the
azimuthally polarized beam into its Ψ10 and Ψ01 mode components, as required by the theoretical
proposal (Töppel et al., 2014) in order to obtain the Mueller matrix of the sample (air).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k) (l)

(m) (n)

Figure 4.12: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 1 (air). The entrance beam to the interferometer has passed �rst through the MCC. (a),(b)
interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical, (e),(f); +45◦

(g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.13: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 1 (air), MCC.
(a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 0.5040 0.0258
0.1310]ᵀ for port 1 and [1 -0.5483 0.1640 -0.2126]ᵀ for port 2. Exposure time of t=2ms.
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Finally, the Mueller matrix elements for the air were obtained using the expressions in Appendix
A and they are shown in Figure 4.14 for images and in Eq. 4.3 for numerical values.
For this case, we have obtained a Mueller matrix that has high values in the diagonal (as expected
for the air Mueller matrix) but also has high (and low, which is ok) values outside of it when
we would expect low values only. The most extreme case occurs for the M03 element, which has
a value of -0.6019 when a close to 0 value was expected. If we track the images used to obtain
this value along the complete process (including the use of the transformation matrix, equation
2.51), we will �nd that this element is obtained through the expression:

S02 = −I00 − I01 + 2I03 − I10 − I11 + 2I13 (4.2)

I00 and I10 values are obtained from the MCC MMZI port 2 (the one that shows a HG10

mode) when the x and y polarizations are analyzed, respectively. The I01 and I11 values are
obtained from the MCC MMZI port 1 (the port that shows a HG01 mode) when the x and
y polarizations are analyzed, respectively. The I03 and I13 values are obtained from the MCA
MMZI port 2 (the port that shows a HG10 mode) when the x and y polarizations are analyzed,
respectively. Now, notice the signs in the expression 4.2, in order to have a close to 0 value, the
magnitude of all the MCC obtained intensity values has to be compensated with the ones obtained
from the MCA images, which experimentally does not happen because of the important lost of
intensity that occurs in MCA (remember that this mode converter is the one that needs more
optical components for its implementation). Following this analysis, we �nd that the best-behaved
elements are the ones whose intensities are comparable enough to be added or substracted, and
the worst are for the case when a huge di�erence in intensity is presented externally to the MMZI
operation.
This analysis applies also to the obtained images for the rest of our samples.

MAir
Unc =


1,0000 0,0406 0,2906 −0,6019
−0,0008 0,5261 0,0709 −0,0224
0,2457 −0,1018 0,4227 −0,2914
−0,2371 −0,0654 −0,0735 0,3049

 (4.3)
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Figure 4.14: Experimental Mueller matrix for Air
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Figure 4.15: Experimental Mueller matrix obtained for λ/2 WP at 0◦, when using the IPA
method.

4.4.2. Results for sample 2: λ/2 waveplate

For the case of the sample 2, a commercial λ/2 waveplate with its fast axis at 0◦, the Mueller
matrix obtained by the IPA method is shown in Figure 4.15 and equation 4.4.

MIPA
λ/2 =


1,0000 −0,1298 0,0803 0,1487
−0,1198 0,7771 0,1072 0,0339
0,0238 0,0615 −0,8281 0,2799
0,0425 −0,0806 −0,3880 −0,8844

 (4.4)

Again, notice that the experimental Mueller matrix obtained by the IPA method is very close to
the expected one, equation 2.23.
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For the case of unconventional polarization, we obtained the theoretical Mueller matrix using
Töppel et al. (2014) expressions for our λ/2 WP with fast axis at 0◦ sample. For this, we
constructed a schematic diagram similar to the one presented in Chapter 2, Section 2.4 for
analyzing the beam as it passes through the complete system once that it has interacted with
the sample. The schematic diagram for this case is shown in Figure 4.16.
Using this scheme and the relations in Appendix A, we found that the Theoretical Mueller
matrix for this sample, following the proposal in Töppel et al. (2014) is (after being normalized
and transformed through equation 2.51 to our optical convention):

MUnc,theo
λ/2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (4.5)

Which is the expected Mueller matrix (see equation 2.23). This result is obtained also when
doing the analysis using a radially polarized beam.
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Figure 4.16: Schematic Diagram for the azimuthal beam travelling through the system once it
has interacted with the λ/2 WP sample.
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Now, for the experimental results, we present the images obtained from the MMZI, once that
the beam has passed through the MCA: Figures 4.17 and 4.18.
The results for the MMZI MCB λ/2 are shown in Figures 4.19 and 4.20.
The results for the MMZI MCC λ/2 are shown in Figures 4.21 and 4.22.
Something that can be noticed from the images displayed in Figure 4.17 is that now, the output
modes obtained when doing the polarimetric analysis are more deviated from the Ψ10 and Ψ01

shapes as compared with the ones obtained for MMZI MCA air. This can be related to some
imperfection of our sample that causes a small deviation of the beam as it enters to the MCA,
this in turn results into a slightly di�erent shape for the transformed mode, which has an impact
on the consequent functioning of the interferometer. Aside from this fact, we still can notice a
tendency to the Ψ10 mode at port 1 and to the Ψ01 mode at port 2, which exhibits the mode
beam splitter character of the interferometer.
With respect to the polarimetric analysis of the output beams (Figure 4.18), we expected a Ψ10

mode with êL polarization and a Ψ01 mode with êR polarization (see Figure 4.16). The rela-
ted parameter, S3 image, shows equal contributions for the Ψ10 and Ψ01 modes, which causes
this parameter to be spatially averaged almost to 0 for both output beams. In order to have a
tendency for circular polarization, it would be necessary to have a strongest contribution of the
Ψ10 mode with a low contribution of the Ψ01 mode in the S3 parameter of the Stokes vector of
one of the beams, and the opposite condition at the other, and also, to have equal contributions
of the corresponding modes at the S1 and S2 parameters in order that they spatially average to 0.
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(a) (b)
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(g) (h)
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(i) (j)

(k) (l)

(m) (n)

Figure 4.17: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 2 (λ/2 WP). The entrance beam to the interferometer has passed �rst through the MCA.
(a),(b) interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical,
(e),(f); +45◦ (g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization
states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.18: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 2 (λ/2 WP),
MCA. (a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 -0.0398
-0.0122 0.0060]ᵀ for port 1 and [1 -0.1088 -0.1027 -0.0203]ᵀ for port 2. Exposure time of t=2ms.
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For the MMZI MCB λ/2 WP, we expect a Ψ10 mode with ê+ polarization and a Ψ01 mode
with ê− polarization. The polarimetric analysis shown in Figure 4.20 indicate us that the corres-
ponding S2 parameter has a positive sign for the beam at port 1 and a negative one for the beam
at port 2, which indicates a tendency to 45◦ and −45◦ polarization, respectively. The clearest
tendency for the diagonal polarization occurs for the beam at port 2, for which the remaining
S1 and S3 parameters are almost 0. This is not the case for the Stokes vector for the beam at
port 1, that besides that has a non negligible contribution of the orthogonal mode in the S2
parameter, which causes the parameter to be spatially averaged to a low value. Aside from this
fact, we still can see a tendency to the horizontal and vertical HG modes at each output port of
the interferometer (Figure 4.19).
For the MMZI MCC λ/2 WP con�guration, we can see from Figure 4.22 that we still have a
clear demonstration of the polarizing beam splitter behavior of the interferometer, since we have
a vertically polarized Ψ10 mode at one output (port 1) and a horizontally polarized Ψ01 mode at
the other (port 2). The mode beam splitter behavior of the interferometer can be seen directly
from the images in Figure 4.21.
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(i) (j)

(k) (l)

(m) (n)

Figure 4.19: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 2 (λ/2 WP). The entrance beam to the interferometer has passed �rst through the MCB.
(a),(b) interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical,
(e),(f); +45◦ (g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization
states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.20: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 2 (λ/2 WP),
MCB. (a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 -0.1514
0.0745 -0.0802]ᵀ for port 1 and [1 -0.0253 -0.2817 0.0193]ᵀ for port 2. Exposure time of t=2ms.
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(i) (j)

(k) (l)

(m) (n)

Figure 4.21: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 2 (λ/2 WP). The entrance beam to the interferometer has passed �rst through the MCC.
(a),(b) interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical,
(e),(f); +45◦ (g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization
states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.22: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 2 (λ/2 WP),
MCC. (a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 -0.4494
-0.2644 0.0868]ᵀ for port 1 and [1 0.3153 -0.0151 0.1144]ᵀ for port 2. Exposure time of t=2ms.
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Figure 4.23: Experimental Mueller matrix for λ/2 WP.

Finally, the Mueller matrix elements for the λ/2 WP were obtained using the expressions in
Appendix A and they are shown in Figure 4.23 for images and in Eq. 4.6 for numerical values.

MUnc
λ/2 =


1,0000 0,0053 0,4288 −0,5889
−0,0666 0,3836 0,0199 0,0218
−0,0153 0,0523 −0,0628 −0,0455
−0,2167 −0,0911 −0,2618 0,2168

 (4.6)

Again we see that we obtain high values outside of the diagonal that can be explained by the
same reasoning previously exposed for the case of air. However, there is also here a particularly
low value in one of the elements of the diagonal, the M22 element, which is almost 0 when we
were expecting a -1 value. Tracking the obtention of this element, we see that it is obtained from
the expression:

− S11 = −{I00 + I01 − 2I02 + I10 + I11 − 2(I12 + I20 + I21 − 2I22)} (4.7)

Where the I00, I10 and I20 values are obtained from the MCC MMZI Port 1 (Ψ10 mode), the I01,
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I11 and I21 values are obtained from the MCC MMZI Port 2 (Ψ01 mode) and the I02, I12 and I22
values are obtained from the MCB MMZI Port 1 (Ψ10 mode). The theoretical analysis indicates
that equation 4.7 will led to a -1 value, however, in order for this to happen experimentally, the
intensity values should be almost 1 for I01, I10 and I22; almost 0 for I00 and I11, and almost 0.5
for I02, I12, I20 and I21, which in general holds (from the corresponding Figures we can see that
we have high, medium and low values of intensity in these images) except for the case of I22
which does not particularly has a high intensity (you can see this by looking the intensity of the
image obtained when analysing the corresponding orthogonal polarization, which is almost the
same). This deviation from the perfect 1 value led us to have almost equal contributions from
the Ψ10 and Ψ01 modes, which spatially average to almost 0. This is a very illustrative example
of the importance of polarizing beam splitter behavior of the interferometer: The I22 intensity
was supposed to be one because the MMZI was supposed to split the incoming beam into its Ψ01

ê− and Ψ10 ê+ components, but, from Figure 4.20 we see that the polarization of the output
beams barely exhibits that tendency, which leads to have important deviations on the expected
results.
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Figure 4.24: Experimental Mueller matrix for λ/4 WP at 0◦, using IPA method

4.4.3. Results for sample 3: λ/4 waveplate

We now present the images obtained for the sample 3: a commercial λ/4 waveplate with its
fast axis at 0◦, when using the IPA method, Figure 4.24 and equation 4.8.

MIPA
λ/4 =


1,0000 −0,0477 0,0268 −0,0538
−0,0349 0,8218 0,0334 −0,0961
0,0128 0,0114 −0,0840 0,9101
−0,0061 0,1317 −0,8264 −0,0777

 (4.8)

Comparing equations 4.8 and 2.27, we can see that the experimental results obtained by the
IPA method are very close to the expected ones. We also can verify this visually from the image
representation of the Mueller matrix in Figure 4.24.
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For the case of unconventional polarization, again we construct a schematic diagram similar
to the one presented in Chapter 2, Section 2.4 for analyzing the beam as it passes through the
complete system once that it has interacted with the sample. The schematic diagram for this
case is shown in Figure 4.25. Using this scheme and the relations in Appendix A, we found that
the Theoretical Mueller matrix for this sample, following the proposal in Töppel et al. (2014) is
(after being normalized and transformed through equation 2.51 to our optical convention):

MUnc,theo
λ/4 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

 (4.9)

Which corresponds to the expected Mueller matrix for this sample (see equation 2.29). The same
result was obtained also when doing the analysis using a radially polarized beam.
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Figure 4.25: Schematic Diagram for the azimuthal beam travelling through the system once it
has interacted with the λ/4 WP sample.
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For the experimental results, we present the images obtained from the MMZI, once that the
beam has passed through the MCA: Figures 4.26 and 4.27.
The results for MMZI MCB λ/4 are shown in Figures 4.28 and 4.29.
The results for MMZI MCC λ/4 are shown in Figures 4.30 and 4.31.
In these �gures we can see the same tendency as before: the closest to the expected results are for
the MMZI MCC con�guration (the beam passes directly to the interferometer) and the worst for
the MMZI MCA con�guration (which is the most complex module). This show us the importance
that has the beam symmetry for the correct functioning of the mode beam splitter (MMZI).
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(i) (j)

(k) (l)

(m) (n)

Figure 4.26: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 3 (λ/4 WP). The entrance beam to the interferometer has passed �rst through the MCA.
(a),(b) interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical,
(e),(f); +45◦ (g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization
states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.27: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 3 (λ/4 WP),
MCA. (a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 0.0005
-0.0426 -0.1256]ᵀ for port 1 and [1 -0.0689 -0.0450 0.0043]ᵀ for port 2. Exposure time of t=2ms.
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(i) (j)

(k) (l)

(m) (n)

Figure 4.28: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 3 (λ/4 WP). The entrance beam to the interferometer has passed �rst through the MCB.
(a),(b) interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical,
(e),(f); +45◦ (g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization
states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.29: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 3 (λ/4 WP),
MCB. (a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 -0.1222
0.2579 0.1002]ᵀ for port 1 and [1 -0.0770 -0.2134 -0.2019]ᵀ for port 2. Exposure time of t=2ms.
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(i) (j)

(k) (l)

(m) (n)

Figure 4.30: Modes obtained at port 1 (1rst column) and port 2 (2nd column) of the MMZI for
sample 3 (λ/4 WP). The entrance beam to the interferometer has passed �rst through the MCC.
(a),(b) interferograms at each port without PSA. PSA analyzing horizontal,(c),(d); vertical,
(e),(f); +45◦ (g),(h); −45◦, (i),(j); circular right, (k),(l) and circular left (m),(n) polarization
states.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.31: Stokes parameters in images and numerical values provided by the SAS code for
outputs at port 1 (1rst column) and port 2 (2nd column) of the MMZI for sample 3 (λ/4 WP),
MCC. (a),(b) S0. (c),(d) S1. (e),(f) S2. (g),(h) S3. The obtained Stokes vectors are: [1 0.2372
0.0280 -0.0262]ᵀ for port 1 and [1 -0.3668 -0.2318 -0.2084]ᵀ for port 2. Exposure time of t=2ms.
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Figure 4.32: Experimental Mueller matrix for λ/4 WP.

Finally, the Mueller matrix elements for the λ/4 WP were obtained using the expressions in
Appendix A and they are shown in Figure 4.32 for images and in equation 4.10 for numerical
values.

MUnc
λ/4 =


1,0000 0,0861 0,5362 −0,6111
−0,0392 0,2967 0,0175 0,0123
−0,0690 0,0893 −0,2179 0,0306
0,0430 0,0186 0,0983 −0,0626

 (4.10)

When analyzing the obtained Mueller matrices of our samples using unconventional polarization
presented in this Chapter, it is important to take into account that our system is too complex,
where its alignment implies a lot of mechanical mounts and optical components. The results
presented here could be improved with the use of nanopositioners, super-achromatic waveplate
retarders, a CMOS camera at each MMZI port, among many other high-quality components.



Chapter 5

Conclusions and future work

Learn from yesterday, live for today, hope for

tomorrow.

Albert Einstein

Summary: We present the conclusions derived from this thesis work along with several

proposals to improve the experimental arrangement and the obtained results.

5.1. Conclusions

Based on our results and observations through all this thesis work, we can conclude:

About the π/2 converter. It is of a great importance for the beam impinging on the mode
converter to be correctly mode-matched to the cylinder lenses; otherwise we can have a
huge distortion of the geometry of the beam which gets worst with beam propagation.

About the mode beam splitter (MMZI). We have seen that the mode beam splitter needs
micrometer precision mountings for the third mirror and the 2nd beam splitter, the latter
needing also a rotatory mounting which allow us to center it to both arms in the interfe-
rometer. If we do not have these resources, any �ne adjustment of the interferometer can
take several hours of much patience.

Once aligned, the visibility of the modes at the output ports of the MMZI purely depends
on the phase di�erence between the arms of the interferometer. So, it becomes a necessity
to have a method that allow us to know this phase di�erence when placing the 3rd mirror,
otherwise we can spend a lot of time aligning an interferometer that will not exhibit the
desired mode beam splitter behavior.

It is necessary also to reach a strong polarizing beam splitter behavior of the interferometer
in order to correctly retrieve the Mueller matrix of the sample, since we have seen a direct
relationship between the magnitudes of some matrix elements and the magnitude of the
Stokes parameter at which the output beam should show a tendency depending on which
mode converter the beam has passed through before; S1 for MCC, S2 for MCB and S3
for MCA. For example, for our best polarization behavior result, which was for the MCC
analyzing air, we found that the M11 element of the corresponding Mueller matrix had a
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numerical value of 0.5261 while the S1 parameter of the interferograms was of 0.5040 for
port 1 and -0.5483 for port 2. The theoretical expected values for these cases were 1, 1, 1,
respectively. We can also verify the opposite case, as for MCB analyzing λ/2 WP: We had
a S2 parameter of 0.0745 for port 1 and -0.2817 for port 2. The corresponding M22 element
has a value of -0.0628, the expected values were 1,-1, -1, respectively.

The polarizing behavior of the interferometer strongly depends on the symmetry of the
interfering beams. We have seen that our best results are for the MCC analyzing air, which
is the beam that best preserves its original shape. Our worst results are for MCA, which
is the mode converter that most distorts the original symmetry of the beam.

We have observed that, because of the important di�erence in the number of the optical
elements that compose each mode converter, there is a considerable lost of intensity in the
images from MCA, which can lead to incorrect data when comparing these images with
the ones obtained from the other 2 mode converters. This can result in inaccuracies when
determining the Mueller matrix of the sample.

Through the implementation of the experimental optical arrangement, it was possible to
successfully modify the spatial and polarization degrees of freedom of a classically entangled
beam of light, the azimuthal beam, and to use the collected information in order to recover
the Mueller matrix of the sample under study, which was the purpose of the arrangement
as proposed by Töppel et al. (2014) and our general objective in this thesis work: To exploit
the classical entanglement property of an azimuthally polarized beam of light to extract
useful information of transparent non depolarizing samples.

The work presented here is the sum of the achievements of the individual stages of the
complete setup. In order to �nally obtain the Mueller matrix of a sample, we �rstly had to
obtain the best possible results on each stage, say, the best azimuthal beam provided by
the S-waveplate, the best mode-conversion provided by the mode converters A and B, the
correct functioning of the MMZI and �nally the assemble of all these elements to obtain
the searched data. This well-de�ned, methodological form of work, allow us to say that
the presented results are the best that can be obtained according to our present resources
and conditions. We are able also to identify how each individual result a�ects the resultant
Mueller matrix and to propose ideas to improve the experimental data.
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5.2. Future work

Based on the experience gained while working with the di�erent modules of this arrangement,
we propose the following ideas in order to improve the obtained results:

One way to compensate for di�erence in the intensity transmitted through each mode
converter, is to measure the intensity lost in each one in order to determine the lowest
transmittance value and place neutral density �lters where needed in order to have the
same losses in all converters. This will allow to correctly compensate for the undesired
intensity changes intrinsic to the optical arrangement. In this way, we will have a better
comparison between images when doing the Mueller matrix computation, since any change
in intensity will be due to phase di�erence in the interferometer, as is theoretically expected.
As can be imagined, the largest lost occurs in the mode converter A, so, we can take the
transmitted intensity from this converter as our reference value in order to have the same
transmittance in mode converters B and C.

Something to take into account is that the length of the cross section of the resultant
interferograms has to be the same for all mode converters. The way we compensated in
this work for little deviations caused by the experimental setup, was through scaling factors
in the image processing. Though, the best way will be to experimentally adjust the beam
to have the same size in all cases and/or improving the algorithms proposed here.

One aspect that a�ected our experimental results, was the presence of noisy data in the
MCC images, the ones with highest intensity, that was caused by the use of the diaphragm
at the beginning of the arrangement. As explained before, this diaphragm allow us for �ne
experimental adjustment in the mode-matching process. However, the best situation would
be to directly collimate the light to the needed beam-waist size, in order to use the entire
intensity of the beam and avoid undesired e�ects, as the ones presented here.

Because of the high sensitivity to any change in environmental conditions exhibited by the
interferometer, it is necessary to have an active compensation method that allows for phase
di�erence maintenance between optical paths and thus a larger stabilization of the system
during measurements.





Appendix A

Appendix. Töppel's expressions to �nd

the Mueller matrix of a sample

Here we show the analytic expressions derived by Töppel in his work Töppel et al. (2014).
These relationships allow us to �nd the Two Degree of Fredoom Stokes parameters; a matrix that
is directly related with the Mueller matrix. In the case of azimuthal polarization, this relationship
reads as:

Mµν =

{
Sµν , if ν = 0

−Sµν , otherwise
(A.1)

The Sµν elements are directly obtained from:

S00 = I00 + I01 + I10 + I11

S01 = −I00 − I01 + 2I02 − I10 − I11 + 2I12

S02 = −I00 − I01 + 2I03 − I10 − I11 + 2I13

S03 = I00 − I01 + I10 − I11
S10 = −I00 − I01 − I10 − I11 + 2(I20 + I21)

S11 = I00 + I01 − 2I02 + I10 + I11 − 2(I12 + I20 + I21 − 2I22)

S12 = I00 + I01 − 2I03 + I10 + I11 − 2(I13 + I20 + I21 − 2I23)

S13 = −I00 + I01 − I10 + I11 + 2I20 − 2I21

S20 = −I00 − I01 − I10 − I11 + 2(I30 + I31)

S21 = I00 + I01 − 2I02 + I10 + I11 − 2(I12 + I30 + I31 − 2I32)

S22 = I00 + I01 − 2I03 + I10 + I11 − 2(I13 + I30 + I31 − 2I33)

S23 = −I00 + I01 − I10 + I11 + 2I30 − 2I31

S30 = I00 + I01 − I10 − I11
S31 = −I00 − I01 + 2I02 + I10 + I11 − 2I12

S32 = −I00 − I01 + 2I03 + I10 + I11 − 2I13

S33 = I00 − I01 − I10 + I11

(A.2)

With the µ index indicating polarization: {0 ≡ horizontal, 1 ≡ vertical, 2 ≡ +45◦, 3 ≡ L}, and
the ν index indicating mode: {0 ≡ Ψ10, 1 ≡ Ψ01, 2 ≡ Ψ+, 3 ≡ ΨL}.*

*Notice that the index 3 corresponds to left polarization and mode in Töppel�s article, which works with the
�looking to the direction of propagation� convention. We respected this convention in the theoretical analysis but,
since we are working in the �looking to the source� convention, this index will correspond to right polarization
and mode in our experimental measurements.
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Appendix B

Appendix. Experimental procedure to

�nd the phase retardation and direction

of the fast axis of a waveplate

In order to determine the phase retardation φ and the direction of the fast axis of our
waveplates (WP) samples, we followed the experimental procedure presented in Collet (1993),
which is depicted in Figure B.1.
The procedure is as follows:

The waveplate (WP) is placed between two crossed linear polarizers: The transmission
axes of the �rst polarizer and second polarizer are in the x and y directions, respectively,
as shown in Figure B.1.

The mounting of the waveplate is rotated until we achieve again a minimum transmission
through the analyzing polarizer (transmission axis at 90◦). At this orientation we have the
fast axis of the waveplate aligned with the horizontal direction.

Once in this con�guration, we measure the intensity registered by the photodetector when
the transmission axis of the analyzer is at 90◦ (intensity labelled as I(0◦, φ)) and when it
is at 90◦ (labelled as I(90◦, φ).

The phase retardation φ of the waveplate is obtained through the Equation (Collet, 1993)

cos(φ) =
I(0◦, φ)− I(90◦, φ)

I(0◦, φ) + I(90◦, φ)
(B.1)

.
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Appendix B. Appendix. Experimental procedure to �nd the phase retardation and direction

of the fast axis of a waveplate

Figure B.1: Schematic diagram showing the crossed polarizer method to measure the phase
retardation of a waveplate. Adapted from Collet (1993).



Appendix C

Appendix. Algorithms employed in this

thesis work
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%Program to obtain the Mueller matrix of a sample using the IPA method. 

%This method is based in the generation and analysis of conventional 

%polarization.  
%By Jacqueline Muro. 

%V1.0 13/06/2017 
%Initializing and loading images 
clear all; close all; clc; 
ImgHH=imread('IHHt0_30.jpg'); 
ImgHV=imread('IHVt0_30.jpg'); 
ImgH45=imread('IH+t0_30.jpg'); 
ImgHR=imread('IHRt0_30.jpg'); 
ImgVH=imread('IVHt0_30.jpg'); 
ImgVV=imread('IVVt0_30.jpg'); 
ImgV45=imread('IV+t0_30.jpg'); 
ImgVR=imread('IVRt0_30.jpg'); 
Img45H=imread('I+Ht0_30.jpg'); 
Img45V=imread('I+Vt0_30.jpg'); 
Img4545=imread('I++t0_30.jpg'); 
Img45R=imread('I+Rt0_30.jpg'); 
ImgRH=imread('IRHt0_30.jpg'); 
ImgRV=imread('IRVt0_30.jpg'); 
ImgR45=imread('IR+t0_30.jpg'); 
ImgRR=imread('IRRt0_30.jpg'); 
%% Processing images 
rad=300; %half the size of the cropped image 
[ImgHHc,ImHHc]=ImageCrop2(ImgHH,rad); 

imwrite(uint8(ImHHc),'ImHHc.jpg','jpg'); 

imwrite(ImgHHc,'ImHHgc.jpg','jpg'); 
[ImgHVc,ImHVc]=ImageCrop2(ImgHV,rad); 

imwrite(uint8(ImHVc),'ImHVc.jpg','jpg'); 

imwrite(ImgHVc,'ImHVgc.jpg','jpg'); 
[ImgH45c,ImH45c]=ImageCrop2(ImgH45,rad); 

imwrite(uint8(ImH45c),'ImH45c.jpg','jpg'); 

imwrite(ImgH45c,'ImH45gc.jpg','jpg'); 
[ImgHRc,ImHRc]=ImageCrop2(ImgHR,rad); 

imwrite(uint8(ImHRc),'ImHRc.jpg','jpg'); 

imwrite(ImgHRc,'ImHRgc.jpg','jpg'); 
[ImgVHc,ImVHc]=ImageCrop2(ImgVH,rad); 

imwrite(uint8(ImVHc),'ImVHc.jpg','jpg'); 

imwrite(ImgVHc,'ImVHgc.jpg','jpg'); 
[ImgVVc,ImVVc]=ImageCrop2(ImgVV,rad); 

imwrite(uint8(ImVVc),'ImVVc.jpg','jpg'); 

imwrite(ImgVVc,'ImVVgc.jpg','jpg'); 
[ImgV45c,ImV45c]=ImageCrop2(ImgV45,rad); 

imwrite(uint8(ImV45c),'ImV45c.jpg','jpg'); 

imwrite(ImgV45c,'ImV45gc.jpg','jpg'); 
[ImgVRc,ImVRc]=ImageCrop2(ImgVR,rad); 

imwrite(uint8(ImVRc),'ImVRc.jpg','jpg'); 

imwrite(ImgVRc,'ImVRgc.jpg','jpg'); 
[Img45Hc,Im45Hc]=ImageCrop2(Img45H,rad); 

imwrite(uint8(Im45Hc),'Im45Hc.jpg','jpg'); 

imwrite(Img45Hc,'Im45Hgc.jpg','jpg'); 
[Img45Vc,Im45Vc]=ImageCrop2(Img45V,rad); 

imwrite(uint8(Im45Vc),'Im45Vc.jpg','jpg'); 

imwrite(Img45Vc,'Im45Vgc.jpg','jpg'); 
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[Img4545c,Im4545c]=ImageCrop2(Img4545,rad); 

imwrite(uint8(Im4545c),'Im4545c.jpg','jpg'); 

imwrite(Img4545c,'Im4545gc.jpg','jpg'); 
[Img45Rc,Im45Rc]=ImageCrop2(Img45R,rad); 

imwrite(uint8(Im45Rc),'Im45Rc.jpg','jpg'); 

imwrite(Img45Rc,'Im45Rgc.jpg','jpg'); 
[ImgRHc,ImRHc]=ImageCrop2(ImgRH,rad); 

imwrite(uint8(ImRHc),'ImRHc.jpg','jpg'); 

imwrite(ImgRHc,'ImRHgc.jpg','jpg'); 
[ImgRVc,ImRVc]=ImageCrop2(ImgRV,rad); 

imwrite(uint8(ImRVc),'ImRVc.jpg','jpg'); 

imwrite(ImgRVc,'ImRVgc.jpg','jpg'); 
[ImgR45c,ImR45c]=ImageCrop2(ImgR45,rad); 

imwrite(uint8(ImR45c),'ImR45c.jpg','jpg'); 

imwrite(ImgR45c,'ImR45gc.jpg','jpg'); 
[ImgRRc,ImRRc]=ImageCrop2(ImgRR,rad); 

imwrite(uint8(ImRRc),'ImRRc.jpg','jpg'); 

imwrite(ImgRRc,'ImRRgc.jpg','jpg'); 
%% Showing cropped images 
iptsetpref('ImshowBorder','tight'); 
figure('Name','Cropped images','units','normalized','outerposition',[0 0 

1 1]);  
subplot(4,4,1); imagesc(ImHHc); colormap gray; title('ImHH'); axis image; 

axis off; 
subplot(4,4,2); imagesc(ImHVc); colormap gray; title('ImHV'); axis image; 

axis off;  
subplot(4,4,3); imagesc(ImH45c); colormap gray; title('ImH+'); axis 

image; axis off;  
subplot(4,4,4); imagesc(ImHRc); colormap gray; title('ImHR'); axis image; 

axis off;  
subplot(4,4,5); imagesc(ImVHc); colormap gray; title('ImVH'); axis image; 

axis off;  
subplot(4,4,6); imagesc(ImVVc); colormap gray; title('ImVV'); axis image; 

axis off;  
subplot(4,4,7); imagesc(ImV45c); colormap gray; title('ImV+'); axis 

image; axis off;  
subplot(4,4,8); imagesc(ImVRc); colormap gray; title('ImVR'); axis image; 

axis off;  
subplot(4,4,9); imagesc(Im45Hc); colormap gray; title('Im+H'); axis 

image; axis off;  
subplot(4,4,10); imagesc(Im45Vc); colormap gray; title('Im+V'); axis 

image; axis off;  
subplot(4,4,11); imagesc(Im4545c); colormap gray; title('Im++'); axis 

image; axis off;  
subplot(4,4,12); imagesc(Im45Rc); colormap gray; title('Im+R'); axis 

image; axis off; 
subplot(4,4,13); imagesc(ImRHc); colormap gray; title('ImRH'); axis 

image; axis off;  
subplot(4,4,14); imagesc(ImRVc); colormap gray; title('ImRV'); axis 

image; axis off;  
subplot(4,4,15); imagesc(ImR45c); colormap gray; title('ImR+'); axis 

image; axis off;  
subplot(4,4,16); imagesc(ImRRc); colormap gray; title('ImRR'); axis 

image; axis off; 
saveas(gcf,'Cropped images.jpg') 
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%% Computing Mueller elements 
ImHHc=double(ImHHc); ImHVc=double(ImHVc); ImH45c=double(ImH45c); 

ImHRc=double(ImHRc); 
ImVHc=double(ImVHc); ImVVc=double(ImVVc); ImV45c=double(ImV45c); 

ImVRc=double(ImVRc); 
Im45Hc=double(Im45Hc); Im45Vc=double(Im45Vc); Im4545c=double(Im4545c); 

Im45Rc=double(Im45Rc); 
ImRHc=double(ImRHc); ImRVc=double(ImRVc); ImR45c=double(ImR45c); 

ImRRc=double(ImRRc); 

  
m11=(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
m12=(1/2).*(ImHHc+ImHVc-ImVHc-ImVVc); 
m13=Im45Hc+Im45Vc-(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
m14=ImRHc+ImRVc-(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
m21=(1/2).*(ImHHc-ImHVc+ImVHc-ImVVc); 
m22=(1/2).*(ImHHc-ImHVc-ImVHc+ImVVc); 
m23=Im45Hc-Im45Vc-(1/2).*(ImHHc-ImHVc+ImVHc-ImVVc); 
m24=ImRHc-ImRVc-(1/2).*(ImHHc-ImHVc+ImVHc-ImVVc); 
m31=ImH45c+ImV45c-(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
m32=ImH45c-ImV45c-(1/2).*(ImHHc+ImHVc-ImVHc-ImVVc); 
m33=2.*Im4545c-Im45Hc-Im45Vc-ImH45c-

ImV45c+(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
m34=2.*ImR45c-ImRHc-ImRVc-ImH45c-ImV45c+(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
m41=ImHRc+ImVRc-(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
m42=ImHRc-ImVRc-(1/2).*(ImHHc+ImHVc-ImVHc-ImVVc); 
m43=2.*Im45Rc-Im45Hc-Im45Vc-ImHRc-ImVRc+(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
m44=2.*ImRRc-ImRHc-ImRVc-ImHRc-ImVRc+(1/2).*(ImHHc+ImHVc+ImVHc+ImVVc); 
%% Obtaining numerical Mueller matrix 
Anorm=mean(mean(m11)); 
M(1,1)=1; M(1,2)=mean(mean(m12))/Anorm; M(1,3)=mean(mean(m13))/Anorm; 

M(1,4)=mean(mean(m14))/Anorm; 
M(2,1)=mean(mean(m21))/Anorm; M(2,2)=mean(mean(m22))/Anorm; 

M(2,3)=mean(mean(m23))/Anorm; M(2,4)=mean(mean(m24))/Anorm; 
M(3,1)=mean(mean(m31))/Anorm; M(3,2)=mean(mean(m32))/Anorm; 

M(3,3)=mean(mean(m33))/Anorm; M(3,4)=mean(mean(m34))/Anorm; 
M(4,1)=mean(mean(m41))/Anorm; M(4,2)=mean(mean(m42))/Anorm; 

M(4,3)=mean(mean(m43))/Anorm; M(4,4)=mean(mean(m44))/Anorm; 
%% Showing normalized Mueller matrix as images 
norm=max(max(m11)); 
h=figure('Name','Optical normalized Mueller 

matrix','units','normalized','outerposition',[0 0 1 1]);  
h.PaperPositionMode = 'auto'; %for saving the image at it appears on 

screen 
set(h,'visible','off'); %hide the figure while we are changing its 

properties 
iptsetpref('ImshowBorder','tight'); %remove innecesary white space 
subplot(4,4,1); imagesc(m11/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,2); imagesc(m12/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,3); imagesc(m13/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,4); imagesc(m14/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,5); imagesc(m21/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
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subplot(4,4,6); imagesc(m22/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,7); imagesc(m23/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,8); imagesc(m24/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,9); imagesc(m31/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,10); imagesc(m32/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,11); imagesc(m33/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,12); imagesc(m34/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,13); imagesc(m41/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,14); imagesc(m42/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,15); imagesc(m43/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
subplot(4,4,16); imagesc(m44/norm); colormap jet; axis image; axis off; 

caxis([-1 1]); 
f=0;%counter for the number of subfigure; 
xant=0; l=0;%initial x and factor shift for subplots 
for i=0:3 %two fors for easy labeling of each subfigure  
    for j=0:3 
        l=l+1; %control of shifting of figure 
        f=f+1; %updating subfigure counter 
        sp_hand1 = subplot(4,4,f); %calling handle of subfigure  
        pos1 = get(sp_hand1, 'Position'); % obtaining the position of 

current sub-plot 
        new_pos1 = pos1 +[xant 0 0.04 0.04]; %defining new position  
        set(sp_hand1, 'Position',new_pos1 ); % setting new position of 

current sub - plot 
        v = axis; %For the title position 
        handle=title(['M',num2str(i), num2str(j)]); %Assigning the title 

of the graphic 
        set(handle,'Position',[v(2)/2 v(4)*0.12 0]); %Placing the title 
        xant=(-new_pos1(3)/2+.003)*l; %defining new x coordinate 
    end 
    xant=0; l=0; %resetting values for new row 
end 
%Placing one color bar for all subfigures; taking as reference the 

position 
%of the last subfigure. 
colorbar('Position', [new_pos1(1)+new_pos1(3)-0.04  new_pos1(2)  0.03  

new_pos1(2)+new_pos1(3)*3.78],'fontsize',12) 
drawnow 
set(h,'visible','on'); %Showing figure 
saveas(gcf,'Normalized Mueller Matrix IPA.jpg') 
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%Program to obtain the Mueller matrix of a sample using azimuthal 
%polarization. 
%By Jacqueline Muro 
%V1.0 01/06/2017 

%V1.1 12/07/2017 Section to improve the format of the Mueller matrix 

figure is added 
clear all; close all; clc; 
%% Loading cropped images 
% From MCC MBS HG10 (horizontal mode) 
Im00=double(imread('MCCHAzHt2c.jpg')); 
Im10=double(imread('MCCHAzVt2c.jpg')); 
Im20=double(imread('MCCHAz45t2c.jpg')); 
Im30=double(imread('MCCHAzRt2c.jpg')); 
% From MCC MBS HG01 (vertical mode) 
Im01=double(imread('MCCVAzHt2c.jpg')); 
Im11=double(imread('MCCVAzVt2c.jpg')); 
Im21=double(imread('MCCVAz45t2c.jpg')); 
Im31=double(imread('MCCVAzRt2c.jpg')); 
%% From MCA (Pi/2 mode converter) MBS HG01 (vertical mode) 
Im03=double(imread('MCAVAzHt2c.jpg')); 
Im13=double(imread('MCAVAzVt2c.jpg')); 
Im23=double(imread('MCAVAz45t2c.jpg')); 
Im33=double(imread('MCAVAzRt2c.jpg')); 
%% From MCB (Pi Converter) MBS HG10 (horizontal mode) 
Im02=double(imread('MCBHAzHt2c.jpg')); 
Im12=double(imread('MCBHAzVt2c.jpg')); 
Im22=double(imread('MCBHAz45t2c.jpg')); 
Im32=double(imread('MCBHAzRt2c.jpg')); 
%% Computing S elements 
ImS00=Im00+Im01+Im10+Im11; S(1,1)=mean(mean(ImS00));  
ImS03=Im00-Im01+Im10-Im11; S(1,4)=mean(mean(ImS03));  
ImS10=-Im00-Im01-Im10-Im11+2.*(Im20+Im21); S(2,1)=mean(mean(ImS10)); 
ImS13=-Im00+Im01-Im10+Im11+2.*(Im20-Im21); S(2,4)=mean(mean(ImS13)); 
ImS20=-Im00-Im01-Im10-Im11+2.*(Im30+Im31); S(3,1)=mean(mean(ImS20));  
ImS23=-Im00+Im01-Im10+Im11+2.*(Im30-Im31); S(3,4)=mean(mean(ImS23)); 
ImS30=Im00+Im01-Im10-Im11; S(4,1)=mean(mean(ImS30)); 
ImS33=Im00-Im01-Im10+Im11; S(4,4)=mean(mean(ImS33)); 
%% Computing S elements for the MCA MBS (Pi2 converter) 
ImS02=-Im00-Im01+2.*Im03-Im10-Im11+2.*Im13; S(1,3)=mean(mean(ImS02)); 
ImS12=Im00+Im01-2.*Im03+Im10+Im11-2.*(Im13+Im20+Im21-2.*Im23); 

S(2,3)=mean(mean(ImS12)); 
ImS22=Im00+Im01-2.*Im03+Im10+Im11-2.*(Im13+Im30+Im31-2.*Im33); 

S(3,3)=mean(mean(ImS22)); 
ImS32=-Im00-Im01+2.*Im03+Im10+Im11-2.*Im13; S(4,3)=mean(mean(ImS32)); 
%% Computing S elements for the MCB MBS 
ImS01=-Im00-Im01+2.*Im02-Im10-Im11+2.*Im12; S(1,2)=mean(mean(ImS01)); 
ImS11=Im00+Im01-2.*Im02+Im10+Im11-2.*(Im12+Im20+Im21-2.*Im22); S(2,2)= 

mean(mean(ImS11)); 
ImS21=Im00+Im01-2.*Im02+Im10+Im11-2.*(Im12+Im30+Im31-2.*Im32); 

S(3,2)=mean(mean(ImS21)); 
ImS31=-Im00-Im01+2.*Im02+Im10+Im11-2.*Im12;  S(4,2)=mean(mean(ImS31)); 
%% Finding Mueller matrix for azimuthal polarization as probe beam 
Sn=S./S(1,1); 
M=[S(1,1), -S(1,2),-S(1,3),-S(1,4);... 
   S(2,1), -S(2,2),-S(2,3),-S(2,4);... 
   S(3,1), -S(3,2),-S(3,3),-S(3,4);... 
   S(4,1), -S(4,2),-S(4,3),-S(4,4)]; 
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Mn=M./S(1,1); 

%% Converting to optical convention 
Q=[1 0 0 0;0 0 1 0;0 0 0 -1;0 1 0 0]; %Transformation matrix for 

optical/Born-Wolf convention 
Q1=[1 0 0 0; 0 0 0 1; 0 1 0 0; 0 0 -1 0]; %Defining inverse Q matrix 
MnO=Q1*Mn*Q % Presenting Mueller optical normalized matrix 

%% Showing normalized Mueller matrix as images (Optical convention) 
norm=max(max(ImS00)); 
h=figure('Name','Optical normalized Mueller 

matrix','units','normalized','outerposition',[0 0 1 1]);  
h.PaperPositionMode = 'auto'; %for saving the image as it appears on 

screen 
set(h,'visible','off'); %hide the figure while we are changing its 

properties 
iptsetpref('ImshowBorder','tight'); %remove unnecessary white space 
subplot(4,4,1); imagesc(ImS00/norm); colormap jet;  title('M00'); axis 

image; caxis([-1 1]); axis off;  
subplot(4,4,2); imagesc(-ImS03/norm); colormap jet;  title('M01'); axis 

image; caxis([-1 1]); axis off; 
subplot(4,4,3); imagesc(-ImS01/norm); colormap jet;  title('M02'); axis 

image; caxis([-1 1]); axis off; 
subplot(4,4,4); imagesc(ImS02/norm); colormap jet;  title('M03'); axis 

image; caxis([-1 1]); axis off; 
subplot(4,4,5); imagesc(ImS30/norm); colormap jet;  title('M10'); axis 

image; caxis([-1 1]); axis off; 
subplot(4,4,6); imagesc(-ImS33/norm); colormap jet;  title('M11'); axis 

image; caxis([-1 1]); axis off; 
subplot(4,4,7); imagesc(-ImS31/norm); colormap jet;  title('M12'); axis 

image; caxis([-1 1]); axis off; 
subplot(4,4,8); imagesc(ImS32/norm); colormap jet;  title('M13'); axis 

image; caxis([-1 1]); axis off; 
subplot(4,4,9); imagesc(ImS10/norm); colormap jet;  title('M20'); axis 

image; caxis([-1 1]); axis off;  
subplot(4,4,10); imagesc(-ImS13/norm); colormap jet;  title('M21'); axis 

image; caxis([-1 1]); axis off;  
subplot(4,4,11); imagesc(-ImS11/norm); colormap jet; title('M22'); axis 

image; caxis([-1 1]); axis off;  
subplot(4,4,12); imagesc(ImS12/norm); colormap jet; title('M23'); axis 

image; caxis([-1 1]); axis off;  
subplot(4,4,13); imagesc(-ImS20/norm); colormap jet;  title('M30'); axis 

image; caxis([-1 1]); axis off;  
subplot(4,4,14); imagesc(ImS23/norm); colormap jet; title('M31'); axis 

image; caxis([-1 1]); axis off;  
subplot(4,4,15); imagesc(ImS21/norm); colormap jet;  title('M32'); axis 

image; caxis([-1 1]); axis off;  
subplot(4,4,16); imagesc(-ImS22/norm); colormap jet;  title('M33'); axis 

image; caxis([-1 1]); axis off;  
% Just to modify figure properties:  
f=0;%counter for the number of subfigure; 
xant=0; l=0;%initial x and factor shift for subplots 
for i=0:3 %two fors for easy labeling each subfigure  
    for j=0:3 
        l=l+1; %control of shifting of figure 
        f=f+1; %updating subfigure counter 
        sp_hand1 = subplot(4,4,f); %calling handle of subfigure  

C.2. Algorithm to compute the Mueller matrix through images following Töppel�s expressions103



        pos1 = get(sp_hand1, 'Position'); % obtaining the position of 

current sub-plot 
        new_pos1 = pos1 +[xant 0 0.04 0.04]; %defining new position  
        set(sp_hand1, 'Position',new_pos1 ); % setting new position of 

current sub - plot 
        v = axis; %For the title position 
        handle=title(['M',num2str(i), num2str(j)]); %Assigning the title 

of the graphic 
        set(handle,'Position',[v(2)/2 v(4)*0.12 0]); %Placing the title 
        xant=(-new_pos1(3)/2+.003)*l; %defining new x coordinate 
    end 
    xant=0; l=0; %resetting values for new row 
end 
%Placing one color bar for all subfigures; taking as reference the 

position of the last subfigure. 
colorbar('Position', [new_pos1(1)+new_pos1(3)-0.04  new_pos1(2)  0.03  

new_pos1(2)+new_pos1(3)*3.78],'fontsize',12) 
drawnow  
set(h,'visible','on'); %Showing Figure 
saveas(h,'Optical Normalized Mueller Matrix.jpg') %Saving to disk 
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%======================Program info===================================== 
%Program to compute the Stokes vector in images and numerical values from 

%7 images using an unconventional polarized beam of light. 
%The program uses 1 image of the unconventionally polarized beam (e.g. 

%azimuthal) as a reference to obtain the size of the beam cross section 
%(working area). The other 6 images are the corresponding when analyzing 
%the beam for horizontal, vertical, +45, -45, R, L polarizations. 
%The user specifies the center of the beam to crop the image. 
%The program gives the images cropped, the Stokes parameters in images 

%and in numerical values. 
%Developed by Jacqueline Isamar Muro Ríos as a part of master's thesis at 
%CIO, León, Gto. México. 
%V1.4 June-7-2017 
%V1.5 June-24-2017 A section for scale the images from pi/2 converter is 
%added to have equal proportion and size. 
%========================================================================

== 
%Initialization 
clc; close all; clear all;  
%% Loading and cropping the images 
AzRefg=imread('Reft5.jpg'); 
AzHg=imread('GT0t5.jpg'); 
AzVg=imread('GT90t5.jpg'); 
Az45g=imread('GT45t5.jpg'); 
Az_45g=imread('GT135t5.jpg'); 
AzRg=imread('Rt5.jpg'); 
AzLg=imread('Lt5.jpg'); 
%% cropping the images by hand 
%rad=300; %half the size of the cropped image for MCC (Air) 
%rad=474; %Value for MCA (Pi/2), air and lambda/4. This value was 

%selected to have the same proportion intensity-image size according to 

%the cropped image for MCC (Air). 
%rad=496; %Value for MCA (Pi/2) lambda/2 WP. (The beam is bigger when 

%passing through the MCA). 
%rad=340; %Rad for MCB (Pi) Air. 
rad=442; %Rad for MCB (Pi) lambda/4 
%rad=371; %Rad for MCB (Pi) lambda/2 
[AzRefgc,AzRefc]=ImageCrop2(AzRefg,rad);  
[AzHgc,AzHc]=ImageCrop2(AzHg,rad);  
[AzVgc,AzVc]=ImageCrop2(AzVg,rad);  
[Az45gc,Az45c]=ImageCrop2(Az45g,rad);  
[Az_45gc,Az_45c]=ImageCrop2(Az_45g,rad); 
[AzRgc,AzRc]=ImageCrop2(AzRg,rad);  
[AzLgc,AzLc]=ImageCrop2(AzLg,rad);  
%% Scaling images (Optional if their size is different from the ones for 

%MCC (Air) 
%fact=0.633; %Scale factor for MCA, air and lambda/4 WP. The scale factor 

%is computed according to the ratio of the cropped image in air and the 

%cropped image to be resized. 
%fact=0.6052; %Scale factor for lambda/2 images for MCA (Pi/2) 
%fact=0.8825; %Scale factor for MCB(Pi) Air 
fact=0.6783; %Scale factor MCB (Pi) lambda/4 
%fact=0.8078; %Scale factor MCB (Pi) lambda/2 
AzRefgc=imresize(AzRefgc,fact); AzRefc=imresize(AzRefc,fact); %The 

process is done for all the cropped images 
AzHgc=imresize(AzHgc,fact); AzHc=imresize(AzHc,fact); 
AzVgc=imresize(AzVgc,fact); AzVc=imresize(AzVc,fact); 
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Az45gc=imresize(Az45gc,fact); Az45c=imresize(Az45c,fact); 
Az_45gc=imresize(Az_45gc,fact); Az_45c=imresize(Az_45c,fact); 
AzRgc=imresize(AzRgc,fact); AzRc=imresize(AzRc,fact); 
AzLgc=imresize(AzLgc,fact); AzLc=imresize(AzLc,fact); 
%% Saving cropped images to disk 
imwrite(uint8(AzRefc),'AzRefc.jpg','jpg'); 

imwrite(AzRefgc,'AzRefgc.jpg','jpg'); 
imwrite(uint8(AzHc),'AzHc.jpg','jpg'); imwrite(AzHgc,'AzHgc.jpg','jpg');  
imwrite(uint8(AzVc),'AzVc.jpg','jpg'); imwrite(AzVgc,'AzVgc.jpg','jpg'); 
imwrite(uint8(Az45c),'Az45c.jpg','jpg'); 

imwrite(Az45gc,'Az45gc.jpg','jpg'); 
imwrite(uint8(Az_45c),'Az_45c.jpg','jpg'); 

imwrite(Az_45gc,'Az_45gc.jpg','jpg'); 
imwrite(uint8(AzRc),'AzRc.jpg','jpg'); imwrite(AzRgc,'AzRgc.jpg','jpg'); 
imwrite(uint8(AzLc),'AzLc.jpg','jpg'); imwrite(AzLgc,'AzLgc.jpg','jpg'); 
%% Presenting cropped images 
figure('Name','HAND CUTTED 

IMAGES','units','normalized','outerposition',[0 0 1 1]);  
subplot(2,3,1); imagesc(AzHc); colormap gray; title('Cropped H image'); 

axis square %showing the original reference image (azimuthally polarized 

beam) 
subplot(2,3,4); imagesc(AzVc);colormap gray; title('Cropped V 

image');axis square 
subplot(2,3,2); imagesc(Az45c);colormap gray; title('Cropped 45° 

image');axis square 
subplot(2,3,5); imagesc(Az_45c);colormap gray; title('Cropped -45° 

image');axis square 
subplot(2,3,3); imagesc(AzRc);colormap gray; title('Cropped R 

image');axis square 
subplot(2,3,6); imagesc(AzLc);colormap gray; title('Cropped L 

image');axis square 
%% computing the Stokes parameters in images and numbers 
S0=double(AzHc)+double(AzVc); norm=max(max(S0));  
figure; imagesc(S0/norm); colormap jet; colorbar; title('S0'); axis off; 

axis equal; caxis([-1 1]); Sm(1,1)=mean(mean(S0)); 
set(gca,'units','normalized','position',[0 0.02 0.98 0.93]) %[left bottom 

width height] 
print('S0','-djpeg','-r0') %to write the figure like a jpg image at 

screen resolution 
S1=double(AzHc)-double(AzVc); figure; imagesc(S1/norm); colormap jet; 

colorbar; title('S1'); axis off; axis equal; caxis([-1 1]); 

Sm(2,1)=mean(mean(S1)); 
set(gca,'units','normalized','position',[0 0.02 0.98 0.93]) %[left bottom 

width height] 
print('S1','-djpeg','-r0') %to write the figure like a jpg image at 

screen resolution 
S2=double(Az45c)-double(Az_45c); figure; imagesc(S2/norm); colormap jet; 

colorbar; title('S2'); axis off; axis equal; caxis([-1 1]); 

Sm(3,1)=mean(mean(S2)); 
set(gca,'units','normalized','position',[0 0.02 0.98 0.93]) %[left bottom 

width height] 
print('S2','-djpeg','-r0') %to write the figure like a jpg image at 

screen resolution 
S3=double(AzRc)-double(AzLc); figure; imagesc(S3/norm); colormap jet; 

colorbar; title('S3'); axis off; axis equal; caxis([-1 1]); 

Sm(4,1)=mean(mean(S3)); 
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set(gca,'units','normalized','position',[0 0.02 0.98 0.93]) %[left bottom 

width height] 
print('S3','-djpeg','-r0') %to write the figure like a jpg image at 

screen resolution 
% Normalized parameters 
Smn=[1; Sm(2,1)/Sm(1,1); Sm(3,1)/Sm(1,1); Sm(4,1)/Sm(1,1)]  
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function [Imgc,GrayImc]=ImageCrop2(Img,rad) 
%Function to crop an image  
%Entrance parameters:  
%-Img=Image to be cropped in rgb format 
%-rad= Half the size of the desired region 
%By Jacqueline Muro 
%V. 1.1 28/June/2017 The size of the cropped image is fixed to 2*rad by 

2*rad independently if it gets out of bounds. 
f=figure('units','normalized','outerposition',[0 0 1 1]); %for displaying 

image at full screen 
imagesc(Img);colormap gray; title('Select the center of the beam'); axis 

image; %showing image 
[a,b] = ginput(1); close(f); % Select a section of the image [col rows] 
a=ceil(a); b=ceil(b); % Converting to integer 
GrayIm= rgb2gray(Img); %Converting to grayscale 
ub=size(GrayIm); %Obtaining upper bounds (size of original image) 
lim=[a-rad a+rad b-rad b+rad]; %saving xmin xmax ymin ymax values of the 

desired region 
[lim2,limO]=OBCheck(ub,lim); %Calling function to check out of bounds 

issue 
rell=(GrayIm(limO(1),lim2(1))+GrayIm(limO(2),lim2(2))+GrayIm(lim2(3),limO

(3))+GrayIm(lim2(4),limO(4)))/4; %Averaging the intensity in the region 

borders  
GrayImc=ones(2*rad+1,2*rad+1); GrayImc(:,:)=rell; %Initializing and 

uniformizing the minimum intensity (not to abrupt change as if was 0); 
GrayImc(lim2(1):lim2(2),lim2(3):lim2(4))=GrayIm(limO(1):limO(2),limO(3):l

imO(4));%Moving data 
Imgc=imcrop(Img,[1 1 2*rad 2*rad]); %Initializing color image 

Imgc(:,:,:)=0; %Filling with zeros 
Imgc(lim2(1):lim2(2),lim2(3):lim2(4),1)=Img(limO(1):limO(2),limO(3):limO(

4),1);%Moving data from red channel 
Imgc(lim2(1):lim2(2),lim2(3):lim2(4),2)=Img(limO(1):limO(2),limO(3):limO(

4),2);%Moving data from green channel 
Imgc(lim2(1):lim2(2),lim2(3):lim2(4),3)=Img(limO(1):limO(2),limO(3):limO(

4),3);%Moving data from blue channel 
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function [lim2,limO]=OBCheck(ub,lim) 
%For checking if a desired region is out of bounds of the original image 
%Entrance parameters:  
%   ub=row vector containing original image size [rows cols] 
%   lim=row vector containing original desired bounds [ccmin ccmax crmin 
%   crmax] 
%Output parameters: 
%   lim2=rows vector containing the beginning and end coordinates in 
%   columns and row directions. lim2=[rowmin rowmax cmin cmax] 
%   limO=rows vector containing the beginning and end coordinates in 
%   columns and row directions in the original image. limO=[rowminO 

rowmaxO cminO cmaxO] 
% By Jacqueline Muro 
% V1.0 05/03/2017 
bc=lim(1); ec=lim(2); br=lim(3); er=lim(4); % initializing limits of the 

bounding pixels original image. bc,ec=beginning and end in columns. 

br,er=beginning and end in rows 
m=ones(1,4); %m is a row matrix for saving distance out of bounds in all 

directions 
if (lim(1)<1) %If we are out of bounds in columns origin  
    bc=1; %correcting bound 
    m(1)=abs(lim(1)); % margin out of bounds 
end 
if lim(2)>ub(1,2) %If we are out of bounds in columns end 
    ec=ub(1,2);%correcting bound 
    m(2)=abs(lim(2)-ub(1,2)); % margin out of bounds 
end 
if lim(3)<1 %If we are out of bounds in rows origin 
    br=1;%correcting bound 
    m(3)=abs(lim(3)); %margin out of bounds 
end 
if lim(4)>ub(1,1) %if we are out of bounds in rows end 
    er=ub(1,1); 
    m(4)=abs(lim(4)-ub(1,1)); %margin out of bounds 
end 
marc=ceil((m(1)+m(2)-2)/2); %margin in columns to be compensated with 0's 
marr=ceil((m(3)+m(4)-2)/2); %margin in rows to be compensated with 0's 
lim2=[marr+1,(er-br)+marr+1,marc+1,(ec-bc)+marc+1]; %row vector with the 

corrected limits in format (rmin rmax cmin cmax) 
limO=[br,er,bc,ec]; %row vector with the corrected limits in the original 

image. Format (rmin rmax cmin cmax) 
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