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2 Chapter 1. Introduction

Over the past 20 years, technology has advanced exponentially. This has lead to some
dramatic changes in human (and even non-human) lifestyles. When it comes to medicine,
technology has made a huge impact on this field. Radiographs are so often used that all
modern hospitals possess radiological facilities. According to the United States Food and
Drug Administration, some applications of radiographs are [1]:

• Dental examinations
• Verification of correct placement of surgical markers prior to invasive procedures
• Mammography
• Orthopedic evaluations
• Spot film or static recording during fluoroscopy
• Chiropractic examinations

The work presented in this thesis is focused on dental radiographs. Most modern dental
clinics have the capability of getting radiographs from patients. They are a great way to
analyze teeth and find problems which could not be seen with the naked eye, which is why are
are so fundamental in dental procedures.

Digital radiography was introduced in the mid 1980s [2] and is competing with conven-
tional screen film radiography in radiographic applications [3].

There are two categories in which dental x-rays can be divided:

Intraoral x-rays. This is the most common type. They provide detail about specific teeth so
they are used for identifying problems with individual teeth.

Extraoral x-rays. Their main focus is the jaw and skull. They are used to monitor problems
between these last two and teeth.

The work on this thesis is done on pantomograms, also known by its trade names Panorex
or Orthopantomograph or more typically called panoramic dental radiographs. Pantomograms
are two-dimensional images that capture the entire mouth, including the teeth, upper and lower
jaws, and surrounding structures and tissues. It is important to note that this procedure causes
some geometric distortion because it produces a flat image of a curved structure just like a
map projection.
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Figure 1.1: Example of a pantomogram. Image courtesy of the dentistry faculty of
Universidad La Salle Bajío.

In this type of tomography, narrow-beam equipment is used, synchronizing the movement
of the x-ray tubehead and the cassette carrier, which are designed to rotate in the horizontal
plane, in a circular path around the head, with a single center of rotation [4]. The resultant
focal trough is curved and forms the arc of a circle. The plane of the object that is not blurred
on the radiograph is called the plane of acceptable detail or focal trough. It is also called the
image layer.

In the case of digital radiography, a digital sensor approximately the size of the slit beam
collimating device is placed in the carrier instead of a film/screen combination. As the carrier
moves around the patient, the electronic impulses are sent back to the computer and an image
is generated.
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Tube
movement

Film
movement

A
B

C

X-ray
beam

Focal
trough

Film
A B C

(a) Principles of tomography. Note that only
objects in the focal trough (square) project
onto the same area of the film and are not

blurred out.

End Begin

(b) Rotational tomography procedure. Note
the slit opening in the film carrier and that the
film and the tube travel around the patient in

opposite directions.

Figure 1.2: Midsagittal plane of a human being.

Although most of the panoramic machine units are different, they follow some common
positioning requirements for patients and operators, which are explained below [5]:

1. The patient’s midsagittal plane (Figure 1.3a) should be perpendicular to the floor.
2. In most units, the Frankfort plane (Figure 1.3b) should be parallel to the floor.
3. The anterior teeth should be positioned in the proper groove in the bite block and not

forward or posterior to the groove (Figure 1.3c).
4. The chin should not be angled up or down.
5. The head-positioning devices should be firm to prevent tipping or rotation during the

exposure and loss of proper midsagittal orientation.
6. The patient must not move during the exposure or a blurred image will result.
7. The patient should maintain his or her tongue against the roof of the mouth.
8. The patient must keep his or her spine erect.
9. A lead apron with no thyroid collar should be used as a radiation shield in order to

protect the patient and not block the primary beam.
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(a) Midsagittal plane of a hu-
man being (blue plane).

(b) Orbito-meatal (Frank-
fort) plane of a human being

(blue dotted line).

(c) Anterior teeth positioned
correctly.

Figure 1.3: Midsagittal plane of a human being.

One of the main disadvantages of pantomographic units is that they have a tendency to
produce overlapping images, particularly in the premolar area. An approach to correct this
problem is presented in this thesis.

1.1 Problem background

There exists little work done on dental radiographs using digital image processing, with
most of the work consisting in post-processing results such as enhancing contrast for better
human appreciation [6, 7].

Some morphological teeth features can be related to the development of certain diseases,
such as the case of enamel pearls and periodontal disease [8, 9, 10]. Finding these features in
time is essential to avoid complications; however, in the case of enamel pearls and periodontal
disease, given a sufficiently big database, this may prove difficult to do manually considering
the enamel pearls low rate of appearance [11], hence the importance of automated methods of
detecting these features. Segmentation of molars if the first step towards detecting these mor-
phological features of interest. In the case of periodontal disease, some of these morphological
features of interest are enamel projections and enamel pearls.
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1.1.1 Enamel

Dental enamel is one of the four main tissues (along with dentin, dental cementum and
dental pulp) that make up the tooth in humans and other animals, including some species of
fish.

Dental enamel is the part of the teeth that we normally see and that covers the crown.
It is usually white or slightly yellow in color and quite resistant, thus acting as a protective
barrier for the tooth, although it may be subject to degradation, especially from food acids or
beverages. Because the ameloblasts (cells responsible for producing the enamel) are lost once
the tooth springs into the oral cavity, dental enamel is impossible to renew naturally.

Enamel

Dentin

Gums

Cementum

Bone

Blood
vessel

Nerve

Crown

Root

Figure 1.4: Cross section of a tooth where some of its most relevant parts are shown.

In humans, the enamel varies in thickness along the surface of the tooth, reaching its
greatest thickness in the cusps of the teeth (elevations of enamel with foundation in the dentin),
where it can be 2.5 mm thick; while the thinnest part can be found on the edge of the dental
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cement and the cement-enamel junction [12].

Enamel is the hardest substance in the human body and contains the highest percentage
of minerals (96 %), while the remaining 4 % is composed of water and organic material [12].
This large amount of minerals in the enamel contribute to its strength and fragility. Enamel
is at level 5 of the Mohs hardness scale and has a Young’s modulus of 83 GPa [13]. This
composition of materials, together with its organizational structure, allows the enamel to
withstand the mechanical forces applied by the teeth.

In radiographs, the differences in mineralization between the different tooth portions can
be appreciated; enamel appears in a brighter shade than dentin or pulp, as it is denser than
these and more radiopaque [14].

Figure 1.5: X-ray image where the contrast in luminosity of the different parts of a tooth
can be appreciated.

1.1.2 Emamel projections

Amelogenesis is the process of enamel formation on the teeth. The process begins in the
teeth while they are still developing inside the gums, before they erupt [15]. Also known
as enamel extensions, enamel projections occur when amelogenesis continues even after the
crown of the tooth has been covered, which causes enamel to overcome the cervical border
(amelocemental junction) and extend into the furcation of the tooth [16].

Cervical enamel projections are usually classified into three grades according to the scale
published by Masters and Hoskins [17]. This scale is shown in Figure 1.6.
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Incipient

Grade 1

Grade 2

Grade 3

Figure 1.6: Classification of cervical enamel projection according to Masters and Hoskins
on “Projection of Cervical Enamel into Molar Furcations”.

In a study carried out by Prashanth, Nagarathna, and D’Souza from the Institute of Dental
Sciences, the average length of enamel extensions was found to be 3.7 mm with a standard
deviation of 1.1 mm [18].

Its clinical significance is related to the fact that they could contribute to the formation of
periodontal pockets, which in turn could evolve into periodontal disease [17, 19, 20].

1.1.3 Enamel pearls

An enamel pearl is an abnormal localized developmental condition of enamel somewhere
in the tooth, usually found on the dental root surface [16, 21, 22] and the molar furcations [23].
In an anthropological context, they are usually related to enamel projections, and can be found
even attached to these [24].
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Figure 1.7: Enamel pearl visible on a third molar (wisdom tooth).

According to Matthews and Tabesh, enamel pearls have a prevalence between 1.1 % and
9.7 % and are most commonly found in upper second molars and lower third molars [11].
A retrospective study by Colak et al. evaluated radiographs of Turkish patients, from which
a 5.1 % exhibited enamel pearls. The researchers found a higher percentage of occurrence
in men (6.58 %) compared to the percentage of occurrence in women (3.96 %). Similarly, a
higher percentage of enamel pearls appearance was found in the mandibular region of the first
molars without an appreciable statistical difference on the right side or the left side [25].

Enamel pearls are most likely caused by an anomaly in the Hertwig epithelial sheath, in
which a stellate reticulum area (the middle layer of the enamel organ) is retained between the
two layers of epithelium that normally make up the root sheath Cite pmid10760733. The
presence of stellate reticulum allows the differentiation of the cells of the root sheath into the
ameloblasts, leading to the formation of a small area of enamel on the external root surface
[23, 26].
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Enamel pearls are linked to the origin of periodontal disease because they interrupt the
insertion of periodontal fibers into the cementum and contribute to the accumulation of
plaque or biofilm, development of subgingival calculi and subsequent formation of an active
periodontal pocket [21, 23, 27, 28].

In an radiograph, enamel pearls can be seen as a soft, radiopaque structure in the tooth root.
Because the nodule is below the tissue, it is not noticed during the review of usual oral tissue.

Figure 1.8: Enamel pearls shown in a radiograph.

Some other tasks, like classification of difficulty of third molars extraction, require methods
which may result cumbersome and slow when doing manually, making computer-assisted
methods really helpful. Additionally, measurements of morphological features may be more
accurately acquired using digital image processing methods.

1.2 Work summary

In this thesis, digital image processing techniques were used in order to isolate and segment
individual molars in pantomograms; in particular, second and third molars. This is done using
two different approaches pre-processing the image. The general area of the tooth is cropped
beforehand manually in order to speed-up the digital image processing techniques. The
orientation of the segmented molars is also determined using image moments.

In both implemented methods, the pantomograms are preprocessed by applying a Gaus-
sian filter to smooth some edges of the image. The smoothed image is then clustered into
superpixels, and the mean color of each cluster is computed. Each pixel is then assigned its
cluster’s mean color. This helps to achieve color uniformity and reduces noise while preserving
important image information such as edges.
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1.2.1 Using Otsu’s method

The first method presented in this work uses fast local Laplacian filtering in order to
produce a contrast-enhanced image [29, 30]. Fast local Laplacian filtering greatly helps to
make the teeth stand out from the noisy background in the pantomograms. This makes it easy
to apply Otsu’s method to binarize the image and get the teeth isolated from the background.

The previous algorithm successfully extracts the molars from the background of the
pantomograms; however, most of the times, the teeth overlap each other, and a method to
separate the different teeth is required. A method for separating the overlapping teeth is
proposed using the distance transform on the binary image obtained from Otsu’s method and
applying watershed segmentation to the resulting distance transform. The teeth are further
separated from each other using image gradients. The images are cleaned using morphological
operations between steps.

1.2.2 Using active contour

This method applies the active contour algorithm directly to the contrast-enhanced image
created by using fast local Laplacian filtering. The initial mask for the active contour algorithm
is created automatically while cropping the image, so it is not necessary to specify the initial
mask manually.

The active contour algorithm does not produce perfect segmentations either and also
creates masks where the teeth overlap each other, so the proposed algorithm for separating
the overlapping teeth using the distance transform and watershed segmentation applied in the
segmentation using Otsu’s method is once again used in this approach.

The advantage of using active contouring over Otsu’s method is that the latter requires dif-
ferent morphological operations for different images, while the same morphological operations
can be applied to active contouring to achieve a final segmentation.

1.3 Related research

There has been research about the challenges of edge extraction from dental radiographs
using conventional digital image processing algorithms [31], and research on teeth segmenta-
tion [32, 33]. Teeth segmentation has been performed in x-rays radiographs in order to identify
subjects post-mortem [34]; however, there is no work done for automated measurements (such
as orientation) or segmentation of molars in-vivo patients.
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1.4 Thesis structure

The following is a general summary of the different chapters contained in this thesis, in
order to give the reader a preamble of the content of this thesis. The digital image processing
techniques used are all explained and some may contain some MATLAB code examples or
pseudocode.

Chapter 1: Introduction

A brief introduction about the problem background and why is it relevant for more future
work, the work done in this thesis and any similar work done by others.

Chapter 2: Digital image formation

This chapter briefly describes how a digital image is formed, which components affect
image formation, how a digital image is represented and why it is represented like that.

Chapter 3: Filtering and morphological operations

In this chapter, the digital image processing techniques used in this thesis are described.
Some example code is included for some of the operations, as well as actual results from each
of the operations. In the case of more complicated procedures such as superpixel segmentation,
the pseudocode is listed instead.

Chapter 4: Segmentation results

The digital image processing techniques of the previous chapter are applied to the panto-
mograms supplied by the Faculty of Dentistry of Universidad de la Salle Bajío. Each operation
done is documented with the parameters that were used to acquire the output image shown in
the figures.
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2.1 Digital Cameras

A digital image can be represented as a two-dimensional signal I(x,y), where x and y are
discrete values which correspond to the number of samples taken horizontally and vertically
from the real image respectively.

Each sample forms a point in the image called pixel (a contraction of picture element) and
represents the smallest homogeneous unit in a digital image. When a digital image is said to
be M pixels wide and N pixels tall that means the image has got M columns of samples and
N rows of samples for a total of M×N samples. Each pixel in the image is given a discrete
value which represents the luminosity captured by the camera sensor.

In order to reference a specific pixel, a coordinate system is required. Unlike the Cartesian
coordinate system, the origin is located at the top left pixel of the image with increasing x
values to the right and increasing y values towards the bottom. This coordinate system can be
seen in Figure 2.1.

Figure 2.1: Coordinate system used for digital images.

2.1.1 Pixel values assignation

The value acquired by a pixel depends basically on three components:
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1. The color of the light which illuminates the environment
2. The absorption and reflection properties of the object on which light is striking
3. The sensibility of the camera sensor that is being used to capture the picture

Figure 2.2: Elements that affect the composition of a digital image.

2.1.2 Light color

Light is a form of energy that can be represented as an electromagnetic wave with a specific
wavelength or frequency. The wavelength and frequency correspond to the periodicity to
which the signal is repeated. The perceived color of an object by the human eye is subject to
this wavelength or frequency. The human eye is only able to see a subset of electromagnetic
wavelengths; this subset is called the visible spectrum.

The visible spectrum for humans is located approximately between the wavelength interval
of 390 nm to 700 nm [35]. Shorter wavelengths are associated to violet and blue colors, while
longer wavelengths are associated to red colors.
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Figure 2.3: Electromagnetic spectrum. Human visible spectrum is amplified for easier
appreciation.

An image is not only formed by primary light sources such as the Sun, lamps and bulbs,
among others. Light strikes other objects and these objects will reflect a part of this light
while reflecting another, which will make the reflected light have different components that
the primary light source [36]. The reflected light makes an object look a certain color; blue
objects reflect blue light, red objects reflect red light and so on.

2.1.3 Object properties

When light hits an object, some light wavelengths are absorbed and some other wavelengths
are reflected by the object depending on its properties. The reflected wavelengths determine
the perceived color of the object. Let I(λ ) be the light source illuminating the scene and S(λ )
be the reflected light by the object; thus the light captured by a camera sensor is the product of
S(λ ) · I(λ ), as shown in Figure 2.4.

Light source

I(λ)

Reflected light

S(λ)
x =

Acquired light

I(λ)·S(λ)

Figure 2.4: Light acquired by a camera sensor.
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2.1.4 Camera sensitivity

Typical digital cameras have three different color sensors; one corresponding to red, one
corresponding to green and one corresponding to blue. The acronym RGB comes from each
of these colors’ initials and is the most frequent color space used for the creation of digital
images. These sensors are based on silicon and use specific filters to only let thought certain
light wavelengths. The final values assigned to each pixel are the result of the integration of
the light perceived by each sensor, like so:

(R,G,B) =
(∫

I(λ )S(λ )R(λ )dλ ,
∫

I(λ )S(λ )G(λ )dλ ,
∫

I(λ )S(λ )B(λ )dλ

)

Where R(λ ), G(λ ) y B(λ ) are the red, green and blue sensors of the camera.

Figure 2.5: Typical camera sensors and their sensitivity.

Most digital images have a depth of 8 bit per channel. In binary and grayscale digital
images, one channel is used to store the pixel value; in color images three channels are used to
store each of the pixel’s red, green and blue values. Having a bit depth of 8 means that each
pixel in a channel can have total of 28 = 256 different values, which are usually represented
by the numbers 0 to 255. A value of 0 represents the lowest brightness in that channel, while a
value of 255 represents full brightness. In the case of grayscale images, a value of 0 would
be displayed as black and a value of 255 would be displayed as white. In the case of color
images, a pixel with a value of {255,0,0} would be displayed as red; {0,255,0} would be
displayed as green and {0,0,255} would be displayed as blue; any combination in between is
displayed using an additive color model.



18 Chapter 2. Digital image formation

2.2 Why three sensors?

The RGB color space is inspired by the human visual system, which has three cell types
sensitive to color called cones. Cones are photosensitive cells located in the retina. In the case
of human beings, there are three different types of cones and they are labeled Large, Medium
or Short according to the wavelengths they are most sensitive to [36]. Cone distribution is not
uniform; photobleaching results illustrate that S cones are randomly placed and appear much
less frequently than the M and L cones. The ratio of M and L cones varies greatly among
different people with regular vision (e.g. values of 75.8 % L with 20 % versus 50.6 % L with
44.2 % M in two male subjects) [57].

Sensitivity to different wavelengths is due to the presence of pigments composed of an
apoenzyme called opsin: [37, 58]

• Erythropsin is sensitive to a range of 500 nm to 700 nm, with a maximum located
between 564 nm to 580 nm (red color) [38, 39].

• Chloropsin is sensitive to a range of 450 nm to 630 nm, with a maximum located between
534 nm to 550 nm (green color) [38, 39].

• Lastly, cyanopsin is sensitive to a range of 400 nm to 500 nm, with a maximum located
between 420 nm to 440 nm (blue color) [38, 39].
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Figure 2.6: Normalized cone response to the visible light spectrum.
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3.1 Image filtering

Filtering in digital image processing is a diverse topic which covers several areas. In this
work, the filtering done is intended primarily to reduce noise in the working image. There are
many types of noise, such as salt-and-pepper and Gaussian noise. These types of noise can be
simulated in order to evaluate which algorithm may perform better in reducing a particular
type of noise.

3.1.1 Mean filtering

This filter works by assigning each pixel a value equal to the mean of the pixels value
around it in a neighborhood of N×M1. It has an effect of smoothing the picture. It may be
used to reduce noise in an image, but the median filter in section 3.1.2 usually does a better
job [40]. Mathematically, this can be represented like so:

µ (x,y) =
1
N ∑

(s,t)∈S(x,y)

I (s, t) (3.1)

Where µ (x,y) is the new pixel value of the image, N is the number of pixels in the neighbor-
hood, and S(x,y) is the neighborhood of the pixel at (x,y).

It is important to note that while mean filtering reduces noise somewhat, high-frequency
image detail is lost (image edges), which will make the image look out of focus. These effects
are proportional to the used kernel size.

Mean filtering is not directly used in this work, but it is mentioned to better introduce
Gaussian filtering.

MATLAB code implementation

1 % img = imread('lena.jpg'); % Read image
2 img = imread('http://www.ece.rice.edu/~wakin/images/lenaTest3.jpg');
3 % img = rgb2gray(img); % Convert image to grayscale
4

5 % Add speckle noise to original image
6 noisyImg = imnoise(img,'speckle');
7

8 % Neighborhood size
9 neighborhoodSize = 5;

10

11 % Apply mean filtering

1This is usually called the kernel size.
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12 filteredImg = imfilter(noisyImg, ...
ones(neighborhoodSize)/(neighborhoodSize^2));

13

14 % Display noisy image and filtered image
15 imshowpair(noisyImg,filteredImg,'montage')

(a) Image with speckle
noise.

(b) Pixel inspection of image
with speckle noise starting at

row = 254, colum = 253.
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(c) Histogram of image with
speckle noise.

(d) Image after mean
filtering.

Kernel size = 5×5.

(e) Pixel inspection of im-
age region after mean filter-
ing starting at row = 254,

colum = 253.
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age.

Figure 3.1: Mean filtering of an image.

3.1.2 Median filtering

The median filter is a very commonly used filter in digital image processing. The filter
takes the pixel values and sorts them by ascending pixel value as is the case of rank value
filters such as this one [41]. The median filter selects the medium or median value and assigns
it to the current pixel. This filter is better for preserving image edges because outliers do not
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modify the final pixel value, which is the case of the mean filter. [40]. Median filtering is
exceptionally good at reducing salt-and-pepper noise [59].

Median filtering is used in this work as a morphological operation in binary images. The
filter helps to increase uniformity of the image by increasing the number of the pixels that are
in the majority in a region of the image whether they are black or white pixels.

MATLAB code implementation

1 % Read image
2 img = imread('CoinsWithSaltAndPepper.jpg');
3

4 % Convert image to grayscale
5 img = rgb2gray(img);
6

7 % Apply median filtering with a kernel size of 5x5
8 filteredImg = medfilt2(img,[5 5]);
9

10 % Display noisy image and filtered image
11 imshowpair(img,filteredImg,'montage')
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(a) Image with salt-and-
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Figure 3.2: Median filtering of an image.

3.1.3 Gaussian filtering

A Gaussian filter is similar to a mean filter in the sense that both smooth a picture and
degrade high-frequency details. A Gaussian filter takes after a continuous 2D Gaussian
function, defined as:

P(x,y) =
1

2πσ2 e−(x2+y2)
/

2σ2
(3.2)

A discrete-valued 2D Gaussian function takes two arguments:
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1. The kernel size
2. The standard deviation σ of the Gaussian function

The main difference between a mean filter and a Gaussian filter is that the degree of smoothing
if controlled by σ in a Gaussian filter, not by the kernel size like in a mean filter [40, 42]. A
Gaussian filter is useful in frequency-domain analysis because its Fourier transform is also a
Gaussian function [40, 42].

Gaussian filtering in this work is used to smooth out the image before applying superpixel
clustering, resulting in smoother superpixel clusters.

MATLAB code implementation

1 % Read image
2 img = imread('Rue_de_la_Forge.jpg');
3

4 % Creation of Gaussian filter with a kernel size of [5 5] and
5 % standard deviation of 2
6 gaussianFilter = fspecial('gaussian',[5 5],2);
7

8 % Apply Gaussian filtering
9 filteredImg = imfilter(img,gaussianFilter);

10

11 % Display noisy image and filtered image
12 imshowpair(img,filteredImg,'montage')
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Figure 3.3: Gaussian filtering of an image.

3.2 Morphological operations

Morphological operations can detect or quantify geometrical properties in signal (such
as a digital image) in a similar way that human perception may do it. Its algebraic system of
operators of mathematical morphology and their compositions are capable of decomposing a
complex shape into smaller meaningful parts and, therefore, simplify image data processing
[0].

Morphological operations have been used for multiple purposes, such as: interactive 3D
segmentation of MRI and CT volumes [60], generation of volumes of left ventricle chambers
from cardiac CT volumetric images [61], Frontal-view face detection and facial feature
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extraction [62], license plate detection in complex scenes [0], separation of characters from
maps/graphics [0], automatic brain extraction methods from T1 MRI [63], detection and
geometric modeling of molecular surfaces and cavities [64], film restoration [43], among
others.

In this work, morphological operations are used to clean results from other techniques by
preserving or removing some geometric components in the digital image.

3.2.1 Binary images

Morphological operations are usually done on binary images, which are images in which
each pixel takes a discrete value of either 0 or 1 [44] and are displayed as black (for logical
values equal to 0; also called false) and white (for logical values equal to 1; also called
true) images. The output of these operations is another binary image.

In binary images, pixels with a logical value of 1 are usually referred as the foreground
pixels, while pixels with a logical value of 0 are usually referred as the background pixels.

3.2.2 Thresholding

Binary images are often created from grayscale images by thresholding. There are two
different general methods of thresholding: global and adaptive thresholding [42].

Definition 3.2.1 Given a grayscale image G with x,y elements, then a binary image B may
be created from G using thresholding by establishing a value T . All values of G that are
equal or above T will be set to logical 1, while all values of G below T will be set to logical
0. This can be mathematically represented like so [45]:

B(x,y) =

{
1, if G(x,y)≥ T
0, if G(x,y)< T

(3.3)
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(a) Original image. (b) Thresholded im-
age. T = 51.

(c) Thresholded im-
age. T = 153.

(d) Thresholded im-
age. T = 204.

Figure 3.4: Binarization of images with different threshold magnitudes.

As shown in Figure 3.4, the selected threshold plays a major part in the creation of a binary
image. Selecting an appropriate threshold, thus, is of utmost importance.

Otsu’s method

Otsu’s Method is an algorithm for automatically selecting the most appropriate threshold
T for an image. Named after Nobuyuki Otsu, the algorithm assumes the following:

1. The image is made of two types of pixels: foreground pixels and background pixels
(binary image).

2. The pixels belonging to either of the two type of pixels are very similar to each other.

The algorithm computes the threshold level which optimizes the separation between these
two groups of pixels. Optimization is understood as the minimization of the intra-class
variance between the two groups, defined as the weighted sum of variances between the two
groups (equation 3.4), where ω0,1 are the probabilities of the two groups and σ2

0,1 are the
variances of the two groups [65].

σ
2
w(t) = ω0(t)σ2

0 (t)+ω1(t)σ2
1 (t) (3.4)

Class probabilities ω0,1 are computed by:

ω0(t) =
t−1

∑
i=0

p(i) ω1(t) =
L−1

∑
i=t

p(i) (3.5)

Minimizing the intra-class variance is the same as maximizing inter-class variance [65].
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Expressing this in terms of class probabilities ω and class means µ yields:

σ
2
b (t) = σ

2−σ
2
w(t) = ω0(µ0−µT )

2 +ω1(µ1−µT )
2 (3.6)

= ω0(t)ω1(t) [µ0(t)−µ1(t)]
2 (3.7)

The class mean µ0,1,T (t) is:

µ0(t) =
t−1

∑
i=0

i
p(i)
ω0

(3.8)

µ1(t) =
L−1

∑
i=t

i
p(i)
ω1

(3.9)

µT =
L−1

∑
i=0

ip(i) (3.10)

An implementation of this algorithm can be consulted in the following MATLAB code.
This function doesn’t include error-checking. MATLAB’s built-in function for comput-
ing the threshold T using Otsu’s method is called graythresh, after which you may run
imbinarize with the computed threshold. These functions include error-checking, so use of
these functions is recommended instead.

Otsu’s method is used in this work to create a binary mask that contains only teeth
information with no background from the pantomograms.

1 function [threshold_otsu] = Thresholding_Otsu(image)
2 % Inputs:
3 % nbins: number of gray levels
4 % counts: image histogram
5 % p: probability of each gray level
6 % omega: cumulative sum of probabilites
7 % mu: classes mean
8 % mu_t: total mean level of the original image
9 % sigma_b_squared: intra-class variance

10

11 nbins = 256;
12 counts = imhist(image,nbins); % image histogram
13 p = counts / sum(counts); % probability of each gray level
14 omega = cumsum(p);
15 mu = cumsum(p .* (1:nbins)');
16 mu_t = mu(end);
17

18 sigma_b_squared = (mu_t * omega - mu).^2 ./ (omega .* (1 - omega));
19

20 maxval = max(sigma_b_squared);
21 threshold_otsu = mean(find(sigma_b_squared == maxval));
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22 end

(a) Original image. (b) Thresholded image using Otsu.
Computed threshold = 110.

Figure 3.5: Binarization of an image using Otsu’s method.

3.2.3 Structuring elements

Structuring elements are to morphological operations what kernels are to filters; they
describe a neighborhood of logical ones and zeros which will affect the pixels in an image.
These structuring elements are usually shaped like a diamond, disk, line, or any other polygon
[46]. A structuring element basically controls which pixels are affected by a morphological
operation [47].

Structuring elements are used in this work to affect only some specific pixel patterns with
morphological operations.
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(a) Structuring element of
type diamond, radius = 3.

(b) Structuring element of
type disk, radius = 5.

(c) Structuring element of
type line, length = 10,

angle = 45°.

(d) Structuring element of
type octagon, radius = 3.

(e) Structuring element of
type rectangle, width =

5, height = 4.

(f) Structuring element of
type square, size = 5.

Figure 3.6: Different structuring elements examples.

3.2.4 Erosion and dilation

Dilation and erosion are the basic morphological operations [48]. Any other morphological
operation may be defined in terms of these primitive operators [40]. These operations are used
to clean up the image after doing some operations.

Definition 3.2.2 Let A be a general binary image and B be an arbitrary structuring element.
We may define erosion and dilation as follows:

Erosion The erosion of A by B is mathematically represented as A	B =
⋂

b∈B A−b, where
Ab is the translation of A by b. This means that in order to perform erosion, the anchor
pixel of the structuring element (usually the center pixel) must be positioned on each
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foreground pixel of the image. If any of the of foreground pixels of the structuring
element is on top of a background pixel of the image, then the foreground pixel of
the image is changed to a background pixel.

Dilation The dilation of A by B is mathematically represented as A⊕B =
⋃

b∈B Ab, where
Ab is the translation of A by b. This means that in order to perform dilation, the
anchor pixel of the structuring element (usually the center pixel) must be positioned
on each background pixel of the image. If any of the of foreground pixels of the
structuring element is on top of a foreground pixel of the image, then the background
pixel of the image is changed to a foreground pixel.

(a) Erosion morphological operation on a binary image.

(b) Dilation morphological operation on a binary image.

Figure 3.7: Morphological erosion and dilation of an image.

3.2.5 Opening and closing

Definition 3.2.3 Opening is the name given to the morphological operation of erosion
followed by dilation [40, 42]. Given an image A and a structuring element B, morphological
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opening may be defined as [40, 42, 49]:

A◦B = (A	B)⊕B (3.11)

Morphological opening will remove all the pixels in the image that are too small to contain
the structuring element. It smoothes outward bumps such as corners, breaks narrow sections
and eliminates thin portions of the image [42, 50].

Definition 3.2.4 Closing is the name given to the morphological operation of dilation
followed by erosion [40, 42]. Given an image A and a structuring element B, morphological
closing may be defined as [40, 42, 49]:

A•B = (A⊕B)	B (3.12)

Morphological closing fills holes and gaps smaller than the structuring element [42, 50].

These two filters can be used similarly as a low-pass or high-pass filter. Morphological
opening of an image is equivalent to a low-pass filter and its residue is equivalent to a high-
pass filter [50]. Additionally, a band-pass filter may be created by opening an image with
structuring elements of different diameter. Mathematically, this can be represented like so:

Low-pass filter = A◦B (3.13)
High-pass filter = A− (A◦B) (3.14)
Band-pass filter = (A◦B1)− (A◦B2) (3.15)
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(a) Original binary image. (b) Structuring element used
for opening.

(c) Result of morphological
opening.

(d) Original binary image. (e) Structuring element used
for closing.

(f) Result of morphological
closing.

Figure 3.8: Morphological opening and closing of a binary image.

3.3 Watershed segmentation

Watershed segmentation is a popular tool to segment objects in images. This method works
by considering a gray-scale image as a topographic surface, where each pixel is considered to
be in a height equal to its gray value I(x,y) [51, 52]; this means darker gray tones represent
lower zones while brighter gray tones represent higher zones. Watershed segmentation is used
to separate teeth that are overlapping each other after some initial segmentation.
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(a) Original gray scale image. (b) Topographic representation of the image.

Figure 3.9: Gray scale image and its topographic representation.

Watershed segmentation stars by “flooding” the image, as if heavy rain was falling. This
creates catchment basins where the water is accumulated. These catchment basins are separated
by watersheds. These catchments basins describe the area of an object and the watersheds
represent the outline of the object. An illustrated example of this process can be seen in Figure
3.10.

Flooding

Minima

Watershed

Catchment basins
Water line

Gray value

Figure 3.10: Flooding process from the watershed transform.

Due to local irregularities, watershed segmentation may cause oversegmentation of an
image, so a height threshold may be incorporated in order to reduce this oversegmentation
[53].
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3.3.1 Distance transform

Watershed segmentation is commonly used with the distance transform. The distance
transform of an image is defined by Gonzalez and Woods as “the distance from every pixel to
the nearest nonzero-valued pixel”. An example of this can be seen in Figure 3.11.

1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 1 0
(a) Original pixel values of an image. (b) Pixel values of an image after dis-

tance transform.

Figure 3.11: Pixel values of an image before and after distance transform.

The distance transform is useful when used alongside the watershed segmentation in cases
where two objects of interest are overlapping each other (Figure 3.12a). However, the method
does not separate the two full objects separately; instead, it divides them according to their
catchment basins (Figure 3.12b).
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(a) Original image. (b) Original image using distance transform
and watershed segmentation.

Figure 3.12: Watershed segmentation used to separate two objects.

The distance transform was applied to the complement of the original image (seen in fig
3.13b) because the distance transform of the original picture (Figure 3.13a) is not very useful
due to having only one catchment basin spanning the entire image. The basic steps for the
process may be described as follows [52]:

1. Convert the original image to a binary image if this hasn’t been done already
2. Complement binary image (Figure 3.13b)
3. Compute distance transform of inverted binary image (Figure 3.13c)
4. Negate computed distance transform (Figure 3.13d)
5. Compute watershed transform for negated distance transform
6. Set to zero in the original image the elements where the catchments basins collide in the

label matrix.
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(a) Distance transform of original picture (Fig-
ure 3.12a).

(b) Inverted original image.

(c) Distance transform of inverted image. (d) Negated image of Figure 3.13c.

Figure 3.13: Distance transform steps to generate an appropriate image for watershed
segmentation.

Having computed the negated distance transform of the inverted image (Figure 3.13d),
the MATLAB function watershed may be used to acquire a label matrix of the catchments
basins. The catchment basins can be displayed using the label2rgb function in MATLAB.
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(a) Catchments basins formed by watershed
transform.

(b) Zoomed in catchment basins.

Figure 3.14: Label matrix of computed watershed transform.

Figure 3.14b shows that the pixels where the catchment basins join are assigned a logical
value of 0. Assigning this value to the original image creates the final image seen in Figure
3.12b. This can be done in MATLAB with the following code img(L == 0)= 0;, where
img is the original image and L is the label matrix computed by the watershed function.

The full MATLAB code for this example is shown below.

1 % Read image and binarize it
2 img = imread('CirclesOverlapping.png');
3 img = rgb2gray(img);
4 img = imbinarize(img);
5

6

7 imgDistTrans = bwdist(img); % Distance transform of original picture
8 DistTransOfInv = bwdist(~img); % Distance transform of inverted picture
9 NegDistTransOfInv = -DistTransOfInv; % Negated transform of inv image

10

11 % Compute label matrix
12 L = watershed(NegDistTransOfInv);
13

14 % Set catchments basins limits to zero effectively separating the ...
objects

15 finalImg = img;
16 finalImg(L == 0) = 0;
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17

18 imshow(finalImg)

3.4 Superpixels

Superpixels are a recent development in digital image processing with their most modern
variant appearing in 2010 [0]. Superpixels are, essentially, a controlled segmentation, where
the metric of control might be a selected intensity, texture similarity, boundary preservation,
or number of clusters created [0].

In this work, simple linear iterative clustering (SLIC) superpixels [0] (compact) will be
used to make the regions in the radiographs less noisy and more uniform. This method was
selected due to its speed compared to other methods and because SLIC superpixels are easy to
use since the algorithm requires only one parameter: the desired number of superpixels. The
methods compared are: “Efficient graph-based image segmentation” (GS04) [66], “Guiding
model search using segmentation” NC05 [0], “Superpixel lattices” SL08 [0], “Watersheds in
digital spaces: an efficient algorithm based on immersion simulations” WS91 [67], “Mean
shift: A robust approach toward feature space analysis” MS02 [68], “Turbopixels: Fast
superpixels using geometric flows” TP09 [69] and “Quick shift and kernel methods for mode
seeking” QS08 [0].

Graph-based Gradient-ascent-based

Properties GS04 NC05 SL08 WS91 MS02 TP09 QS08 SLIC
Superpixel no. control No Yes Yes No No Yes No Yes
Compactness control No Yes Yes No No Yes No Yes
Complexity O() N logN N3/2 N2 logN N logN N2 N dN2 N
Parameters 2 1 3 1 3 1 2 1

Table 3.1: Superpixels algorithms comparison [0].
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(a) Superpixel
segmentation with

NC05 [0].

(b) Superpixel
segmentation with

QS08 [0].

(c) Superpixel
segmentation with

TP09 [69].

(d) Superpixel
segmentation with

SLIC [0].

Figure 3.15: Comparison of superpixel segmentation with some of the methods compared
in table 3.1.

Algorithm Number of superpixels Time taken

NC05 200 42.5303 s
QS08 N/A 1.7469 s
TP09 200 6.3923 s
SLIC 200 0.1053 s

Table 3.2: Computation time comparison between different methods for superpixel segmenta-
tion.

SLIC is a k-means clustering algorithm producing a number of compact superpixels by
limiting the search space proportional to the desired superpixel size [0]. This is done in
a 5-dimensional space [labxy], where lab is the CIELAB color space (used because of its
perceptually-uniform distances) and xy is the pixel position [0].

The SLIC algorithm does not use the Euclidean distance as the metric for cluster assignation
because the CIELAB color space’s perceptually-uniform distances only holds true for small
distances. If spatial pixel distances exceed this perceptual color distance limit, then they
begin to outweigh pixel color similarities (resulting in superpixels that do not respect region
boundaries, only proximity in the image plane), so the SLIC algorithm uses its own distance
metric defined below:



3.4 Superpixels 43

dlab =
√

(lk− li)2 +(ak−ai)2 +(bk−bi)2 (3.16)

dxy =
√

(xk− xi)2 +(yi− yk)2 (3.17)

Ds = dlab +
m
S

dxy (3.18)

Where dlab and dxy are the lab and xy plane distances respectively. Ds is the sum of the
lab distance and the xy plane distance normalized by the grid interval S. A k subindex refers to
cluster centers components and an i subindex refers to the current pixel evaluated. A variable
m is introduced to control the compactness of a superpixel; the greater the value of m, the
more spatial proximity is emphasized and the more compact the cluster. This value m can be
in the range 1 to 20 inclusive [0].

3.4.1 SLIC pseudocode

Algorithm 1 SLIC superpixel segmentation

1: Initialize cluster centers Ck = [lk,ak,bk,xk,yk]
T by sampling pixels at regular grid steps S.

2: Perturb clusters centers in an n×n neighborhood to the lowest gradient position.
3: repeat
4: for each cluster center Ck do
5: Assign the best matching pixels from a 2S×2S square neighborhood around the

cluster center according to the distance measure (equation 3.18).
6: end for
7: Compute new cluster centers and residual error E (distance between previous centers

and recomputed centers)
8: until E ≤ threshold
9: Enforce connectivity.

3.4.2 Fast local Laplacian filtering

Fast local Laplacian filtering is a very recent digital image processing approach first
suggested by Paris, Hasinoff, and Kautz in 2011 [70] with technical improvements by Aubry
et al. in 2014 [71]. It works by characterizing edges with a simple threshold on pixel values to
allow to differentiate large-scale edges from small-scale ones. Its main parameter α controls
the detail smoothing or detail enhancement done to the image. If 0 < α < 1, then the details
are enhanced; if α > 1, then the details will be smoothed.
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Figure 3.16: Point-wise functions for edge-aware manipulations described in “Local
Laplacian filters: Edge-aware image processing with a Laplacian pyramid.”

(a) Original color image. (b) Contrast-enhanced image with fast local
Laplacian filtering. α = 0.5.

Figure 3.17: Fast local Laplacian filtering example with color image.



3.5 Active contours 45

Algorithm

Algorithm 2 Local Laplacian filtering O(N logN)

input: Image I, parameter σr, remapping function r
output: Image I′

1: Compute input Gaussian pyramid {G [I]}
2: for all (x0,y0, `0) do
3: g0← G`0 (x0,y0)
4: Determine sub-region R0 needed to evaluate L`0 (x0,y0)
5: Apply remapping function: R̃0← rg0,σr (R0)
6: Compute sub-pyramid

{
L`0

[
R̃0
]}

7: Update output pyramid: L`0 [I
′] (x0,y0)← L`0

[
R̃0
]
(x0,y0)

8: end for
9: Collapse output pyramid: I′← collapse({L` [I′]})

For a more detailed explanation of the pseudocode, see [70].

3.5 Active contours

Active contours is a method that uses an initial binary mask which is guided by external
constraint forces and influenced by image forces that pull it toward features such as lines and
edges [72]. They lock onto nearby edges, localizing them accurately. In this work active
contours are used to isolate a molar from the rest of the teeth.

Figure 3.18 shows how a rectangular mask can be used to isolate objects after several
iterations of active contours. Since active contours is a computationally expensive procedure,
which is why it is best to avoid using it on high-resolution pictures. In this work active contours
is used in cropped pictures instead of whole pantomograms.
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(a) Original image of coins. (b) Initial mask done manu-
ally.

(c) Initial mask after 75 iter-
ations.

(d) Initial mask after 150 it-
erations.

(e) Initial mask after 225 it-
erations.

(f) Initial mask after 300 it-
erations.

Figure 3.18: Active contours applied to a picture of some coins.

The active contour algorithm used in this work uses the Chan-Vese (algorithm 3) method
for segmentation [73] and the Sparse-Field level-set method 2, similar to the method described
in [75], for implementing active contour evolution.

Algorithm 3 Chan-Vese method for segmentation (check [0, 76] for an in-depth explanation).
1: Initialize ϕ

2: for n = 1,2, ... do
3: Compute C1 and C2 as the region averages.
4: Evolve ϕ with one semi-implicit time-step.

5: if ‖ϕn+1−ϕn‖2
|Ω| ≤ tol then stop

6: end if
7: (Optional) If n is divisible by N, reinitialize ϕ .
8: end for

2For a complete list of pseudocode and MATLAB source code, see [74]
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1 function phi = SimpleCVsegment(I,phi0,dt,numIts,epsilon)
2 % Perform a simplified version of Chan-Vese segmentation algorithm, as
3 % described in "Solving Chan-Vese..." paper by He & Osher
4

5 function f = myFunc(t,y)
6 f = PhiT(y,reshape(I,numel(I),1),epsilon);
7 end
8

9 % Set up coefficients for 4th order Runge-Kutta method
10 A = [0 0 0 0; 1/2 0 0 0; 0 1/2 0 0; 0 0 1 0];
11 b = [1/6 1/3 1/3 1/6]';
12 c = [0 1/2 1/2 1]';
13

14 % Solve segmentation problem using a fixed number of steps of
15 [m,n] = size(phi0);
16 phi = reshape(phi0,m*n,1);
17 for i = 1:numIts
18 phi = RKstep(0,phi,dt,@myFunc,A,b,c);
19 end
20

21 phi = reshape(phi,m,n);
22 end
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4.1 Preprocessing

The panoramic dental x-rays provided by the faculty of dentistry of Universidad La Salle
Bajío have a pixel resolution of 1,935×1,024 pixels; they may not be the largest pictures, but
they are considerably big. They are also noisy, which further complicates image analysis. In
order to mitigate these two factors, superpixels will be used.

The main advantage of using superpixels is that the image can be simplified while preserv-
ing its structure; this means edges and object boundaries are preserved.

Figure 4.1: Superpixels oversegmentation applied to one of the supplied panoramic dental
x-rays.

Resolution [px]
Average time per

radiograph [s] No. superpixels

1935×1024 1.78 1000
968×512 0.41 1000
484×256 0.12 1000

Table 4.1: Average time taken for superpixel clustering.

In these results, superpixels were applied to the x-rays and then all the pixels in each cluster
were assigned the cluster’s mean color in order to reduce noise as much as possible. The result
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of this can be seen in Figure 4.2, where noise is reduced and most image components are
preserved.

(a) Original panoramic x-ray.

(b) Original cropped tooth. (c) Cropped tooth after having its superpixels
clusters computed and each cluster assigned

its mean color. Number of clusters = 200

Figure 4.2: Cluster pixels assigned its cluster’s mean color.

The resulting superpixel clustering can be smoothed by using a Gaussian or a median



52 Chapter 4. Segmentation results

filter on the cropped tooth before computing superpixels. Figure 4.3 shows the results of
different Gaussian filters applied on the original cropped tooth and its corresponding superpixel
clustering. The filter size was computed using 2*ceil(2*sigma)+1, where sigma (σ ) is
the specified standard deviation of the filter.

(a) Superpixel clustering with no Gaussian
filter.

(b) Superpixel clustering with Gaussian filter:
σ = 2, filter size = 9

(c) Superpixel clustering with Gaussian filter:
σ = 3, filter size = 13

(d) Superpixel clustering with Gaussian filter:
σ = 5, filter size = 21

Figure 4.3: Superpixel clustering after applying varying Gaussian filter sizes.



4.2 Teeth segmentation 53

4.2 Teeth segmentation

4.2.1 Using Otsu’s method

This approach uses fast local Laplacian filtering in order to produce a contrast-enhanced
image [29, 30] and then proceeds to use Otsu’s method to create a threshold value to binarize
the image. The process will begin with a cropped molar and show each individual step taken
in every subfigure from left to right, top to bottom.

The results of these two operations are shown in Figure 4.4.
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(a) Original cropped molar. (b) Gaussian filter applied to
original cropped molar. σ =

2, filter size = 9.

(c) Superpixel clus-
tering applied to
Gaussian-filtered image.
Number of superpixels =

200.

(d) Fast Local Laplacian filtering applied to
image with superpixel clustering. α = 0.1.

(e) Otsu’s method applied to image with fast
local Laplacian filtering.

Figure 4.4: Fast local Laplacian filtering and Otsu’s method applied to the cropped molar.

Otsu’s method provides a very good image to work with. To fully segment the tooth, the
image will be cleaned-up using morphological operations before separating the teeth. These
morphological operations and its parameters are shown in Figure 4.5.
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(a) Median filtering applied
with a kernel size of 3×3.

(b) Largest connected object
kept.

(c) Black pixels inside white
pixels boundaries set to logi-

cal 1 (fill holes).

Figure 4.5: Results of morphological operations used to clean the image.

The biggest problem with the current image is the overlapping teeth that have been masked
together because of their similar values and connectivity. A proposed approach to split the
different teeth is to apply the distance transform in a similar way as described in 3.3.1. The
preparation process for watershed segmentation can be seen in Figure 4.6.

(a) Distance trans-
form of the image in

Figure 4.5c.

(b) Inverted image
in Figure 4.5c.

(c) Distance trans-
form of inverted im-

age (4.5c).

(d) Complement
of image of Figure

4.6c.

Figure 4.6: Distance transforms of the cleaned Otsu mask.

Applying watershed segmentation to Figure 4.6d results in Figure 4.7.
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Figure 4.7: Watershed segmentation of Figure 4.6d.

As shown in Figure 4.7, the watershed segmentation does separate the teeth, but also
introduces additional gaps in the teeth; the teeth are split with vertical gaps, while horizontal
gaps are created inside the teeth’s boundary. In order to attempt to fix this, image gradients are
used in order to fill or thicken the empty space between lines. The computed image gradients
for the image in Figure 4.7 are shown in Figure 4.8.
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(a) X-directional gradient of Figure 4.7. (b) Y-directional gradient of Figure 4.7.

Figure 4.8: Directional gradients of Figure 4.7. Gray pixels have a small gradient; black
or white pixels have a large gradient.

We can filter these gradients to select only the strongest gradients. This can be done in
MATLAB with the following commands:

spotsToRemove = Gx >= max(Gx(:))| Gx <= min(Gx(:));

spotsToFill = Gy >= max(Gy(:))| Gy <= min(Gy(:));

where Gx, Gy are the directional x, y gradients respectively and spotsToFill and spotsToRemove
are the resulting x, y filtered gradients respectively.

These filtered gradients will be used to fill and further separate the teeth. The filtered
x-directional gradient will be filled while the y-directional gradient will be removed. This can
be done easily in MATLAB using linear indexing like so:

tooth(spotsToFill == 1)= 1;

tooth(spotsToRemove == 1)= 0;

where tooth is the segmented tooth image. To further enhance this operation, the spotsToFill
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and spotsToRemove images can be thickened before applying this. The result of this is
shown in Figure 4.9.

Figure 4.9: Tooth image with horizontal gradient added and vertical gradient removed.

Now that the teeth are separated and image gradients added and removed, some final
morphological operations are done to completely isolate the molar. The final morphological
operations done and their parameters are shown in Figure 4.10. These operations were carried
out from left to right.
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(a) Morphological closing
with a structuring element
of type line, length = 2px

and angle = 90°.

(b) Largest connected object
kept.

(c) Morphological closing
with a structuring element
of type line, length = 5px

and angle = 0°.

(d) Black pixels inside white pixels boundaries
set to logical 1 (fill holes).

(e) Morphological closing with a structuring
element of type disk, radius = 10px.

Figure 4.10: Morphological operations done to further isolate the tooth.

The final result of the segmentation (Figure 4.10e) laid over the initial cropped tooth
(Figure 4.4a) is shown in Figure 4.11. The segmentation is shown with a higher brightness in
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order to easily differentiate it from the initial cropped image.

Figure 4.11: Final segmentation mask laid over initial cropped tooth.

4.2.2 Using active contour

In order to accurately compare the two methods, this method will begin with Figure 4.2a
and the same tooth will be segmented just like the previous approach.

Applying active contour directly on the unmodified cropped tooth results in the image
shown in Figure 4.12b. A root-mean-square error check was implemented to stop the algorithm
in case the images were too similar.
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(a) Unmodified cropped tooth. (b) Active contours applied directly.
Smooth factor = 0, contraction bias = 0.

Figure 4.12: Active contour applied to unmodified cropped tooth.

The result is a decent segmentation of the tooth; however, it remains joined with the two
teeth to its sides. This particular result took 268 iterations of the active contour algorithm.

Enhancing the contrast using fast local Laplacian filtering improves the segmentation,
while increasing the required iterations of active contouring to 291.
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(a) Contrast-enhanced cropped tooth with fast
local Laplacian filtering. α = 0.1,β = 1,σ =

1.

(b) Active contour applied to contrast-
enhanced cropped tooth. Smooth factor = 0,

contraction bias = 0.

Figure 4.13: Active contour applied to contrast-enhanced cropped tooth.

Increasing the smooth factor helps to reduce the noise in the segmentation; however,
selecting a value too large will make the algorithm lose a considerable amount of tooth pixels.
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(a) Active contour applied to contrast-
enhanced cropped tooth. Smooth factor = 0,

contraction bias = 0.

(b) Active contour applied to contrast-
enhanced cropped tooth. Smooth factor= 1.5,

contraction bias = 0.

Figure 4.14: Comparison of smoothing factor.

Superpixel clustering changes the segmentation done by active contour, but does not
necessarily improve it. Morphological post-processing is preferred as it improves the result
and most of the times it is computationally faster.

Post-processing

Some post-processing operations were done on the image to further improve the result.
The operations done and their parameters are illustrated in Figure 4.15.
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(a) Distance trans-
form to separate

teeth.

(b) Largest vertical
gradients removed
and largest horizon-
tal gradients filled

in.

(c) Median filtering
applied with a ker-

nel size of 3×3.

(d) Areas with
less than 100 px

removed.

(e) Morphological closing
with structuring element of
type line, length = 10px,

angle = 120°.

(f) Largest area kept. (g) Morphological opening
with structuring element of
type disk, radius = 5px.

Figure 4.15: Post processing operations done to further isolate the segmented molar.

The final result from the segmentation can be seen overlaid on the initial panoramic dental
radiograph in Figure 4.16.
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Figure 4.16: Panoramic x-ray with segmentation mask overlaid.

4.3 Computing molar orientation

In order to find the orientation of a particular molar (that is, the angle between the x-axis
and the major axis of the ellipse that has the same second-moments as the region), the centroid
of the segmented mask must be found first.

Definition 4.3.1 Given a binary or grayscale image I(x,y), its ordinary moment of order
i, j can be defined as [54, 55, 56]:

mi j = ∑
x

∑
y

xiy jI(x,y) (4.1)

The centroid of a binary or grayscale image is the arithmetic mean of the coordinates in the
x and y directions times its pixel value and thus can be defined as:

x̄ =
m10

m00
ȳ =

m01

m00
(4.2)

The orientation of the molar is the same as the orientation of the major axis; that is, the
axis that runs through the centroid and along the widest part of the region [54]. This major
axis can be computed using the image moments.

Definition 4.3.2 We can shift the image moments using its centroid in order to compute
the image central moments of order p,q like so:

µpq = ∑
x

∑
y
(x− x̄)p (y− ȳ)q I(x,y) (4.3)

Normalizing these central moments can be done by dividing by the area of the region,
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which is equal to m00 and µ00.

µ
′
pq =

µpq

µ00
(4.4)

A covariance matrix can be built from these normalized central moments:

cov[I(x,y)] =
[

µ ′20 µ ′11
µ ′11 µ ′02

]
(4.5)

The eigenvectors of this matrix correspond to the major and minor axes of the image
intensity, so the orientation can thus be extracted from the angle of the eigenvector associ-
ated with the largest eigenvalue towards the axis closest to this eigenvector. The angle of
orientation Θ is then given by the following equation [54, 55]:

Θ =
1
2

arctan
(

2µ ′11
µ ′20−µ ′02

)
(4.6)

Having defined these moments, it is possible to compute the orientation angle of any binary
region. Shown in Figure 4.17 is the segmented tooth with its major axis plotted in red along
with its length and the major axis orientation and its angle magnitude.
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Figure 4.17: Segmented molar with its major axis length and orientation plotted.
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5.1 Main concern of the study

The two approaches presented in this work offer solutions to the problem of segmenting
molars in noisy pantomograms. The two methods were tested on 66 different pantomograms
kindly provided by Universidad de la Salle Bajío.

The goal of this work was to show that automated feature recognition in teeth is possible
by being able to segment teeth (molars) individually and extract information from this image.
This is important because an odontologist can only look and analyze one x-ray at a time, while
an automated approach could use several processors in parallel for analyzing multiple x-rays
at the same time.

For studies that involve quantitative variables, the number of samples examined (in this
case, x-rays) must be large enough in order to satisfy some confidence level. For some studies
this sample size may be required to be over hundreds or thousands of patients, which would
take a huge amount of work to complete for odontologists, but would only take a fraction of
that time for computers.

5.2 Main findings of the study

For the work done in this thesis, each pantomogram took an average of 0.66 s to analyze
using Otsu’s method with a total of 0.0 s for all 66 pantomograms. For active contours,
each pantomogram took an average of 10.90 s to analyze with a total of 0.0 s for all 66
pantomograms.

To calculate an error rate, a ground truth image was segmented manually, which was
compared pixel-wise to the masks created by both methods. The error rate using Otsu’s
method was found to be 6.64 %, while the average error rate using active contours was found
to be 6.19 %. This is in large part due to the fact that Otsu’s method requires more tuning
to each individual case because of its larger number of morphological operations required;
however, if done properly, the error rate could be less or equal to the error rate using active
contours.

In summary, active contours requires less tuning of the algorithm at the expense of
computation time, while Otsu’s method requires more manual intervention for every case but
can be magnitudes faster compared to active contours. Of course, both methods represent
a massive amount of time saved for odontologists, which would take days to analyze every
pantomogram by themselves.

Watershed segmentation, alongside the distance transform, is an invaluable tool for sep-
arating teeth that are overlapping each other in the pantomograms, which is almost always
unless a tooth is missing.
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Superpixel clustering helps reduce the noise in the pantomograms in order to produce
better results with both methods, though it certainly is more useful for active contours; on the
other hand, fast local Laplacian filtering is more essential to Otsu’s method due to its nature.

5.3 Limitations of the study

The work on this thesis is focused on developing a method for automating teeth segmenta-
tion in pantomograms. Any additional measurement, such as the teeth’s angle, is meant to be
a showcase of what can be done once the teeth are extracted from the x-rays.

Due to time constrains, The sample size in this work is 66 pantomograms, a very small
number that does not indicate that the work done here will output similar results in other
x-rays; however, only small adjustments should be needed, particularly in the morphological
operations applied and their order. It is recommended for other researchers to increase this
number as much as possible. Traditional digital image processing techniques were used
because of this limitation instead of more complex approaches.

5.4 Future work and recommendations

Another objective of this work is to lay the foundations for future work regarding odon-
tological studies; in particular, those related to periodontal disease. Follow-up to this work
related to periodontitis includes detection of enamel pearls and measurement of enamel
projection.

Of course, periodontal disease is not the only area which can benefit from the work done
here. Further work is already being planned for classification of third molars according to
their extraction difficulty using the Pell-Gregory system.

Whenever measurements need to be accurate, periapical x-rays should be used instead of
pantomograms. This is because pantomograms possess an inherent distortion because they
essentially project a curved surface (the jaw) into a flat surface (a 2D image); this is identical
to the problems that world map projections have, such as the case of the Mercator projections
where landmasses such as Greenland and Antarctica appear much larger than they actually are
relative to land masses near the equator, such as Central Africa.

A larger sample size should be used in order to achieve more robustness. Also, given a
large enough sample size, more complex techniques such as machine learning algorithms
could be used to segment the molars, with more effectiveness and efficiency.

Furthermore, the techniques in this work, as well as more robust approaches, could be
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included in a system which processes pantomograms as they are acquired in real-time. This
would imply the need of some new hardware (particularly electronic components) in order to
fully automate the process. If the original pantomograms are analog-based, then a mechanical
and optical system could be included to digitize the samples.
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