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ABSTRACT 

In this thesis work, some applications of the polarimetry techniques using 
conventional and unconventional polarized incident light are presented. The first part of 
this work consists on the study of the polarization properties of light scattered by a metallic 
cylinder. The angularly resolved Mueller matrix is determined experimentally as well as its 
main polarimetric parameters, which confirm that depolarization effects are not present. To 
our knowledge, this is the cheapest and easiest way to generate uniform horizontal and 
vertical linear polarizations scattered angularly.  In the second part, the refractive index of a 
dielectric sample using highly focused radially polarized light is estimated by means of the 
measured Brewster’s angle (according to the comments of the Reviewer of the generated 
article, this contribution represents a novel, reliable, and simple method). The Brewster’s 
angle was determined by analyzing the images reflected by the sample in the optical field at 
the pupil plane of a high numerical aperture objective lens. Employing a high numerical-
aperture objective lens allows the measurement of multiple angles of incidence from 0° to 
64°, around a full circle, in a single shot. The theoretical and experimental results were 
compared, obtaining a remarkable consistency. 
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RESUMEN 

En este trabajo de tesis se presentan algunas aplicaciones de las técnicas 
polarimétricas usando luz incidente polarizada convencional y no-convencionalmente. La 
primera parte de este trabajo consiste en el estudio de las propiedades de polarización de la 
luz dispersada por un cilindro metálico mediante la determinación experimental de la 
matriz de Mueller resuelta angularmente, así como de sus principales parámetros 
polarimétricos que confirman que no hay efectos de despolarización. A nuestro entender, 
ésta es la manera más fácil y de bajo costo de generar polarizaciones lineales horizontales y 
verticales uniformes dispersadas angularmente. En la segunda parte, se calcula la medida del 
índice de refracción de una muestra dieléctrica utilizando luz radialmente polarizada 
mediante la determinación experimental del ángulo de Brewster (de acuerdo a los 
comentarios de los Revisores del artículo generado, ésta contribución representa un método 
novedoso, confiable y sencillo). El ángulo de Brewster fue determinado a través del análisis 
de la imagen reflejada por la muestra en el plano de la pupila de una lente objetivo de alta 
apertura numérica. El empleo de una lente objetivo de alta apertura numérica permite 
medir múltiples ángulos de incidencia de 0 ° a 64 °, alrededor de un círculo, en un solo 
disparo. Se compararon los resultados teóricos y experimentales, obteniéndose una marcada 
consistencia. 
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Chapter 1   Introduction 

Polarization is a branch of optics that studies the behavior of the light and its 
interaction with the matter, thus it has found potential applications in several research areas 
like the optical characterization of materials, microscopy, biomedical applications, remote 
sensing, optical fibers, holography, among many others [1-7].  For many years, the light 
has been considered as an optical beam with spatially homogeneous polarization states, 
such as linear, circular, and elliptical conventional polarization states [8]. The recent 
advances in high-power computing and micro- and nano-fabrication techniques have 
allowed to the generating of unconventional light polarization states, namely optical beams 
with spatially variant states of polarization within the beam cross-section [9]. 

In this thesis work, conventional and unconventional polarization states were used 
to study the polarimetric behavior of light when interacting with certain materials. 
Applying conventional polarization states, the polarization properties of light scattered by a 
metallic cylinder were obtained through the analysis of its experimental angularly resolved 
Mueller matrix. On the other hand, a polarimetric arrangement was developed using a high 
numerical aperture microscope objective lens in order to determine the refractive index of a 
dielectric sample, using conventional and unconventional polarization states as the 
illumination source. This technique was proposed by the Prof. Qiwen Zhan during my 
predoctoral stay at the University of Dayton in Dayton, Ohio, USA, which was 
complemented by my advisor, Dr. Rafael Espinosa Luna, who proposed me to use 
unconventional polarization as the illumination source. 

The fundamental concepts of the polarized light and polarimetry are presented in 
Chapter 2. The basic principles of the light reflection and transmission, including the 
Snell’s law and Fresnel’s equations, are introduced in this section in order to understand 
how the Brewster’s angle and the refractive index are determined. In addition, the 
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definition of the conventional polarization states and their linear interaction with optical 
media through the Mueller and the Jones formalism are explained. Because the polarimetry 
involves the measurement of the state of polarization of the light, some polarimeter 
arrangements and their applications are mentioned briefly. By last, the unconventional 
polarization is defined as well as some techniques to generate their most representative 
polarization states: radial and azimuthal. 

In Chapter 3, the experimental methodology, results, and discussions of this work 
are presented. This chapter consists of two sections. In the first, the experimental 
determination of the angularly resolved Mueller matrix and its main polarimetric properties 
associated to light scattered by a metallic cylinder are discussed. In the second part, the 
methodology and results obtained through the experimental measurement of the Brewster’s 
angle are discussed as a novel, reliable, and simple method for the determination of the 
refractive index of a dielectric sample. A particular importance is associated to the use of the 
radial polarization as an unconventional incident polarization state capable of providing 
information related to the homogeneous and isotropic character of the samples under study. 

The General Conclusions and the Work at Future of this thesis work are contained 
in the Chapters 4 and 5, respectively. The final part of this thesis, the Appendix section, 
includes the Matlab codes used to obtain the simulated results as well as for the handling of 
the data obtained by the experimental results. 
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Chapter 2   Polarized light and polarimetry  

Polarization is a phenomenon associated to the intrinsic vectorial, transversal nature 
of light. As one of the main branches of the Optics, it deals with the changes in the 
polarization state under propagation and its interaction with material media. Ordinary light 
emitted from the Sun or from a light bulb is named unpolarized, which means there does 
not exist a deterministic behavior of the orientation of its electric or magnetic fields with 
respect to its propagation direction. In this sense, there exist in Nature four main methods 
to obtain linear polarized light from unpolarized light; in other words, there exist four 
natural mechanisms, which convert unpolarized to linear polarized light (some insects also 
present the possibility to convert unpolarized to circularly polarized light). Polarization by 
transmission is generated by using a tourmaline gemstone, which acts like a dichroic filter 
and is made of a special material that transmits selectively a perpendicular component of 
the electric field along the certain direction (transmission axis), blocking the remaining 
polarization planes. Polarization by reflection occurs when the unpolarized light is reflected 
between two transparent media and the reflected light is partially polarized. On the other 
hand, some transparent crystals, such as calcite and quartz, have the optical property to split 
the refracted beam into two rays that are polarized in mutually perpendicular directions. 
These kinds of materials can polarize the light by refraction. The last method to polarize 
the light is by scattering, in which the unpolarized incident beam strikes to small particles 
or molecules of a material and scatters linearly polarized light in the plane perpendicular to 
the incident light; this effect contributes to the blueness of the sky.  

The development of the polarimetry techniques has allowed understanding the 
relationship between polarimetric and physical properties of the matter through the study 
of the interaction of light with the material. The polarimetry has found fundamental and 
practical applications almost in every branch of science and technology. 
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2.1   Reflection and transmission of light 

Light can be described as a transverse electromagnetic wave, which consists of an 

oscillating electric field 𝐸 and an oscillating magnetic field 𝐻 with the same frequency but 
oriented perpendicular to the wave-vector propagation direction [8, 10-11]. The Maxwell’s 
equations for an isotropic non-conducting vacuum medium, without sources, are 
represented in the SI system by Eq. 2.1 [8,3] 

∇×𝐸 = −𝜇 !!
!"

,       (2.1a) 

∇×𝐻 = 𝜀 !!
!"

,         (2.1b) 

∇ ∙ 𝐸 = 0,       (2.1c) 

∇ ∙ 𝐻 = 0       (2.1d) 

where the constants 𝜇  and 𝜀  are the magnetic permeability and the permittivity of the 

media, respectively. ∇ is the nabla operator defined by ∇= 𝜕!𝑥 + 𝜕!𝑦 + 𝜕!𝑧, where 𝑥, 𝑦, 𝑧 

represent the orthogonal unit vectors in the three-dimensional space. 

The reflection and transmission of light are determined by the refractive index of 
the medium. Using Maxwell’s equations (Eq. 2.1), the light behavior can be described 
through the well-known Fresnel’s equations when it is reflected and transmitted at the 
plane or flat boundary between two different homogenous optically isotropic media [8].  

The Fresnel’s equations involve the amplitudes, phases, and polarizations of the 
reflected and transmitted light when the incident light passes through an interface between 
two transparent media with different indices of refraction. To calculated the Fresnel’s 
equations it is necessary to use the Snell’s law, which describes the bending of the path of 
the light when passing through the boundary between two isotropic media and is 
represented by Eq. 2.2 [8] 

𝑛! sin𝜃! = 𝑛! sin𝜃!,   (2.2) 
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where 𝑛!  and 𝑛!  are the refractive index of the incident and transmission media, 

respectively, and 𝜃! and 𝜃! are the incident and transmission angles, respectively (Fig.2.1). 

 

Fig. 2.1 Reflected and transmitted light at oblique incidence. 

The reflected and transmitted light by a sample at oblique incidence can be studied 
for the two cases of the mutually orthogonal polarization states and both criteria are used to 
derivate the Fresnel’s equations; the first case is when the electric field of the incident light 
is parallel to the incident plane (p-polarization) and the second case is when the incident 
light has its electric field perpendicular to the plane of incident (s-polarization). The 
relationships of the Fresnel’s equations are represented by the Eq. 2.3 [8, 10-11] 

𝑟! = − tan 𝜃𝑖−𝜃𝑡
tan 𝜃𝑖+𝜃𝑡

,       (2.3a) 

𝑟! = − sin 𝜃𝑖−𝜃𝑡
sin 𝜃𝑖+𝜃𝑡

,       (2.3b) 

𝑡! =
2 cos𝜃𝑖 sin𝜃𝑡

sin 𝜃𝑖+𝜃𝑡 cos 𝜃𝑖−𝜃𝑡
,       (2.3c) 

𝑡! =
2 cos𝜃𝑖 sin𝜃𝑡
sin 𝜃𝑖+𝜃𝑡

,       (2.3d) 

where 𝑟!  and 𝑟!  are the coefficients of reflection, and 𝑡!  and 𝑡!  are the coefficients of 

transmission associated to the p- and s-polarization states, respectively. The reflected light 
can also be expressed in function of the incidence angle using the Snell’s law (Eq. 2.2), as 
shown in the Eq. 2.4 [8, 10-11] 
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𝑟! =
−𝑛2cos𝜃𝑖+ 𝑛2−sin2 𝜃𝑖

𝑛2 cos𝜃𝑖+ 𝑛2−sin2 𝜃𝑖
,   (2.4a) 

𝑟! =
cos𝜃𝑖− 𝑛2−sin2 𝜃𝑖

cos𝜃𝑖+ 𝑛2−sin2 𝜃𝑖
,   (2.4b) 

where 𝑛 = !!
!!

. 

The reflectance 𝑅 is the ratio of the reflected light intensity 𝐼!  to incident light 

intensity 𝐼! (𝑅 = 𝐼!/𝐼!). The reflectances for p- and s-polarized light are expressed as Eq. 
2.5 [8, 10-11] 

𝑅! =
𝐼𝑟𝑝
𝐼𝑖𝑝
= 𝐸𝑟𝑝

𝐸𝑖𝑝

2
= 𝑟𝑝

2,   (2.5a) 

𝑅! =
𝐼𝑟𝑠
𝐼𝑖𝑠
= 𝐸𝑟𝑠

𝐸𝑖𝑠

2
= 𝑟𝑠 2.   (2.5b) 

2.1.1   The Brewster’s angle 

  

Fig. 2.2   Incident light at the Brewster’s angle. The green arrows represent p-polarized light                 

and the blue points represent s-polarized light. 

If p-polarized light is incident upon a surface between two transparent media, the 
reflected electric field entirely disappears at a particular incident angle called the Brewster’s 
angle, and the incident beam is totally transmitted into a second medium. From the Snell’s 
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law, the Brewster’s angle 𝜃! is represented by the Eq. 2.6 and it is determined when the 
parallel reflection amplitude is zero and the incident and transmitted angles sum up to 90° 
[8, 10-11], 

 𝜃! = tan!! !!
!!

.     (2.6) 

When unpolarized light strikes on a surface at the Brewster’s angle, the reflected 
light is s-linearly polarized (perpendicular to the plane of incidence), and the transmitted 
light is partially polarized, as shows the Fig. 2.2.  

2.1.2   Refractive index 

The refraction of light is determined from the refractive index of the material that 
the incident light is going through and it is defined by Eq. 2.7 [8,11] 

𝑛 = !
!
,      (2.7) 

where 𝑐 is the speed of the light in the vacuum (𝑐 = 2.99792 × 10! 𝑚/𝑠) and 𝑣 is the 
speed of light in the medium. In other words, the refractive index is the ratio of the speed 
of light to its speed in the medium. 

It is important to mention there are media that show strong light absorption, and 

such a phenomenon cannot be expressed only with 𝑛. Thus, in order to describe light 

absorption by media, the extinction coefficient 𝑘 is introduced and the Eq. 2.8 defines the 

complex refractive index 𝑁 [8,11] 

𝑁 = 𝑛 + 𝑖𝑘.      (2.8) 

Most techniques used on the optical characterization require knowledge of the basic 
optical properties of the material under study. For that reason, several optical techniques to 
measure the refractive index are presented in Chapter 3.  
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2.2   Conventional polarization states and its linear interaction with optical media 

Most sources of light in the Nature produce unpolarized or partially polarized light; it 
means that the direction of its electric field is completely or partially random. When the 
electric field of light waves is oriented along some specific direction, its associated state is 
referred to as polarized light; in this case, the polarization is conceptualized by 
superimposing the two mutually orthogonal components, and the phase difference between 
them has to be taken into account, in order to describe the state of polarization properly. 
According to this phase difference and the amplitudes of each component of the electric 
field, the state of polarization changes into various states ranging from linear to circular 
polarizations as particular states of the most general case, the elliptically polarized states.  

2.2.1   Conventional polarization states 

Conventional polarization states are based in the direction of the electric field 
oscillation and its spatial homogeneous distribution; in other words, the polarization state is 
(ideally) the same at any point of the illumination field. Linear and circular polarization 
states are normally used as conventional polarizations states.  

From the Maxwell’s equations (Eq. 2.1), the wave equation for the electric field 
component can be obtained using the Eq. 2.9 [8, 11] 

𝛻!𝐸 = !
!"!

!!!
!!!

.        (2.9) 

Considering the rectangular Cartesian coordinate system as the reference system, 
the simplest solution to the wave equation is the electromagnetic plane wave that 

propagates in certain time 𝑡, along the 𝑧-direction, which can be described by the Eq. 2.10 
[8]  

𝐸 𝑧, 𝑡 =  𝐸! 𝑒𝑥𝑝 𝑖(𝜔𝑡 − 𝐾𝑧 + 𝛿) ,             (2.10) 

where 𝐸! is the electric field amplitude, ω is the angular frequency, 𝐾 = !!
!

 the propagation 
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number, 𝛿 is the spatial phase, and λ is the wavelength.  

The plane electromagnetic wave is described by superimposing coherently two 

electric fields whose planes of oscillation are parallel to the 𝑥 and 𝑦 axes, respectively. The 

polarization state of light can be expressed as the vector sum of the electric fields 𝐸! and 

𝐸!, Eq. 2.11, and depends on the relative amplitude (𝐸!! and 𝐸!!) and phase difference (𝛿! 

and 𝛿!) of the two orthogonal components of the electric field, Eq. 2.12 [13]  

𝛦 𝑧, 𝑡 = 𝐸! 𝑧, 𝑡 + 𝐸! 𝑧, 𝑡 ,     (2.11) 

𝛦 𝑧, 𝑡 = 𝐸!! exp 𝑖 𝜔𝑡 − 𝑘𝑧 + 𝛿! 𝑥 + 𝐸!! exp 𝑖 𝜔𝑡 − 𝑘𝑧 + 𝛿! 𝑦,     (2.12) 

where 𝑥  and 𝑦  are unit vectors along the coordinate axes. To describe the state of 

polarization, the relative phase difference 𝛿! − 𝛿!  and also the direction at which the 

observer takes the register (looking to the source or to the propagation direction; in this 
thesis, the first criterion is assumed) are taken into account, as shown in Fig. 2.3. When 

𝛿! − 𝛿! = 0 the polarization state is called linear polarization  (Fig. 2.3a), there is no phase 

difference between 𝐸!  and 𝐸! . If the phase difference is 90° (𝛿! − 𝛿! = 𝜋/2), and the 

amplitudes are equal, the polarization state is known as circular right-handed polarization 
(Fig. 2.3b). Fig. 2.3c is referred to as elliptical polarization when the amplitudes are 

different and 𝛿! − 𝛿! = 𝜋/4. 

 

 Fig. 2.3  Representations of (a) linear, (b) circular right-handed, and (c) elliptical polarization. 
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2.2.2   The Stokes polarization parameters 

The Stokes parameters describe the polarization state of any incident beam through 
the light intensities and they were defined by George Gabriel Stokes in 1852 [12]. If in Eq. 

2.12 the value for 𝑧 is equal to zero, the electric fields 𝐸! and 𝐸! become as the Eqs. 2.13 

and 2.14, respectively [12] 

𝛦! 𝑡 = 𝐸!! exp 𝑖 𝜔𝑡 + 𝛿! = 𝐸! exp 𝑖𝜔𝑡 ,                  (2.13) 

𝛦! 𝑡 = 𝐸!! exp 𝑖 𝜔𝑡 + 𝛿! = 𝐸! exp 𝑖𝜔𝑡 ,        (2.14) 

where  

𝐸! = 𝐸!! exp 𝑖𝛿! ,             (2.15) 

𝐸! = 𝐸!! exp 𝑖𝛿!    (2.16) 

are complex amplitudes. The Stokes parameters (𝑆!, 𝑆!, 𝑆!, 𝑆!) are represented in terms of 

the orthogonal component amplitudes (𝐸!!  and 𝐸!!) and their relative phase difference 

𝛿! − 𝛿!. The Stokes parameters for a plane monochromatic wave are defined in complex 

notation by the following relationships, Eq. 2.17 [13-14] 

𝑆! = 𝐸!𝐸!∗ + 𝐸!𝐸!∗ ,     (2.17a) 

𝑆! = 𝐸!𝐸!∗ − 𝐸!𝐸!∗ ,     (2.17b) 

𝑆! = 𝐸!𝐸!∗ + 𝐸!𝐸!∗,         (2.17c) 

𝑆! = 𝑖 𝐸!𝐸!∗ − 𝐸!𝐸!∗ ,         (2.17d) 

where 𝑖 = −1  and the asterisk symbol (*) represents the operation of the conjugate 
complex. Substituting the Eqs. 2.15 and 2.16 into the previous equations (Eq. 2.17) gives 
[13-14] 

𝑆! = 𝐸!!! + 𝐸!!!   (2.18a) 
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𝑆! = 𝐸!!! − 𝐸!!!   (2.18b) 

𝑆! = 2𝐸!!𝐸!! cos 𝛿  (2.18c) 

𝑆! = 2𝐸!!𝐸!! sin 𝛿  (2.18d) 

where 𝛿 = 𝛿𝑦 − 𝛿𝑥.  

Using the Eq. 2.18, the representations of the most common polarized light states 
are obtained as shown in Table I [12]. 

Table I. The six basic polarization states represented by the unnormalized Stokes parameters. 

Linear horizontally polarized light (LH) 

𝐸!! = 0 
 

Linear vertically polarized light (LV) 

𝐸!! = 0 

𝑆! = 𝐸!!!  

𝑆! = 𝐸!!!  

𝑆! = 0 
𝑆! = 0 

 

 

𝑆! = 𝐸!!!  

𝑆! = −𝐸!!!  

𝑆! = 0 
𝑆! = 0 

 

Linear ±𝟒𝟓° polarized light (L±)                    

𝐸!! = 𝐸!! = 𝐸! and 𝛿 = 0° (180°) 
 

Circularly Right/Left polarized light (CR/CL) 

𝐸!! = 𝐸!! = 𝐸! and 𝛿 = ±90° 

𝑆! = 2𝐸!! 

𝑆! = 0 
𝑆! = ±2𝐸!! 

𝑆! = 0 

 

𝑆! = 2𝐸!! 

𝑆! = 0 
𝑆! = 0 

𝑆! = ±2𝐸!! 

 

The four Stokes parameters (Eq. 2.18) are contained into a 4 x 1 column matrix, 

called the Stokes vector 𝑆, and are expressed as in the Eq. 2.19 [15] 

𝑆 =

𝑆!
𝑆!
𝑆!
𝑆!

=

𝐼! + 𝐼!
𝐼! − 𝐼!

𝐼!!" − 𝐼!!"
𝐼! − 𝐼!

,   (2.19) 
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where 𝐼!  denotes the intensity associated to the analyzed polarization states 

(𝑗 = 𝑥, 𝑦, +45, −45, 𝑟, 𝑙) and 𝑥  represents linear horizontal, 𝑦 linear vertical, +45 linear,   

−45 linear, 𝑟 circular right-, and 𝑙 circular left-handed polarizations, respectively. 

Therefore, the normalized Stokes vector for each state of polarization is shown in 

the Table II where 𝐼! is the total intensity and SOP represents the state of polarization 
[14]. 

Table II. The Stokes vector for each state of polarized light. 

SOP Stokes vector  SOP Stokes vector 

LH 

𝐸!! = 0  

𝐼! = 𝐸!!!  

𝑆! = 𝐼!

1
1
0
0

  

LV 

𝐸!! = 0  
𝐼! = 𝐸!!!  

𝑆! = 𝐼!

1
−1
0
0

 

L+ 

𝐸!! = 𝐸!! = 𝐸!       
𝛿 = 0°   
𝐼! = 2𝐸!! 

𝑆! = 𝐼!

1
0
1
0

  

L− 

𝐸!! = 𝐸!! = 𝐸!  
𝛿 = 180°   
𝐼! = 2𝐸!! 

𝑆! = 𝐼!

1
0
−1
0

 

CR 

𝐸!! = 𝐸!! = 𝐸!  
𝛿 = +90°  
𝐼! = 2𝐸!! 

𝑆! = 𝐼!

1
0
0
1

  

CL 

𝐸!! = 𝐸!! = 𝐸!  
𝛿 = −90°  
𝐼! = 2𝐸!! 

𝑆! = 𝐼!

1
0
0
−1

 

 

2.2.3   Mueller’s matrix calculus 

The Mueller’s matrix (𝑀) is a 4 x 4 matrix whose all elements are real and represent 
the linear response of the medium under study to the intensity associated to an incident 
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beam. The Mueller’s matrices can describe systems that depolarize or not depolarize, 
partially or fully the light, and provide the complete polarimetric description of the 
response of a medium to excitation by polarized light. The linear response of a physical 

system transforms the incident polarization state 𝑆!"# into the outgoing Stokes vector 𝑆!"#, 
which is represented by the Eq. 2.20 and 2.21 [1, 14]  

𝑆!"# = 𝑀𝑆!"#    (2.20) 

𝑆!"# =

𝑚!! 𝑚!"
𝑚!" 𝑚!!

𝑚!" 𝑚!"
𝑚!" 𝑚!"

𝑚!" 𝑚!"
𝑚!" 𝑚!"

𝑚!! 𝑚!"
𝑚!" 𝑚!!

𝑆!!

𝑆!!

𝑆!!

𝑆!!

=

𝑆!!
𝑆!!
𝑆!!
𝑆!!

.  (2.21) 

The form of the 𝑀  depends strongly on the morphological symmetries of the 
sample under study [16], but the Mueller parameter values depend on the nature of the 

sample. The 𝑀  parameters have also been determined, independently of the dielectric 
properties of the one-dimensional (1D) surface and its depolarization properties, at the 
optical physical approximation limit [17-22]. A one-dimensional (1D) surface is a surface 
whose profile changes only along one direction, but it is kept constant along its 
perpendicular direction (a linear diffraction grating is a 1D surface) and has associated a 
Mueller’s matrix with the form given by Eq. 2.22 [17]  

𝑀!! =

𝑚!! 𝑚!"
𝑚!" 𝑚!!

0 0
0 0

0 0
0 0

𝑚!! 𝑚!"
−𝑚!" 𝑚!!

.     (2.22) 

Note that 𝑚!! = 𝑚!!, 𝑚!" = 𝑚!", 𝑚!! = 𝑚!!, 𝑚!" = −𝑚!" , and the elements 

𝑚!", 𝑚!", 𝑚!", 𝑚!", 𝑚!", 𝑚!", 𝑚!", 𝑚!" are zero. If the 1D surface does not depolarize the 

polarized incident light, then only three parameters are independent, because 𝑚!!
! = 𝑚!"

! +

𝑚!!
! +𝑚!"

!  [23]. Some systems as one-dimensional rough metallic surfaces [22], small 
homogeneous spheres [24], biological particles with spherical form [25], nano-imprinted 
grating structures [26], and thin film of silica (SiO2) thermally grown on a crystalline 
silicon (c-Si) wafer [27], are represented by the same matricial form as 1D surface. 
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2.2.3.1   Mueller’s matrix of a linear polarizer 

A linear polarizer is an optical element utilized to obtain linearly polarized light 
from unpolarized light; in other words, it attenuates one of the orthogonal components of 
an optical beam (as the tourmaline crystal or the commercial dichroic sheets). Considering 
a birefringent behavior, the two orthogonal transmission axes are designated px and py, 
perpendicular to the propagating direction [12, 14]. A polarizer used to produce polarized 
light is known as a generator, and if it is used to analyze polarized light, it is called an 
analyzer. 

Taking into account that the components of the incident beam are represented by 𝐸! 

and 𝐸!, the outgoing beam from the polarizer has the components 𝐸´! and 𝐸´!, and they 

are parallel to the original axes of the birefringent medium. The Eq. 2.23 represents the 
emerged electric fields [12, 14] 

𝐸´! = 𝑝!𝐸!          0 ≤ 𝑝! ≤ 1,   (2.23a) 

𝐸´! = 𝑝!𝐸!          0 ≤ 𝑃! ≤ 1.   (2.23b) 

The factors px and py are the amplitude attenuation coefficients along the 

orthogonal transmission axes. The Mueller’s matrix for a polarizer is given by Eq. 2.24 [12, 
14] 

𝑀 = !
!

𝑝!! + 𝑝!! 𝑝!! − 𝑝!!

𝑝!! − 𝑝!! 𝑝!! + 𝑝!!
0      0
0     0

0           0
0          0

2𝑝!𝑝! 0
0 2𝑝!𝑝!

.    (2.24) 

When the axes of the polarizing components have been rotated through an angle 𝜃 

with respect to the 𝑥′ and 𝑦′ axes, the Mueller’s matrix for a rotated polarizer can be 
obtained using the Eq. 2.25 [12, 14] 
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𝑀!" =
!
!

1 cos 2𝛾 cos 2𝜃
cos 2𝛾 cos 2𝜃 cos! 2𝜃 + sin 2𝛾 sin! 2𝜃

cos 2𝛾 sin 2𝜃 0
1 − sin 2𝛾 sin 2𝜃 cos 2𝜃 0

cos 2𝛾 sin 2𝜃 1 − sin 2𝛾 sin 2𝜃 cos 2𝜃
0 0

sin! 2𝜃 + sin 2𝛾 cos! 2𝜃    0
0 sin 2𝛾

, (2.25) 

where 0 ≤ 𝛾 ≤ 90° . For a linear horizontal polarizer 𝛾 = 0° , and for a linear vertical 

polarizer 𝛾 = 90°. The physical rotation of 𝜃 leads to the appearance of 2𝜃 in rather than 𝜃 
because it is working in the intensity domain. 

2.2.3.2   Mueller’s matrix of a linear retarder 

A retarder is an optical device used to transmit light while modifying its polarization 
state without attenuating, deviating, or displacing the beam, and also changes the phase of 

the optical beam. A retarder generates a phase difference (𝜙) between the orthogonal 

electric field vector components 𝐸! and 𝐸! of the incident beam. The Mueller’s matrix for a 

retarder with a phase shift 𝜙 and fast axis along the x-axis, is given by Eq. 2.26 [12, 14] 

𝑀! =

1 0
0 1

0 0
0 0

0 0
0 0

cos𝜙 sin𝜙
− sin𝜙 cos𝜙

    (2.26) 

When the phase of one component of the light is delayed with respect to the 

orthogonal component by a quarter wave, it means that 𝜙 = 𝜋 2, the retarder is called a 
quarter-wave plate. It converts the linear polarization to circular polarization and vice-versa. 

For a half-wave plate, 𝜙 = 𝜋, the phase of one component of the light is delayed with 
respect to the orthogonal component by a half wave.

 The Mueller’s matrix for the rotated retarder is given by Eq. 2.27 [12, 14] 

𝑀! !,!! =

1 0
0 cos! 2𝜃 + cos𝜙 sin! 2𝜃

0 0
1 − cos𝜙 sin 2𝜃 cos 2𝜃 − sin𝜙 sin 2𝜃

0 1 − cos𝜙 sin 2𝜃 cos 2𝜃
0 sin𝜙 sin 2𝜃

sin! 2𝜃 + cos𝜙 cos! 2𝜃 sin𝜙 cos 2𝜃
− sin𝜙 cos 2𝜃 cos𝜙

. (2.27) 
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2.2.4   Polarimetric scalar metrics 

The polarimetric scalar metrics are relationships obtained through the Mueller’s 
matrix elements, and they are used to describe some specific linear response of the 
illuminated medium by polarized light.  

The depolarization index, DI M  is defined as the Eq. 2.28 [28], 

0 ≤ DI M = m!"
! −m!!

!!
!,!!!

!/! 3m!! ≤ 1.          (2.28) 

It is interpreted as the depolarization average generated by the medium to the 
incident polarization. The depolarization index seems to depend only on the medium 
properties and not on the characteristics of the incident light. This is not really true because 

the M  represents just the response to the incident polarization. Its physical limits are 
interpreted as follows: 0 means the system depolarizes totally the incident light, while 1 
means the system does not depolarize at all. The intermediate values are interpreted as a 
partial depolarization generated on the outgoing light. 

Furthermore, the degree of polarization 𝐷𝑜𝑃 𝑀, 𝑆  and its physical realizable limits 
are defined by  Eq. 2.29 [12, 29] 

0 ≤ 𝐷𝑜𝑃 𝑀, 𝑆 =
𝑆1
𝑜 2

+ 𝑆2
𝑜 2

+ 𝑆3
𝑜 2

𝑆0
𝑜 =

𝑚𝑗0𝑆0
𝑖 +𝑚𝑗1𝑆1

𝑖 +𝑚𝑗2𝑆2
𝑖 +𝑚𝑗3𝑆3

𝑖 23
𝑗=1

1/2

𝑚00𝑆0
𝑖 +𝑚01𝑆1

𝑖 +𝑚02𝑆2
𝑖 +𝑚03𝑆3

𝑖 ≤ 1.     (2.29) 

𝐷𝑜𝑃 is a measure of the percentage of polarized light associated to a light beam. 
The 𝐷𝑜𝑃 usually is measured directly from the Stokes vector emerging from the system 
under study and the measured value is associated to the outgoing light; however, it is 
inherently related to the optical response of the system. The value of 𝐷𝑜𝑃 = 1 corresponds 

to completely polarized light, 𝐷𝑜𝑃 = 0 corresponds to unpolarized light, and 0 < 𝐷𝑜𝑃 < 1 
corresponds to partially polarized light. 

Other useful auxiliary polarimetric parameters are the polarizance 𝑃 𝑀 and the 

diattenuation 𝐷 𝑀 parameters, which are defined by Eq. 2.30 and 2.31, respectively [29] 
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0 ≤ 𝑃 𝑀 =
!!"
! !!!"

! !!!"
!

!!!
≤ 1,        (2.30) 

0 ≤ 𝐷 𝑀 =
!!"
! !!!"

! !!!"
!

!!!
≤ 1.        (2.31) 

𝑃 𝑀  is interpreted as the capability of a given system to polarize un-polarized 
incident light; a high value is associated to a highly efficient polarizer, but a lower value is 

associated to a low or null polarizer behavior. 𝐷 𝑀  describes the diattenuation given by 
the system and indicates the intensity variation when an incident polarized state is 
transmitted or reflected. The upper limit, 1, is associated to a totally diattenuating system, 
while the lower value, 0, means the system does not attenuate at all. A system with 
intermediate values within the interval (0,1) is interpreted as a partial diattenuator or 
polarizer, respectively.  

The 𝑄 𝑀  metrics is defined by Eq. 2.32 [30-32]. The bounds on the metric Q(M) 
are 0 ≤ 𝑄 𝑀 ≤ 3. Where 𝑄 𝑀 = 0 for a totally depolarizing medium; 0 < 𝑄 𝑀 < 1 is 

for a partially depolarizing medium; 1 ≤ 𝑄 𝑀 < 3  represents a partially depolarizing 

medium if, in addition, 0 < 𝐷𝐼 𝑀 < 1 , otherwise, represents a non-depolarizing 

diattenuating medium; 𝑄 𝑀 = 3 is associated to a non-depolarizing non-diattenuating 
medium, that is, a pure dephaser or retarder [33] 

0 ≤ 𝑄 𝑀 =
!!"
!!

!!!,!!!

!!!
!!

!!!
= ![!" ! ]!![! ! ]!

!![! ! ]!
≤ 3.      (2.32) 

The theorem of Gil-Bernabeu or the trace condition is usually employed to test if 
the system can be described by a Jones matrix, which is the case if the Eq. 2.33 is fulfilled, 
and then the Mueller matrix is termed Mueller-Jones matrix [34] 

𝑇𝑟 𝑀!𝑀 = 4𝑚!!
! ,        (2.33) 

where 𝑇𝑟 denotes the trace and 𝑇 the matrix transpose operation. If the values of Eq. 2.33 

are within  0 ≤ 𝑇𝑟 𝑀!𝑀 /4𝑚!!
! < 1 , it means the system depolarizes and, as a 
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consequence, it can not be described by a Jones matrix; otherwise, if the Eq. 2.33 is 
fulfilled, it can be described by a Jones matrix. This criterion is valid for any passive optical 
system. 

2.2.5   The Jones matrix calculus 

The Jones calculus is used to describe the coherent superposition of polarized light, 
this is because it operates on amplitudes and phases rather than intensities of the electric 
field. The electric vector of a monochromatic light wave traveling along the z-axis can be 

decomposed into its x and y components as 𝐸! and 𝐸!, respectively, which are in general 

complex quantities with an amplitude and a phase [8, 12]. The Jones vector contains the 
complex components of the electric vector of light in the form as the Eq. 2.34 

𝐸 𝑧, 𝑡 =
𝐸!
𝐸!

,  (2.34) 

where 

𝐸! = 𝐸!! exp 𝑖𝛿! = 𝐸! exp 𝑖𝛿! ,         (2.35a) 

𝐸! = 𝐸!! exp 𝑖𝛿! = 𝐸! exp 𝑖𝛿! .        (2.35b) 

The total intensity I of the optical field is given by Eq. 2.36 [12] 

𝐼 = 𝐼! + 𝐼! = 𝐸!"! + 𝐸!"! = 𝐸! ! + 𝐸!
! = 𝐸!𝐸!∗ + 𝐸!𝐸!∗ . (2.36) 

The intensity can be obtained by the matrix multiplication as is shown in the Eq. 2.37 

𝐼 = 𝐸!∗ 𝐸!∗
𝐸!
𝐸!

  .          (2.37) 

The Jones vector is generally expressed by the normalized light intensity 𝐼 = 1 . 
Thus, the Jones vectors associated to the six basic polarized states are the following [12]: 
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SOP Jones vector  SOP Jones vector 

LH 

𝐸! = 0, 𝐸!!! = 1 
𝐸! =

1
0   

LV 

𝐸! = 0, 𝐸!!! = 1 
𝐸! =

0
1  

L+ 

𝐸! = 𝐸! , 

2𝐸!!! = 1 

𝐸! =
1
2
1
1   

L− 
𝐸! = −𝐸!,     

2𝐸!!! = 1 

𝐸!

=
1
2

1
−1  

RC 

𝐸!! = 𝐸!! , 

𝛿! − 𝛿! = 90°                

2𝐸!!! = 1 

𝐸! =
1
2

1
+𝑖   

LC 

𝐸!! = 𝐸!!,         

𝛿! − 𝛿! = −90° 

2𝐸!!! = 1 

𝐸! =
1
2

1
−𝑖  

 

The linear operation of any non-depolarizing optical device can be fully described 
by a 2 × 2 Jones matrix. A system of multiple devices distributed in a series setup can be 
straightforwardly modeled by multiplying the component Jones matrices to yield a single or 
equivalent system Jones matrix. Taking into account that the components of a beam 
emerging from a polarizing element are linearly related to the components of the incident 
beam, a relationship between them have been found by R. C. Jones [35], which is shown in 
the Eq. 2.38 [12] 

𝐸!´ = 𝑗!!𝐸! + 𝑗!"𝐸!,       (2.38a) 

𝐸!´ = 𝑗!"𝐸! + 𝑗!!𝐸!,       (2.38b) 

where 𝐸!´  and 𝐸!´  are the components of the emerging beam, and 𝐸!  and 𝐸!  are the 

components of the incident beam. The Eq. 2.38 can be written in matrix form as the 
expression 2.39 [12] 

𝐸!´

𝐸!´
=

𝑗!! 𝑗!"
𝑗!" 𝑗!!

𝐸!
𝐸!

,   (2.39) 
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where the Jones matrix is defined by 𝐽 =
𝑗!! 𝑗!"
𝑗!" 𝑗!!

. 

It is important to mention that any Jones matrix can be expressed as a Mueller’s 
matrix but in inverse it is not true. The Jones formalism applies only to non-depolarizing 
processes, where the incident light is totally polarized.  

2.2.5.1   Jones matrix of a linear polarizer 

The Jones vector for a linear polarizer can be represented by Eq. 2.40 [12] 

𝐸!´

𝐸!´
=

𝑝! 0
0 𝑝!

𝐸!
𝐸!

          0 ≤ 𝑝!,! ≤ 1.                    (2.40) 

An ideal linear horizontal polarizer has a complete transmission in the horizontal x-

axis (𝑝! = 1) and a complete attenuation along the vertical y-axis (𝑝! = 0), whereas a linear 

vertical polarizer has 𝑝! = 0 and 𝑝! = 1. 

When a linear polarizer is rotated through an angle 𝜃, its Jones matrix can be 
represented as a rotation transformation (Eq. 2.41), according to 𝐉´ = 𝐉 −𝜃 𝐉𝐉 𝜃  where 

𝐉 𝜃  is the rotation matrix [12] 

𝑱 𝜃 = cos𝜃 sin𝜃
− sin𝜃 cos𝜃 .    (2.41) 

Therefore, the Jones matrix for a rotated linear polarizer is given by Eq. 2.42 [12] 

𝐉𝑷 𝜃 =
𝑝! cos! 𝜃 + 𝑝! sin! 𝜃 𝑝! − 𝑝! sin𝜃 cos𝜃
𝑝! − 𝑝! sin𝜃 cos𝜃 𝑝! sin! 𝜃 + 𝑝! cos! 𝜃

.  (2.42) 

2.2.5.2   Jones matrix of a linear retarder 

A linear retarder increases the phase by +𝜙/2 along the fast x-axis and retards the 

phase by −𝜙/2, along the slow y-axis. The emerged electric fields are represented by Eq. 
2.43 [12] 
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𝐸!´ = 𝑒!!/!𝐸!,  (2.43a) 

𝐸!´ = 𝑒!!/!𝐸!.  (2.43b) 

So, the Jones matrix for a retarder is represented by Eq. 2.44 [12] 

𝐉𝑹 𝜙 = 𝑒!!/! 0
0 𝑒!!/!

.     (2.44) 

For a quarter-wave plate, 𝜙 = 𝜋 2, and for a half-wave plate, 𝜙 = 𝜋. 

If the retarder is rotated an angle 𝜃, with respect to the horizontal fast axis, the 
Jones matrix for this rotated retarder is given by Eq. 2.45 [12] 

𝐉𝑹 𝜙, 𝜃 =
cos !! + 𝑖 sin

!
! cos2𝜃 𝑖 sin !

! sin 2𝜃
𝑖 sin !

! sin 2𝜃 cos !! −i sin
!
!  cos2𝜃

 .     (2.45) 

2.3   Spatially non-homogeneous or unconventional polarization states 

While in the conventional polarization states study the behavior of the light based 
on the direction of the electric field oscillation and its spatial homogeneous distribution, the 
unconventional polarization is described via distributions of spatially non-homogeneous 
electric field, where the state of polarization does not depend on the spatial location in the 
beam cross section [9, 36-37]. Recently, there has been a special interest in the generation 
and application of unconventional polarization states of light as radial and azimuthal 
polarizations, and other types of polarization vortices and spatially engineered polarizations. 

2.3.1   Cylindrical vector beams 

A laser beam with cylindrical symmetry in polarization is known as cylindrical 
vector beam [9].  This kind of optical beams has spatially non-uniform polarization and 
describes vector beam solution of Maxwell’s equations that obey axial symmetry both in  the 
amplitude and the phase [9, 38-39]. 

The full vector wave equation for the electric field 𝐸 is represented by the Eq. 2.46 
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[38] 

𝛻×𝛻×𝐸 − 𝑘!𝐸 = 0.          (2.46) 

There are solutions for the Eq. 2.46, which have spatially variant polarization state 
distributions across the beam section. When the axial symmetry to the beam-like vector 
solution for the Eq. 2.46 has the electric field aligned in the azimuthal direction, the 
solution of the electric field can be represented by the Eq. 2.47 [40, 41] 

𝐸 𝑟, 𝑧 = 𝑈 𝑟, 𝑧 exp 𝑖 𝑘𝑧 − 𝜔𝑡 𝑒!,       (2.47) 

where 𝑈 𝑟, 𝑧  satisfies the Eq. 2.48 under paraxial and slow-varying envelope 

approximations, and 𝑒! is a unitary vector in the azimuthal direction [9, 41] 

!
!
!
!"

𝑟 !"
!"

− !
!!
+ 2𝑖𝑘 !"

!"
= 0.       (2.48)  

The solution 𝑈 𝑟, 𝑧  with azimuthal polarization symmetry has a solution as Eq. 
2.49 [9, 41] 

𝑈 𝑟, 𝑧 = 𝐸!𝐽!
!"

!! !"!!
exp −

!!!!
!!

!! !"!!
𝑢 𝑟, 𝑧 ,                             (2.49) 

where 𝐽! 𝛽, 𝑟, 𝑧, 𝑧!  is the first order Bessel function of the first kind, 𝛽 is a constant scalar 
parameter, and 𝑢 𝑟, 𝑧  is the fundamental Gaussian solution given by Eq. 2.50 [9, 41] 

𝑢 𝑟, 𝑧 = 𝐴 !!
! !

exp − !
!! !

𝑟! ,                  (2.50) 

where 𝑤 𝑧  is the beam size, 𝑤! is the beam size at beam waist, 𝑧! =
!!!!

!
 is the Rayleigh 

range, and 𝑞 𝑧 = 𝑧 + 𝑗𝑧! is the complex beam parameter. 

Thus, the solution (Eq. 2.47) that corresponds to an azimuthally polarized vector 
Bessel-Gauss beam solution can be obtained through the Eq. 2.51 [9, 41] 
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𝐸 𝑟, 𝑧 = 𝐸!𝐽!
!"

!! !"!!
exp −

!!!!
!!

!! !"!!
𝑢 𝑟, 𝑧 exp 𝑖 𝑘𝑧 − 𝜔𝑡 𝑒!.         (2.51) 

In the same form, the transverse magnetic field solution is represented by Eq. 2.52 
[9, 41] 

𝐻 𝑟, 𝑧 = −𝐻!𝐽!
!"

!! !"!!
exp −

!!!!
!!

!! !"!!
𝑢 𝑟, 𝑧 exp 𝑖 𝑘𝑧 − 𝜔𝑡 ℎ!,  (2.52) 

where 𝐻!  is the constant magnetic field amplitude and ℎ!  is the unit vector in the 

azimuthal direction. This azimuthal magnetic field solution corresponding to an electric 
field in the transverse plane is aligned in the radial direction; therefore, Eq. 2.52 represents 
the radial polarization for the electric field.  

The vector Bessel-Gauss at the beam waist can be approximated as Eq. 2.53 when 𝛽 
is very small [41] 

𝐸 𝑟, 𝑧 = 𝐸!𝑟 exp − !!

!! 𝑒!        𝑖 = 𝑟, 𝜑.   (2.53) 

This approximation is the 𝐿𝐺!"  mode without the vortex phase term exp −𝑖𝜑  
[42]. Cylindrical vector beams can be obtained by the superposition of two mutually 

orthogonal polarized Hermite-Gauss 𝐻𝐺!" and 𝐻𝐺!" modes [43] using the Eqs. 2.54 and 
2.55 

𝐸! = 𝐻𝐺!"𝑒! + 𝐻𝐺!"𝑒!,   (2.54) 

𝐸! = 𝐻𝐺!"𝑒! + 𝐻𝐺!"𝑒!,              (2.55) 

where 𝐸!  and 𝐸!  denote the radial and azimuthal polarization, respectively. The spatial 

distribution of the instantaneous electric field vector for some linearly polarized Hermite-
Gauss and Laguerre-Gauss modes and the cylindrical vector modes are shown in Fig. 2.4. 
The states of polarization of the modes spatially homogeneous are represented in Fig. 2.4a, 
2.4b, 2.4d, and 2.4e. The linear superposition of the radial and azimuthal polarizations are 
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illustrated in Fig. 2.4c and 2.4f, respectively. Radial polarization has its instant electric field 
oscillating radially, while in the azimuthal polarization its instant electric field oscillates 
azimuthally or tangentially [9, 41]. 

 

Fig. 2.4   Spatial distribution of instantaneous electric vector field for a) x-polarized HG10 mode, b) 

y-polarized HG01 mode, c) radially polarized mode, d) y-polarized HG01 mode, e) x-polarized HG01 mode, 

and f) azimuthally polarized mode. 

2.3.2   Generation of radial and azimuthal polarizations 

There are several methods to generate unconventional polarization states; they can 
be classified into two categories, active and passive methods [9].  

To generate cylindrical vector beam it is necessary the use of the laser intracavity 
devices that force the laser to oscillate in cylindrical vector modes, this kind of methods are 
called active methods. Some intracavity devices as the axial birefringent or axial dichroic 
components can provide mode discrimination against the fundamental mode [44-47]. 
Intracavity interferometric methods can also generate cylindrical vector beams using mirrors 
or prisms based on the linear superposition principle [48]. 
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On the other hand, passive methods transform spatially homogeneous polarizations 
(commonly linear or circular polarizations) into spatially inhomogeneous cylindrical vector 
polarizations [9].  This kind of methods can generate cylindrical vectors in free space using 
devices with spatially arranged retardation axis [49, 50], devices with continuous axial 
birefringence and dichroism [51, 52], employing liquid crystal (LC) materials [53] and LC 
spatial light modulators (SLM) [54]. The Mach–Zehnder interferometer combined with a 
spiral phase plate [55] could also generate cylindrical vector beams. Recently, a simple 
experimental method to generate radial and azimuthal polarization from the scattering of 
light by a metallic cylinder has been developed [56]. There are commercially available 
devices to convert linear or circular polarization into radial, azimuthal, and z-polarizations 
[57]. 

2.3.2.1   Radial polarizer converter 

A commercially available polarizer that converts linear incident polarization beam 
into radial, azimuthal, or optical vortex beam is called S-wave plate (radial polarizer 
converter, Altechna) [58]. This device is a super-structured space-variant polarization 
converter fabricated by femtosecond laser writing of self-assembled nanostructures in silica 
glass [59]. Fig. 2.5 is the radial polarization converter. 

 

Fig. 2.5   S-waveplate. Radial/Azimuth polarization converter (Altechna, RPC-515-06) [58]. 

The manufacturing process of the S-wave plate (SWP) consists of irradiating the 
volume of the glass with ultrashort laser pulses to form sub-wavelength nano-gratings [60] 
that act as a birefringent medium [61] and alters the polarization of the transmitted light. 
Due to the distribution of the nano-gratings within the volume of the glass, in such a way 
that the orientation of them depends on the azimuthal angle, complex polarization states 
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can be generated. The cylindrical vector beams, either radial or azimuthal polarization 
beams, are formed depending on the polarization of the incident light.  

According to the manual of the manufacturer of the S-wave plate [62], when the 
mark indicated in this device is parallel with the orientation of the linear incident 
polarization, the electric field direction of the emerged beam has the direction as show the 
Fig. 2.6a, that corresponds to the radial polarization. When the radially polarized beam is 
analyzed by linear polarizer with its transmission axis at 90°, 0°, +45°, and -45°, the 
intensity distribution of the radial polarization is illustrated in Fig. 2.6b-e, respectively. 

 

Fig. 2.6   Intensity distribution of the a) radial polarization beam measured with the camera CCD, and b-e) is 

the analyzed beam by linear polarizer with the transmission axis set at various angular positions (90°, 0°, +45°, 

and -45°, respectively) [62].  

Following a similar procedure, the intensity distribution of the azimuthal 
polarization is illustrated in Fig. 2.7a and the beam analyzed by a linear polarizer with the 
transmission axis orientation at 90°, 0°, +45°, and -45° is shown in the Fig. 2.7b-e, 
respectively. 
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Fig. 2.7 Intensity distribution of the a) azimutal polarization beam measured with the camera CCD, 

and b-c) is the analyzed beam by linear polarizer (90°, 0°, +45°, and -45°, respectively) [62] 

2.4   Polarimetry 

The polarimetry techniques measure the change of the polarization state due to the 
interaction of the incident beam with matter and they are a powerful tool for optical 
characterization, imaging, and sensing applications [8, 63]. Thin films on surfaces, 
dielectric materials, biological samples and industrial micro-structures are some examples of 
the samples that can be characterized by polarimeters. This optical instrument is used to 
determine the polarization properties of samples as well as to test materials through to their 
corresponding the Mueller’s matrix elements. To determine the 16 elements of this matrix 
it is necessary to analyze the polarization states of the reflected or transmitted light when 
the sample is illuminated with different known input polarization states, and it can be 
measured as a function of the wavelength and the angle of incidence. The Mueller’s matrix 
polarimeter is composed of a polarization state generator (PSG), which produces the 
particular polarization state of the incident light, and a polarization states analyzer (PSA), 
which measures or analyzes the polarization state of the reflected or transmitted light by the 
sample shown in Fig. 2.8 [6, 64].  Linear polarizers and retarders are used both in the PSG 
and the PSA configuration setups to generate or analyze polarization state, respectively. 
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Fig. 2.8   Operational diagram of a general polarimeter arrangement (transmission configuration). 

The polarization properties can be measured under transmission or reflection 
configurations.  Fig. 2.8 shows the transmission configuration in which the PSA analyzes 
the transmitted light that passes through the sample; this kind of polarimeter primarily 
makes measurements on bulk samples (gas, liquid, solid) [64, 65]. In the reflection 
configuration (Fig. 2.9), the incident light is reflected at the interface between two optically 
different media and is analyzed by the PSA. The sample changes the incident polarization 
state due to the Fresnel reflection or transmission coefficients (explained in section 2.1) for 
the two linear polarizations, parallel (p) and perpendicular (s) to the incident plane. In the 
literature, the reflection polarimeter is normally called ellipsometer [64, 66] and is mainly 
used to measure optical properties of the plane or smooth interfaces and thin films. 

 

Fig. 2.9   Polarimeter under a reflection configuration. 

A reflection polarimetry has been employed to develop part of this thesis. For this 
reason, some variants of the polarimeter arrangement with this configuration are explained 
in the following paragraphs.  

A reflection polarimeter that uses a source to illuminate the sample at some fixed 
angle of incidence, within a range of wavelength in the ultraviolet/visible region, is called 
spectropolarimeter (SE) [67-69], but there exists a multiple-angle-of-incidence (MAIE) 
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polarimeter [70, 71] that measures the reflected light at several angles of incidence. 
Combining simultaneously both polarimeters that make the measurements at multiple- 
angles-of-incidence and at several wavelengths, an instrument that is named variable angle 
spectroscopic ellipsometer (VASE) [72] is obtained. On the other hand, there exist 
polarimeters to measure the reflected light with a detector, which may be a photodiode or 
photomultiplier [73], but it has been recently developed the imaging polarimetry using a 
CCD camera [5, 74].  

2.4.1   Micro-polarimetry 

A limitation of polarimetric systems is the spot size of illumination because some of 
them are in the range of 3 to 1 mm in diameter. If the sample size is smaller than the spot 
size want to be measured, it can not be accurately discriminated. Particularly, when the 
samples are inhomogeneous or aperiodic nanostructures (target gratings), the averaged 
analysis will lead to incorrect results. The developing of the micro- and nano-structures 

implies making measurements within micro-spot sizes, typically between 50 and 25 μm 
[74-76], thus to solve this issue a microscope objective lens has been incorporated to focus 
the incident light with a micro-spot size on the sample. The system is called Mueller-
matrix micro-polarimeter, which obtains imaging static samples providing well-defined 
reflection properties of the material. This technique can angularly resolve the Mueller 
matrix of the micro- and nano-structures using a high numerical aperture (NA) microscope 
objective [77, 78], and can characterize transparent samples [79, 80] obtaining the 

corresponding ellipsometric parameters (𝜓, ∆) that represent the amplitude ratio 𝜓 and 

phase difference ∆ between light waves known as p- and s-polarized light waves [64, 68], 
and then calculate the refraction index or thickness of the sample [81]. 

2.4.2   Microscope objective lens 

Inserting a microscope objective lens in a polarimetry system allows capturing the 
angular distribution of the light coming from the sample, which is actually mapped on the 
objective back focal plane [80, 82]. Due to Abbe’s sine condition [8], a parallel beam 

emerging from the sample with a polar angle 𝜃 and an azimuth 𝜑 is focused in the back 
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focal plane on a point with radial coordinates (𝑓 sin𝜃, 𝜑), where 𝑓 is the objective focal 
length (Fig. 2.10).  

 

Fig. 2.10   Side view of a collimated illumination field focused into a sample. 

The azimuth angles ranging from 0° to 360°, and the polar angles 𝜃 are limited by 
the NA of the objective. The maximum angle of incidence (𝜃!"#) is calculated through the 
numerical aperture of the objective lens (the sine condition), Eq. 2.56 [8] 

𝑁𝐴 = sin𝜃!"#.     (2.56)  

The maximum radius 𝑅!"# of the exit pupil image is obtained according to by Eq. 
2.57 [8] 

𝑅!"# = 𝑓 sin𝜃!"#.     (2.57) 

The relationship between an arbitrary distance 𝑅 from the image center and its 

corresponding incidence angle 𝜃! can be calculated using the Eq. 2.58 

sin𝜃! =
!

!!"#
sin𝜃!"#.     (2.58) 

2.4.3   Multiple-angle-of-incident using a microscope objective lens 

In the previous section 2.4 was mentioned there exist reflection polarimeters that 
measure the reflected light at several angles of incidence. These systems make 
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measurements for each angle of incidence, and this implies investing time to complete all 
the required measurements in a range of 15°-90° incidence angles [83]. A microscope 
objective lens with high NA is able to illuminate the sample at several incidence angles in a 

single shot (Fig. 2.10). When a high 𝑁𝐴 lens obeying sine-condition focuses the incident 
light into a small spot on the surface of the sample (Fig. 2.10), the maximum angle of 

incidence 𝜃!"# is calculated through the Eq. 2.56. The focal length of the lens is calculated 

by 𝑓 = 𝑅!"! 𝑁𝐴 [8]; thus if the NA of the objective lens increases, the corresponding 
focal length reduces. A high NA aperture objective lens allows measuring the data with 
better sensitivity because there is not Fresnel contribution at the Brewster angle from the 
sample, meaning the Fresnel coefficients at this angle are zero [84, 85].  

 

Fig. 2.11 Multiple rays incidence with a) x–linear and b) radial polarization at different angles of incidence by 

an objective lens. Blue and red arrows represent the incident and reflected rays, respectively. 

The behavior of the polarized illumination field coming into an objective lens is 
illustrated in Fig. 2.10. The angle between the direction of the each incident electric field 
and its corresponding local incidence plane has a geometrical dependence with the 
azimuthal position (φ). This effect is shown in the Fig. 2.11a, each incident x-linear 
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polarized ray (blue arrow) has a local incident plane (blue dotted line), thus the reflected 
intensity distribution decreases to zero where the direction of the electric field coincides 
with the direction of its local incident plane and the ray strikes at the Brewster’s angle. On 
the other hand, when the incident beam is radially polarized (Fig. 2.11b), the electric field 
direction of this beam is always in the plane of incidence and hence it is seen as a linear x-
polarization for any azimuthal angle (φ). Therefore, the reflected intensity distribution 
decreases to zero at the Brewster angle associated to the dielectric surface under study. 
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Chapter 3   Experimental  results  and discussions 

In this Chapter, the experimental results using conventional and unconventional 
polarization states to study the polarimetric behavior of the light when interacting with 
certain systems are discussed. In the first part, the experimental determination of the 
angularly resolved Mueller’s matrix (MM) associated to the light scattered by a metallic 
cylinder using conventional polarization states is reported; in the second part, the 
methodology to measure the refractive index of a dielectric sample using highly focused 
radial and parallel polarized light is explained, and the experimental and theoretical results 
are compared and discussed. 

3.1 Polarization properties of light scattered by a metallic cylinder 

In this section, an experimental validation to prove that the angularly resolved 
Mueller’s matrix associated to a metallic cylinder is similar to a one-dimensional surface 
Mueller’s matrix is reported. Furthermore, from the experimental Mueller’s Matrix 
elements were determined the main scalar polarization metrics associated to light scattered 
by a metallic cylinder, when the illumination is perpendicular to the cylinder axis. 

3.1.1 Preliminary study of a metallic cylinder 

A cylinder with an axis oriented along the y-axis is also a highly symmetric system 
that can be considered as the minimum expression of what builds a 1D surface, a single 
groove [86]. A one-dimensional (1D) rough surface is a highly symmetric system, defined 
with respect to a Cartesian coordinate system as a surface whose profile (z-axis) varies only 
along the x-axis and is constant along the y-axis. The scattering properties of 1D rough 
metallic and dielectric surfaces have been extensively reported theoretically, numerically, 
and experimentally [17-21, 87-91] and the polarimetric behavior has been reported using 
the Mueller-Stokes formalism [4, 12, 17-21].  



 Chapter 3   Experimental results and discussions 

 -36- 

Due to its potential applications to many problems in radiative transfer, remote 
sensing, diagnosis, and particularly in the forensic analysis of fibers, cylinders have been one 
of the main geometries studied [16, 86, 92-99]. Of particular importance has been the work 
done on the aspect ratio dependence of the light scattered by cylinders [86, 92]. Some 
authors have applied simple models based on the geometrical theory of diffraction to obtain 
the diffraction pattern of the scattered light and then have calculated the cylinder diameter 
[98, 99]. Experimental and theoretical studies related with the scattering of light by 
cylinders have been reported (optical fiber with an evaporated thin film), where the 
elements of the Mueller’s matrix have been measured within an angular interval of 180º, 
but neither the polarization behavior as a function of the scattering angle nor their potential 
applications have been discussed [100-101]. Recently, the scattering of light by cylinders 
under a conical geometry of incidence has given rise to a method to generate radial and 
azimuthal unconventional polarization states [56]. Extensive theoretical and numerical 
work have reported the diffraction and scattering of light by metallic cylinders illuminated 
under both, plane and conical geometries of incidence, using linear polarizations parallel 
and perpendicular to the cylinder axis [24, 54, 86, 92-97, 98-101]. Eq. 2.22 is the 
polarimetric model that best describes the light scattered by the metallic cylinder 
illuminated perpendicularly to the cylinder axis [100, 101]. 

3.1.2   Experimental arrangement. 

Employing a HeNe laser (632.8 nm), a polarization state generator (PSG), and a 
polarization state analyzer (PSA), a collimated beam with 2 mm wide was generated and 
sent towards the metallic cylinder at normal incidence. As a way to show the simplicity of 
the system, an electric guitar string was employed as the metallic cylinder, placed at the 
center of an automated rotation stage of an angle-resolved scattering system (ARS), Fig. 

3.1 The cylinder is a commercially available electric guitar nickel string, with a 254 µm 
diameter (Fender, 3150R Pure Nickel String, 0.01 inch diameter). The nickel has a 

refractive index of 1.98+i3.74 [102] and a skin depth of 0.013 µm to 0.633 µm wavelength, 
which ensures the illuminating light is not transmitted through the cylinder. The 
polarization state generator (PSG) consists of a linear polarizer of the Glan-Thompson 
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type (Thorlabs, GTH10M), followed by a liquid crystal variable retarder and its controller 
(Thorlabs, LCC1111-A and LCC25, respectively), both mounted in motorized rotation 
stages (Thorlabs, PRM1Z8E). The polarization state analyzer (PSA) is a commercially 
available head (Thorlabs, model PAX5710/VIS), which is mounted on a 40-cm-long arm 
and pointed toward the illuminated spot at the center of the cylinder. The experimental 
error of the complete system, including the laser fluctuations, is of the order of a 4% [103]. 

 

Fig. 3.1   Experimental setup employed for the measurement of the light scattered by the metallic cylinder. 

The scattered light is distributed on a plane surface, perpendicular to the cylinder 
axis. To obtain the Mueller’s matrix, a set of six polarization states was employed (linear 

horizontal, perpendicular, to +45°, -45°, and circular right- and left-handed polarization 
states, respectively). In the absence of any polarization-sensitive effect in the optical 
medium placed between the PSG and the PSA, the experimental setup was verified in 
order that each state of polarization detected corresponds to the same state of polarization 
generated. 

3.1.3 Results and discussion of the experimental Mueller matrix of the metallic cylinder 

The 36 angularly-resolved measurements of intensity were handled by applying an 
algebraic algorithm to the data obtained [104, Appendix A1], in order to get the 16 

Mueller’s matrix parameters, which were plotted versus the scattering angle 0° < 𝜃!"#$$ <

360°. The Mueller matrix parameters are shown in Fig. 3.2, where the data corresponding 
to angles in the vicinity of the direction of propagation, 𝜃!"#$$ = 180°, have been omitted 
due to saturation present on the detector (stops or neutral spatial filters have not been used 
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to cancel or attenuate the beam in that direction). In Fig. 3.2, the angularly-resolved 

Mueller matrix elements show that 𝑚!! ≅ 𝑚!!, 𝑚!" ≅ 𝑚!", 𝑚!! ≅ 𝑚!!, 𝑚!" ≅ −𝑚!", 

and the elements 𝑚!", 𝑚!", 𝑚!", 𝑚!",  𝑚!",  𝑚!", 𝑚!", 𝑚!"are almost zero. They are not 
exactly zero, probably due to the fact that the commercial guitar string has some surface 
defects that scatters and polarizes the light slightly. If the matrix elements that should be 
zero-valued are neglected, we can conclude that the measured Mueller’s matrix (MM) of 
Fig. 3.2 confirms the model, Eq. 2.22. This is not an obvious result because a one-
dimensional rough surface with any arbitrary profile is not a single cylinder. 

 

Fig. 3.2. Normalized Mueller’s matrix elements versus the scattering angle (0° < 𝜃!"#$$ < 360°), associated to 
the scattering of the light by a metallic cylinder. It is possible to observe 𝑚!! = 𝑚!!, 𝑚!" = 𝑚!", 𝑚!! =
𝑚!!, 𝑚!" = −𝑚!". The experimental error is represented by vertical bars (±4%). 

3.1.4   Results and discussions of the main polarimetric parameters of the metallic cylinder 

Employing the MM values obtained from Fig. 3.2, some of the main polarimetric 
parameters have also been computed. The Fig. 3.3 shows the depolarization index, Eq. 
2.28, the Gil-Bernabeu theorem, Eq. 2.33, the diattenuation, Eq. 2.31, and the polarizance 
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parameters, Eq. 2.30, respectively. All of them plotted in terms of the scattering angle 
(degrees). 

 

Fig. 3.3 Polarization scalar metrics versus the scattering angle. Depolarization index (−n−), the Gil-Bernabeu theorem 

(−−), the diattenuation (−¢−) and the polarizance (−+−) parameters, respectively. 

The depolarization index, (−n−), takes on values around 1, with small oscillations, 
according to the resolution of the experimental setup employed here. The plot of the Gil-
Bernabeu theorem, (−−), shows the same behavior than the depolarization index; note also 
that the MM of Fig. 3.2 satisfies Eq. 2.33, the necessary and sufficient condition for a MM 
to be a Mueller-Jones matrix (represented as the ratio of the left-hand side divided by the 
right-hand side of Eq. 2.33). At this stage, it is important to point out that a fully polarized 
incident beam is being used. It is well known that a 1D surface depolarizes light when 
multiple scattering effects are being present (under normal incidence), which is the case if 
the totally polarized incident light is scattered around 180º for a perfectly reflecting surface 
[20] or around 360º for a reflecting and transmitting surface. The results obtained here by 
applying the depolarization index or the Gil-Bernabeu theorem, prove there are not 
depolarization effects or if they are present, their contribution is within our experimental 
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error complete system. In addition, by taking into account that each Mueller parameter mij 

is originated from the sum of four different and independent intensity measurements, 
probably the variation from the unity value for the depolarization index and the Gil-
Bernabeu theorem, are originated by statistical speckle noise presented during the scattering 
process. Another error factor can be due to the possible multiple reflections from the 
internal walls inside the PSA head before reaching the detector (diameter size of 3 mm). 

    On the other hand, the diattenuation, Eq. 2.31 and the polarizance parameters, 
Eq. 2.30, have almost the same, slowly varying and symmetric behavior, with average 

maximum values of 0.25 around 80° < 𝜃!"#$$ < 180°and 180° < 𝜃!"#$$ < 280° and with 

average minimum values of 0.08 around 0° < 𝜃!"#$$ < 80°  and 280° < 𝜃!"#$$ < 360° . 
This means that the metallic cylinder can polarize un-polarized incident light, with an 

efficiency that depends on the scattering angle. Considering that 𝑚!" = 𝑚!", 𝑚!" =

𝑚!" = 𝑚!" = 𝑚!" = 0 , Eqs. 2.30 and 2.31 can be reduced approximately to a same 

angular behavior, 𝑃 𝑀 = 𝑚!" 𝑚!! ≅ 𝑚!" 𝑚!! = 𝐷(𝑀). 

3.2 Refractive index measurement using x-linear and unconventional radial 
polarized light  

In this section, a method to measure the refractive index of the dielectric sample 
through determining the Brewster’s angle is proposed. This method uses a polarimetric 
instrument that measures, in a single shot, the intensity of the reflected light by the sample 
at the back focal plane, for incidence angles ranging from 0° to 64° and all azimuths angles 
around a full circle, when the sample is illuminated by highly focused radial polarization. x-
linear polarization state also was used with the aim to compare with the radial polarization 
result. Experimental and theoretical results are compared to validate the method.  

3.2.1 Preliminary study of the refractive index measurement 

The refractive index is an essential optical parameter for the characterization of 
micro-structures. Several optical techniques used to measure the refractive index of the thin 
films and dielectric materials have been developed through analyzing the transmitted and 
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reflected light by the sample. The ellipsometric methods measure the change of 
polarization of the light reflected or transmitted by a surface [64, 71] but the typical spatial 
resolution is poor and the spot size is around millimeters. Therefore several, approaches 
have been developed to increase the spatial resolution of conventional ellipsometers [76, 
105-106]. Some experimental methods for determining the refractive index of dielectric 
surfaces by using the polarization of light reflected near the Brewster’s angle of the sample 
under study have been proposed [107, 108], but the precision is not good enough. The 
polarized reflectance measurement technique for thickness and index (PRETTI method) 
allows one to obtain the refractive index and thickness of a thin film by using S-polarized 
(linear polarization perpendicular to the plane of incidence) and P-polarized (linear 
polarization parallel to the plane of incidence) reflectances, measured at oblique angles of 
incidence [109]. The prism coupling method is only applicable to thin samples [110]. The 
Abbe refractometer is based on the critical angle method, therefore it is not applicable to 
samples of refractive index larger than its coupling prism [111]. The minimum deviation 
method is typically used for bulk materials, but the samples have to be prepared prism-
shaped, which are difficult to measure [112]. Another method combines an optical low-
coherence interferometer and confocal optics to make simultaneous measurements of the 
phase index, the group index, and the geometrical thickness of an optically transparent 
object [113-115], but it is very sensitive to the optical path difference and requires complex 
instrumentation. Most of those methods demand a lot of time to make measurements; 
furthermore, the experiment arrangements are sophisticated, the beam spot size is large and 
lacks spatial resolution, and have a high price. 

3.2.2 Spatial Average Symmetry associated to radial and azimuthal polarization. 

Before illuminating the sample, it was necessary to verify the quality of the radial 
and azimuthal incident light generated by the S-wave plate [58], testing the Spatial 
Average Symmetry (SAS) associated to the cross section of unconventional polarized light 
by the Eq. 3.1 [116] 

𝑆 !"# = 𝑆!   𝑆!   𝑆!   𝑆! !,    (3.1) 
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where  represents the spatial average operation and 𝑇  denotes the transpose matrix 
operation. 

To obtain the Stokes parameters, the relationships of Eq. 2.19 were used and it was 
assumed that they are also valid for images (intensity spatially distributed) registered by a 
CMOS camera when a quarter-wave plate (QWP), a half-wave plate (HWP), and a linear 
polarizer (LP) are used to analyze the contribution from the radial and azimuthal 
polarizations. Fig. 3.4 shows the experimental setup employed to generate radially and 
azimuthally polarized beams and to analyze their contribution to the six basic polarization 

states (𝑥 parallel, 𝑦 vertical, +45, -45, circular right- and circular left-handed polarization). 

 

Fig. 3.4 Schematic diagram employed for the experimental determination of the Spatial Average Symmetry 

associated to unconventional polarized beams of light (taken from [116]). A light beam is spatially filtered 

and then collimated by lens L1; LP represents a linear polarizer; SWP represents the S-waveplate converter; 

QWP and HWP represent quarter- and half-waveplates, respectively; L2 is a lens employed to form an image 

on the plane of a CMOS camera. 

“A laser diode is employed as the source of monochromatic light (Thorlabs, laser 
diode model DPSS, @532 nm), which is spatially filtered to produce a uniform intensity, 
and it is collimated by a lens L1. A linear polarizer with its transmission axis parallel to the 
optical table generates a conventional linear polarization incident at the S-waveplate 
(Altechna, model RCP-515-06), which generates the unconventional polarizations 
reported here, except along the optical axis, where there exists a singularity [117]”, [116].   

Fig. 3.5 shows the intensity spatial distribution of unconventional polarization 
beams generated by the S-wave plate and detected by the CMOS camera (Thorlabs, 
DCC3240C). Fig. 3.5a and Fig. 3.5b represent the total intensity measured directly by the 
camera for the radial and azimuthal polarization beams, respectively. Observe that both 
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radial and azimuthal polarizations generated are not perfectly symmetric, even when a 
collimated linearly polarized beam with uniformly intensity was incident on the polarization 
converter. 

 

Fig. 3.5 Intensity spatial distribution of a) radial and b) azimuthal polarization beams generated by the S-

wave plate. 

 

 

Fig. 3.6 Intensity spatial distribution analyzing a) x, b) y, c) +45, d) -45, e) circular right-, and f) circular left-

handed polarizations associated to a radial polarization beam.  
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Fig. 3.6 and 3.7 show the intensity distributions when radial and azimuthal 

polarization beams, respectively, were analyzed their contributions to 𝑥 (Fig. 3.6a and 3.7a), 

𝑦 (Fig. 3.6b and 3.7b), +45 (Fig. 3.6c and 3.7c), −45 (Fig. 3.6d and 3.7d), 𝑟 (Fig. 3.6e 

and 3.7e), and 𝑙 (Fig. 3.6f and 3.7f) polarization states. Comparing the images of the Figs. 
3.6a-d and 3.7a-d with the images provided by the manufacturer of the S-wave plate [62] 
shown in Figs. 2.6b-e and 2.7b-e, it can be observed that the obtained experimental images 
have more symmetry and their spatial distribution are more symmetric. It is important to 
mention that the intensity depends on the exposure times; the images were registered trying 
to avoid saturation. Similar images were taken several times, with different exposure times, 
exhibiting high reproducibility. 

 

Fig. 3.7 Intensity spatial distribution analyzing a) x, b) y, c) +45, d) -45, e) circular right-, and f) 

circular left-handed polarizations associated to an azimuthal polarization beam.  

The Stokes parameters, represented by images, for both azimuthal and radial 
polarizations were obtained by applying the Eq. 2.19 to the beam generated and the spatial 
average symmetry, Eq. 3.1 were calculated by using a Matlab code [Appendix A2].  
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Fig. 3.8 Stokes parameters associated to experimental radial polarization mode a) S0, b) S1, c) S2, d) S3.  Spatial average 

symmetry, 𝑆 !"# = 1.0000 0.0021 0.0244 0.1562 !. Values are plotted in terms of pixels and the intensity 

values have been normalized. 

Figure 3.8 shows the normalized experimental Stokes parameters for radially 

polarized light. Fig. 3.8a is associated to the 𝑆! total intensity measured according to Eq. 
2.19; “note it is not axially symmetric, but shows only positive values, as expected for the 
total intensity distributed spatially. All the Stokes parameters reduce their intensities with 
respect to the original image, due to the attenuation present within the polarization state 

analyzer setup (Fig. 3.4)”. This intensity reduction is clearly noted in the 𝑆! element, Fig. 
3.8a. Figs. 3.8b and 3.8c represent the second and third Stokes elements, respectively, are 

very similar, except one is rotated to 45° with respect to the other. The Stokes element 𝑆!, 
Fig. 3.8d, shows spatial contributions to both, right- and left-hand polarizations. Note a 
visual appreciation does not allow determine if there exists some preferential or dominant 



 Chapter 3   Experimental results and discussions 

 -46- 

polarization associated to Figs. 3.8, this is only qualitative information. “This means that 
even when the experimental determination of the Stokes vector images provides more 
information, it is not conclusive, because it lacks numerical evaluations which provides the 
average tendency followed by the polarization analyzed”. On the other hand, the use of the 
SAS defined by Eq. 3.1, plays a very important role, because it allows one to compute every 
Stokes image parameter to get the complete Stokes vector. The spatial average of the 
Stokes image parameters over the area of the image, Fig. 3.8, provides 

𝑆 = 1.0000   0.0021   0.0244   0.1562 !. Note there is not perfect axial symmetry for 
the experimental radial polarization mode, even when the Stokes spatial average tendency is 
an elliptical right-hand polarization. 

 

Fig. 3.9 Stokes parameters associated to the experimental azimuthal polarization, a) S0, b) S1, c) S2, d) S3.  Spatial average 

symmetry, 𝑆 !"# = 1.0000 0.0923 0.1043 −0.0827 ! . Values are plotted in terms of pixels and the 

intensity values have been normalized. 
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Figure 3.9 shows the normalized experimental Stokes parameters for azimuthally 

polarized light. The Stokes parameter 𝑆!, Fig. 3.9a, exhibits also the effect of the intensity 
diattenuation due to the linear analyzer. The Fig. 3.9b represents S1, with both positive and 
negative contributions to the intensity spatial distribution. Fig. 3.9c shows the contribution 
to linear 45°, -45° polarizations. Finally, Fig. 3.9d shows the radial polarization 
contribution to circular polarization. Once again, Fig. 3.9 provides only qualitative 
information. The quantitative information to the experimentally determined Stokes image 
parameters for generated azimuthal polarization is 
𝑆 !"# = 1.0000 0.0923 0.1043 −0.0827 ! . The result obtained shows a Stokes spatial 

average tendency associated to a slightly elliptical left-hand polarization state. In this case, 
this means the azimuthally polarized mode beam does not exhibit a perfectly axially 
symmetric polarization distribution, a fact that is consistent with the image associated to 
the Stokes element 𝑆!  (Fig. 3.9a). 

Those results show that the S-wave plate does not generate a perfectly a radial or 
azimuthal polarization. This is important to keep in mind because the following 
measurements were made using this device. 

3.2.3 Theoretical images of the reflected beam by the sample 

To produce theoretical images of the beam reflected by the sample, matrices for the 
incident electric field distribution at the horizontal and vertical orientations were defined. 

Due that the incident field (𝐸!) is focused onto the surface of the sample; it was projected 
in the plane of incidence to calculate its parallel (or P) component, as Eq. 3.2a, 

𝐸!! = 𝐸! ∙ 𝑟      (3.2a) 

where 𝑟 is the radius vector associated to the azimuthal angle φ. On the other hand, the 
perpendicular (or S) contribution is realized according to the following Eq. 3.2b,  

𝐸!! = 𝐸! − 𝐸!! 𝑟     (3.2b)  
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Once the field components (Eq. 3.2) have been obtained, the reflected beam can be 
found via the Fresnel coefficients, 𝑟𝑝 and 𝑟𝑠, by the Eq. 3.3 [8], 

𝐸!! = 𝑟!𝐸!!                        (3.3a)  

𝐸!! = 𝑟!𝐸!!     (3.3b) 

Fig. 3.10 shows theoretical reflectance images generated numerically for the BK7 
glass when it is illuminated with x-linear and radial polarization, respectively. In the 
simulation, a uniform light source and a homogeneous and isotropic sample were 
considered. After obtaining these images, the position of the Brewster’s angle was found 
and compared with the experimental values. To extract the Brewster’s angle, for each 
image, the pixel position (xm, ym) where the intensity is minimum was identified. Then, the 

distance 𝑟 between the center of the image and the position (xm, ym) was calculated through 

𝑟 = 𝑥!! + 𝑦!! !/! , and finally, the Brewster’s angle was obtained by means of 

𝑠𝑖𝑛 𝜃! = 𝑟/𝑓 where 𝑓 is defined by the Eq. 2.57. This value allows the calculation of the 
Brewster angle and hence the refractive index of the sample. In the Appendix A3 is shown 
the MATLAB algorithm used to determine the Brewster’s angle. 

 

Fig. 3.10 Theoretical images generated numerically considering a homogeneous and isotropic BK7 glass 

sample. Incident beam: (a) x-linear and (b) radial polarization. 
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3.2.4 Experimental images of the reflected beam by the sample 

The experimental setup is illustrated in Fig. 3.11. A beam generated by an 
unpolarized laser (Melles Griot, Model 05-LGR-193-381 @543.5 nm) is spatially filtered 
(Newport, Model 910A) and collimated by a lens (L1). It passes through of the 
polarization state generator (PSG) and ends up focused by the objective lens, OL, (Nikon, 
Tu Plan Fluor EPI P 100x/NA 0.9) onto the sample. After reflection from the sample, the 
light is recollected by the objective lens and steered to the camera by the non-polarizing 
beam splitter (NBS). A CMOS camera (Thorlabs, DCC3240C) is used to capture the 
images by using a second lens (L2). The sensor size is 1280x1024 and the pixel size is 
5.3µm (square). Taking into account the incident wavelength and the NA, the beam size at 
the focus is estimated to be approximately 0.8 µm [8]. 

 

Fig. 3.11 Schematic diagram for the polarimetric experimental setup [118]. 

The PSG is employed to excite the sample with an x-polarization that was 
generated by placing a linear polarizer (LP) of the Glan-Thompson type (Thorlabs, 
GTH10M), without the SWP (s-wave plate) present. A linear to radial/azimuthal 
polarization converter (Altechna, s-wave plate, model RCP-515-06) has been employed 
[62, 115] to generate the radial polarization modes. This commercial device is a 
femtosecond laser machined nanostructure that varies spatially the phase to produce radial 
and azimuthal distributions of the electric field as well as polarization vortex [59]. Each 
sample was assembled on an xyz micrometric translational stage to facilitate its alignment.  
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Fig. 3.12 shows the experimental intensity distributions on the exit pupil plane of 
the objective lens when the sample is illuminated by x-linear (Fig. 3.12(a)) and radial (Fig. 
3.12(b)) polarization, respectively. Observe that when the sample is illuminated with x-
polarized light, after reflection, axially symmetrical dark zones appear at specific horizontal 
positions where the intensity takes the minimum value. Due to the electric field direction of 
the radially polarized is parallel to the incident local plane at each azimuthal angle of the 
objective lens, a dark ring could be observed, due to circular symmetry and the fact that the 
sample is homogeneous and isotropic (otherwise, the dark circle should not be completely 
closed). By the own fabrication nature of the s-wave plate, a minimum is always present at 
the center of the images registered by the CMOS camera. 

 

Fig. 5. Experimental intensity distributions on the exit pupil plane of the objective lens when the sample is 
illuminated by: (a) x-linear and (b) radial polarization. Symmetrical dark zones, highlighted by dashed lines, appear 

as a consequence that light is reaching the Brewster angle.  

 

The digital procedure used to find the Brewster’s angle to the experimental images 
is shown in the Appendix A4. It is important to mention that images present a little noise, 
and this could generate several minimum values, therefore the average of those values was 
calculated. 
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3.2.5 Results and discussions of the refractive index determined theoretically and 
experimentally. 

For the Brewster angle, the experimental result (Fig. 3.12, Table III) was compared 
with the reported angle given by the refractive index of BK7 glass [119].  

Table III. Measurement results of the Brewster angle and the refractive index of a BK7 glass by 

polarimetry. 

 

According to the Table III, when the incident beam is x-polarized light, the results 
are closer to the reported value and have a smaller error than the results for the radially 
polarized results. The advantage of using radial polarized light is that this kind of 
illumination contains all linear polarizations depending on the azimuthal angle and it could 
be applied to test the anisotropy of sample in a single measurement. The difference 
between experimental and simulated results may be due to the fact that the experimental 
results are measured from a micro-metric region, within the focus, which is assumed to be 
homogeneous and isotropic; while the reported reference value is the average value obtained 
using a well manufactured sample and larger illuminating areas of several square mm. 

 

 

 

 

 

 

Parameter Reported value Theoretical value Incident polarization 
x-polarized Radial polarized 

θB 56.650 56.590 56.349±1.279 56.116±1.502 
n 1.519 1.516 1.504±0.071 1.492±0.082 
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Chapter 4   Conclusions 

4.1   Conclusions of the polarization properties of light scattered by a metallic 
cylinder 

In summary, the experimental determination of the Mueller’s matrix (MM) 
associated to the light scattered from a metallic cylinder has been presented herein. Results 
show that this Mueller matrix has the same form as those reported for the one-dimensional 
rough surfaces. A very important difference between a one-dimensional rough surface that 
scatters light around a complete circle and a metallic cylinder, is that the rough surface 
depolarizes angularly while the metallic cylinder does not. With the determination of the 
MM, useful information about polarimetric properties of the metallic cylinder can be 
obtained. The depolarization index and the Gil-Bernabeu theorem have shown that the 
light scattered by the metallic cylinder is not depolarized, within the experimental error of 
the system employed here, and therefore it could be described by the Jones formalism. As a 
consequence of the angular dependence of the scattering, the metallic cylinder surface can 
be tailored properly to handle the distribution of light and its polarization properties. 
Several useful devices could be constructed based on this easily controllable and accessible 
low-cost method. For example, one possible application of the scattering behavior by a 
metallic circular cylinder is to use it as a polarization-maintaining de-multiplexer in 
combination with the plastic optical fibers (POF). The POFs are easy to handle, flexible, 
and economical, so the applications with POFs have been developed and commercialized, 
from their use as a simple light transmission guide to their utilization as sensors [120]. The 
scattered light by the metallic cylinder can be distributed through the optical fibers, 
maintaining the same polarization of incident light in each output channels for the cases of 
parallel and perpendicular polarizations, respectively.  



 Chapter 4   Conclusions 

 -53- 

 

Fig. 4.1 A possible application associated to the use of plastic optical fibers acting like a 

polarization de-multiplexer. 

For a general incident polarization state, the knowledge of the Mueller’s matrix 
allows handling properly the desired polarization state, depending on the angular scattering 
position at which each single fiber is fixed (see Fig. 4.1). For instance, considering a circle 
with 12 cm radius (ignoring the sections on the circle where the incidence and the 
saturation are angularly located), it is possible to place up 30 output channels, separated 2 
cm one of the other. To our knowledge, this is the cheapest and easiest controllable way to 
generate linear horizontal and vertical polarizations scattered fully angularly and uniformly. 

4.2 Conclusions of the refractive index measurement 

In summary, we have demonstrated an imaging polarimeter that measures the 
refractive index of a BK7 glass in a single shot. The sample was illuminated with two 
different polarization states, x- linear and radial polarization. Although the measured 
refractive index is closer to the reported value when the incident beam is x-linearly 
polarized, but the radial polarization also presents a good approximation. The purpose of 
this work is to show the importance and the application of the unconventional polarization 
to measure the refractive index of a dielectric sample. Probably the small error presented 
between the experimental and the reported values is originated from the fact that the 
experimental results have been obtained from illuminated regions at the micro-scale region, 
while the reported value considers larger areas around several square mm. The technique 
reported in this work allows ellipsometric measurement within the focal region, which may 
find applications in the microelectronic industry. This method and our numerical model 
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can be used to generate high spatial-resolution refractive index maps when the samples 
under study are non-homogeneous and non-isotropic. 
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Future work 

In the case of the light scattered by a metallic cylinder, the dependence of the polarization properties 

by varying the incident wavelength, the diameter and material of the cylinder can be studied. 

Taking advantage of the characteristic of the radially polarized beam, a sample can be studied to 

determine if the sample is an isotropic or anisotropic material, also its refractive indexes can be determined in 

a single shot using the polarimeter. On the other hand, the source light used in the polarimeter arrangement 

can be changed by a monochromatic source with the aim to characterize the sample in function of the 

wavelength. Also, the refractive index mapping of the entire surface of a micro-structure elaborated by 

photolithography can be obtained, each measurement should be taken displacing the sample in fractions of 

micrometers depending on the resolution of the translation stage. It is possible to develop an automatic 

system to control the movement of the sample through step motors and simultaneously to apply a software 

that plots the refractive index measured. 



References 

 -56- 

 

References 

1. R. A. Chipman, “Polarimetry,” chapter 22 in Handbook of Optics II, 2nd edition, 
McGraw-Hill, New York, 22.1-22.37 (1995).  

2. M. Losurdo and K. Hingerl, Ellipsometry at the Nanoscale, Springer, Berlin  (2013).  
3. N. Ghosh, J. Soni, M. F. G. Wood, M. A. Wallenberg, and I. A. Vitkin, “Mueller 

matrix polarimetry for the characterization of complex random medium like 
biological tissues,” Pramana – Journal of Physics 75(6), 1071-1086 (2010). 

4. S. N. Savenkov, “Mueller Matrix Polarimetry in Material Science, Biomedical and 
Environmental Applications,” chapter 29 in Handbook of Coherent-Domain Optical 
Methods, 2nd edition, Springer, New York, 1175-1253 (2013). 

5. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, "Review of passive 
imaging polarimetry for remote sensing applications," Applied Optics 45(22), 5453-
5469 (2006). 

6. K. M. Salas-Alcántara, R. Espinosa-Luna, I. Torres-Gómez, Y. O. Barmenkov, 
“Determination of the Mueller matrix of UV-inscribed long-period fiber grating,” 
Applied Optics 53(2), 269-277 (2014). 

7. A. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, "Polarization imaging 
of a 3D object by use of on-axis phase-shifting digital holography," Optics Letters 
32(2), 481-483 (2007). 

8. M. Born and E. Wolf, Principles of Optics, 7th edition, Cambridge University Press, 
London (1999).  

9. Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," 
Advances in Optics and Photonics 1(1), 1-57 (2009). 

10. E. Hecht, Optics, Pearson Education, 4th edition, San Francisco (2002).  
11. G. R. Fowles, Introduction to Modern Optics, 2nd edition, Reinhart & Winston, New 

York (1975).  
12. D. Goldstein, Polarized Light, 3rd edition, CRC Press, Boca Raton (2011).  



References 

 -57- 

13. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach, Wiley, 
New York (1998).  

14. E. Collett, Field Guide to Polarization, SPIE Field Guides, FG05, SPIE (2005). 
15. R. M. A. Azzam, "Stokes-vector and Mueller-matrix polarimetry [Invited]," Journal 

of the Optical Society of America A 33(7), 1396-1408 (2016). 
16. H. C. Van der Hulst, Light Scattering by Small Particles, Courier Corporation, 

Amsterdam (1957). 
17. K. A. O´Donnell and M. E. Knotts, “Polarization dependence of scattering from 

one-dimensional rough surfaces,” Journal of the Optical Society of America A 8(7), 
1126-1131 (1991).  

18. N. C. Bruce, A. J. Sant, and J. C. Dainty, “The Mueller matrix for rough surface 
scattering using the Kirchhoff approximation,” Optics Communications 88(4-6), 
471-487 (1992).  

19. T. R. Michel, M. E. Knotts, and K. A. O´Donnell, “Stokes matrix of a one-
dimensional perfectly conducting rough surface,” Journal of the Optical Society of 
America A 9(4), 585-596  (1992). 

20. M. E. Knotts, T. R. Michel, and K. A. O´Donnell, “Comparisons of theory and 
experiment in light scattering from a randomly rough surface,” Journal of the Optical 
Society of America A 10(5), 928-941 (1993). 

21. G. Atondo-Rubio, R. Espinosa-Luna, and A. Mendoza-Suárez, “Mueller matrix 
determination for one-dimensional rough surfaces with a reduced number of 
measurements,” Optics Communications 244(1), 7-13 (2005).  

22. R. Espinosa-Luna, G. Atondo-Rubio, A. Mendoza-Suárez, “Complete 
determination of the Mueller matrix for one-dimensional rough metallic surfaces,” 
Optics Communications 257(1), 62-71 (2006). 

23. Rafael Espinosa-Luna, "Degree of polarization as a criterion to obtain the nine 
bilinear constraints between the Mueller-Jones matrix elements," Applied Optics 
46(24), 6047-6054 (2007) 

24. C. Bohren and D. Huffman, Absorption and scattering of light by small particles, Wiley, 
New York (2008).  

25. P. M. A. Sloot, A. G. Hoekstra, H. van der Liet, and C. G. Figdor, "Scattering 
matrix elements of biological particles measured in a flow through system: theory and 
practice," Applied Optics 28(10), 1752-1762 (1989). 



References 

 -58- 

26. X. Chen, C. Zhang, and S. Liu, “Depolarization effects from nanoimprinted grating 
structures as measured by Mueller matrix polarimetry,” Applied Physics Letters 
103(15), 151605 (2013). 

27. E. Garcia-Caurel, A. De Martino, and B. Drevillon, “Spectroscopic Mueller 
polarimeter based on liquid crystal devices,” Thin Solid Films 455, 120-123 (2004). 

28. J. Gil and E. Bernabeu, “Depolarization and polarization indeces of an optical 
system”, Journal of Modern Optics 33(2), 185–189 (1986). 

29. S. Y. Lu and R.A. Chipman, “Mueller matrices and the degree of polarization,” 
Optics Communications 146(1), 11–14 (1998).  

30. R. Espinosa-Luna and E. Bernabeu, “On the Q(M) depolarization metric,” Optics 
Communications 277(2), 256 –258 (2007).  

31. S. Savenkov, “Polarimetry in terrestrial applications,” chapter 3 in Light scattering 
Reviews 10, 85-162, Springer, Berlin (2016). 

32. J. J. Gil and R. Ossikovski, Polarized light and the Mueller matrix approach, CRC Press 
(2016). 

33. R. Espinosa-Luna, G. Atondo-Rubio, and O. J. Velarde-Escobar, “Métrica de 
despolarización escalar Q (M) como criterio para identificar sistemas retardadores o 
desfasadores puros,” Revista Mexicana de Fisica 56(5), 406–410 (2010). 

34. J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Journal of 
Modern Optics 32(3), 259–261 (1985).  

35. R. C. Jones, "A New Calculus for the Treatment of Optical Systems I. Description 
and Discussion of the Calculus," Journal of the Optics Society of America 31(7), 488-
493 (1941). 

36. T. G. Brown and Q. Zhan, "Focus Issue: Unconventional Polarization States of 
Light," Optics Express 18, 10775-10776 (2010). 

37. T.G. Brown, “Unconventional Polarization States: Beam Propagation, Focusing, and 
Imaging”, Progress in Optics 56, 81-129 (2011). 

38. D. G. Hall, "Vector-beam solutions of Maxwell’s wave equation," Optics Letters 
21(1), 9-11 (1996). 

39. K. S. Youngworth and T. G Brown, "Focusing of high numerical aperture 
cylindrical-vector beams," Optics Express 7(2), 77-87 (2000). 

40. A. Forbes, Laser beam propagation, CRC Press (2014). 
41. Q. Zhan, Vectorial optical fields, World scientific (2014). 



References 

 -59- 

42. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, Wiley, New York 
(2007).  

43. L. Novotny, and B. Hecht, Principles of Nano-Optics, 2nd edition, Cambridge U. Press, 
New York (2006). 

44. D. Pohl, “Operation of a Ruby laser in the purely transverse electric mode TE01,” 
Applied Physics Letters 20(7), 266–267 (1972). 

45. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam 
by use of the birefringence of a c-cut Nd:YVO4 crystal,” Optics Letters 31(4), 2151–
2153 (2006). 

46. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, 
“Birefringence-induced bifocusing for selection of radially or azimuthally polarized 
laser modes,” Applied Optics 46(16), 3304–3310 (2007). 

47. Y. Kozawa and S.Sato, “Generation of a radially polarized laser beam by use of a 
conical Brewster prism,” Optics Letters 30(22), 3063–3065 (2005). 

48. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously 
polarized laser beams by use of a Sagnac interferometer,” Applied Optics 45(33), 
8393–8399 (2006). 

49. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Applied Optics 
41(22), 4630–4637 (2002). 

50. Q. Zhan and J. R. Leger, “Interferometric measurement of geometric phase in space-
variant polarization manipulations,” Optics Communications 213(4), 241–245 
(2002). 

51. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable 
retardation plate for efficient generation of radially- and azimuthally-polarized 
beams,” Optics Communications 281(4), 732–738 (2008). 

52. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally 
polarized beams generated by space-variant dielectric subwavelength gratings,” Optics 
Letters 27(5), 285–287 (2002). 

53. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated 
by liquid-crystal polarization converters,” Optics Letters 21(23), 1948–1950 (1996). 

54. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread 
function engineering,” Optics Express 14(7), 2650–2656 (2006). 

55. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams 
interferometrically,” Applied Optics 29(15), 2234–2239 (1990). 



References 

 -60- 

56. I. Saucedo-Orozco, G. López-Morales, and R. Espinosa-Luna, "Generation of 
unconventional polarization from light scattered by metallic cylinders under conical 
incidence," Optics Letters 39(18), 5341-5344 (2014). 

57. The Z-Pol from Nanophoton (http://www.nanophoton.jp/) and the radial polarizer 
from ARCoptix (http://www.arcoptix.com/). 

58. S-wave plate, radial polarization converter from Altechna (http://www.altechna.com). 
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Appendix A1 

The polarization state analyzer (PSA) used to obtain the angularly resolved Stokes 
vector is a commercially available head (Thorlabs, model PAX5710/VIS).  The data are 
saved in a file with extension CSV.   

MATLAB code to determine the angularly resolved Mueller matrix 
and polarimetric parameters associated to the scattered light by a metallic 
cylinder. 

% MATLAB code to determine the angularly resolved Mueller matrix and  
% polarimetric parameters associated to the scattered light  
% by a metallic cylinder. 
  
% StokesVector is a function that return the Stokes vector.  
% i = p(parallel) ,s (perpendicular),x (+45),y (-45),r (circular 
% right),and l (circular left) polarization states. 
% poweri = incident power values = S0 
% S1 is Stokes parameter S1 
% S2 is Stokes parameter S2 
% S3 is Stokes parameter S3 
% t is the capture time 
% DoP is the degree of polarization. 
  
clear all; close all; clc;  
  
% References data taken off the air Stokes vector 
% The Stokes vector of the scattered light by the air. 
ref = csvread('pr.csv',24,0); % Load the data p incident polarization 
[powerp,s1,s2,s3,t,DoP] = StokesVector(ref); % p - Stokes vector  
ref = csvread('sr.csv',24,0); % Load the data s incident polarization 
[powers,s1,s2,s3,t,DoP] = StokesVector(ref); % s - Stokes vector  
ref = csvread('xr.csv',24,0); % Load the data x incident polarization 
[powerx,s1,s2,s3,t,DoP] = StokesVector(ref); % x - Stokes vector 
ref = csvread('yr.csv',24,0); % Load the data y incident polarization 
[powery,s1,s2,s3,t,DoP] = StokesVector(ref); % y - Stokes vector 
ref = csvread('rr.csv',24,0); % Load the data r incident polarization 
[powerr,s1,s2,s3,t,DoP] = StokesVector(ref); % r - Stokes vector 
ref = csvread('lr.csv',24,0); % Load the data l incident polarization 
[powerl,s1,s2,s3,t,DoP] = StokesVector(ref);% l - Stokes vector 
  
% Stokes vector (SV) for the scattered light by a metallic cylinder. 
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% -------------------- P incident polarization -------------------- 
pp = csvread('p.csv',24,0); % Load the data p incident polarization 
[power,s1,s2,s3,t,DoP] = StokesVector(pp); % p - Stokes vector  
s0 = power./powerp; % Calculation of the normalized Stokes vector respect  
% to the reference power. 
DoP = DoP/100; % Degree of polarization (0-1) 
Gr = 0:360/(1024-1):360; % Azimuthal angles (0-360 degrees) 
p = horzcat(Gr',s0,s1,s2,s3,DoP); % Stokes vector for p-incident 
polarization 
  
% -------------------- S incident polarization-------------------- 
pp = csvread('s.csv',24,0); % Load the data s incident polarization 
[power,s1,s2,s3,t,DoP] = StokesVector(pp); % s - Stokes vector  
s0 = power./powers; 
DoP = DoP/100;  
s = horzcat(Gr',s0,s1,s2,s3,DoP); % Stokes vector for s-incident 
polarization 
  
% -------------------- X incident polarization -------------------- 
pp = csvread('x.csv',24,0); % Load the data x incident polarization 
[power,s1,s2,s3,t,DoP] = StokesVector(pp); % x - Stokes vector  
s0 = power./powerx; 
DoP = DoP/100;  
x = horzcat(Gr',s0,s1,s2,s3,DoP); % Stokes vector for x-incident 
polarization 
  
% -------------------- Y incident polarization -------------------- 
pp = csvread('y.csv',24,0); % Load the data y incident polarization 
[power,s1,s2,s3,t,DoP] = StokesVector(pp); % y - Stokes vector  
s0 = power./powery; 
DoP = DoP/100;  
y = horzcat(Gr',s0,s1,s2,s3,DoP);% Stokes vector for y-incident 
polarization 
  
% -------------------- R incident polarization -------------------- 
pp = csvread('r.csv',24,0); % Load the data r incident polarization 
[power,s1,s2,s3,t,DoP] = StokesVector(pp); % r - Stokes vector  
s0 = power./powerr; 
DoP = DoP/100;  
r = horzcat(Gr',s0,s1,s2,s3,DoP); % Stokes vector for r-incident 
polarization 
  
% -------------------- L incident polarization -------------------- 
pp = csvread('l.csv',24,0); % Load the data l incident polarization 
[power,s1,s2,s3,t,DoP] = StokesVector(pp); % l - Stokes vector  
s0 = power./powerl; 
DoP = DoP/100;  
l = horzcat(Gr',s0,s1,s2,s3,DoP);% Stokes vector for l-incident 
polarization 
  
%------------------------ Six measurements method -----------------------
- 
% Experimental determination of the effective Mueller matriz (mije) in 
% function of the scattered (azimuth) angles. 
% i,j=0,1,2,3. 
% g: variable of the numbers of scattered grades. 
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        for g = 1:1024  
            m00e=0.5*(p(g,2)+s(g,2)); 
            m01e=0.5*(p(g,2)-s(g,2)); 
            m02e=0.5*(x(g,2)-y(g,2)); 
            m03e=0.5*(r(g,2)-l(g,2)); 
            m10e=0.5*(p(g,3)*p(g,2)*p(g,6)+s(g,3)*s(g,2)*s(g,6));  
            m11e=0.5*(p(g,3)*p(g,2)*p(g,6)-s(g,3)*s(g,2)*s(g,6));  
            m12e=0.5*(x(g,3)*x(g,2)*x(g,6)-y(g,3)*y(g,2)*y(g,6)); 
            m13e=0.5*(r(g,3)*r(g,2)*r(g,6)-l(g,3)*l(g,2)*l(g,6));   
             
            m20e=0.5*(p(g,4)*p(g,2)*p(g,6)+s(g,4)*s(g,2)*s(g,6));  
            m21e=0.5*(p(g,4)*p(g,2)*p(g,6)-s(g,4)*s(g,2)*s(g,6));   
            m22e=0.5*(x(g,4)*x(g,2)*x(g,6)-y(g,4)*y(g,2)*y(g,6)); 
            m23e=0.5*(r(g,4)*r(g,2)*r(g,6)-l(g,4)*l(g,2)*l(g,6));   
  
            m30e=0.5*(p(g,5)*p(g,2)*p(g,6)+s(g,5)*s(g,2)*s(g,6));   
            m31e=0.5*(p(g,5)*p(g,2)*p(g,6)-s(g,5)*s(g,2)*s(g,6));   
            m32e=0.5*(x(g,5)*x(g,2)*x(g,6)-y(g,5)*y(g,2)*y(g,6));       
            m33e=0.5*(r(g,5)*r(g,2)*r(g,6)-l(g,5)*l(g,2)*l(g,6));  
             
            % Experimental effective Mueller matrix, Meff. 
            Meff=[m00e m01e m02e m03e; m10e m11e m12e m13e; m20e m21e 
m22e m23e; m30e m31e m32e m33e];           
            Meffexp(:,g) = Meff(:); 
             
            % Normalized experimental effective Mueller matrix respect to 
            % m00e value. 
            mt=(1/m00e)*Meff;      
             
            m00n(g,1) = mt(1,1); 
            m01n(g,1) = mt(1,2); 
            m02n(g,1) = mt(1,3); 
            m03n(g,1) = mt(1,4); 
            m10n(g,1) = mt(2,1); 
            m11n(g,1) = mt(2,2); 
            m12n(g,1) = mt(2,3); 
            m13n(g,1) = mt(2,4); 
            m20n(g,1) = mt(3,1); 
            m21n(g,1) = mt(3,2); 
            m22n(g,1) = mt(3,3); 
            m23n(g,1) = mt(3,4); 
            m30n(g,1) = mt(4,1); 
            m31n(g,1) = mt(4,2); 
            m32n(g,1) = mt(4,3); 
            m33n(g,1) = mt(4,4); 
             
% ------------------- Polarization parameter calculus ------------------- 
             
            % Depolarization index, 0<=DI(M)<=1.         
            L1 = mt(1,2)^2 + mt(1,3)^2 + mt(1,4)^2 + mt(2,1)^2 + 
mt(2,2)^2 + mt(2,3)^2 + mt(2,4)^2; 
            L2 = mt(3,1)^2 + mt(3,2)^2 + mt(3,3)^2 + mt(3,4)^2 + 
mt(4,1)^2 + mt(4,2)^2 + mt(4,3)^2 + mt(4,4)^2; 
            LT = sqrt(L1 + L2); 
            DI(g,1) = LT/(sqrt(3)*mt(1,1)); 
            % Diattenuation, 0<=D(M)<=1. 
            DM(g,1) = ((mt(1,2).^2 + mt(1,3).^2 + 
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mt(1,4).^2).^(1/2))/mt(1,1); 
            % Polarizance, 0<=P(M)<=1 
            PM(g,1) = ((mt(2,1).^2 + mt(3,1).^2 + 
mt(4,1).^2).^(1/2))/mt(1,1);    
            % Gil-Bernabeu Theorem  
            MT=trace(mt*mt'); 
            ME=4*(mt(1,1)^2); 
            TC(g,1) = MT/ME;   
             
%             Deleting data around 180 degrees due to the saturation on 
the detector. 
             
            if g > 1007 || g < 16 || (g > 490 & g < 542) 
                DI(g,1) = NaN; 
                DM(g,1) = NaN; 
                DL(g,1) = NaN; 
                DC(g,1) = NaN; 
                PM(g,1) = NaN; 
                QM(g,1) = NaN; 
                TC(g,1) = NaN; 
                 
                m00n(g,1) = NaN; 
                m01n(g,1) = NaN; 
                m02n(g,1) = NaN; 
                m03n(g,1) = NaN; 
                m10n(g,1) = NaN; 
                m11n(g,1) = NaN; 
                m12n(g,1) = NaN; 
                m13n(g,1) = NaN; 
                m20n(g,1) = NaN; 
                m21n(g,1) = NaN; 
                m22n(g,1) = NaN; 
                m23n(g,1) = NaN; 
                m30n(g,1) = NaN; 
                m31n(g,1) = NaN; 
                m32n(g,1) = NaN; 
                m33n(g,1) = NaN; 
                 
                DoP(g,1) = NaN; 
            end 
        end 
  
         
% ------------------ Plotting Mueller matrix elements ------------------ 
  
error = 10/100; 
step = 10; 
limY = 1.5; 
step2 = 40; 
lwl = 1.5;  
ft = 27;  
fl = 27;  
fe = 20;  
lw = 1.2;  
  
figure (1) 
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subplot(4,4,1); plot(Gr(1:step:1024)',m00n(1:step:1024),'LineWidth',lwl); 
hold on 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m00','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,2); plot(Gr(1:step:1024)',m01n(1:step:1024),'LineWidth',lwl); 
hold on 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m01','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,3); plot(Gr(1:step:1024)',m02n(1:step:1024),'LineWidth',lwl); 
hold on 
errorbar(Gr(step:step2:490)',zeros(size(Gr(step:step2:490)))',error*ones(
size(Gr(step:step2:490)))','.m','MarkerSize',1); 
errorbar(Gr(560:step2:1007)',zeros(size(Gr(560:step2:1007)))',error*ones(
size(Gr(560:step2:1007)))','.m','MarkerSize',1); 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m02','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,4); 
plot(Gr(1:step:1024)',m03n(1:step:1024),'LineWidth',lwl);hold on 
errorbar(Gr(step:step2:490)',zeros(size(Gr(step:step2:490)))',error*ones(
size(Gr(step:step2:490)))','.m','MarkerSize',1); 
errorbar(Gr(560:step2:1007)',zeros(size(Gr(560:step2:1007)))',error*ones(
size(Gr(560:step2:1007)))','.m','MarkerSize',1); 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m03','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,5); plot(Gr(1:step:1024)',m10n(1:step:1024),'LineWidth',lwl); 
hold on 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m10','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,6); 
plot(Gr(1:step:1024)',m11n(1:step:1024),'LineWidth',lwl);hold on 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m11','fontsize',fl,'fontweight','b'); 
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set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,7); plot(Gr(1:step:1024)',m12n(1:step:1024),'LineWidth',lwl); 
hold on 
errorbar(Gr(step:step2:490)',zeros(size(Gr(step:step2:490)))',error*ones(
size(Gr(step:step2:490)))','.m','MarkerSize',1); 
errorbar(Gr(560:step2:1007)',zeros(size(Gr(560:step2:1007)))',error*ones(
size(Gr(560:step2:1007)))','.m','MarkerSize',1); 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m12','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,8); plot(Gr(1:step:1024)',m13n(1:step:1024),'LineWidth',lwl); 
hold on 
errorbar(Gr(step:step2:490)',zeros(size(Gr(step:step2:490)))',error*ones(
size(Gr(step:step2:490)))','.m','MarkerSize',1); 
errorbar(Gr(560:step2:1007)',zeros(size(Gr(560:step2:1007)))',error*ones(
size(Gr(560:step2:1007)))','.m','MarkerSize',1); 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m13','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,9); plot(Gr(1:step:1024)',m20n(1:step:1024),'LineWidth',lwl); 
hold on 
errorbar(Gr(step:step2:490)',zeros(size(Gr(step:step2:490)))',error*ones(
size(Gr(step:step2:490)))','.m','MarkerSize',1); 
errorbar(Gr(560:step2:1007)',zeros(size(Gr(560:step2:1007)))',error*ones(
size(Gr(560:step2:1007)))','.m','MarkerSize',1); 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m20','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,10); 
plot(Gr(1:step:1024)',m21n(1:step:1024),'LineWidth',lwl); hold on 
errorbar(Gr(step:step2:490)',zeros(size(Gr(step:step2:490)))',error*ones(
size(Gr(step:step2:490)))','.m','MarkerSize',1); 
errorbar(Gr(560:step2:1007)',zeros(size(Gr(560:step2:1007)))',error*ones(
size(Gr(560:step2:1007)))','.m','MarkerSize',1); 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m21','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
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subplot(4,4,11); 
plot(Gr(1:step:1024)',m22n(1:step:1024),'LineWidth',lwl); hold on 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m22','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,12); 
plot(Gr(1:step:1024)',m23n(1:step:1024),'LineWidth',lwl); hold on 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m23','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,13); 
plot(Gr(1:step:1024)',m30n(1:step:1024),'LineWidth',lwl); hold on 
errorbar(Gr(step:step2:490)',zeros(size(Gr(step:step2:490)))',error*ones(
size(Gr(step:step2:490)))','.m','MarkerSize',1); 
errorbar(Gr(560:step2:1007)',zeros(size(Gr(560:step2:1007)))',error*ones(
size(Gr(560:step2:1007)))','.m','MarkerSize',1); 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m30','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,14); 
plot(Gr(1:step:1024)',m31n(1:step:1024),'LineWidth',lwl); hold on 
errorbar(Gr(step:step2:490)',zeros(size(Gr(step:step2:490)))',error*ones(
size(Gr(step:step2:490)))','.m','MarkerSize',1); 
errorbar(Gr(560:step2:1007)',zeros(size(Gr(560:step2:1007)))',error*ones(
size(Gr(560:step2:1007)))','.m','MarkerSize',1); 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m31','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,15); 
plot(Gr(1:step:1024)',m32n(1:step:1024),'LineWidth',lwl); hold on 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m32','fontsize',fl,'fontweight','b'); 
set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
subplot(4,4,16); 
plot(Gr(1:step:1024)',m33n(1:step:1024),'LineWidth',lwl); hold on 
ylim([-limY limY]); xlim([0 360]); 
ylabel('m33','fontsize',fl,'fontweight','b'); 
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set(gca,'XTick',0:360/4:360) 
set(gca,'XTickLabel',{'0','90','180','270','360'}) 
set(gca,'Fontsize',fe,'fontweight','b','LineWidth',lw) 
grid on; legend boxoff; 
  
text(-950,-3,'Scattering Angle 
(degrees)','fontsize',fl,'fontweight','b'); 
  
  
% ------------------- Plotting polarimetric parameters ------------------
- 
error = 4/100; 
step = 20; 
step2 = 20; 
step3 = 40; 
step4 = 40; 
  
figure (2) 
plot(Gr(1:step2:1024)',DI(1:step2:1024),'-
sr',Gr(1:step:1024)',TC(1:step:1024),'-k',... 
    Gr(1:step2:1024)',DM(1:step2:1024),'--
o',Gr(1:step:1024)',PM(1:step:1024),'-+','LineWidth',2); 
hold on; 
ylim([-0.1 1.5]); xlim([0 360]);  
xlabel('Scattering Angle (degrees)','fontsize',30,'fontweight','b'); 
legend('Depolarization Index','Gil-Bernabeu 
Theorem','Diattenuation','Polarizance'); 
set(gca,'XTick',0:360/8:360) 
set(gca,'XTickLabel',{'0','45','90','135','180','225','270','315','360'}) 
set(gca,'Fontsize',25,'fontweight','b','LineWidth',2.2) 
box off; grid on; 
 

Function to obtain the Stokes vector to the CSV file. 

% Function that taken off the Stokes parameters for the PAX software 
function [power,s1,s2,s3,t,DoP] = StokesVector(p) 
    power = p(1:1024,11); % Incident power values = S0 
    a = power(1:257); b = power(258:1024); 
    power = cat(1,b,a);  % Re-ordering of the power values 
    s1 = p(1:1024,2); % Incident Stokes parameter, S1 
    a = s1(1:257); b = s1(258:1024); 
    s1 = cat(1,b,a); % Re-ordering of the S1 values 
    s2 = p(1:1024,3); % Incident Stokes parameter, S2 
    a = s2(1:257); b = s2(258:1024); 
    s2 = cat(1,b,a); % Re-ordering of the S2 values 
    s3 = p(1:1024,4); % Incident Stokes parameter, S3 
    a = s3(1:257); b = s3(258:1024); 
    s3 = cat(1,b,a); % Re-ordering of the S3 values 
    t = p(1:1024,1); % time  
%     a = t(1:257); b = t(258:1024); % Re-ordering of the t values 
    DoP = p(1:1024,9); % Incident degree of polarization  
    a = DoP(1:257); b = DoP(258:1024); 
    DoP = cat(1,b,a); % Re-ordering of the DoP values 
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Appendix A2 

Matlab code to calculate the Spatial Average Symmetry associated to 
radial and azimuthal polarization beam. 

% STOKESVECTORFROMIMAGE    Calculate the Stokes vector associated to a 
%                          image. The only input parameter is the image 
%                          name (for example: 'IMG5423.tif'). The output 
%                          parameter is the Stokes vector So=[s0..s3]. 
% 
% By: V?ctor-Manuel Rico-Botero 
% 2016-Jun-26th 
  
clear all 
clc 
%% -------------------Load of experimental image-------------------------
-- 
SourceImage=imread('Radial.tif'); 
P=imread('Radial_PolP.tif'); 
S=imread('Radial_PolS.tif'); 
U=imread('Radial_Pol+45.tif'); 
D=imread('Radial_Pol-45.tif'); 
R=imread('Radial_PolCR.tif'); 
L=imread('Radial_PolCL.tif'); 
%% ----------------------Graylevel---------------------------------------
-- 
SourceImage=double(rgb2gray(SourceImage(:,:,1:3))); 
P=rgb2gray(P(:,:,1:3)); 
S=rgb2gray(S(:,:,1:3)); 
U=rgb2gray(U(:,:,1:3)); 
D=rgb2gray(D(:,:,1:3)); 
R=rgb2gray(R(:,:,1:3)); 
L=rgb2gray(L(:,:,1:3)); 
%% ---------------cropping for unanalyzed image--------------------------
-- 
imagesc(SourceImage) 
[x,y]=ginput; 
SourceImage_cropped=imcrop(SourceImage,[x-400,y-400,800,800]); 
imagesc(SourceImage_cropped/max(max(SourceImage_cropped))) 
axis 'square'  
colorbar 
set(gca, 'fontsize', 18) 
saveas(figure(1),'0_SourceImage_cropped','tif'); 
close all 
%% ----------cropping for circular linear P analyzed image---------------
-- 
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imagesc(P) 
[x,y]=ginput; 
P_cropped=double(imcrop(P,[x-400,y-400,800,800])); 
imagesc(P_cropped/max(max(P_cropped))) 
axis 'square' 
colorbar 
set(gca, 'fontsize', 18) 
saveas(figure(1),'1_P_cropped','tif'); 
close all 
%% ----------cropping for circular linear S analyzed image---------------
-- 
imagesc(S) 
[x,y]=ginput; 
S_cropped=double(imcrop(S,[x-400,y-400,800,800])); 
imagesc(S_cropped/max(max(S_cropped))) 
axis 'square' 
colorbar 
set(gca, 'fontsize', 18) 
saveas(figure(1),'2_S_cropped','tif'); 
close all 
%% ---------cropping for circular linear +45? analyzed image-------------
-- 
imagesc(U) 
[x,y]=ginput; 
U_cropped=double(imcrop(U,[x-400,y-400,800,800])); 
imagesc(U_cropped/max(max(U_cropped))) 
axis 'square' 
colorbar 
set(gca, 'fontsize', 18) 
saveas(figure(1),'3_U_cropped','tif'); 
close all 
%% ---------cropping for circular linear -45? analyzed image-------------
-- 
imagesc(D) 
[x,y]=ginput; 
D_cropped=double(imcrop(D,[x-400,y-400,800,800])); 
imagesc(D_cropped/max(max(D_cropped))) 
axis 'square' 
colorbar 
set(gca, 'fontsize', 18) 
saveas(figure(1),'4_D_cropped','tif'); 
close all 
%% ---------cropping for circular right hand analyzed image--------------
-- 
imagesc(R) 
[x,y]=ginput; 
R_cropped=double(imcrop(R,[x-400,y-400,800,800])); 
imagesc(R_cropped/max(max(R_cropped))) 
axis 'square' 
colorbar 
set(gca, 'fontsize', 18) 
saveas(figure(1),'5_R_cropped','tif'); 
close all 
%% ---------cropping for circular left hand analyzed image---------------
-- 
imagesc(L) 
[x,y]=ginput; 
L_cropped=double(imcrop(L,[x-400,y-400,800,800])); 
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imagesc(L_cropped/max(max(L_cropped))) 
axis 'square' 
colorbar 
set(gca, 'fontsize', 18) 
saveas(figure(1),'6_L_cropped','tif'); 
close all 
%% --------------Calculation of pixel's distance matrices----------------
-- 
[x,y]=meshgrid(-400:400); 
r=sqrt(x.^2+y.^2); 
%% ------------------Stokes parameters calculation-----------------------
-- 
s0=mean(mean(P_cropped(r<400)+S_cropped(r<400))); 
s1=mean(mean(P_cropped(r<400)-S_cropped(r<400))); 
s2=mean(mean(U_cropped(r<400)-D_cropped(r<400))); 
s3=mean(mean(R_cropped(r<400)-L_cropped(r<400))); 
figure(1) 
s0_image=(double(P_cropped)+double(S_cropped)); 
imagesc(s0_image/max(max(s0_image))) 
colorbar 
axis 'square' 
set(gca, 'fontsize', 18) 
saveas(figure(1),'s0_expRDL','tif'); 
figure(2) 
s1_image=(double(P_cropped)-double(S_cropped)); 
imagesc(s1_image/max(max(s1_image))) 
colorbar 
axis 'square' 
set(gca, 'fontsize', 18) 
saveas(figure(2),'s1_expRDL','tif'); 
figure(3) 
s2_image=(double(U_cropped)-double(D_cropped)); 
imagesc(s2_image/max(max(s2_image))) 
colorbar 
axis 'square' 
set(gca, 'fontsize', 18) 
saveas(figure(3),'s2_expRDL','tif'); 
figure(4) 
s3_image=(double(R_cropped)-double(L_cropped)); 
imagesc(s3_image/max(max(s3_image))) 
colorbar 
axis 'square' 
set(gca, 'fontsize', 18) 
saveas(figure(4),'s3_expRDL','tif'); 
  
S=[s0 s1 s2 s3]'; 
Snorm=S/s0 
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Appendix A3 

Theoretical analysis for measuring the refractive index to dielectric 
sample. 

% Refractive index measurement of a sample illuminating with p- and 
radial polarized light using a microscopic objective lens. 
% by: Victor-Manuel Rico-Botero 
% 2016-May-01st 
% Edit by Guadalupe Lopez Morales Oct 18, 2016 
  
%     Calculate the reflectance image for a given polarization field, 
using 
%     the Jones formulism. 
%     E_x :    horizontal Jones component for the incident electric field 
%     E_y :    vertical Jones component for the incident electric field 
%     delta:   retardance between horizontal and vertical electric fields 
%     polType: 'conv' for conventional polarization; 'unconv' for 
%              unconventional polarization modes 
%     n_s:     Average refractive index for the sample 
%     NA:      Numerical aperture for the objective lens 
%     tol:     tolerance arround the central refractive index value 
%     diameter: diameter (in pixels) for the interest area. 
 
clear all; clc; 
close all; 
 
 
% Variables 
% For P incident polarization 
E_x = 1; 
E_y = 0; 
delta = 0; 
polType = 'conv'; 
n_s = 1.519; 
NA = 0.9; 
tol = 0; 
diameter = 600; 
  
% For radial incident polarization 
% E_x = 1; 
% E_y = 1; 
% delta = 0; 
% polType = 'unconv_r'; 
% n_s = 1.519; 
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% NA = 0.9; 
% tol = 0; 
% diameter = 600; 
 
  
rho = diameter/2; % image radii 
thetaMax = asin(NA); % angle (in rad) asociated to NA 
f = rho/sin(thetaMax); % focal distance applying the Sine-condition 
pixelsVector = -rho:rho-1; 
[x,y] = meshgrid(pixelsVector); % coordinate matrix 
r = sqrt(x.^2+y.^2);      
  
%% ---------------azimthal angles for the objective lens-----------------
---- 
quadrantI = (x>=0)&(y>=0); 
quadrantII = (x<0)&(y>=0); 
quadrantIII = (x<0)&(y<0); 
quadrantIV = (x>=0)&(y<0); 
phyI = atan(y./x).*quadrantI; 
phyII = (atan(y./x)+pi).*quadrantII; 
phyIII = (atan(y./x)+pi).*quadrantIII; 
phyIV = (atan(y./x)+2*pi).*quadrantIV; 
phy = phyI+phyII+phyIII+phyIV; 
phy(isnan(phy))=0; 
%% --------------------Incident electric field---------------------------
-- 
switch polType  
    case 'conv' 
        Ex=E_x*ones(length(x),length(y))*exp(1i*delta); % Matrix for 
horizontal electric field before to objective lens 
        Ey=E_y*ones(length(x),length(y)); % Matrix for vertical electric 
field before to objective lens 
    case 'unconv_r' 
        [Ex,Ey]=rAndAV2('r',532E-9,6,0,1,diameter); 
    case 'unconv_a' 
        [Ex,Ey]=rAndAV2('a',532E-9,6,0,1,diameter); 
end 
%% -------------Angle of the incident electric field---------------------
-- 
ExPositive = Ex>0; 
ExNegative = Ex<0; 
EyPositive = Ey>0; 
EyNegative = Ey<0; 
alphaI = atan(Ey./Ex).*ExPositive.*EyPositive; 
alphaII = (atan(Ey./Ex)+pi).*ExNegative.*EyPositive; 
alphaIII = (atan(Ey./Ex)+pi).*ExNegative.*EyNegative; 
alphaIV = (atan(Ey./Ex)+2*pi).*ExPositive.*EyNegative; 
alpha = alphaI+alphaII+alphaIII+alphaIV; 
if(strcmp(polType,'unconv_r')||strcmp(polType,'unconv_a')) 
    alpha=alpha'; 
end 
if(strcmp(polType,'conv')) 
    alpha=atan(Ey./Ex);  % polarization angle 
end 
%% ------------Magnitude of the incident electric field------------------
-- 
E = sqrt(Ex.*conj(Ex)+Ey.*conj(Ey)); 
%% -----------Incident Electric field at the plane of incidence----------
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-- 
Ep_i = E.*cos((phy-alpha)); 
Es_i = sqrt((E.*cos(alpha)-Ep_i.*cos(phy)).^2+(E.*sin(alpha)-
Ep_i.*sin(phy)).^2); 
%% ----------------------refractive index map----------------------------
-- 
theta_i = asin(r/f); % incidence angle applying the Sine-condition 
n = n_s*ones(size(theta_i));  % Refractive index map. Homegeneity is 
suppossed 
n = n+tol*rand(size(theta_i))-tol*rand(size(theta_i)); 
%% ---------------Fresnel formulas for dielectrics-----------------------
-- 
theta_t = asin(1./n.*sin(theta_i)); 
r_p = (tan(theta_i-theta_t)./tan(theta_i+theta_t)); % Fresnel coefficient 
for P polarization 
r_s = -(sin(theta_i-theta_t)./sin(theta_i+theta_t));  % Fresnel 
coefficient for S polarization 
r_p(isnan(r_p)) = ((n(1)-1)/(n(1)+1)); % indeterminacy removal to normal 
incidence 
r_s(isnan(r_s)) = ((n(1)-1)/(n(1)+1));  % indeterminacy removal to normal 
incidence 
%% ------------------------Reflected fields------------------------------
-- 
Ep_r = r_p.*Ep_i; 
Es_r = r_s.*Es_i; 
%% --------------------------Reflectance---------------------------------
- 
mask = r<rho; 
R = sqrt((Ep_r.*conj(Ep_r)+Es_r.*conj(Es_r)).*mask); 
%% ----------------------------Finding Brewster Angle--------------------
------------------ 
A = R; 
pixelsVector = -rho:rho-1; 
[x,y] = meshgrid(pixelsVector);  % position matrix 
r = sqrt(x.^2+y.^2); 
minValue = min(min(A(r<rho))); 
intensityTolerance = 1; 
idx =find(A<=minValue+intensityTolerance/1024); 
[ix,iy] = ind2sub(size(A),idx); 
r = sqrt((ix-rho).^2+(iy-rho).^2); 
idx = idx(r<rho-2); 
[ix,iy] = ind2sub(size(A),idx); 
imageRadii=size(R,1)/2; 
rB = sqrt((ix-imageRadii).^2+(iy-imageRadii).^2); 
thetaMax = asind(NA);   % angle (in rad) asociated to NA 
f = imageRadii/sind(thetaMax); % sine-condition 
theoreticalBrewster_Angle = asind(mean(rB)/f)   
%% Plotting 
imagesc(A); axis 'square'; colormap('copper'); axis off 
	
	
The function called RANDAV2 generates the electric field for radial or azimuthal 
polarization. 
 
% RANDAV2  generates radial and azimuthal polarization matrices. 
%          by, Victor-Manuel Rico-Botero, 2016-Apr-28th 
%          Parameters: 
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%          polType: 'r' for radial, 'a' for azimuthal 
%          lambda: wavelenght 
%          w0: width of the beam weist 
%          z: beam position at the propagation axis 
%          E0: field amplitud 
%          Diameter: image diameter in pixels 
%   example: [Ex,Ey]=rAndAV2('r',632E-9,6,0,1.6,600) 
  
function [Ex,Ey]=rAndAV2(polType,lambda,w0,z,E0,diameter) 
rho=diameter/2; 
pixelsVector=linspace(-1,1,2*rho); 
[x,y]=meshgrid(pixelsVector*2E7*lambda);                                   
% beyond to 0.001 computer dies! 
k=2*pi/lambda;                                                             
% Wavevector 
z0=(k*w0^2)/2;                                                             
% Rayleight length 
wz=w0*sqrt(1+(z/z0)^2);                                                    
% Beam w 
Rz=z*(1+(z0/z)^2);                                                         
% Radii of wavefront. 
Rz(isnan(Rz))=1E10;                                                        
% NaN removal for z=0 
qz=z+1i*z0;                                                                
% complex beam parameter 
m=0; 
n=1; 
phy=(1+m+n)*atan(z/z0);                                                    
% Gouy phase 
h0=1;                                                                      
% Hermite polynomial h0 
h1_y=2*sqrt(2)*y/wz;                                                       
% Hermite polynomial h1(y) 
h1_x=2*sqrt(2)*x/wz;                                                       
% Hermite polynomial h1(x) 
% -------------------------Modes calculation-----------------------------
-- 
E01=E0*w0/wz*h1_y.*exp(-1i*phy).*exp(-(x.^2+y.^2)*k/(2*qz)); 
E10=E0*w0/wz*h1_x.*exp(-1i*phy).*exp(-(x.^2+y.^2)*k/(2*qz)); 
  
switch polType 
    case 'r' 
        Ex=E01; 
        Ey=E10; 
    case 'a' 
        Ex=-E10; 
        Ey=E01; 
end 
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Appendix A4 

Experimental analysis for measuring the refractive index to dielectric 
sample. 

% Refractive index measurement of a sample illuminating with p- and 
radial 
% polarized light using a microscopic objective lens (Experimental 
results). 
% by: Victor-Manuel Rico-Botero 
% 2016-May-01st 
% Edit by Guadalupe Lopez Morales Oct 18, 2016 
  
clear all; clc; 
close all; 
  
% Load experimental images 
Image = imread('BK7_P_TE5_FDN2_Seno.png'); 
% Image = imread('BK7_rad_TE5_FDN2_Seno.png'); 
  
Image = Image(:,:,1:3); 
Image = rgb2gray(Image);   
imagesc(Image); axis 'square'; colormap('copper'); axis off 
Image = imresize(Image, [206 206]); 
  
% ---------------------------- Input data ---------------------------- 
NA = 0.9; % Numerical aperture of the objective lens 
epsilon = 3; % epsilon: tolerance in the absolute minimum value 
imageDiameter = size(Image,1); 
maxExpImage=max(max(Image)); 
% ---------------------Finding minimum value---------------------------- 
rho=imageDiameter/2; 
pixelsVector=linspace(-rho,rho,imageDiameter); 
[x,y]=meshgrid(pixelsVector);  % position matrix 
r=sqrt(x.^2+y.^2); 
tolerance = 6; 
minValue=min(min(Image(r<(rho-tolerance)))); % calculation of the 
absolute minimum 
lowerLimit=(r<rho-tolerance)& Image>=minValue; 
upperLimit=(r<rho-tolerance)& Image<(minValue+epsilon); 
idx=find(lowerLimit & upperLimit); 
% ----------------Calculation of the minimum position--------------------
- 
[ix,iy]=ind2sub(size(Image),idx); 
hold on 
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plot(iy,ix,'wx','linewidth',2) 
hold off 
% -------------------- Calculating the Brewster angle -------------------
- 
R = size(Image,1)/2; 
center = size(Image); 
thetaMax=asin(NA); % angle (in rad) asociated to NA 
f=R/sin(thetaMax);  
r=sqrt((ix-center(2)/2).^2+(iy-center(1)/2).^2); 
theta_Brewster=asind(r/f);   
Brewster_Angle=mean(theta_Brewster); 
nValue=mean(tand(theta_Brewster)); 

 


